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Abstract

Massive Online Open Courses (MOOCs) provide

opportunities to learn a vast range of subjects.

Because MOOCs are open to anyone with computer

access and rarely have prerequisite requirements, the

range of student backgrounds can be farmore varied than

in conventional classroom-based courses. Prior studies

have shown that misconceptions have a huge impact on

students' learning performance; however, no study has

empirically examined the relationship between miscon-

ceptions and learning persistence. This study of 12,913

MOOC-takers examines how students' misconceptions

about the upcoming course material affect course com-

pletion. Using a survival analysis approach, we found

that, controlling for the score in a pre-course test, stu-

dents holding more misconceptions had a higher dropout

rate at the start of the course, an effect that diminished

over time. Other student variables were found to have a

positive impact on survival that persisted throughout the

entire course: U.S. location, higher age, an intention to

complete, better English skills, prior familiarity with the

subject, motivation to earn a certificate, and score and

time spent on the previous problem set (homework). By

contrast, student gender, education level, number of pre-

vious MOOCs completed, and motivation to participate

in online discussion forums did not affect survival.
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1 | INTRODUCTION

Since their inception, Massive Online Open Courses (MOOCs) have been projected to revolutionize
and democratize higher education (Belanger & Thornton, 2013; Haggard, 2013; Jacobs, 2013;
Rice, 2013). Because MOOCs collaborate with top education institutions, charge a low or no
fee, bypass admission barriers, and offer a wide range of topics, their “roll-out” has been
anticipated as a new model of inclusive education (Dillahunt, Wang, & Teasley, 2014). High
volumes of literature have constructed learning theories specifically for the MOOC context
and platform (e.g., de Waard et al., 2011; DeBoer et al., 2014; Gasevic, Kovanovic,
Joksimovic, & Siemens, 2014; Nawrot & Doucet, 2014). Such learning theories are often appli-
cable or informative also to the offline context (e.g., Grünewald, Meinel, Totschnig, &
Willems, 2013; Lee, Linn, Varma, & Liu, 2010; Meek, Blakemore, & Marks, 2017; Núñez,
Gené, & Blanco, 2014). In fact, MOOCs provide valuable opportunities to test psychological
and educational theories for higher education in general (e.g., Baker, Evans, & Dee, 2016;
Bell, 2011; Chudzicki, 2015; Colvin et al., 2014; Joyner, 2017; Mackness, Waite, Roberts, &
Lovegrove, 2013; Zhu, Sari, & Lee, 2018) that are difficult or impossible to examine in
traditional classrooms, because MOOCs have (a) a large sample, (b) high variation in the
sample, (c) a wide range of topics, (d) low stakes in exams and certificates, (e) low cost for
any action that participants decide to make, and (f ) easy-to-manipulate conditions, such
as interface or pedagogy (Anderson, Huttenlocher, Kleinberg, & Leskovec, 2014; Chen
et al., 2016; Chudzicki, 2015; Kellogg, 2013; Tomkin & Charlevoix, 2014; Williams &
Williams, 2013).

This study examines the relationship between students' prior misconceptions and students'
retention in the MOOC setting. Although the importance of misconceptions in science educa-
tion has been stressed in the past three decades (Larkin, 2012; Nixon, Campbell, & Luft, 2016;
Posner, Strike, Hewson, & Gertzog, 1982; Sadler, Sonnert, Coyle, Cook-Smith, & Miller, 2013),
no study, to the best of our knowledge, has established a link between misconception and reten-
tion. The reason is that, in traditional classrooms, the dropout rate is low, and dropping out
because of misconceptions (as for other motives) is considered costly and unwise. By contrast,
in the MOOC setting, dropout is common and has a low cost. Furthermore, with the large sam-
ple size, we have enough power to detect an effect of misconceptions on retention even if the
effect size is small.

1.1 | Factors influencing MOOC dropout

Proponents of MOOCs claim that MOOCs not only reduce the cost of human capital train-
ing, but also transform higher education toward the development of cultural capital for
the satisfaction of lifelong learning (Baker, Evans, Greenberg, & Dee, 2014). Nevertheless,
with completion rates ranging only between 5% and 40% (Alraimi, Zo, & Ciganek, 2015;
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Breslow et al., 2013; Coffrin, Corrin, de Barba, & Kennedy, 2014; Hollands & Tirthali, 2014;
Jordan, 2015), skepticism has been waxing over MOOCs' ability to stay relevant and engage
students (Pope, 2014; Zemsky, 2014).

Many studies have investigated the factors influencing dropout in MOOCs. It has been well
documented that duration of course activity (He, Bailey, Rubinstein, & Zhang, 2015; Jiang, Wil-
liams, Schenke, Warschauer, & O'dowd, 2014; Kloft, Stiehler, Zheng, & Pinkwart, 2014; Peng &
Aggarwal, 2015) and students' demographic characteristics, such as gender, age, education, and
geographical location, effectively predict dropout. Among the psychological factors, studies
have focused on students' motivation (Kizilcec & Halawa, 2015; Xiong et al., 2015), self-
regulation (Holder, 2007) and self-efficacy (Abeer & Miri, 2014; Halawa, Greene, & Mitchell,
2014; Nawrot & Doucet, 2014).

A lack of motivation among participants is considered to be the key reason for the high
dropout rate (Khalil & Ebner, 2014; Pursel, Zhang, Jablokow, Choi, & Velegol, 2016; Shapiro
et al., 2017; Xu & Yang, 2016). Belanger and Thornton (2013) identified distinct motivations
of MOOC learners, such as participating for life-long learning, for fun, for convenience, or
for the experience. Such motivations further influence student self-regulated engagement
patterns, such as being completers, samplers, or no-shows (Hill, 2013; Kizilcec, Piech, &
Schneider, 2013; Wilkowski, Deutsch, & Russell, 2014). Recently, scholars have considered
motivation to be a component of student self-regulation (Barak, Watted, & Haick, 2016;
Magen-Nagar & Cohen, 2017). Ryan and Deci (2000) proposed a self-determination theory
(SDT), which posits that learners need a sense of autonomy, aptitude, and relatedness to stay
engaged (Durksen, Chu, Ahmad, Radil, & Daniels, 2016; Hartnett, George, & Dron, 2014;
Ryan & Deci, 2000). Other researchers have applied the expectancy-value theory to the
learning motivation in MOOCs, whereby motivation has been defined as a function of one's
expected chance of success, perceived usefulness of the course and the estimation of the cost
(e.g., De Barba, Kennedy, & Ainley, 2016). As shown by Reich (2014), only 22% of those who
claimed to be strongly motivated to finish the course actually finished. This suggests that
motivation is not constant, but adjusts based on students' course experiences and time
investment (Hone & El Said, 2016). As students have just started enrolling in the course,
their inadequate background and competence with the subject matter often reduce their
self-efficacy (Shapiro et al., 2017), which in turn downgrades their motivation to complete
the course (Sawtelle, Brewe, & Kramer, 2012). Chen, Sonnert, and Sader (2019) have shown
a salient MOOC engagement pattern in which learners went to the final assessment when
they are still at the beginning of the course. Those with higher prior competence passed the
assessment, gained self-efficacy, and stayed in the course; and those who failed the assess-
ment lost their confidence and expedited their dropout.

A great amount of MOOC research has focused on the competence, or readiness, of the
students (Breslow et al., 2013; Greene, Oswald, & Pomerantz, 2015; Kizilcec & Halawa,
2015; Milligan, Littlejohn, & Margaryan, 2013). In most of this literature, competence has
been measured by self-reported familiarity, prior experience (Breslow et al., 2013; Greene
et al., 2015; Kizilcec & Halawa, 2015; Milligan et al., 2013), or a general skill as a proxy
(Chen et al., 2019), but most of these measures are problematic when applied to partici-
pants with very limited experience, a novice population precisely targeted by entry level
MOOCs. Although such students may not have knowledge about the specific course
content, they nevertheless hold various preconceptions consolidated from life experience
(Fisher, 1985) or convenient model representations (Chen, Schneps, & Sonnert, 2016;
Gentner & Wolff, 2000).
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1.2 | Theories of misconceptions and conceptual change

Developmental psychologists have argued that preconceptions are either critical stepping stones
or hurdles to formal learning (Bransford, Brown, & Cocking, 1999; Kennedy, Coffrin, De
Barba, & Corrin, 2015; Zimmerman & Schunk, 2011). Erroneous and naïve preconceptions,
often termed misconceptions, are not simply wrong knowledge, but involve a “belief system
comprised of logically linked sets of propositions” (Fisher, 1985, p. 53) that hamper students'
deep understanding of scientific explanations (Leonard, Kalinowski, & Andrews, 2014; Miller &
Brewer, 2010; Posner et al., 1982; Singh, 2007; Spiro, 1988). Conceptual change theories posit
that the development of knowledge from misconceptions to scientific understanding goes
through multiple stages (Chi, 1992; Chiu, Chou, & Liu, 2002; Eckstein & Shemesh, 1993; Posner
et al., 1982), such as dissatisfaction with currently held concepts, encountering new and plausi-
ble concepts, and accommodating the new concepts. In the past decades, scholars and practi-
tioners in science education have put great efforts in measuring (Gormally, Brickman, & Lutz,
2012; Liu, Lee, & Linn, 2011; Sadler et al., 2010; Wind & Gale, 2015), tracking (Abraham, Perez,
Downey, Herron, & Meir, 2012; DiSessa, 1993; Vosniadou, 1994; Wilson, 2009) and altering
(Chen, Pan, Sung, & Chang, 2013; De Posada, 1997; Heddy & Sinatra, 2013; Meichtry, 1993;
Vosiadou, 1991) students' misconceptions.

Although numerous intervention studies have shown effectiveness in correcting student's
misconceptions (Heller, Daehler, Wong, Shinohara, & Miratrix, 2012; Prince, Vigeant, & Nottis,
2009; Regan, Childs, & Hayes, 2011; Teichert & Stacy, 2002), a common observation was that
novice learners holding strong misconceptions often reject interventions at the early stages
(Champagne, Gunstone, & Klopfer, 1985; Chi, 2005; Chi, Slotta, & De Leeuw, 1994; Lawson &
Weser, 1990), or revert after change (Barnett & Ceci, 2002; Oliver, 2011). The reason for the
inertia of misconceptions, as recently argued by scholars, is that intuitive misconceptions can-
not be uprooted; they coexist with newly acquired conceptions (Gelman, 2011; Legare & Visala,
2011; Shtulman & Lombrozo, 2016). The coexistence of intuitive misconceptions and scientific
explanations has been observed in a wide range of grades, from elementary school (Schneider &
Hardy, 2013) and high school (Clark, 2006) to college students (Thorn, Bissinger, Thorn, &
Bogner, 2016) and adults (Shtulman, Neal, & Lindquist, 2016). Misconception responses can be
elicited by specific contexts (Cavagnetto & Kurtz, 2016; Ha, Lee, & Cha, 2006; Nehm, Beggrow,
Opfer, & Ha, 2012) and presentations (Bryce & MacMillan, 2009; Chen, Chudzicki, et al., 2016;
Sabella & Redish, 2007), and students have to inhibit their intuition to give scientific explana-
tions (Foisy, Potvin, Riopel, & Masson, 2015; Masson, Potvin, Riopel, & Foisy, 2014).

Knowledge of student misconceptions has long been considered a crucial element of a
teacher's skill (Baumert et al., 2010; Ergönenç, Neumann, & Fischer, 2014; Keller, Neumann, &
Fischer, 2017; Sadler et al., 2013). It is an important component of pedagogical content knowl-
edge (PCK), a term created by Shulman (1986) and expanded by generations of researchers in
teacher knowledge (e.g., Ball & Bass, 2000; Grossman, 1990; Magnusson, Krajcik, & Borko,
1999). Indeed, Sadler et al. (2013) have shown that students cannot correct their misconceptions
by themselves over time, even if their teachers have solid subject matter knowledge, only stu-
dents whose teachers have knowledge of student misconceptions can achieve conceptual
change.

Many studies have shown teachers' PCK (including knowledge of student's misconceptions)
to predict teachers' adoption of high quality and effective pedagogies (Hill, Rowan, & Ball,
2005; Peterson, Carpenter, & Fennema, 1989; Windschitl, Thompson, & Braaten, 2011). For
example, pedagogies such as category construction (Goldwater & Schalk, 2016), comparison
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learning (Alfieri, Nokes-Malach, & Schunn, 2013; Kurtz, Boukrina, & Gentner, 2013; Matlen &
Klahr, 2013), simulation (Chen et al., 2013; Chen, Chudzicki, et al., 2016), situated learning
(She, 2004), and inquiry-based learning (Prince et al., 2009; Riga, Winterbottom, Harris, &
Newby, 2017) have been proven to be effective in addressing student misconceptions. Prior
studies also examined the feasibility and effectiveness of adopting such strategies to the online
learning environment with the goal of promoting student conceptual change (She & Liao, 2010;
Wendt & Rockinson-Szapkiw, 2014).

1.3 | Misconceptions and dropout

No study, to the best of our knowledge, has linked misconceptions and student dropout
(or retention). In traditional college classroom settings, where the time scale is long (counted in
semesters or years) and the dropout penalty is huge (losing tuition, credits, or even the opportu-
nity to earn a degree) (Mortagy, Boghikian-Whitby, & Helou, 2018), dropping out because of a
beginner's psychological frustration during mental paradigm shift may be considered extremely
costly. Studies have shown that the frustration induced by cognitive and emotional conflict may
lead to students' psychological burnout—exhaustion or cynicism (Khalaj & Savoji, 2018;
Olwage & Mostert, 2014; Salanova, Schaufeli, Martínez, & Bresó, 2010), or disengagement
(Gan, Shang, & Zhang, 2007; Maslach, Jackson, Leiter, Schaufeli, & Schwab, 1986). Burnout,
however, has been found to materialize as dropout only when the frustration becomes severe
(Bask & Salmela-Aro, 2013; Duque, 2014; Ensminger & Slusarcick, 1992). Specifically, Salanova
et al. (2010) showed that students' burnout was strongly predicted by a classroom setting that
combined the presence of learning obstacles with the absence of facilitators—an environment
similar to the traditional MOOC setting. Moreover, in the MOOC setting, where the time scale
for taking the course is short (ranging between weeks and hours, in the extreme), and the drop-
out penalty is minimal, a moment of cognitive conflict may justify dropping out of the course.

Thus, though MOOCs differ from offline learning contexts, they qualify as a “strategic
research site” (Merton, 1987) for three reasons. First, MOOCs an expanding and ever more
important format for science education. Second, they provide the opportunity to examine how
students' retention is affected by their prior misconceptions, an effect that is otherwise too small
to detect in traditional classroom settings. This, in turn, facilitates a more comprehensive
understanding of the effects of misconceptions. Third, it may allow inferences for the domains
of out-of-school-time and informal science learning where dropout is similarly easy, but where
learners' characteristics and behaviors can rarely be tracked in the comprehensive way that
MOOCs afford.

Although no prior study, to the best of our knowledge, has empirically examined the rela-
tionship between misconceptions and retention, science learning theories have implied a rela-
tionship between the two. In the following, we examine this pattern through the theoretical
perspectives of cognitive conflict theory and expectancy-value theory.

1.4 | Cognitive conflict theory

The coexistence of misconceptions and newly acquired scientific knowledge may evoke cogni-
tive conflict (Kang, Scharmann, Kang, & Noh, 2010; Labobar, Setyosari, Degeng, & Dasna,
2015; Lee & Byun, 2012; Ramsburg & Ohlsson, 2016; Swan, 2005; Wartono & Putirulan, 2018;
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Wyrasti, Sa'dijah, As'ari, & Sulandra, 2018). By definition, cognitive conflict is “a perceptual
state in which one notices the discrepancy between one's cognitive structure and the environ-
ment” (Lee et al., 2003, p.585). The cognitive conflict theory was the successor of Piaget's (1967)
equilibration theory and Festinger's (1957) cognitive dissonance theory, and became a compo-
nent of the conceptual change theories in education (Hewson & Hewson, 1984).

Many studies have investigated how misconceptions evoked cognitive conflict, related to
student-teacher dynamics (Larkin, 2012; Nixon et al., 2016; Sadler et al., 2013). Traditionally,
researchers assumed that learners hold coherent and theory-like mental models, like scientists
would, which implied that learners should first be dissatisfied with their existing conceptions in
order to be motivated to acquire new knowledge and generate more plausible and coherent
theories—a concept that lies at the core of the classical cognitive conflict approach
(e.g., Hewson & Thorley, 1989; Ioannides & Vosniadou, 2002). Recent studies have presented
evidence that students do not always hold coherent mental models, but rather scattered ele-
ments from multiple perspectives because for them, as novices, their responses are highly
context-dependent (Bao & Redish, 2006). This finding gave rise to more gradual and contextual-
ized pedagogies—known as the cognitive perturbation approach (Dega, Kriek, & Mogese, 2013;
Li, Law, & Lui, 2006; Özdemir & Clark, 2007). Overall, both approaches have stressed that cog-
nitive conflict is a valuable window for motivating inquiry for deep understanding (Appleton,
2008; Chow & Treagust, 2013; Delgado & Lucero, 2015; Halim & Meerah, 2002; Harmon-Jones,
Amodio, & Harmon-Jones, 2009; Larkin, 2012; Sadler et al., 2013; Treagust & Duit, 2008; Van
Driel, Verloop, & De Vos, 1998).

Although cognitive conflict has often been considered to be a valuable opportunity and pre-
mise for conceptual change, it inevitably frustrates the students (Dega et al., 2013). Cognitive
conflict often occurs together with (De Dreu & Weingart, 2003; Simons & Peterson, 2000), and
even provokes (Kellermanns & Floyd, 2005; Mooney, Holahan, & Amason, 2007), affective
(emotional) conflict. This problem has been raised as early as 1979 by Carl Frankenstein, who
worried that a lengthy experience with cognitive conflict may increase students' frustration so
much so that they halt conflict resolution. This is especially true for low academic achieving
students. Zohar and Aharon-Kravetsky (2005) showed that cognitive-conflict-inducing peda-
gogy was effective only for high achieving students and hindered the progress of low achieving
students.

This dual function of cognitive conflict is also discussed in the framework of threshold
concepts, which are “bottle-neck” or “gate-keeping” concepts in one's knowledge progres-
sion that open a new perspective that was previously inaccessible and invite the learners to
irreversibly transform their mental model (Meyer & Land, 2006). However, when learners
perceive the threshold concepts to be counter-intuitive, intellectually absurd, and emotion-
ally frustrating, they may revert back to, and get stuck with, their original misconceptions
by alienating the new concepts, which was what Perkins (1999, 2006) referred to as trouble-
some knowledge.

A common assumption embedded in the abovementioned conceptual change literature is
that students would keep learning in the course regardless of whether they were retaining or
revising their intuitive misconceptions. No component in the conceptual change theories has
explicitly proposed or modeled the possibility that students with strong misconceptions are
likely to become motivated, or resigned, in the early stages of an intervention when they
encounter cognitive conflict. As argued above, the conceptions that coexist in a student's
mind are often conflicting beliefs (Lawson, 1988; Potvin & Cyr, 2017; Potvin, Sauriol, &
Riopel, 2015; Smith, 1994). Students who hold strong and systematic misconceptions tend to

884 CHEN ET AL.|



find the new knowledge system taught to them in formal learning settings to be counterintui-
tive (Guzzetti, 2000).

It is possible that learners are motivated to resolve this cognitive conflict by learning more
course content (as reviewed earlier, cognitive conflict motivates students to question and to
learn), which would predict longer retention for learners with more misconceptions than for
learners with fewer misconceptions (provided that their total amount of subject matter knowl-
edge are the same). For example, in a hypothetical scenario, two learners respond to 10 subject-
matter questions before taking a (MOOC) course and both answered 5 questions wrong. If out
of the 5 wrong answers, learner A gave 3 misconception responses, and learner B gave
0 misconception responses, it is predicted that learner A would have longer retention in
the course than would learner B; or conversely, that learner B would dropout earlier from the
course than would learner A, because learner A would be more intrigued to learn more to
resolve the cognitive conflict.

However, despite of the possibility of cognitive-conflict-induced curiosity, learners may also
need extra efforts to inhibit their intuitions (Foisy et al., 2015; Masson et al., 2014) and to
restructure their mental models (Gadgil, Nokes-Malach, & Chi, 2012; She, 2004; Vosniadou,
1991). The mismatch between one's intuition and the taught subject matter knowledge, and the
extra efforts required to reconcile the mismatch, may frustrate students and increase their resig-
nation. Such resignation may explain why misconceptions are stubborn, and many intervention
efforts, futile. It may also predict that learners with more misconceptions have lower retention
than do learners with fewer misconceptions. According to this hypothesis, learner A is
predicted to drop out earlier than learner B in the above hypothetical scenario.

Thus, from cognitive conflict theory, one might deduce opposing hypotheses about the effect
of misconception on retention. It might be positive or negative. In the online learning environ-
ment, in particular, it is difficult for teachers to update their knowledge of students' misconcep-
tions interactively, and also difficult for them to monitor students' cognitive conflict. As
explained above, a lack of knowledge of student misconception among teachers, combined with
a lengthy cognitive conflict experienced by students, may not effectively promote conceptual
change, but may exacerbate students' struggle and resignation. Therefore, we were more
inclined to hypothesize that misconceptions have negative effects on retention. It is of theo-
retical importance to empirically examine the effects and to discern between the two mutu-
ally opposite hypothesis. Moreover, this is not a problem that only concerns the online
learning environment. As research has shown (Pintrich, Marx, & Boyle, 1993; Zohar &
Aharon-Kravetsky, 2005), any classroom in which the teacher is not sensitive to students'
misconceptions or cognitive conflict may go through the same struggle, but that struggle
may not manifest itself as openly as in the MOOCs context.

Cognitive conflict theory also implies that the effect of misconception on retention should
diminish over time as the misconceptions are resolved or inhibited. As learners with many mis-
conceptions update their mental model, and the course content appears less counter-intuitive,
intellectually absurd or emotionally frustrating, they are expected to persist in the rest of the
course on equal footing with those learners with initially fewer misconceptions.

1.5 | Expectancy-value theory

One of the most-cited theories in examining dropout behavior is expectancy-value theory. It has
been widely applied to explain why people drop out from careers (e.g., Luscombe, Lewis, & Biggs,
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2013), from school (e.g., Fan & Wolters, 2014), from science interests (e.g., Sullins, Hernandez,
Fuller, & Tashiro, 1995), and from MOOCs (e.g., De Barba et al., 2016). Developed by Atkinson
(1957) and through multiple generations of modification (e.g., Eccles & Wigfield, 1995), the
expectancy-value theory posits one's motivation in a task to be a function of (a) the expectancy of
success (based on an estimation of the task difficulty), (b) the utility value of task completion, and
(c) the estimated cost (money, effort or time) of achieving the expected success.

In Atkinson's original version of the expectancy-value theory, expectancy was tied to the
success rate in the task that an individual has experienced in the past. Other researchers theo-
rized that expectancy was formulated not only based on prior success but also on the evaluation
of the task difficulty and one's self-competence (e.g., Eccles & Wigfield, 1995). One crucial
assumption behind both formulations of expectancy was that people know the success and fail-
ure of their past experience or, in the context of knowledge acquisition, have an approximately
accurate evaluation of what they know or do not know. Nevertheless, the fact that many ele-
ments of the existing knowledge people hold are misconceptions that are confidently believed
to be true (and successful in explaining a lot of the past experience) seriously challenged the
assumption that one can accurately estimate the expectancy of success, or the assumption that
people in general have about the same insight into their past success rate, their current compe-
tence and their future performance. A person who answers 5 questions wrong and gives
0 misconception responses may be more aware of his/her lack of subject matter knowledge than
a person who answers 5 questions wrong, but gives 3 misconception responses. In other words,
learners with more misconceptions may be overly optimistic about their past success and their
expectancy of success. This optimism may be a buffer that prevents them from dropping early
out of a MOOC, as prior studies have shown that over-optimism is preferable to over-pessimism
in helping learners persist in science subjects (Bench, Lench, Miner, Flores, & Liew, 2015; Watt,
2010). However, once the courses kick off, learners holding more misconceptions may soon per-
ceive stronger mismatch between their expectancy and the actual task difficulty than may those
who have similar amount of subject matter knowledge, but fewer misconceptions. This mis-
match may inform the learners of their miscalculation of the expectancy and cast doubt on their
self-concept and self-efficacy, which may negatively influence their course retention. Thus,
expectancy-value theory also implies two opposite hypotheses about the relationship between
misconception and retention: over-optimism may have a positive effect on retention; or the dis-
turbed expectancy may have a negative effect on retention. The expectancy-value theory also
implies that once a learner adjusts his/her expectation over time, the effect of misconception
should diminish gradually.

1.6 | Hypothesis

We hypothesized that holding misconceptions may be negatively or positively associated with
retention in the initial stages of a MOOC, but not in intermediate or later stages. The reasoning
was that the mismatch should be most strongly felt when students carrying misconceptions
were first introduced to the new and scientific knowledge system, but that, as the students
adapted to the new system, they should persist equally well as students with fewer prior mis-
conceptions. This should manifest as an interaction effect of misconception and course mile-
stones on the probability of dropout at a corresponding milestone. This hypothesis was
supported by earlier work by Chen et al. (2019) that showed precomputational thinking skills, a
measure of logical and algorithmic thinking styles prevalent in computer science, to have a
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positive impact on students' retention in an introduction to computer programming MOOC.
However, that effect diminished to non-significance over the course milestones. The cited study,
however, measured competence, using a general skill as a proxy; it did not measure misconcep-
tions. In our current study, we will extend our understanding of MOOC retention by connecting
it specifically to students' misconceptions.

In this study, we used year 2017 data about students' characteristics, activities, and perfor-
mance in the MOOC Super-Earths and Life (SPU30x), which was a HarvardX MOOC, available
on the edX platform. The course was taught by a professor of astronomy. The course used
astronomy and space science concepts to discuss the discovery of exoplanets (planets around
other stars) that could be favorable for life.

The course has been offered on the edX platform since 2015, each year the teaching team
makes very minor revisions to the course content. Although the teaching team was not oblivi-
ous of the notion of misconceptions, it did not intentionally address students' misconceptions in
the design of the course content and pedagogy. The principal investigators of this study collabo-
rated with the teaching team in data collection, but the investigators and the teaching team
were independent from each other. Thus, SPU30X should be considered a regular astronomy
and space science course, not a special treatment for astronomical misconceptions.

The major chapters of the course included (a) reviewing the Earth in the solar system, with an
emphasis on the spatial, chemical, and climate conditions that make life possible (4 sessions);
(b) measuring the distance to the planets and stars, measuring their mass and size, and making infer-
ences about their formation (4 sessions), (c) understanding the types of exoplanets, plate tectonics, and
atmosphere on exoplanets (5 sessions), and (d) detecting signals of life, using telescope and spectrome-
ter, andwrap-up (5 sessions). If each session is considered amilestone, there were 18milestones.

Because it has been well documented that misconceptions about scale (e.g., Miller & Brewer,
2010), spectroscopy (e.g., Ivanjek, Shaffer, McDermott, Planinic, & Veza, 2015), energy (e.g., Zeilik,
Schau, & Mattern, 1998), and about the complexity required in scientific models (i.e., students fail-
ing to hold multiple factors [vs. a single factor] in their mental model) (Prather, Slater, & Offerdahl,
2002) are crucial threshold concepts to astronomy learning, we adopted misconception-driven test
items to probe learners' understanding in these domains.

1.7 | Learning astronomy

When the journal Science asked about the most exciting open questions of science, “Are we
alone” ranked at the top of the list (Kennedy, 2005), which is also one of the few science ques-
tions that are equally appealing to both genders (Krstovic, Brown, Chacko, & Trinh, 2008). The
search of exoplanets and alien life forms is an ideal topic that attracts learners who wish to
learn out of curiosity (social capital) rather than for professional skills (human capital). Yet,
such a topic connects to core and crosscutting concepts from multiple disciplines (Gould,
Sunbury, & Dussault, 2014; Rijsdijk, 2000). Thus, science education practitioners have created
many resources and curricula that teach about exoplanets online, and considered it to be one of
the best practices of online learning for the promotion of science literacy of the public (Gould,
Dussault, & Sadler, 2006; Gould, Sunbury, & Krumhansl, 2012).

Although astronomy is fascinating to a broad population, it is also one of the science sub-
jects that people most rapidly lose interest and do not pursue at a deeper level of understanding
(Bergstrom, Sadler, & Sonnert, 2016; Sadler, Sonnert, Hazari, & Tai, 2012). Studies have shown
that learners often prefer to stay at a superficial and misconceptual understanding of astronomy
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(Bailey & Slater, 2003; Snyder, 2000) even if they were introduced to scientifically accurate con-
ceptions (Champagne et al., 1985; Chi, 2005; Gilbert, 2004). From a learning progression point of
view, the understanding of the complexity of astronomy depends on grasping steppingstone con-
cepts (also known as threshold concepts) and overcoming intuitive misconceptions (also known
as troublesome concepts). Sadler (1992, 1996) showed that grade 8–12 students failed to under-
stand the reason for day and night because they believed that the Earth orbits the Sun in a day.
Further, with a confusion about orbiting and spinning, it is nearly impossible for learners to
understand the galactic rotation, using spectroscopy. For another example, once learners under-
stand the scales of the distances between Earth, the planets, and the stars, astrology would not
make sense to them (Sadler, 1996). Conversely, if students do not resolve scale-related misconcep-
tions, they will, in addition, remain troubled in grasping many other concepts, such as the change
of the seasons (Trumper, 2001) and the phases of the Moon (Plummer, 2006), which all rely on
understanding scale (Fanetti, 2001; Miller & Brewer, 2010). Chen, Chudzicki, et al. (2016) have
shown that, when astronomy learners switch from scale-accurate models to scale-exaggerated
models, they can keep acquiring new knowledge without developing scale-exaggeration-related
misconceptions; however, when learners switch from scale-exaggerated models to scale-accurate
models, the misconceptions associated with the scale exaggeration remain strong, and learners do
not acquire any new knowledge from inspecting the new and more accurate models, as if the
learners mentally shutdown (or burnout) from receiving more accurate, yet cognitive-load-heavy
information once they consolidate with the attractive misconceptions.

The abovementioned studies and others that showed that misconceptions are tenacious only
argued that misconceptions can reduce learning, but did not contemplate the possibility that
learners mentally stopped learning altogether when they found the new knowledge to be incongru-
ent with their existing perspectives, because they were forced to sit in the classrooms. In a MOOC
setting, students can voluntarily quit whenever they want, which enabled us to explore the relation-
ship between preexisting misconceptions and actually quitting learning. This study of the relation-
ship between misconceptions and retention may inform about how learners withdraw from further
knowledge acquisition under the influence of preexisting misconceptions. A study of such a topic
may be valuable to the field of astronomy education, and also to the broader field of science educa-
tion, and especially in the domain of out-of-school-time and informal science learning.

The advantage of choosing an astronomy topic for this study was that (a) it has been well
studied that novices have naïve misconceptions about basic astronomy concepts, such as the
change of seasons, the phases of the moon, or cosmic scales (Ashmann, 2012; Barrier, 2010;
Comins, 1998; Turkmen, 2017; Zeilik & Morris, 2003); (b) it is known that misconceptions
about such fundamental concepts in astronomy have long standing deleterious effects on stu-
dents' learning of space science in formal classes (Trumper, 2001; Zeilik et al., 1998); and
(c) there are well developed misconceptions-oriented test banks in astronomy for novices, tests
that have good psychometric properties (e.g., Eryilmaz, 2002; Sadler et al., 2013) and they are
public available (Sadler et al., 2010). Therefore, SPU30X is not only a topic that is appealing to a
broad population, but also presented a subject field in which the effect of misconceptions is
strong, well-documented, and convenient to replicate.

1.8 | Research question

Thus, our research question was whether the number of student misconceptions in the space
science background knowledge test (misconception score) from the presurvey (pretest) was
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associated with the dropout rate at a given milestone, and if its effect interacts with the number
of milestones that have been completed. We hypothesized an initial effect (increasing the drop-
out rate) that would attenuate over the course of the MOOC. We adopted a survival analysis
approach to investigate this relationship. In this model, we controlled for the total score in the
pretest as well as other covariates, such as students' demographic information, motivation, prior
experience, the time elapsed since passing the most recent previous milestone, and their grade
in the problem set (pset) of the most recent previous milestone (as explained below in the vari-
able section).

2 | METHOD

2.1 | Sample and baseline variables

Thirty thousand six hundred ninety-six individuals registered for the MOOC SPU30X on edX;
however, only 12,913 of those registered came back to the course and finished the presurvey,
which was a prerequisite to gain access to the course material. Nine hundred and thirty-eight of
those finished the presurvey did not continue viewing the course, which reduced our analytical
sample to 11,966. In this article, we considered those who finished the presurvey as formal
enrollees and applied statistical analysis only to the formal enrollees. Around 9% of the partici-
pants were so-called “samplers,” meaning they skipped at least one milestone in their sequence
(e.g., someone could complete problem sets [psets]1, 2, and 5, and then drop out, skipping pset-
3 and pset-4). This irregular pattern is not suitable for a survival analysis framework and was
investigated in a separate study. Here, we excluded the irregular participants, which reduced
our sample size to 10,014.

2.2 | Presurvey

Among the 10,014 enrollees, 40% were male, 60% were female. The mean age was 29.5 years
(SD = 11.2), 63% were living in a country outside of the USA. Thirty-four percent of the
enrollees were concurrently going to school, and 53% had a college or higher degree. On
average, enrollees had registered in 1.6 MOOCs and had completed 1.2 MOOCs prior to this
MOOC enrollment. Familiarity with the topic of the course was reported by 23%; a some-
what or strong motivation to earn certification by 52%; and a somewhat or strong motiva-
tion to participate in the online forum by 26%. Eighty-eight percent reported being
proficient or fluent in English.

The presurvey included a space science background knowledge test (the pretest) drawn from
items deemed relevant to the concepts covered in the course and derived from the Astronomy
and Space Science Concept Inventory Project (Sadler et al., 2010). The test items were multiple-
choice questions about space-related science that were chosen from the existing validated test
bank that covered knowledge required by the National Science Education Standards (National
Research Council, 1996) and the American Association for the Advancement of Science Bench-
marks for Science Literacy (Project 2061, 2001). The development of the items and associated
answer choices was guided by existing research on learning trajectories of key concepts in
astronomy and space science and by the way these concepts were represented in national stan-
dards (Plummer & Krajcik, 2010; Plummer & Maynard, 2014; Sadler, 1996).
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Each test item contained four choices from which students were to select, with one correct
choice, one attractive misconception choice (chosen by more than 50% of the participants in the
large scale field test who answered the item incorrectly), and three plain wrong (or less distrac-
tive) answers that did not reflect popular misconceptions. Because each item has one
misconception as a distractor, this type of test is known as a misconception-driven test. The
development of the items went through several key steps, including (a) literature review,
(b) writing draft items, (c) expert validation, (d) pilot test, (e) large scale field test, (f) psycho-
metric analysis, (g) constructing final test items, and (h) practice testing the final test items.
The complete inventory (211 items) has a Cronbach internal reliability of 0.85. In the field test
carried out in 2003, high school students (the target population who the items were designed
for) correctly answered 50% of the items, on average. The corresponding percentages were 65%
for college students and higher than 80% for school science teachers (see Sadler et al., 2010, for
detailed procedures of test development and for psychometric properties of the items).

The pretest used in this study comprised 12 items (see Appendix). The average sum score
for correct answers was 7.95 (standard deviation: 2.28), and the average misconception score
was 2.64 (standard deviation: 1.75). Below is an example item from the pretest. It probes for
concepts about the source of energy and the scale of energy produced by the stars. The correct
answer is (c), and the most common misconception is (d), which is rooted in combustion ideas,
which, in turn, lead to failures in estimating the magnitude of energy produced by stars.

An astronomer would say that most stars produce energy in the same way as:

a. a wood fire.
b. molten rock.
c. a hydrogen bomb.
d. a chemical reaction between two gases.
e. a welding torch.

Regarding MOOC performance, the course contained 18 milestones, and each milestone
ended with a problem set (pset). On average, participants completed 7.53 problem psets out of
the total number of 18 psets. Three thousand fifty-one (23% of all) participants finished all
18 psets, in line with the completion rate in previous years (~20%). On average, students spent
47 min on each milestone session (SD = 39). The questions included in the psets simply
revisited the course content; they were very easy, with an average difficulty of 0.1 (only 10%
learners gave wrong answers). Thus, the psets mostly served as a check point, not necessarily
probing learners' advanced knowledge.

2.3 | Analysis

To model dropout rate at a given milestone as a function of predictors (such as pretest, motiva-
tion, etc.), we adopted a survival analysis approach. A survival analysis involves three basic
terms: event, time, and censoring. In our case, event is student dropout (1 = dropout; 0 = comple-
tion) at a given milestone, time is the course milestone, and censoring is if a subject does not
experience dropout during the whole MOOC period (in other words, the student completes all
milestones). Survival analysis is analogous to logistic regression: the dropout event is a binary
outcome variable; milestone and other covariates are predictors; and the model parameters can
be interrelated in the same fashion as a logistic regression.
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As basic steps for survival analysis (see Singer & Willett, 2003), we first calculated the
hazard for each milestone period. The hazard function represents the proportion of each mile-
stone interval set that dropped out during that interval:

h mij
� �

=Pr Mi = j½ jMi ≥ j�

where h(mij) is known as the population discrete-time hazard. Mi represents the milestone
period j when individual i experiences the dropout event (e.g., for a student who drops out at
the third milestone, Mi = 3). The hazard function denotes that the probability that the dropout
event will occur at a certain milestone j for student i is conditional on student i not experiencing
the dropout event at any time prior to j. Table 1 showed the life table for the observed sample,
the survival, cumulative failure and hazard function at each milestone interval.

Next, we used a logit link function to link the hazard to a linear specification of predictors,
similar to a logistic regression:

logit h mij
� �

= α1 + β1Mij + β2M
2
ij + β3X1ij + β4U1ij + β5Mij ×X2ij

In this function, Mi and Mi
2 together represent the linear and quadratic main effect of a

milestone. There are multiple possible specifications of the main effect of a milestone, such as
treating milestones as dummies (if the hazard function has an irregular form) or as a linear
main effect (if the hazard function is close to a linear line). Upon inspection of the logit hazard
function, we decided that a quadratic specification would parsimoniously and accurately reflect
the hazard function in our case. Predictors of interests in this model are the X variables and U
variables. X variables are time invariant variables; they include students' age, gender, motiva-
tion, familiarity, pretest score, English fluency, foreign status, etc. (see Table 1 for the full list of
variables). Such variables were only measured in the initial questionnaire (milestone 1). They
reflected students' initial status and were considered time invariant. U variables are time-
varying predictors. In our case, there were three time-varying predictors, which were the score
in the previous pset (variable name: pscore), and time spent in the previous milestone (variable
name: active_time). We used pscore and active_time as a proxy for students' performance and
engagement, but the validity of such usage was arguable. Both variables were time-lagged by
one milestone from the dropout event to be predicted. One reason was that when participants
dropped at a milestone, their pset scores would be missing, and their active_times in the milestone
of the dropout event would be extremely low or missing.

The time-lagged model allowed us to predict the odds of dropout in the upcoming mile-
stone, based on the performance in the most recent active milestone. The course contained four
chapters; therefore, there were three occasions for new-chapter = 1, respectively at milestone
5, 9, and 14, whereas new-chapter = 0 for other milestones. Thus, new-chapter could be consid-
ered as a discrete time-varying predictor. If we found the estimated coefficient of new-chapter
to be positive and statistically significant, we would conclude that the dropout event was more
likely to happen after the end of a chapter and before the beginning of a new chapter.

The parameters (βs and γs) associated with the Xs and Us stand for the shift in the baseline
logit hazard function (as depicted by the main effect of a milestone), corresponding to unit dif-
ferences in the associated predictors. In other words, the logit hazard function of students with
different X or U values shift up and down, but the shape of the function should be identical as
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it is determined by the main effect of a milestone when we do not take into consideration the
interaction terms. We also considered interaction terms between predictors and milestones.
This allowed different students to have different shapes of the logit hazard function, depending
on their Xs and Us. When two groups (categorized by a predictor of interest such as gender)
have converging logit hazard curves, it means the two groups have a larger difference in drop-
out rates at the beginning, and that this difference decreases over time (i.e., the effect of the
group predictor attenuates). If the logit hazard curves diverge between two groups, it means the
group differences increase over time. We used a post-GLM test to examine if and at which mile-
stone the two logit hazard curves converge or diverge.

3 | RESULTS

Table 2 presents the parameters for the fitted model. The model used quartic terms to define
the relationship between dropout and milestone. The predictors included time constant vari-
ables, such as age, gender, prior familiarity, which were collected only once (in the presurvey)
and were considered to be invariant over time. The model also included time-varying predic-
tors, such as students' performance in the psets and time spent on the milestone, which varied
at each milestone. For ease of interpretation, we converted the estimated parameters of the final
model to odds ratios by exponentiation and then to marginal probabilities (the change of the

TABLE 1 Life table with the observed sample and the survival, the cumulative failure and the hazard

function at each milestone interval

Interval Number counts Survival function Cumulative failure function Hazard function

From To Beginning Dropout Prob. SE Prob. SE Prob. SE

1 2 10,014 2,347 0.766 0.004 0.234 0.004 0.266 0.005

2 3 7,667 1,893 0.577 0.005 0.423 0.005 0.282 0.006

3 4 5,774 848 0.492 0.005 0.508 0.005 0.159 0.005

4 5 4,926 268 0.465 0.005 0.535 0.005 0.056 0.003

5 6 4,658 282 0.437 0.005 0.563 0.005 0.062 0.004

6 7 4,376 159 0.421 0.005 0.579 0.005 0.037 0.003

7 8 4,217 223 0.399 0.005 0.601 0.005 0.054 0.004

8 9 3,994 146 0.384 0.005 0.616 0.005 0.037 0.003

9 10 3,848 252 0.359 0.005 0.641 0.005 0.068 0.004

10 11 3,596 121 0.347 0.005 0.653 0.005 0.034 0.003

11 12 3,475 28 0.344 0.005 0.656 0.005 0.008 0.002

12 13 3,447 54 0.339 0.005 0.661 0.005 0.016 0.002

13 14 3,393 87 0.330 0.005 0.670 0.005 0.026 0.003

14 15 3,306 119 0.318 0.005 0.682 0.005 0.037 0.003

15 16 3,187 27 0.316 0.005 0.684 0.005 0.009 0.002

16 17 3,160 19 0.314 0.005 0.686 0.005 0.006 0.001

17 18 3,141 90 0.296 0.005 0.704 0.005 0.057 0.006
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probability of dropping out corresponding to a one-unit change in a specific covariate, pro-
vided that other covariates are held constant at their means and that the milestone is held at
milestone 1).

Interpretation of the parameters is analogous to the interpretation of a logistic model: β
shows the amount of change in logit hazard associated to one unit of change in the predictor,
and the logit hazard can be converted to an odds ratio. For example, βlocated_in_US = 0.26, which
shows that the logit hazard for participants located in the US was larger by 0.26 than the logit
hazard for participants located outside of the US, controlling for other covariates. This could
further translate to an odds ratio of 1.30 (e0.26 = 1.30), which means that the odds of dropping
out for a US-local participant were 1.30 times as high as the odds of dropping out for an
outside-of-the-US participant. Controlling the other covariates at their means and assuming
milestone = 1 and new-chapter = 0, we calculate the marginal probability (comparing probabil-
ity when located_in_US = 1 versus located_in_US = 0) of dropout was 0.063, which means that,
at milestone 1, the probability of a US-local student dropping out was 6.3% higher than that of
an outside-of-the-US student, if every other covariate was controlled at its mean. This difference
was statistically significant.

Similarly, students who reported having stronger intentions to earn a certificate, students
from outside of the United States, students of older age, students who reported being more
familiar with astronomy, and students who reported having better English skills, had lower
odds of dropout at each milestone, compared with their counterparts in the respective reference
categories. These predictors did not have an interaction effect with milestones, which means

TABLE 2 Survival analysis predicting dropout from MOOC Super-Earths and Life

Coefficient (SE) Odds ratio Marginal Prob

(Intercept) −0.043 (0.249) 0.827

Milestone −0.619 (0.035)*** 0.512

Milestone2 0.025 (0.002)*** 1.021

Misconcept score 0.117 (0.029)*** 1.124 0.025

Pretest score −0.061 (0.021)** 0.721 −0.058

Female −0.015 (0.055) 0.984 −0.003

Age −0.104 (0.029)** 0.914 −0.018

Education −0.018 (0.027) 0.981 −0.004

Located in the US 0.260 (0.056)*** 1.297 0.063

MOOCs completed −0.048 (0.027) 0.949 −0.011

Familiarity −0.064 (0.028) 0.945 −0.012

Motivated to earn certificate −0.135 (0.029)*** 0.892 −0.023

Motivated to disc in forum 0.042 (0.029) 1.058 0.012

English skill −0.098 (0.026)** 0.919 −0.017

First unit of a chapter 0.342 (0.100)*** 1.408 0.076

Time spent in previous milestone (active_time) −0.299 (0.038)*** 0.745 −0.058

Score in previous pset (pscore) −0.318 (0.029)*** 0.727 −0.063

Milestone × Misconcept score −0.018 (0.005)*** 0.982 −0.004

Note: *p < .05; **p < .01; ***p < .001, after false discovery rate (FDR) adjustment.
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changes to these predictors were associated with the elevation of the fitted line (or curve) of the
logit hazard curve but did not change the slope of the line (or the shape of the curve).

By contrast, there was a significant interaction effect between misconception score and the
milestones: students who had a higher misconception score—controlling for the total score—
had higher odds of dropping out at the initial milestones, but this effect diminished over time.
This interaction relationship is illustrated in Figure 1, which plotted two prototypical groups
that had misconception score scores ±1 standard deviation of the mean, while keeping all other
covariates at their means (the variable new-chapter was kept at zero). According to post-GLM
test (χ2 = 0.94, p = .33), the two groups were not statistically significantly different from each
other starting from milestone 7, which was in the middle of the course chapter that discussed
measuring the distance, mass and size of exoplanets.

The model also contained time-varying predictors related to participants' in-class perfor-
mances, respectively, the score in the previous pset (pscore) and the time spent in the previous
milestone session (active_time). We found both pscore and active_time to have significant main
effects. This indicated that, regardless of which milestone students had progressed to, the lower
their scores were the pset, and the less time they spent on the milestone, the higher were their
odds of dropout in the following milestone.

In summary, this study had three main results. First, we discovered several predictors of
dropout whose effects did not diminish over time (i.e., remained constant throughout the mile-
stone sequence): location, age, intention to complete, English skills, prior familiarity to the

FIGURE 1 Plotting the fitted probability of dropout by misconception score levels (mean ± 1 SD) with 95%

confidence intervals [Color figure can be viewed at wileyonlinelibrary.com]

894 CHEN ET AL.|

http://wileyonlinelibrary.com


subject, and motivation to earn a certificate, score and time spent in the previous pset. Second,
we did not find gender, education level, number of previous MOOCs completed, and motivation
to participate in online forums to have significant effects on the likelihood of dropout after con-
trolling for other variables. Third, our finding rejected the hypothesis that preexisting miscon-
ceptions have a positive motivating effect on course retention, and it supported the competing
hypothesis that misconceptions predict dropout. Moreover, the effect of misconceptions was
strong at the beginning, but diminished over the course of the milestone sequence.

4 | DISCUSSION

We first discuss the implications of our findings for MOOCs research and practice and then
focus on their contribution to the misconception literature in traditional classroom settings.

The most important finding of this study was the effect of the misconception score, which
had an interaction effect with milestones. This result confirmed a prior study (Chen et al., 2019)
that has shown that prior acquaintance within the knowledge domain had a positive effect on
persistence and that this effect decreased as students progressed through the milestones. The
test for preexisting knowledge adopted by the prior study was an aptitude test to examine stu-
dents' algorithmic and logic skills before learning computer programming. The pretest in this
study was the first test, to our knowledge, that measured students' misconceptions in a MOOC
study. Therefore, it provided the first evidence to show that misconceptions influence students'
dropout rates in MOOCs. Specifically, misconceptions pose an initial hurdle to participation.
When the concepts covered by the course contradict the misconceptions held in students' intui-
tion, students might find the course content difficult to grasp early on.

The conceptual domains that were probed by the pretest (scale, energy, spectroscopy, and
multi-factorial mental models) were fundamental to the understanding of the movement of spa-
tial objects, the distance between the objects, the transfer of energy, and the observation of sig-
nals, which are the building blocks and reoccurring topics in the SPU30X. If misconceptions
were not addressed in these domains, they would become troublesome knowledge that would
block the learner not only from deep understanding but also from further inquiry. Here are a
few examples:

1. a learner who assumes that the Sun produces energy by burning oxygen might expect that it
would burn out over the course of a few thousand years;

2. a learner who assumes that our solar system was solely created by the Big Bang might find it
ridiculous that Earth contains elements generated in supernovae;

3. a learner who holds an over-simplified notion of scale might underestimate the challenge
presented by the vast distances in space exploration; and

4. a learner who holds misconceptions in spectroscopy, such as believing that all stars are
white, could not make sense of how scientists make inferences about distant objects primar-
ily based on observing the light from them.

We did not posit any particular misconceptions to trigger a learning obstacle at any particu-
lar course milestone, which is a challenge beyond the scope of this study. Our pretest sampled a
limited number of misconceptions that learners may hold in their mental models. Our results
did show that, controlling for the level of astronomy knowledge, holding larger numbers of mis-
conceptions constitutes an additional obstacle to a learner's persistence in the course,
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suggesting that multiple encounters of a counterintuitive mismatch between the course con-
tents and the learner's existing conceptions exacerbate psychological burnout and the inclina-
tion to withdraw from further learning. As we discussed in the theoretical framework, the
mismatch may activate three immediate reactions of the learners: cognitive conflict, disturbed
expectation, plus frustration as a result of the two. This study did not explicitly measure any of
the three possible reactions, but they may serve to explain the findings of the study from a theo-
retical perspective by positing a plausible mechanism.

The results also helped us decide between opposing predictions of the theories and thus
update our understanding of these theories. If, according to cognitive conflict theory, cogni-
tive conflict did occur, it was likely not motivating learners to resolve the conflict by
persisting in the course, but it rather discouraged them from further inquiry, perhaps to
avoid the discomfort or to ease the burnout of cognitive conflict. If, as implied by
expectancy-value theory, preexisting misconceptions did lead to over-optimism about the
learners' existing knowledge, it appears that the over-optimism did not help them to persist
as it was found in other STEM contexts, such as career interests (Bench et al., 2015), but that
it rather frustrated the learners. Whereas this study could not determine which of the two
theoretical frameworks was at work, it was able to conclude that holding distractive miscon-
ceptions was worse than lacking subject matter knowledge (recalling that we had controlled
for the learners' overall level of correctness in our model, those students who held neither
the scientific knowledge nor a popular misconception were considered to have a lack of
knowledge, or to hold idiosyncratic incomplete or erroneous beliefs—because few learners
have a complete lack of knowledge) because the misconceptions would drive the learners
astray and constitute an additional penalty to learners' persistence, at least in the initially
stages of a MOOC setting.

Interestingly, our study also showed that, as students kept participating in the course
through the initial chapters, possibly by picking up increasing levels of content knowledge,
resolving/inhibiting their misconceptions, adjusting their expectations and self-evaluations,
and/or managing their frustrations, they would persist as well as those who had fewer miscon-
ceptions at the outset. We do not know if the learners had successfully resolved their miscon-
ceptions (as it has been proven very difficult to achieve), or if the resolved misconceptions were
the reason that ameliorated the steep dropout trend. It is possible that learners may have gradu-
ally ignored their misconceptions (as misconception inhibition was found to be more common
than misconception resolution), or managed their frustration, or adapted their estimation of the
course difficulty and adjusted their learning effort (psychological cost) devoted to the course.
Alternatively, our findings could be simply attributable to the possibility that those who felt the
strongest discomfort about cognitive conflict or disturbed expectation had already dropped out
in the initial stages, and those who stayed were not bothered by the discomfort. All these possi-
ble explanations call for more targeted studies in the future, as we will elaborate in the Limita-
tion section.

Our findings lead to three major suggestions to astronomy MOOC instructors, or to MOOC
instructors in general, if we assume generalizability beyond astronomy (see Section 5). First,
MOOC instructors should make efforts to measure and understand students' incoming knowl-
edge, including misconceptions. It has been well documented that knowledge of students' mis-
conceptions (part of the PCK) is a crucial teaching skill for teachers to facilitate their students'
learning in traditional classrooms (Hill et al., 2005; Sadler et al., 2013); and such knowledge has
proven to be useful in online settings as well (She & Liao, 2010; Wendt & Rockinson-Szapkiw,
2014). This study suggests that teachers should not only pay attention to how students'
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misconceptions may affect their understanding and performance, but also how it may impede
students from engaging in understanding and performing at all.

Second, MOOC instructors should actively address students' misconceptions. Our original
hypothesis that misconceptions may motivate learners to engage in more inquiry was based on
the premise that learners have teachers or resources to turn to when their existing mental
models were challenged. A common principle behind various cognitive-conflict-driven pedagog-
ical approaches is that teachers should be aware of the students' misconceptions so that they
can purposefully use students' cognitive dissonances as opportunities to either explicitly resolve
the cognitive conflict (Bucat, 2015; Wartono & Putirulan, 2018), or promote the scientific expla-
nation to surpass the misconception while they still coexist in the mind of the students (Potvin
et al., 2015). Sadler et al. (2013) have shown that students cannot correct their misconceptions
by themselves over time, and only students whose teachers have knowledge of student miscon-
ceptions can achieve conceptual change. In the absence of such facilitators, cognitive conflict
may lead to frustration, and educational opportunities may be missed. One of the common and
major shortcomings of the MOOC platform is the lack of customized attention and scaffolding.
To address learners' misconceptions individually may be costly for most MOOC platforms; how-
ever, considering the importance of misconceptions for students' persistence, instructors should
at least anticipate the most common misconceptions in the topic field and allocate time to
address these misconceptions in the initial stages of the course.

Last, from an expectancy-value theory perspective, instructors should be aware that miscon-
ceptions may seriously bias students' evaluation of self-competence and the expectation of suc-
cess, as learners who hold strong misconceptions may assume they already have a working
mental model or a good understanding of some of the content. Such an optimism is not sustain-
able once learners start the course and realize what they are learning is way more difficult and
frustrating to grasp than they had expected. Instructors should help the learners set their expec-
tation in the beginning of the course. For example, the instructors can review the pre-screening
test with the learners, inform them about their misconceptions, and/or preview the expected
learning curve of the course. Most importantly, the instructors should inform the learners that,
as the learners persist in the course, they are expected to perceive smaller and smaller amounts
of frustration induced by counterintuitive subject matter knowledge.

As noted in the Introduction, the general public, especially young learners, are naturally
fascinated by astronomy or science in general, but this fascination often gives way to the mysti-
fication of science—believing that science is awe-inspiring, yet understandable only by a small
group of geniuses (Dimopoulos & Koulaidis, 2003; Evans, Krippendorf, Jae, Posluszny, &
Thomas, 1990), settling on superficial knowledge and misconceptions, and preventing people
from reconstructing their mental models to accommodate new knowledge. A lot of prior discus-
sion in the misconception literature addressed how misconceptions make learning difficult. We
argue that it is an even more troublesome and alarming problem in science education when
misconceptions make learning stop completely in the very beginning stages. Our findings
inspired us to ask a more philosophical question: is counter-intuitive knowledge hard to assimi-
late because it is difficult to resolve even if people take the time to attempt resolutions, or
because people do not even take the time to wonder? This was precisely what Carl Franken-
stein (1979) worried about 40 years ago—that cognitive conflict might increase learners' frustra-
tion so much that they halt conflict resolution.

This philosophical speculation assumes an analogy between MOOC engagement and gen-
eral science learning engagement, which is an open question. As pointed out in the introduc-
tion, dropping out from class or from school is always a costly decision in the traditional
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educational system. In some situations, for example, if a class is elective, students can drop out
within a few trial sessions, but the dropout rate is usually very low because of academic, finan-
cial, and peer pressures. Even though, as has been shown in prior studies, students may experi-
ence multiple moments of temporary defeat, or burnout, due to cognitive conflict or frustration
(Khalaj & Savoji, 2018; Olwage & Mostert, 2014; Salanova et al., 2010), students rarely can
afford to actually drop out. Therefore, the variation in attrition that might be explained by
misconception is very small, which makes the traditional school setting impractical for studying
the relationship between misconception and attrition. In the MOOCs setting, students can drop
out at any time with very little cost, which is ideal for investigating factors influencing attri-
tion. It is noteworthy that MOOCs are very different from traditional classes in many ways.
For example, students were found to have higher satisfaction levels and higher learning out-
comes in traditional classrooms than in an online environment (Smith, Wilson, Banks,
Zhu, & Varma-Nelson, 2014). Wendt and Rockinson-Szapkiw (2014) further showed that
online collaborative activities were less effective than in-classroom ones in addressing student
misconceptions. Nevertheless, the construction of knowledge should follow similar progres-
sions, and students should experience similar hurdles when they first encounter and acquire
new concepts that are contrary to their prior beliefs. Based on the result of this study, we spec-
ulate that, in traditional classroom settings, students with prior misconceptions are prone to
increased feelings of failure at the beginning of the class. This speculation appears to be dif-
ficult to test empirically in classrooms without extensive student observations, interviews,
or surveys about their psychological states. However, we further predict, based on a weaker
version of our speculation, that in an elective offline course that allows students to drop in a
“trial period,” students who drop out in this period should have stronger prior and unre-
solved misconceptions, compared with students who persisted, controlling for equivalent
scores in pre-tests. This prediction should be easy to test in future studies and would
strengthen the analogy between MOOC engagement and classroom engagement. Earlier
research (e.g., Brobst, Markworth, Tasker, & Ohana, 2017; Coe, Aloisi, Higgins, & Major, 2014;
Sadler et al., 2013) has shown that teachers who understand students' misconceptions tend to be
high quality teachers and help students improve their grades in traditional classrooms. Part of this
effect, as we further speculate, could be attributed to the phenomenon discussed in this article: as
students' misconceptions have been addressed, their frustration, thoughts of failure and intentions
to give up, are eased. We suggest the reader be aware of the untested analogy between dropping
out of a MOOC (and informal science learning activities) and the psychological resignation in the
classroom. It is possible that our finding is only applicable to the MOOC settings (and perhaps
the informal science learning domain). Future studies should investigate the interplay between
teachers' perceptions of students' misconceptions, teachers' pedagogies, and students' misconcep-
tions, frustration, resilience, and performance, in both online and offline classrooms.

5 | LIMITATIONS

Many of the above speculations about learners' reasons to drop out could have been examined
by simply asking the learners. Unfortunately, this study did not follow up with the learners at
the end of the course. Had we contacted and interviewed the learners (especially those with
strong misconceptions in the pretest) who persisted or dropped out, we would have an addi-
tional powerful source of data to make sense of their course participation decisions and their
relationship with the misconceptions about astronomy in the learners' mind.
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A MOOC such as SPU30X, which teaches about the search for Earth-like planets and
alien life, is fundamentally different from MOOCs that teach immediately useful skills or
tools, such as computer programming or statistics. In comparison, SPU30X participants
were more likely to be driven by personal interests—like hobbyists—rather than driven by
occupational skill development. Compared, for instance, with the MOOC CS50x Introduc-
tion to Computer Science, the content in SPU30X contains more narratives, similar to educa-
tional documentaries, and is much less demanding of prior mathematic, logic, or language
skills. The completion rate of SPU30X (23%) is above the average completion rates (15%,
ranging between 5% and 40%) reported in the MOOC literature (Jordan, 2015). Thus, this
study contributes to MOOC research by its coverage of a hobbyist MOOC, a type of MOOC
less examined by researchers. Yet, for the same reason, caution should be taken when gen-
eralizing the results of this study to other types of MOOCs. Nevertheless, by successfully
replicating the effects of many covariates that have been well documented by the studies of
other MOOCs, it appears plausible that SPU30X was not overly different from the general
MOOCs family after all.

Another limitation of the study was that we did not keep track of the misconceptions over
the course, which limited our ability to examine the mechanism behind the association between
misconceptions and retention. Had we directly measured learners' misconceptions repeatedly
over the milestones (such as including misconception measures in the psets, instead of using
the actual psets that only revisited course content and had very low difficulty), we could inspect
if the misconceptions were gradually resolved and if the change in misconceptions was associ-
ated with the change in dropout hazard. Lastly, we could not explicitly discuss what it means
that the probability of dropout converged at around milestone 7 between the high and low
misconception groups. Milestone 7 was in the middle of the second chapter that discussed the
measurement of distance, mass and size. It may be strongly related to misconceptions in scale
and spectroscopy that we measured in the pretest. However, we do not suggest there to be a pre-
cisely aligned relationship between the content in the chapter and the measured misconcep-
tions for two reasons: First, scale and spectroscopy concepts were not only applied to chapter
two. They have been introduced in the first chapter that discussed the position and environ-
ment of Earth that made life possible, and also repeatedly applied in later chapters about
observing features of the exoplanets. Second, the misconceptions included in the presurvey
served to collect a sample of learners' misconceptions and were not comprehensive enough to
diagnose the exact domains of misconceptions the learners held. Thus, a higher misconception
score should be interpreted as having more misconceptions about astronomy in general. In
short, this study cannot detect the specific misconceptions that interacted with the course con-
tent at specific milestones, because we did not cover milestone-specific misconceptions in the
pretest and only measured misconceptions that were widely applicable to most of the
milestones.

6 | CONCLUSION

To our knowledge, this is the first study to show students' misconceptions to be an obstacle to
persistence in the initial sessions of a MOOC. We also found students' performance and engage-
ment in the most recent milestone to predict their persistence in the following milestone. These
findings have very clear policy implications for improving the design and teaching of the next
generation MOOCs.
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