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Certification of quantum systems and operations is a central task in quantum information processing. Most
current schemes rely on a tomography with fully characterized devices, while this may not be met in real exper-
iments. Device characterizations can be removed with device-independent tests, but it is technically challenging
at the moment. In this paper, we investigate the problem of certifying entangled states and measurements via
semiquantum games, a type of nonlocal quantum games with well characterized quantum inputs, balancing
practicality and device independence. We first design a specific bounded-dimensional semiquantum game, with
which any pure entangled state and Bell state measurement operators can be simultaneously certified. Afterward
via a duality treatment of state and measurement, we interpret the dual form of this game as a source-independent
bounded-dimensional entanglement swapping protocol and show the whole process, including any entangled
projector and Bell states, can be certified with this protocol. In particular, our results do not require a complete
Bell state measurement, which is beneficial for experiments and practical use.
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I. INTRODUCTION

With the rapid development of quantum technologies in
state preparation and dynamical evolution, quantum devices
are expected to outperform their classical counterparts in the
future. However, unexpected and uncharacteristic noise ham-
pers the functioning of quantum devices. Thus certification of
states and implemented processes in the quantum devices is
a central task in this field. Nonetheless, as a classical being,
an observer can only take advantage of classical statistics to-
gether with a physical model he or she believes to characterize
the system and its dynamical evolution. One way for certifi-
cation is to employ a full tomography on the system (state
tomography) [1–3] or on the process (process tomography)
[4–6]. With an information-complete set of measurements (in-
put states), one can reconstruct all the elements in the quantum
state operator (quantum process). However, such approaches
require a full knowledge on the devices. Unavoidable noise
from the real environment can easily nullify the results. The
states and measurements used in tomography need to be fully
characterized and trusted, while sometimes they might be
even more difficult to calibrate than the system or process
investigated.
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Luckily, quantum physics allows us to break away from
the dilemma by Bell nonlocality [7,8]. Violation of a Bell
inequality indicates entanglement in a nonlocal system and
incompatibility of measurements. In fact, as explicitly pointed
out by Mayers and Yao [9], the state and measurements can be
uniquely determined to local isometries from certain classical
correlations or the system “self-tests” itself [9] without any
charactization of the devices but only relying on the validity
of quantum physics. In this sense we say the certification is
device independent. So far, numerous remarkable results have
been derived in the subject of state self-testing [10–17], and
physical processes or measurements certification [18–25]. To
make self-testing meet a real situation, robust self-testing,
allowing the noises and imperfections to some extent, has
been investigated, aiming to give a lower bound on the fidelity
of the physical system from a reference system (in the sense
of local isometries) based on the observed statistics. Much
progress has been made in this field, too [14,15,26–28].

Realizing loophole-free device-independent tests are
highly challenging in practice, mainly suffering from detec-
tion and locality loopholes. Until now, only a few device-
independent experiments succeed in closing the detection
loophole and the locality loophole simultaneously [29–36].
However, in these demonstrations, either only a modest viola-
tion of Bell inequality is obtained, which is far from current
robust self-testing requirement [15], or the repetition rate is
rather low for practical applications. Besides, not all entangled
states can show nonlocal advantages over separable states.

A compromising approach to balancing device indepen-
dence and practicality is to apply a semi-device-independent
scenario. One of the most prominent scenarios is the
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semiquantum game proposed by Buscemi [37]. Semiquan-
tum games are similar to Bell tests, except for that general
local quantum inputs are allowed. It has been proved that all
entangled states exhibit nonlocality in these games, bridging
the gap between the concept of entanglement and nonlocality
(see Corollary 1 in Ref. [37]). After the proposal of semi-
quantum games, focusing on the prepared entangled states,
there are results presenting approaches to qualitatively wit-
nessing entanglement [38–42] and quantitatively estimating
the amount of entanglement in the system with semiquantum
games [43,44]. The use of general quantum inputs make
these protocols more flexible than fully device-independent
ones. This allows the direct use of general quantum states in
a quantum network [45,46]. Moreover, semiquantum games
can be loss tolerant [38,45], reducing the detection efficiency
requirement. This overcomes the detection-loophole problem
in device-independent tasks. However, little attention has been
received for channels or measurements in these games, with
one exceptional work focusing on the quantum channel with
quantum memories [47]. Moreover, it is left open whether
we can “uniquely” certify certain systems and operations
simultaneously in a manner similar to self-testing in device-
independent tests.

In this paper, we consider the certification of entangled
states and measurements in semiquantum games with a given
dimensional Hilbert space. We design a new type of semi-
quantum game, showing the plausibility of simultaneous cer-
tification of any pure bipartite entangled state in C2 ⊗ C2 and
Bell state measurement operators. In particular, our design
does not rely on a complete Bell state measurement but can be
naturally generalized for such a case. Moreover, we transform
the setting into the manner of a source-independent entan-
glement swapping protocol via a duality treatment of state
and measurement operator. In its “dual” form of semiquantum
game, any entangled projector acting on the bounded dimen-
sional space and Bell states can be certified simultaneously.

II. PRELIMINARY

We first briefly review the concept of semiquantum games
in Ref. [37] and results in Ref. [38]. Consider a nonlocal
game with two players, Alice and Bob, as shown in Fig. 1.
In each round of the game, a referee gives them quantum
states ψA0

x ∈ D(HA0 ), ψB0
y ∈ D(HB0 ), x ∈ X , y ∈ Y individu-

ally. These inputs can be general quantum states acting on
the corresponding Hilbert spaces and are not necessarily pure.
Nevertheless, they are all well characterized and trusted. We
denote the input systems by the corresponding Hilbert spaces,
HA0 ,HB0 for Alice and Bob, respectively. Then they are asked
to give classical outputs a ∈ A, b ∈ B, and a score β

x,y
a,b is

obtained based on the tuple of {ψA0
x , ψB0

y , a, b}. In this game,
generally, Alice and Bob can first share a bipartite state ρAB ∈
D(HA ⊗ HB), and perform joint positive operator-valued
measure measurements (POVMs) on the party they each hold
and the received quantum input state, individually. We denote
the POVM elements as MA0A

a acting on HA0 ⊗ HA yielding the
result a on Alice’s side and MBB0

b acting on HB ⊗ HB0 yielding
the result b on Bob’s side, with MA0A

a , MBB0
b � 0,

∑
a MA0A

a =

FIG. 1. The semiquantum game. The systems are denoted by
their corresponding Hilbert spaces. In this game, from the referee’s
perspective, well-characterized states {ψA0

x }, {ψB0
y } are sent to Alice

and Bob, respectively, where each of the two players measures the
input quantum state received and her or his own party of ρAB jointly.
The joint measurements are expressed as POVMs {MA0A

a }, {MBB0
b }

IA0A,
∑

b MBB0
b = IBB0 . The average score is

S =
∑

x,y,a,b

β
x,y
a,bP

(
a, b|ψA0

x , ψB0
y

)

=
∑

x,y,a,b

β
x,y
a,bTr

[(
ψA0

x ⊗ ρAB ⊗ ψB0
y

)(
MA0A

a ⊗ MBB0
b

)]
.

(1)

Consider any conventional entanglement witness W ,
Tr[W ρT ] < 0 for a specific entangled state ρT while
Tr[W σ ] � 0 for any separable operator σ . The transpose
operation does not change the amount of entanglement in the
state, and the reason for using a transposed state will be made
clear later. It is plausible to transform the entanglement wit-
ness W into a semiquantum game and witness entanglement
over systems HA,HB. Using the technique of partial POVM,
we now focus on the effective POVM elements

M̃A0B0
ab = TrAB

[
(IA0 ⊗ ρAB ⊗ IB0 )

(
MA0A

a ⊗ MBB0
b

)]
, (2)

which act on the Hilbert space HA0 ⊗ HB0 . Intuitively, the
state information of ρAB can be cast into the structure of
the POVM elements M̃A0B0

ab . Inputting quantum states can be
seen as a tomography process of this effective POVM, hence
acquiring information about ρAB.

To link the entanglement witness with the semiquantum
game, consider a decomposition of W with the parameters βx,y

and quantum inputs {ψA0
x , ψB0

y }

W A0B0 =
∑

x,y,a,b

β
x,y
a,bψ

A0
x ⊗ ψB0

y . (3)

Here we use the superscripts A0B0 to denote that the effective
entanglement witness now acts on the space HA0 ⊗ HB0 . One
can focus on one specific outcome, say, (a, b) = (0, 0), by let-
ting β

x,y
a,b = δa,0 · δb,0 · βx,y in a semiquantum game. The aver-

age score obtained in the game becomes S = Tr[W A0B0 M̃A0B0
00 ].

It has been proved in Ref. [38] that a separable σ AB will
result in separable effective POVM elements M̃A0B0

ab what-
ever the measurements. In these cases, one will observe a
score S � 0. On the other hand, if the shared state between
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HA,HB is the entangled state ρAB, and the measurement
operators are projectors onto the maximally entangled state
MA0A

a = MBB0
b = |�+〉〈�+|, then it gives rise to the effective

POVM element M̃A0B0
ab = ρT /dAdB, where dA, dB are dimen-

sions of HA,HB and |�+〉 = 1√
d

∑d
i=1 |ii〉. In this case a

negative score S < 0 will be observed, implying entanglement
over systems HA,HB.

The results above show that it is viable to witness entan-
glement in a measurement-device-independent manner with
the aid of semiquantum games. Besides, as only the outputs
(a, b) = (0, 0) are used, this protocol shares a loss-tolerant
feature. Furthermore, these semiquantum games can also be
applied to detect detailed entanglement structure [41] and
estimate the robustness of entanglement, negativity, and ran-
domness [44].

III. SIMULTANEOUS CERTIFICATION OF ENTANGLED
STATE AND MEASUREMENTS

In previous works, only prepared states or channels are
characterized via a semiquantum game. To further elaborate
the application of semiquantum games, we now investigate
the problem of certifying entangled states and joint measure-
ments simultaneously. We first define the concept of entangled
measurement operators and entangled measurements:

Definition 1 (Entangled Measurements). A measurement
operator MAB

ab (0 � MAB
ab � I ) acting on the system HA ⊗ HB

is called entangled if it cannot be expressed as
∑

i, j NA
i ⊗ NB

j

with a set of semidefinite positive operators {NA
i , NB

j |NA
i ∈

L(HA), NB
j ∈ L(HB), NA

i , NB
j � 0}; otherwise, it is called a

separable measurement operator. A POVM {MAB
ab } is called

entangled if at least one of its measurement operators is
entangled.

In the following we may call both entangled states and
entangled measurement operators as generally entangled op-
erators. Entangled measurements, especially Bell state mea-
surement (BSM), play an important role in many quantum
information processing tasks like entanglement swapping and
teleportation. In the measurement-device-independent proto-
cols, entangled measurement operators are essential for a
nonlocal behavior, too. We have the following result for
semiquantum games:

Theorem 1. In a semiquantum game where the input
states and appointed scores form an entanglement witness
given by Eq. (3), an observation of an average score S =
Tr[W M̃A0B0

00 ] < 0 necessarily indicates that MA0A
0 (MBB0

0 ) is an
entangled POVM operator on systems HA0 ,HA(HB,HB0 ).

The proof is given in Appendix A. This theorem together
with previous results show that entangled measurements and
state can be witnessed by investigating the effective POVM
elements. Now we take one step further and try to certify
them via a quantitative investigation on the effective POVM
measurement operators M̃A0B0

ab . We consider the case with
a bounded dimensional Hilbert space, specifically the case
where the unknown state is a pair of qubits, and we design the
semiquantum games such that all quantum inputs are qubits
as well, i.e., HA

∼= HB
∼= HA0

∼= HB0
∼= C2.

Box 1: Design of the measurement-device-
independent game:

Game {ψA0
x , ψB0

y , βx,y} is designed such that

• The quantum inputs are sent to the mea-
surement devices at random,

• {ψA0
x , ψB0

y , βx,y} are divided into two
sets of tuples, {ψA0

x1
, ψB0

y1
, βx1,y1} and

{ψA0
x2

, ψB0
y2

, βx2,y2}, where {x1, y1} ∪
{x2, y2} = {x, y}, {x1, y1} ∩ {x2, y2} = ∅.
They effectively construct the operators

W = WG + WT =
∑

x,y

βx,yψA0
x ⊗ ψB0

y ,

WG = |ψE〉〈ψE | =
∑

x1,y1

βx1,y1ψA0
x1

⊗ ψB0
y1

,

WT = IA0B0 − WG =
∑

x2,y2

βx2,y2ψA0
x2

⊗ ψB0
y2

,

• |ψE〉 is an entangled pure state,

• The average score obtained in the rounds
with input states ψA0

x2
, ψB0

y2
is restricted to

be

ST =
∑

x2,y2

βx2,y2P (a = b = 0|ψA0
x2

, ψB0
y2

) = 0.

Goal: Maximize the average score S =∑
x,y βx,yP (a = b = 0|ψA0

x , ψB0
y ).

In the spirit of measurement-device-independent entangle-
ment witness, we now also focus on one pair of measurement
operators corresponding to a single outcome, say, (a, b) =
(0, 0), and set the score β

x,y
a,b = 0 for (a, b) 
= (0, 0). As only

the measurement operators MA0A
0 , MBB0

0 are used, for brevity,
we omit the subscripts and denote the measurement operators
as MA0A, MBB0 and the effective POVM element as M̃A0B0 . We
design a measurement-device-independent game as shown in
Box 1.

Now we give the main result in this paper:
Theorem 2. Under the condition HA

∼= HB
∼= HA0

∼=
HB0

∼= C2, the largest score that can be obtained in
the game is S = 1/4. This score also certifies that
(ρAB)T ∼ |ψE 〉〈ψE |, MA0A, MBB0 ∼ |�+〉〈�+|, where the
equivalence refers to a freedom of local unitary operations.

This result shows that any two-qubit entangled pure state
|ψE 〉 and a pair of BSM operators MA0A, MBB0 can be certi-
fied in the bounded-dimensional semiquantum game. In the
following we prove this result.

Proof. The design of the game restricts that the effective
POVM operator M̃A0B0 must act only on the subspace spanned
by |ψE 〉, which we denote as span(|ψE 〉). Hence the problem
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can be cast into an optimization form:

arg max
ρAB,MA0A,MBB0

Tr[M̃A0B0 |ψE 〉〈ψE |],

Subject to:

M̃A0B0 = TrAB[(IA0 ⊗ ρAB ⊗ IB0 )(MA0A ⊗ MBB0 )],

Tr[M̃A0B0 (IA0B0 − |ψE 〉〈ψE |)] = 0.

Here arg refers to the arguments when the maximum of the
objective function is taken. Apart from the system dimensions,
we do not make assumptions on the measurement operators,
MA0A, MBB0 , which may be general POVM operators, or the
state ρAB, which is in general a mixed state. However, we have
the following lemmas showing that only rank-one entangled
measurement operators and a pure entangled state may guar-
antee that M̃A0B0 ∈ L(span(|ψE 〉)), where |ψE 〉 is entangled:

Lemma 1. For HA
∼= HB

∼= HA0
∼= HB0

∼= C2 and
MA0A, MBB0 rank-one entangled measurement operators
over systems HA0 ,HA and HB0 ,HB, a necessary condition for
M̃A0B0 ∈ L(span(|ψE 〉)) is that ρAB is a pure state.

Lemma 2. For a pure bipartite entangled quantum state
ρAB = |�〉〈�| ∈ D(C2 ⊗ C2) over systems HA,HB, a nec-
essary condition for M̃A0B0 ∈ L(span(|ψE 〉)) is that both MA0A

and MBB0 are rank-one entangled operators over systems
HA,HA0 and HB,HB0 .

We show the proofs in Appendixes B and C. To see that
only rank-one entangled measurement operators and a pure
entangled state need to be considered, for a general state
ρAB and POVM elements MA0A, MBB0 , we can apply spectral
decomposition to them,

ρAB =
∑

i

|�i〉〈�i|,

MA0A =
∑

j

|φ j〉〈φ j |,

MBB0 =
∑

k

|φk〉〈φk|.

Here |�i〉, |φ j〉, |φk〉 are (subnormalized) orthogonal vectors.
The effective POVM M̃A0B0 becomes

M̃A0B0 =
∑

j,k

NA0B0
jk

=
∑

j,k

TrAB[(IA0 ⊗ ρAB ⊗ IB0 )(|φ j〉〈φ j | ⊗ |φk〉〈φk|)],

where NA0B0
jk � 0,∀ j, k. To restrict that M̃A0B0 ∈

L(span(|ψE 〉)), we need all these operators to act on
span(|ψE 〉). Via Lemma 1, ρAB should be a pure state.
Then the problem is reduced to the case in Lemma 2, hence
requiring MA0A, MBB0 to be necessarily rank-one entangled
operators, such that M̃A0B0 ∈ L(span(|ψE 〉)).

We now can focus on the case with rank-one mea-
surement operators and a pure state. First we apply the
Schmidt decomposition to |ψE 〉, and without loss of gener-
ality it can be written as |ψE 〉 = cos χ |00〉 + sin χ |11〉, where
|0〉, |1〉 represent some orthogonal bases in systems A0, B0.
Since the measurement operators can be treated as (sub-
normalized) pure bipartite states now, we now denote them

as MA0A = ma|φA0A〉〈φA0A|, MBB0 = mb|φBB0〉〈φBB0 |, where
|φA0A〉, |φBB0〉 are normalized pure states, 0 � ma, mb � 1.
Furthermore, we express them in the form of

|φA0A〉 = √
ma(cos α|0〉|ϕA〉 + sin α|1〉|ϕ̄A〉),

|φBB0〉 = √
mb(cos β|0〉|ϕB〉 + sin β|1〉|ϕ̄B〉). (4)

In Eq. (4), the state vectors |0〉, |1〉 acting on systems A0, B0

are the same as the ones in representing |ψE 〉. The vec-
tors |ϕA〉, |ϕ̄A〉 ∈ HA, |ϕB〉, |ϕ̄B〉 ∈ HB are normalized, yet
in general 〈ϕA|ϕ̄A〉, 〈ϕB|ϕ̄B〉 
= 0. Therefore, we can express
M̃A0B0 = |�̃〉〈�̃|, where |�̃〉 is a subnormalized vector

|�̃〉 = √
mamb(cos α cos β〈�|ϕAϕB〉|00〉

+ sin α sin β〈�|ϕ̄Aϕ̄B〉|11〉
+ cos α sin β〈�|ϕAϕ̄B〉|01〉
+ sin α cos β〈�|ϕ̄AϕB〉|10〉).

Requiring |�̃〉 to be parallel to |ψE 〉 indicates that
〈�|ϕAϕ̄B〉 = 〈�|ϕ̄AϕB〉 = 0. Under this condition we have
the following lemma:

Lemma 3. In the condition that 〈�|ϕAϕ̄B〉 = 〈�|ϕ̄AϕB〉 =
0, where |ϕA〉, |ϕ̄A〉, |ϕB〉, |ϕ̄B〉 are introduced by Eq. (4), we
have |〈�|ϕAϕB〉|2 + |〈�|ϕ̄Aϕ̄B〉|2 � 1. The equality is taken
iff 〈ϕA|ϕ̄A〉 = 〈ϕB|ϕ̄B〉 = 0, and the subspaces of the two par-
ties are spanned by {|ϕA〉, |ϕ̄A〉}, {|ϕB〉, |ϕ̄B〉}, respectively.

While the lemma is relatively easy to be proved in the
Hilbert space with a bounded dimension we now consider, it is
worth noting that it does not rely on a restriction of dimensions
of HA,HB. We leave the proof for this lemma in the general
case in Appendix D.

With this lemma and the requirement that |�̃〉 lying parallel
to |ψE 〉, we can derive that

Tr[M̃A0B0 |ψE 〉〈ψE |]

� mamb
sin2 α sin2 β cos2 α cos2 β

sin2 α sin2 β cos2 χ + cos2 α cos2 β sin2 χ
. (5)

The equality is reached if and only if |〈�|ϕAϕB〉|2 +
|〈�|ϕ̄Aϕ̄B〉|2 = 1. The maximum of this expression is
1/4, taken when sin2 α = sin2 β = 1/2 and ma = mb = 1,
which corresponds to Bell state measurement operators, and
〈�|ϕAϕB〉/〈�|ϕ̄Aϕ̄B〉 = cos χ/ sin χ , yielding the conclusion
that |�〉 is equivalent to |ψE 〉. This finishes our proof.

IV. CERTIFICATION IN A SOURCE-INDEPENDENT
ENTANGLEMENT SWAPPING GAME

It is interesting to notice that the entanglement swapping
protocol shares a dual form of the semiquantum game if the
roles of state and measurements are exchanged, shown in
Fig. 2. Suppose there are two independent bipartite states,
ρA0A ∈ D(HA0 ⊗ HA), ρBB0 ∈ D(HB ⊗ HB0 ). Different from
the standard entanglement swapping protocol, here the states
ρA0A, ρBB0 and the joint measurement {MAB

i } acting on sys-
tems A, B are not characterized. We aim to certify the
unknown quantum system from the measurement results
of {MAB

i } and some trusted local ancillary measurements
{NA0

a }, {NB0
b } on systems A0, B0. For this purpose, we shall
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FIG. 2. The uncharacteristic entanglement swapping protocol.
In this protocol, two uncharacterized states ρA0A ∈ D(HA0 ⊗
HA), ρBB0 ∈ D(HB ⊗ HB0 ) are prepared. No information is known
about the two states except for that they are both a pair of qubits.
A so-called Bell state measurement is performed on the sys-
tems HA,HB. One can use well-characterized local measurements
{NA0

a }, {NB0
b } on systems A0, B0 to certify the results.

construct a game of which the maximum score certifies the
underlying states and measurement.

Before we commence, we compare our protocol with
some similar scenarios. Our entanglement swapping game is
analogous to a (non)bilocal scenario [48,49] and the protocol
for self-testing entangled measurements [22]. The common
assumption in these scenarios is that the states ρA0A, ρBB0

are independent, ensuring a partition between the spaces
HA and HB. In large-scale quantum networks with quantum
repeaters, scenarios as shown in Fig. 2 are involved. Multiple
independent quantum sources will distribute quantum states
between adjacent parties, and joint quantum measurements
are used to establish correlations between distant parties via
entanglement swapping. As local measurements are relatively
easy to apply, it might provide insights for further applications
in quantum networks by investigating the nonlocal quantum
correlations in protocols shown in Fig. 2.

It will be shown that the essence of our result lies in the
use of an entangled measurement as well. In the following,
we shall consider the case where the joint measurement {MAB

i }
has only two inputs, i ∈ I = {0, 1}. This is the general condi-
tion in a photon-based platform [50]. Because the underlying
state ρA0A ⊗ ρBB0 is not characterized, we say the protocol
shares a source-independent nature [51].

Similarly to the treatment of effective POVM operators,
the protocol can be viewed as first preparing a subnormalized
positive semidefinite operator on A0, B0

ρ̃
A0B0
i = TrAB

[(
IA0 ⊗ MAB

i ⊗ IB0
)(

ρA0A ⊗ ρBB0
)]

(6)

and measuring the systems A0, B0 subsequently. The proba-
bility of measurement outcome i on systems A, B is Tr[ρ̃A0B0

i ]
and the corresponding state of systems A0, B0 becomes
ρ̃

A0B0
i /Tr[ρ̃A0B0

i ]. If we focus on one specific measurement
result on systems A, B, with a duality treatment on states
and measurements, then the source-independent entanglement
swapping protocol can be transformed into the measurement-
device-independent-type semiquantum game, except for a dif-
ference in the normalization factors of states and measurement
operators. Therefore, we may construct a dual semiquantum
game to certify the initial systems HA0 ,HA and HB,HB0 and
joint measurement operator simultaneously, with measure-
ments on the final systems HA0 ,HB0 only.

With a set of tomographically complete measurements
{NA0

a }, {NB0
b } we can certify the final state of systems

HA0 ,HB0 . In a dual semiquantum game, a score βa,b
i is ap-

pointed to Alice and Bob based on the measurement results of
{NA0

a }, {NB0
b }, {MAB

i }, and the average score Alice and Bob can
get is

S =
∑
a,b,i

βa,b
i P(a, b, i)

=
∑
a,b,i

βa,b
i Tr

[(
NA0

a ⊗ MAB
i ⊗ NB0

b

)(
ρA0A ⊗ ρBB0

)]
. (7)

We now design a specific game as shown in Box 2.
In order to maximize the score, the operator ρ

A0B0
0 needs

to be embedded in the support of |ψE 〉〈ψE |, which is much
the same as the idea in the measurement-device-independent
game. In our proofs for Lemma 1 and Lemma 2, we do not
rely on the normalization factors but mainly the orthogonality
between different eigenvectors in the spectral decomposition.
Hence with a similar route, one can come to the following
theorem:

Theorem 3. In the above source-independent entanglement
swapping game with the assumption that all systems are two
dimensional, the largest score that can be obtained is 1/4, if
and only if (MAB

0 )T = |ψE 〉〈ψE |, ρA0A, ρBB0 = |�+〉〈�+|, to
local unitary operations.

Box 2: Design of the source-independent entan-
glement swapping game:

Game {NA0
a , NB0

b , βa,b
i } is designed such that

• The outcomes of local measurements {a, b}
are divided into two sets of tuples, {a1, b1}
and {a2, b2}, where {a1, b1} ∪ {a2, b2} =
{a, b}, {a1, b1} ∩ {a2, b2} = ∅. There are ef-
fective operators constructed as

V = VG + VT =
∑

a,b,i

βa,b
i NA0

a ⊗ NB0
b

= δi,0

∑

a,b,i

βa,b
i NA0

a ⊗ NB0
b ,

VG = |ψE〉〈ψE | =
∑

a1,b1

βa1,b1
0 NA0

a1
⊗ NB0

b1
,

VT = IA0B0 − VG =
∑

a2,b2

βa2,b2
0 NA0

a2
⊗ NB0

b2
,

• |ψE〉 is an entangled projector,

• The average score obtained in the rounds
with local measurement outcomes in the set
{a2, b2} is restricted to be

ST =
∑

a2,b2

βa2,b2
0 P (a2, b2, i = 0).

Goal: Maximize the average score S =∑
a,b βa,b

0 P (a, b, i = 0).
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This theorem actually states that an entangled projector
and Bell states can be certified in this game if the state
ρ̃

A0B0
i /Tr[ρ̃A0B0

i ] prepared on the systems A0, B0 is a pure
entangled state with a probability of 1/4.

It is also plausible to consider the case with a complete
joint measurement over systems HA,HB, where under the sys-
tem dimension restrictions, the measurement outcomes of the
joint measurement {MAB

i } is in the set i ∈ IF = {0, 1, 2, 3}.
We can use the result to certify the underlying joint mea-
surement and quantum systems by observing all subnormal-
ized operators {ρ̃A0B0

i } with local measurements on systems
HA0 ,HB0 . A corollary is as follows:

Corollary 1. Under the assumption that all systems are
two-dimensional, if all measurement outcomes of the joint
measurement {MAB

i } occur with a probability of 1/4 and the
corresponding final states {ρ̃A0B0

i /Tr[ρ̃A0B0
i ]} on the systems

HA0 ,HB0 form a complete set of Bell states under a certain
choice of local bases, one can certify that the joint measure-
ment {MAB

i } is a set of complete Bell state measurements, and
ρA0A, ρBB0 are Bell states.

V. CONCLUSIONS

Via focusing on the effective POVM operator seen from
the input ports in a semiquantum game, we show that any pure
entangled state and Bell state measurement operators can be
certified to local unitary operations. Moreover, we present the
certification of Bell states and an entangled joint measurement
operator in a source-independent entanglement swapping pro-
tocol, following a similar technique. This technique can also
be expected to certify other types of semiquantum games,
for instance, certification of a quantum memory channel
[47].

It is worth noting that our method does not require a
complete Bell state measurement. This can be beneficial for
experiments, as a complete Bell state measurement is often
not easy to achieve in practice (in particular, it is impossible to
be carried out in linear optics). Due to a dimension restriction,
we cannot treat our certification as a “self-testing” result.
We conjecture that the quantum correlation considered in
this work is extremal, and the certification results can also
be obtained without the dimension restriction. Lemma 3 in
our approach relies only on the ranks of the measurement
operators and quantum system rather than the system’s di-
mension, which might be a starting point for self-testing.
Furthermore, robust semi-device-independent self-testing re-

sults and applications in practical blind quantum computing
tasks can be expected [46,52]. We should stress here that
as only one measurement outcome is used in the presented
certification designs, it might be difficult to use some standard
self-testing techniques in the well-studied device-independent
protocols, e.g., the SWAP method [26] or the effective di-
mension reduction with the Jordan’s lemma [15], as these
methods require unitary operators corresponding to the whole
set of measurement operators. This also makes it difficult
to construct Bell-like nonlocal inequalities. Mathematically
novel new results may be obtained along this direction. Apart
from the route to a “standard self-testing” result, it is also
intriguing to consider the certification problem in a higher
bounded dimension. Some recent works on the prepare-and-
measure semi-device-independent protocol have shown novel
certification results with a freedom beyond local unitary oper-
ations in higher-dimensional systems [53,54]. It would be in-
teresting if similar phenomena also exist in the semiquantum
games.

Besides the semiquantum nonlocal game, quantum steer-
ing is an another important type of semi-device-independent
protocol, which trusts the measurement on one side [55–57].
Quantum steering phenomena rely on quantum correlations
which are between entanglement and violation of a Bell
inequality. Some quantum states can be certified in these
protocols, and it has been shown that the certification of
EPR pair via quantum steering has robustness advantage over
fully device-independent certification [58]. Quantum steer-
ing protocols and semiquantum nonlocal games are suitable
for different tasks and practical need. While there are re-
sults showing the plausibility to combine the two protocols,
yielding new types of quantum correlations [59]. We hope
our work can shed light on the further exploration of semi-
quantum nonlocal games and other semi-device-independent
protocols.

Note added. Recently, we became aware of a related work
by Ivan Šupić et al. [60].
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APPENDIX A: PROOF OF THEOREM 1

For convenience, we first restate the theorem in Main text:
Theorem 1. In a semiquantum game where the input states and appointed scores form an entanglement witness, an observation

of an average score S = Tr[W M̃A0B0
0,0 ] < 0 necessarily indicates that MA0A

a is an entangled POVM operator on systems A0 and A,

and the same property holds for MBB0
b .

Proof. Suppose the POVM operator MA0A
a = ∑

λ1,λ2
MA0

λ1
⊗ MA

λ2
, MA0

λ1
, MA

λ2
� 0, ∀λ1, λ2, is a separable operator between

A0, A. We do not make constraints on the POVM operator MBB0
b and the state ρAB. Then the subnormalized operator
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M̃A0B0
ab is

M̃A0B0
ab = TrAB

[
(IA0 ⊗ ρAB ⊗ IB0 )

(
MA0A

a ⊗ MBB0
b

)]
= TrAB

[(
IA0 ⊗ ρAB ⊗ IB0

)((∑
λ1,λ2

MA0
λ1

⊗ MA
λ2

)
⊗ MBB0

b

)]

=
∑
λ1,λ2

MA0
λ1

⊗ TrA
(
MA

λ2
· TrB

[(
IA ⊗ MBB0

b

)
(ρAB ⊗ IB0 )

])
, (A1)

which is a separable operator acting on HA0 ,HB0 . Similarly, M̃A0B0
ab is separable if MBB0

b is separable on B, B0.
From a qualitative perspective, we can conclude that an entangled M̃A0B0

ab not only indicates the entanglement of ρAB but also
an entangled structure of the measurement operators MA0A

a , MBB0
b . �

APPENDIX B: PROOF OF LEMMA 1

Lemma 1. For HA
∼= HB

∼= HA0
∼= HB0

∼= C2, MA0A, MBB0 rank-one entangled measurement operators over systems HA0 ,HA

and HB0 ,HB, and ρAB ∈ D(HA ⊗ HB), consider the operator

M̃A0B0 = TrAB[(IA0 ⊗ ρAB ⊗ IB0 )(MA0A ⊗ MBB0 )] (B1)

and a pure entangled state |ψ〉 ∈ HA0 ⊗ HB0 . A necessary condition for M̃A0B0 ∈ L(span(|ψ〉)) is that ρAB is a pure state.
Proof. We apply the spectra decomposition for ρAB

ρAB =
4∑

i=1

λi|�i〉〈�i|, (B2)

where
∑4

i=1 λi = 1, λi � 0,∀i. We have

M̃A0B0 = TrAB[(IA0 ⊗ ρAB ⊗ IB0 )(MA0A ⊗ MBB0 )] =
∑

i

λiTrAB[(IA0 ⊗ |�i〉〈�i| ⊗ IB0 )(MA0A ⊗ MBB0 )]

≡
∑

i

λi|�̃i〉〈�̃i|. (B3)

Since the entangled measurement operators MA0A, MBB0 are restricted to be rank-one operators, they can be treated as pure (sub-
normalized) states, MA0A = ma|φA0A〉〈φA0A|, MBB0 = mb|φBB0〉〈φBB0 |, 0 � ma, mb � 1. By applying the Schmidt decomposition,
they can be expressed as

|φA0A〉 = √
ma(cos α|ϕA0〉|ϕA〉 + sin α|ϕA0⊥〉|ϕA⊥〉),

|φBB0〉 = √
mb(cos β|ϕB0〉|ϕB〉 + sin β|ϕB0⊥〉|ϕB⊥〉), (B4)

where 〈ϕA|ϕA⊥〉 = 〈ϕB|ϕB⊥〉 = 〈ϕA0 |ϕA0⊥〉 = 〈ϕB0 |ϕB0⊥〉 = 0. Since they are restricted to be entangled, we have sin α cos α 
=
0, sin β cos β 
= 0. Then we have

|�̃i〉 = √
mamb(cos α cos β〈�i|ϕAϕB〉|ϕA0ϕB0〉 + cos α sin β〈�i|ϕAϕB⊥〉|ϕA0ϕB0⊥〉

+ sin α cos β〈�i|ϕA⊥ϕB〉|ϕA0⊥ϕB0〉 + sin α sin β〈�i|ϕA⊥ϕB⊥〉|ϕA0⊥ϕB0⊥〉). (B5)

Now {|ϕA〉, |ϕA⊥〉}, {|ϕB〉, |ϕB⊥〉} form complete bases for the corresponding spaces, therefore we have

〈�i|ϕAϕB〉2 + 〈�i|ϕA⊥ϕB⊥〉2 + 〈�i|ϕA⊥ϕB〉2 + 〈�i|ϕAϕB⊥〉2 = 1, ∀i. (B6)

With this complete basis we can represent the eigenvectors of ρAB as

|�i〉 = eiθi1 cos μi cos γi|ϕAϕB〉 + eiθi2 cos μi sin γi|ϕAϕB⊥〉 + eiθi3 sin μi cos γi|ϕA⊥ϕB〉 + eiθi4 sin μi sin γi|ϕA⊥ϕB⊥〉. (B7)

Hence

|�̃i〉 = √
mamb(eiθi1 cos μi cos γi cos α cos β|ϕA0ϕB0〉 + eiθi2 cos μi sin γi cos α sin β|ϕA0ϕB0⊥〉

+ eiθi3 sin μi cos γi sin α cos β|ϕA0⊥ϕB0〉 + eiθi4 sin μi sin γi sin α sin β|ϕA0⊥ϕB0⊥〉). (B8)
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In order that M̃A0B0 ∈ L(span(|ψ〉)), it necessarily restricts that |�i〉 ∼ |�i〉, ∀i, j. We can assume that the angle in the phase
parameter θik = 0. Now we focus on two vectors, |�̃1〉, |�̃2〉. By |�̃1〉 ∼ |�̃2〉 we require

cos μ1 cos γ1 : cos μ1 sin γ1 : sin μ1 cos γ1 : sin μ1 sin γ1 = cos μ2 cos γ2 : cos μ2 sin γ2 : sin μ2 cos γ2 : sin μ2 sin γ2. (B9)

By spectral decomposition we have |�i〉 to be orthogonal to each other, which requires that

cos μ1 cos γ1 cos μ2 cos γ2 + cos μ1 sin γ1 cos μ2 sin γ2 + sin μ1 cos γ1 sin μ2 cos γ2 + sin μ1 sin γ1 sin μ2 sin γ2 = 0. (B10)

Besides, as |ψ〉 is entangled, one cannot have both sin μi cos μi = 0 and sin γi cos γi = 0. Obviously, we cannot have a nontrivial
result satisfying all the requirements. Therefore, under the described constraints one cannot have M̃A0B0 ∈ L(span(|ψ〉)) by
measuring a mixed quantum state ρAB ∈ D(HA ⊗ HB).

On the other hand, one can obtain an entangled operator M̃A0B0 ∈ L(span(|ψ〉)) with a pure entangled state ρAB = |�〉〈�|;
see the construction yielding the certification result in Theorem 2 in the main text for example. This finishes the proof of
Lemma 1. �

APPENDIX C: PROOF OF LEMMA 2

Lemma 2. For HA
∼= HB

∼= HA0
∼= HB0

∼= C2, a pure entangled state |ψ〉 ∈ HA0 ⊗ HB0 , and a pure bipartite entangled
quantum state ρAB = |�〉〈�| over systems HA,HB, a necessary condition for M̃A0B0 ∈ L(span(|ψ〉)) is that both MA0A and
MBB0 are rank-one entangled operators over systems HA,HA0 and HB,HB0 , where M̃A0B0 is the same operator as in Eq. (B1).

Proof. We assume that the POVM element on Bob’s side is a rank-one operator, MBB0 = |φBB0〉〈φBB0 |, while the element on
Alice’s side MBB0 is not. We now focus on two eigenvectors of MA0A, |φA0A

1 〉, |φA0A
2 〉. We apply the Schmidt decomposition on

these vectors and without loss of generality we write∣∣φA0A
1

〉 = cos α1

∣∣ϕA0
1

〉∣∣ϕA
1

〉 + sin α1

∣∣ϕA0⊥
1

〉∣∣ϕA⊥
1

〉
,∣∣φA0A

2

〉 = cos α2

∣∣ϕA0
2

〉∣∣ϕA
2

〉 + sin α2

∣∣ϕA0⊥
2

〉∣∣ϕA⊥
2

〉
, (C1)

|φBB0〉 = cos β|ϕB0〉|ϕB〉 + sin β|ϕB0⊥〉|ϕB⊥〉,
where 〈ϕA0

1 |ϕA0⊥
1 〉 = 〈ϕA

1 |ϕA⊥
1 〉 = 〈ϕA0

2 |ϕA0⊥
2 〉 = 〈ϕA

2 |ϕA⊥
2 〉 = 0. Since it is assumed that HA0

∼= HA
∼= C2, using extra degrees of

freedom, let ∣∣ϕA0
2

〉 = cos γ
∣∣ϕA0

1

〉 + sin γ
∣∣ϕA0⊥

1

〉
,∣∣ϕA0⊥

2

〉 = sin γ
∣∣ϕA0

1

〉 − cos γ
∣∣ϕA0⊥

1

〉
,∣∣ϕA

2

〉 = cos χ
∣∣ϕA

1

〉 + sin χ
∣∣ϕA⊥

1

〉
,∣∣ϕA⊥

2

〉 = sin χ
∣∣ϕA

1

〉 − cos χ
∣∣ϕA⊥

1

〉
. (C2)

By 〈φA0A
1 |φA0A

2 〉 = 0 we have

cos α1 cos α2 cos γ cos χ + cos α1 sin α2 sin γ sin χ + sin α1 cos α2 sin γ sin χ + sin α1 sin α2 cos γ cos χ = 0. (C3)

In order that the operator M̃A0B0 ∈ L(span(|ψ〉)), which is entangled over systems HA0 ,HB0 , it is required that MAA0 , MBB0 are
entangled over systems HA,HA0 and HB,HB0 . Therefore we have sin α1 cos α1 
= 0, sin α2 cos α2 
= 0, sin β cos β 
= 0.

For the effective POVM operator,

M̃A0B0 = TrAB[(IA0 ⊗ ρAB ⊗ IB0 )(MA0A ⊗ MBB0 )] =
∑

i

TrAB
[
(IA0 ⊗ |�〉〈�| ⊗ IB0 )

(∣∣φA0A
i

〉〈
φ

A0A
i

∣∣ ⊗ MBB0
)]

≡
∑

i

|�̃i〉〈�̃i|, (C4)

with

|�̃1〉 = cos α1 cos β
〈
�

∣∣ϕA
1 ϕB

〉∣∣ϕA0
1 ϕB0

〉 + cos α1 sin β
〈
�

∣∣ϕA
1 ϕB⊥〉∣∣ϕA0

1 ϕB0⊥〉
+ sin α1 cos β

〈
�

∣∣ϕA⊥
1 ϕB

〉∣∣ϕA0⊥
1 ϕB0

〉 + sin α1 sin β
〈
�

∣∣ϕA⊥
1 ϕB⊥〉∣∣ϕA0⊥

1 ϕB0⊥〉
, (C5)

|�̃2〉 = cos α2 cos β
〈
�

∣∣ϕA
2 ϕB

〉∣∣ϕA0
2 ϕB0

〉 + cos α2 sin β
〈
�

∣∣ϕA
2 ϕB⊥〉∣∣ϕA0

2 ϕB0⊥〉
+ sin α2 cos β

〈
�

∣∣ϕA⊥
2 ϕB

〉∣∣ϕA0⊥
2 ϕB0

〉 + sin α2 sin β
〈
�

∣∣ϕA⊥
2 ϕB⊥〉∣∣ϕA0⊥

2 ϕB0⊥〉
= [

cos α2 cos β
(
cos γ cos χ

〈
�

∣∣ϕA
1 ϕB

〉 + cos γ sin χ
〈
�

∣∣ϕA⊥
1 ϕB

〉)
+ sin α2 cos β

(
sin γ sin χ

〈
�

∣∣ϕA
1 ϕB

〉 − sin γ cos χ
〈
�

∣∣ϕA⊥
1 ϕB

〉)]∣∣ϕA0
1 ϕB0

〉
033400-8
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+ [
cos α2 sin β

(
cos γ cos χ

〈
�

∣∣ϕA
1 ϕB⊥〉 + cos γ sin χ

〈
�

∣∣ϕA⊥
1 ϕB⊥〉)

+ sin α2 sin β
(
sin γ sin χ

〈
�

∣∣ϕA
1 ϕB⊥〉 − sin γ cos χ

〈
�

∣∣ϕA⊥
1 ϕB⊥〉)]∣∣ϕA0

1 ϕB0⊥〉
+ [

cos α2 cos β
(
sin γ cos χ

〈
�

∣∣ϕA
1 ϕB

〉 + sin γ sin χ
〈
�

∣∣ϕA⊥
1 ϕB

〉)
+ sin α2 cos β

(− cos γ sin χ
〈
�

∣∣ϕA
1 ϕB

〉 + cos γ cos χ
〈
�

∣∣ϕA⊥
1 ϕB

〉)]∣∣ϕA0⊥
1 ϕB0

〉
+ [

cos α2 sin β
(
sin γ cos χ

〈
�

∣∣ϕA
1 ϕB⊥〉 + sin γ sin χ

〈
�

∣∣ϕA⊥
1 ϕB⊥〉)

+ sin α2 sin β
(− cos γ sin χ

〈
�

∣∣ϕA
1 ϕB⊥〉 + cos γ cos χ

〈
�

∣∣ϕA⊥
1 ϕB⊥〉)]∣∣ϕA0⊥

1 ϕB0⊥〉
. (C6)

We assume that |�̃1〉 ∈ span(|ψ〉). In order that |�̃2〉 ∈ span(|ψ〉) and Eq. (C3) holds, one can only have 〈�|ϕA
1 ϕB〉 =

〈�|ϕA⊥
1 ϕB〉 = 〈�|ϕA

1 ϕB⊥〉 = 〈�|ϕA⊥
1 ϕB⊥〉 = 0, which is contradictory to that {|ϕA〉, |ϕA⊥〉}, {|ϕB〉, |ϕB⊥〉} are complete bases.

Then we can conclude that a general POVM will inevitably result in a mixed M̃A0B0 . In summary, under the given constraints,
a necessary condition for M̃A0B0 ∈ L(span(|ψ〉)) is that both MA0A and MBB0 are rank-one entangled operators over systems
HA,HA0 and HB,HB0 . �

APPENDIX D: PROOF OF LEMMA 3

Lemma 3. For rank-one projectors MA0A = |φA0A〉〈φA0A| ∈ L(HA0 ⊗ HA), MBB0 = |φBB0〉〈φBB0 | ∈ L(HB ⊗ HB0 ), where
HA0 ,HB0

∼= C2, fix the measurement bases of HA0 ,HB0 to be {|0〉, |1〉}A0,B0 and express the projectors as

|φA0A〉 = cos α|0〉|ϕA〉 + sin α|1〉|ϕ̄A〉, |φBB0〉 = cos β|0〉|ϕB〉 + sin β|1〉|ϕ̄B〉. (D1)

In the condition that 〈�|ϕAϕ̄B〉 = 〈�|ϕ̄AϕB〉 = 0, we have |〈�|ϕAϕB〉|2 + |〈�|ϕ̄Aϕ̄B〉|2 � 1. The equality is taken iff 〈ϕA|ϕ̄A〉 =
〈ϕB|ϕ̄B〉 = 0, and the subspaces of the two parties are spanned by {|ϕA〉, |ϕ̄A〉}, {|ϕB〉, |ϕ̄B〉}, respectively. In particular, no
restriction on the dimensions of HA,HB is made.

Proof. In the proof for this lemma, we do not restrict the dimensions of HA,HB. Let

|ϕ̄A〉 = cos θ |ϕA〉 + sin θ |ϕA⊥〉, |ϕ̄B〉 = cos γ |ϕB〉 + sin γ |ϕB⊥〉, (D2)

where |ϕA⊥〉, |ϕB⊥〉 are some states that lay orthogonally to |ϕA〉, |ϕB〉 in the subspaces of Alice and Bob, respectively. Then we
have

〈�|ϕ̄Aϕ̄B〉 = cos θ cos γ 〈�|ϕAϕB〉 + cos θ sin γ 〈�|ϕAϕB⊥〉 + sin θ cos γ 〈�|ϕA⊥ϕB〉 + sin θ sin γ 〈�|ϕA⊥ϕB⊥〉. (D3)

Since 〈�|ϕAϕ̄B〉 = 0, we have

cos γ 〈�|ϕAϕB〉 + sin γ 〈�|ϕAϕB⊥〉 = 0. (D4)

Similarly,

cos θ〈�|ϕAϕB〉 + sin θ〈�|ϕA⊥ϕB〉 = 0. (D5)

Therefore, we derive the following equation:

〈�|ϕ̄Aϕ̄B〉 = − cos θ cos γ 〈�|ϕAϕB〉 + sin θ sin γ 〈�|ϕA⊥ϕB⊥〉. (D6)

On the other hand, required by Eq. (D4)(D5), as long as |ϕA〉 
= |ϕ̄A〉, |ϕB〉 
= |ϕ̄B〉, there are following relations:

〈�|ϕAϕB⊥〉 = −cos γ

sin γ
〈�|ϕAϕB〉, 〈�|ϕA⊥ϕB〉 = −cos θ

sin θ
〈�|ϕAϕB〉. (D7)

As |ϕAϕB〉, |ϕAϕB⊥〉, |ϕA⊥ϕB〉, |ϕA⊥ϕB⊥〉 are orthogonal to each other, the following inequality holds:

|〈�|ϕA⊥ϕB⊥〉|2 � 1 − |〈�|ϕAϕB〉|2 − |〈�|ϕAϕB⊥〉|2 − |〈�|ϕA⊥ϕB〉|2 = 1 −
(

1 + cos2 γ

sin2 γ
+ cos2 θ

sin2 θ

)
|〈�|ϕAϕB〉|2, (D8)

and thereafter

|〈�|ϕ̄Aϕ̄B〉|2 = cos2 θ cos2 γ |〈�|ϕAϕB〉|2 + sin2 θ sin2 γ |〈�|ϕA⊥ϕB⊥〉|2 − 2 sin θ cos θ sin γ cos γ 〈�|ϕAϕB〉〈�|ϕA⊥ϕB⊥〉

� cos2 θ cos2 γ |〈�|ϕAϕB〉|2 + sin2 θ sin2 γ

[
1 −

(
1 + cos2 γ

sin2 γ
+ cos2 θ

sin2 θ

)
|〈�|ϕAϕB〉|2

]

+ 2 sin θ cos θ sin γ cos γ |〈�|ϕAϕB〉|
√

1 −
(

1 + cos2 γ

sin2 γ
+ cos2 θ

sin2 θ

)
|〈�|ϕAϕB〉|2, (D9)
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thus

|〈�|ϕAϕB〉|2 + |〈�|ϕ̄Aϕ̄B〉|2 � sin2 θ sin2 γ + (1 + cos2 θ cos2 γ − sin2 θ sin2 γ − sin2 θ cos2 γ − cos2 θ sin2 γ )|〈�|ϕAϕB〉|2

+ 2 sin θ cos θ sin γ cos γ |〈�|ϕAϕB〉|
√

1 −
(

1 + cos2 γ

sin2 γ
+ cos2 θ

sin2 θ

)
|〈�|ϕAϕB〉|2

= sin2 θ sin2 γ + 2 cos2 θ cos2 γ |〈�|ϕAϕB〉|2

+ 2 sin θ cos θ sin γ cos γ |〈�|ϕAϕB〉|
√

1 −
(

1 + cos2 γ

sin2 γ
+ cos2 θ

sin2 θ

)
|〈�|ϕAϕB〉|2. (D10)

For the right side of this inequality, it can be regarded as a function of the form f (x) = ax2 + bx
√

1 − cx2 + d , with the variant

x = |〈�|ϕAϕB〉| ∈ [0, 1], (D11)

and the coefficients

a = 2 cos2 θ cos2 γ ,

b = 2 sin θ cos θ sin γ cos γ ,

c = 1 + cos2 γ

sin2 γ
+ cos2 θ

sin2 θ
,

d = sin2 θ sin2 γ . (D12)

In our problem, c � 1, hence it is required that x2 � 1
c . The derivative of f (x) is

f ′(x) = 2ax + b
√

1 − cx2 − bcx2

1 − cx2
. (D13)

Let f ′(x) = 0 and we have

x2 = 1

2c
± a

2c

1√
a2 + b2c

, (D14)

where the term a
2c

1√
a2+b2c

� a
2c

1
a = 1

2c , so we are able to take the value x = ±
√

1
2c ± a

2c
1√

a2+b2c
. By some calculation with respect

to f ′(x), for the maximum value of f (x), we only need to consider its value at the points x =
√

1
c and x =

√
1
2c − a

2c
1√

a2+b2c
.

(1) x =
√

1
c :

The function value at this point

f (x) = a

c
+ d = 2 cos2 θ cos2 γ

1 + cos2 γ

sin2 γ
+ cos2 θ

sin2 θ

+ sin2 θ sin2 γ = 1 + cos2 θ cos2 γ

1 + cos2 γ

sin2 γ
+ cos2 θ

sin2 θ

� 1, (D15)

and the equality is taken iff cos θ = cos γ = 0. This indicates that 〈ϕA|ϕ̄A〉 = 〈ϕB|ϕ̄B〉 = 0.

(2) x =
√

1
2c − a

2c
1√

a2+b2c
:

The function value at this point

f (x) = ax2 + bx

√
1 −

(
1

2
− a

2

1√
a2 + b2c

)
+ d = a

2c
+ 1

2c

b2c − a2

√
b2c + a2

+ d = 1 + cos θ cos γ − 2 cos3 θ cos3 γ

1 + cos2 γ

sin2 γ
+ cos2 θ

sin2 θ

� 1,

(D16)

and the equality is taken iff cos θ = cos γ = 0.
Above all, we come to the conclusion that when 〈�|ϕAϕ̄B〉 = 〈�|ϕ̄AϕB〉 = 0, the inequality |〈�|ϕAϕB〉|2 + |〈�|ϕ̄Aϕ̄B〉|2 �

1 holds, and equality is taken iff 〈ϕA|ϕ̄A〉 = 〈ϕB|ϕ̄B〉 = 0, and the subspaces of Alice and Bob are spanned by
{|ϕA〉, |ϕ̄A〉}, {|ϕB〉, |ϕ̄B〉}, respectively [notice the inequality scaling (D8)]. �
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[24] J. Kaniewski, I. Šupić, J. Tura, F. Baccari, A. Salavrakos, and

R. Augusiak, Quantum 3, 198 (2019).
[25] P. Sekatski, J.-D. Bancal, S. Wagner, and N. Sangouard,

Phys. Rev. Lett. 121, 180505 (2018).
[26] M. McKague, T. H. Yang, and V. Scarani, J. Phys. A 45, 455304

(2012).
[27] J.-D. Bancal, M. Navascués, V. Scarani, T. Vértesi, and T. H.

Yang, Phys. Rev. A 91, 022115 (2015).
[28] T. H. Yang, T. Vértesi, J.-D. Bancal, V. Scarani, and M.

Navascués, Phys. Rev. Lett. 113, 040401 (2014).
[29] M. Giustina, M. A. M. Versteegh, S. Wengerowsky, J.

Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J.
Kofler, J.-Å. Larsson, C. Abellán et al., Phys. Rev. Lett. 115,
250401 (2015).

[30] B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb,
M. S. Blok, J. Ruitenberg, R. F. Vermeulen, R. N. Schouten,
C. Abellán et al., Nature (Lond.) 526, 682 (2015).

[31] L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst,
M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R.
Hamel, M. S. Allman et al., Phys. Rev. Lett. 115, 250402
(2015).

[32] W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N.
Ortegel, M. Rau, and H. Weinfurter, Phys. Rev. Lett. 119,
010402 (2017).

[33] Y. Liu, Q. Zhao, M.-H. Li, J.-Y. Guan, Y. Zhang, B. Bai, W.
Zhang, W.-Z. Liu, C. Wu, X. Yuan et al., Nature (Lond.) 562,
548 (2018).

[34] M.-H. Li, X. Zhang, W.-Z. Liu, S.-R. Zhao, B. Bai, Y. Liu, Q.
Zhao, Y. Peng, J. Zhang, X. Ma et al., arXiv:1902.07529v2.

[35] L. K. Shalm, Y. Zhang, J. C. Bienfang, C. Schlager, M. J.
Stevens, M. D. Mazurek, C. Abellán, W. Amaya, M. W.
Mitchell, M. A. Alhejji et al., arXiv:1912.11158.

[36] W.-Z. Liu, M.-H. Li, S. Ragy, S.-R. Zhao, B. Bai, Y. Liu, P. J.
Brown, J. Zhang, R. Colbeck, J. Fan et al., arXiv:1912.11159.

[37] F. Buscemi, Phys. Rev. Lett. 108, 200401 (2012).
[38] C. Branciard, D. Rosset, Y.-C. Liang, and N. Gisin, Phys. Rev.

Lett. 110, 060405 (2013).
[39] P. Xu, X. Yuan, L.-K. Chen, H. Lu, X.-C. Yao, X. Ma,

Y.-A. Chen, and J.-W. Pan, Phys. Rev. Lett. 112, 140506
(2014).

[40] E. Verbanis, A. Martin, D. Rosset, C. C. W. Lim, R. T. Thew,
and H. Zbinden, Phys. Rev. Lett. 116, 190501 (2016).

[41] Q. Zhao, X. Yuan, and X. Ma, Phys. Rev. A 94, 012343
(2016).

[42] F. Shahandeh, M. J. W. Hall, and T. C. Ralph, Phys. Rev. Lett.
118, 150505 (2017).

[43] O. Regev and T. Vidick, ACM Trans. Comput. Theory 7, 15
(2015).
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[60] I. Šupić, M. J. Hoban, L. D. Colomer, and A. Acín, New J. Phys.

22, 073006 (2020).

033400-11

https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysRevLett.23.880
http://arxiv.org/abs/arXiv:quant-ph/0307205
https://doi.org/10.1103/PhysRevA.87.050102
https://doi.org/10.1038/ncomms15485
https://doi.org/10.1103/PhysRevA.90.042340
https://doi.org/10.1103/PhysRevA.90.042339
https://doi.org/10.1103/PhysRevLett.117.070402
https://doi.org/10.1088/1367-2630/aad89b
http://arxiv.org/abs/arXiv:2002.01843
https://doi.org/10.1103/PhysRevA.91.052111
https://doi.org/10.1088/1367-2630/18/3/035013
https://doi.org/10.1103/PhysRevA.95.062323
https://doi.org/10.1103/PhysRevLett.121.250507
https://doi.org/10.1103/PhysRevLett.121.250506
https://doi.org/10.22331/q-2019-10-24-198
https://doi.org/10.1103/PhysRevLett.121.180505
https://doi.org/10.1088/1751-8113/45/45/455304
https://doi.org/10.1103/PhysRevA.91.022115
https://doi.org/10.1103/PhysRevLett.113.040401
https://doi.org/10.1103/PhysRevLett.115.250401
https://doi.org/10.1038/nature15759
https://doi.org/10.1103/PhysRevLett.115.250402
https://doi.org/10.1103/PhysRevLett.119.010402
https://doi.org/10.1038/s41586-018-0559-3
http://arxiv.org/abs/arXiv:1902.07529v2
http://arxiv.org/abs/arXiv:1912.11158
http://arxiv.org/abs/arXiv:1912.11159
https://doi.org/10.1103/PhysRevLett.108.200401
https://doi.org/10.1103/PhysRevLett.110.060405
https://doi.org/10.1103/PhysRevLett.112.140506
https://doi.org/10.1103/PhysRevLett.116.190501
https://doi.org/10.1103/PhysRevA.94.012343
https://doi.org/10.1103/PhysRevLett.118.150505
https://doi.org/10.1145/2799560
https://doi.org/10.1103/PhysRevA.95.042340
https://doi.org/10.1103/PhysRevLett.124.160503
https://doi.org/10.1103/PhysRevLett.119.050503
https://doi.org/10.1103/PhysRevX.8.021033
https://doi.org/10.1103/PhysRevLett.104.170401
https://doi.org/10.1103/PhysRevA.85.032119
https://doi.org/10.1103/PhysRevA.59.3295
https://doi.org/10.1103/PhysRevX.6.011020
https://doi.org/10.1038/nature12035
https://doi.org/10.1103/PhysRevA.98.062307
https://doi.org/10.1103/PhysRevA.99.032316
https://doi.org/10.1103/PhysRevLett.98.140402
https://doi.org/10.1103/RevModPhys.92.015001
https://doi.org/10.1088/1367-2630/18/7/075006
https://doi.org/10.1103/PhysRevA.87.032306
https://doi.org/10.1088/1367-2630/ab90d1

