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Abstract: The accurate monitoring of forest cover and its changes are essential for environmental
change research, but current satellite products for forest coverage carry many uncertainties. This
study used 30-m Landsat-8 data, and aggregated 1-m GaoFen-2 (GF-2) satellite images to construct
the training samples and used multiple machine learning algorithms (MLAs) to estimate the fractional
forest cover (FFC) in China’s Three North Region (TNR). In this study, multiple MLAs were merged
to construct stacked generalization (SG) models based on the idea of SG, and the performances of
the MLAs in the FFC estimation were evaluated. The results of the 10-fold cross-validation showed
that all non-linear algorithms had a good performance, with an R2 value of greater than 0.8 and a
root-mean square error (RMSE) of less than 0.05. In the bagging ensemble, the random forest (RF)
(R2 = 0.993, RMSE = 0.020) model performed the best and in the boosting ensemble, the light gradient
boosted machine (LGBM) (R2 = 0.992, RMSE = 0.022) performed the best. Although the evaluation
index of the RF is slightly better than that of the LGBM, the independent validation results show that
the two models have similar performances. The model evaluation results of the independent datasets
showed that, in the SG model, the performance of the SG(LGBM) (R2 = 0.991, RMSE = 0.034) was
better than that of the single or non-ensemble model. Comparing the FFC estimates of our model
with those of existing datasets showed that our model exhibited more forest spatial distribution
details and higher accuracy in complex landscapes. Overall, in this study, the method of using
high-resolution remote sensing (RS) images to extract samples for FFC estimation is feasible. Our
results demonstrate the potential of the ensemble MLAs to map the FFC. The research results also
show that among many MALs, the RF algorithm is the most suitable algorithm for estimating FFC,
which provides a reference for future research.

Keywords: Three-North region of China; fraction forest cover; machine learning algorithm ensemble;
Landsat-8; Gaofen-2

1. Introduction

Forests are the ecosystems with the richest biodiversity on land and represent an
important factor affecting global carbon, water cycles, biodiversity, land-use change, and
climate change [1–7]. China’s Three-North Shelter Forest Program (TNSFP) [8] is the largest
artificial afforestation project in the world, covering more than 40% of China’s land area and
serving as an important ecological barrier in northern China [9,10]. TNSFP not only holds
important economic benefits but also plays an important role in preventing wind, fixing
sand, regulating water and heat, improving the microclimate, soil, and water conservation,
reducing natural disasters, and realizing the sustainable and healthy development of
the ecological environment [11]. Owing to the fragility and complexity of the ecological
environment in the Three-North Region (TNR), the vegetation ecosystem in this region is
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affected by ever-changing land use/cover, and forest coverage information is an important
factor used to characterize the ecological environment. It is of great significance to obtain
timely and accurate forest coverage information and temporal and spatial changes in this
region to study the ecological environment and vegetation coverage changes, sustainable
management of land use and forests, and climate change in the TNR [12–14].

Although several studies extracted forest cover information from 1-km AVHRR, 500-m
and 250-m MODIS, and other remote sensing (RS) images [15–17], in heterogeneous forests
areas, forests and forest disturbances might be small and fragmented, resulting in many
pixels that are spectrally mixed between disturbed forests, undisturbed forests, and non-
forest classes [18,19]. In addition, in the change products defined based on the forest
cover change, forest disturbances smaller than the pixel scale may be ignored, and the
classification results cannot fully represent the intra-class heterogeneity problem within a
certain pixel. Therefore, coarse-resolution RS images have obvious limitations in terms of
representing the forest cover [19–21]. Heterogeneous landscape can be better represented
by plotting the coverage percentage of the land elements on a continuous scale [22,23].
Currently, several parameters can represent forest cover information on a continuous scale,
such as forest canopy cover is defined as the proportion of the forest floor covered by the
vertical projection of the tree crowns [24]. The canopy closure, also known as crown closure,
is an integrated measure of the canopy “over a segment of the sky hemisphere above one
point on the ground” [25]. The canopy cover refers to the proportion of the forest floor
covered by the vertical projection of the tree crown [26]. The percent tree cover is defined
as the percentage of the ground surface area that is covered by a vertical projection of the
outermost perimeter of the natural spread of the plant’s foliage, and small openings in
the crown are included [27]. The Fractional Forest Cover (FFC) represents the ratio of the
forest canopy cover area to the entire pixel as viewed from above (vertical direction) [14,16].
They have different definitions in terms of the observation angle, estimation method, and
estimated area. This article uses Landsat RS images with a resolution of 30 m, so the FFC
in this article represents the proportion of the forest on a spatial scale of 30 × 30 m. The
accurate estimation of the FFC on the pixel scale can describe the detailed forest stand status
and the forest proportion, which can be used to understand the distribution characteristics
of the forest cover in more detail. The FFC can reflect the state and changes in the trend of
the forest on the pixel scale [22,23].

RS is a key technology for achieving this goal [23]. Global-scale RS products such
as the Global Forest Change (GFC) product [28], the Moderate-resolution Imaging Spec-
troradiometer Vegetation Continuous Fields (MOD44B) [29], and the Global Land Survey
Landsat Tree Canopy Cover Continuous Fields (GLS_TCC) [21] have enhanced our under-
standing of the global distribution of the FFC. However, global-scale data cannot reasonably
represent changes in the regional land cover. Moreover, different studies may have different
accuracies within the same region and even may reach opposite conclusions [30,31].

In FFC research, methods based on spectral analysis are generally used in small-scale
research due to the complexity of the environment and the forest characteristics [32,33].
MLAs have promoted the improvement of the performance of the regression process
based on RS methods [34]. Senf et al. [20] selected annual Landsat images and used a
generalized regression-based unmixing approach (depending on RF regression and SVR)
to estimate forest cover fractions. Baumann, et al. [23] combined Landsat-8 and sentinel-1
images and used the gradient boosting regression (GBR) method to model continuous
fields of tree cover at 30-m resolution. The regression tree (RT) algorithm is the most
widely used for estimating the FFC [35,36]. Selkowitz [37] used different combinations
of Landsat, MODIS, MISR input data and used the RT model to estimate the fractional
canopy. Donmez et al. [36] chose the regression tree (RT) algorithm and used multi-time
Landsat TM/ETM data and land cover information to estimate the tree coverages of
various forest stands in the Mediterranean. The MLA ensembles have good robustness and
generalization, but there are still few applications in the FFC estimation [38,39]. In addition,
the performance of MLAs will vary greatly due to differences in the input parameters,
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estimated parameters, and/or research area [40–42], and there is a lack of comparison of
multiple algorithms in FFC estimation. To choose a more robust estimation model, it is
necessary to verify the performances of the different algorithms in FFC estimation.

Considering the uneven spatial distribution of a forest, a large number of training
samples need to be selected and labeled [32]. In FFC research, although the method
based on field sampling can be used to obtain more accurate sample data, this method is
expensive and can only be used in small research areas [43,44]; UAV RS can be used to
obtain a larger range of sample data, but it is limited by the availability and timeliness of the
data [20,45–47]. High-resolution satellite remote sensing imagery (HRSRS) is characterized
by a high spatial resolution and wide imaging range and has obvious advantages in terms
of ground object recognition. HRSRS is widely used to obtain reference datasets in the
research involving estimating the FFC [22,23,34,47–49]. For example, Baumann, et al. [23],
Godinho et al. [34] used high-resolution Google Earth images to collect reference datasets,
while Gessner, et al. [22] used the results of classification and aggregation of IKONOS and
QuickBird as a reference dataset. The spatial resolution of the GaoFen-2 (GF-2) satellite
data is better than 1 m, and fused GF-2 data can provide a richer texture and geometric
information and can make it easier to distinguish between surface forest and non-forest
cover [50–52]. In this study, GF- 2 was selected as the main source of the reference dataset.

In this study, the FFC in the TNR was drawn by using Landsat-8 RS images and was
based on the research ideas of MLAs fusion. First, this research combines RS images of
different resolutions (Landsat-8 and GaoFen-2) to construct a sample set for estimating
the FFC, and then a multi-algorithm integrated machine learning model is constructed
based on existing MLAs The performance of the MLAs estimating the FFC is evaluated
and compared, and finally, a robust estimation model is established to estimate the FFC of
the TNR.

2. Study Area and Data
2.1. Study Area

The TNR of China includes semi-arid and arid lands in the northeast, north, and
northwest of China, where desertification and erosion of soil and water constitute seri-
ous problems. The TNSFP was implemented to realize the protection of forest resources
and the sustainable development of the ecological environment [12]. Located between
73◦29′–129◦50′ east longitude and 33◦30′–50◦14′ north latitude, it includes 551 counties
(banners, cities, districts) in 13 provinces (autonomous regions, municipalities): Shaanxi,
Gansu, Ningxia, Qinghai, Xinjiang, Shanxi, Hebei, Beijing, Tianjin, Inner Mongolia, Liaon-
ing, Jilin, and Heilongjiang. The total project construction area accounts for 42.4% of
China’s total land area. The goal of this project plans to increase the forest coverage rate in
this area from 5.05% in 1978 to 14.95% in 2050 [53,54].

The TNSFP area exceeds 4000 km from east to west, and there are significant differ-
ences in surface environment and vegetation cover. The altitude rises from east to west,
varying from less than 100 m to more than 5000 m, including plains, plateaus, mountains,
and basins. The annual average precipitation in the region is extremely uneven and gradu-
ally decreases from east to west and from south to north, in some areas exceeding 400 mm.
However, in the Tengger Desert, Badain Jaran Desert, and Qaidam Basin, the driest areas
in China, the annual average precipitation is between 20 and 50 mm [12,30,53,54]. The
vegetation distribution of TNR has obvious spatial variability, and different types of forests
are mainly distributed in the northeast and north China. The northwest region is domi-
nated by grasslands and deserts, a small part of the basin in this region is also covered by
deciduous coniferous forests and mixed forests (Figure 1) [55].
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RS variables were used as the features for the FFC estimation: 
1. Raw Landsat 8 OLI bands: The 30-m resolution spectral bands used were Blue (0.45–

0.51 μm), Green (0.53–0.59 μm), Red (0.64–0.67 μm), Near Infrared (NIR, 0.85–0.88 
μm), Shortwave Infrared-1 (SWIR-1, 1.57–1.65 μm), and Shortwave Infrared-2 
(SWIR-2, 2.11–2.29 μm) [58–61]. 

2. Vegetation indices: The vegetation indices reflect the spectral characteristics of the 
vegetation-soil system. They are widely used to evaluate the plant growth status, 
chlorophyll content, canopy structure, and photosynthetic efficiency, and can en-
hance the electromagnetic behavior of key biophysical parameters of vegetation, such 
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Figure 1. The location of China’s Three-North Region (TNR) and an MCD12Q1 2018 land cover map (a) [56], the average
annual precipitation 2000–2010 (b), DEM (c).

2.2. Data

Landsat images were obtained from the USGS Earth Resources Observation and Sci-
ence (EROS) Center archive (https://earthexplorer.usgs.gov/, (accessed on 31 May 2020)).
Atmospheric correction and conversion to surface reflectance were implemented using
the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercube (FLAASH) radiative
transfer model in the ENVI environment [57]. In this study, only the visible light band
data of Landsat-8 and the image quality assessment (QA) band were needed. Through the
MASK of the QA band, the pixels marked as clouds, cloud shadows, water, snow, ice, or
filled were excluded, and only clean pixels were kept [58–60]. As relationships between
FFC and remote-sensing-derived variables are affected by many factors, the selection of
suitable variables is a crucial step in FFC estimates. In this study, three different types of
RS variables were used as the features for the FFC estimation:

1. Raw Landsat 8 OLI bands: The 30-m resolution spectral bands used were Blue
(0.45–0.51 µm), Green (0.53–0.59 µm), Red (0.64–0.67 µm), Near Infrared (NIR,
0.85–0.88 µm), Shortwave Infrared-1 (SWIR-1, 1.57–1.65 µm), and Shortwave Infrared-
2 (SWIR-2, 2.11–2.29 µm) [58–61].

2. Vegetation indices: The vegetation indices reflect the spectral characteristics of the
vegetation-soil system. They are widely used to evaluate the plant growth status,
chlorophyll content, canopy structure, and photosynthetic efficiency, and can enhance
the electromagnetic behavior of key biophysical parameters of vegetation, such as
photosynthetic potential, canopy pigment, and canopy water content [62,63]. Healthy
vegetation reflects a lot of light in the near-infrared part of the spectrum and the

https://earthexplorer.usgs.gov/
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least light in the visible part (especially the red part). Therefore, green plants and
other objects can be distinguished by their absorption and reflection differences in the
red band and the near-infrared band, and the vegetation indices can be used as an
effective predictor for estimating forest parameters [49,64–66]. This study selected the
vegetation indices shown in Table 1.

3. Topographical factors: The terrain factor data included the 30-m resolution ASTER
GDEM digital elevation data (http://www.gscloud.cn/sources/accessdata, (accessed
on 31 May 2020)) of the study area, and we calculated the aspect and slope of the
digital elevation model (DEM) [67–69].

Table 1. Vegetation indices derived from modeling to estimate the FFC.

Variable Name Description References

Vegetation
indices

Atmospherically Resistant Vegetation Index (ARVI) NIR-(2*Red-Blue))/(NIR + (2*Red-Blue)) [66]
Difference Vegetation Index (DVI) NIR-Red [70,71]
Enhanced Vegetation Index (EVI) (2.5*(NIR-Red)/(NIR + 6*Red-7.5*Blue + 1)) [59,72]

Green Ratio Vegetation Index (GRVI) NIR/Green [68]
Infrared Percentage Vegetation Index (IPVI) NIR/(NIR-Red) [68]

Normalized Difference Vegetation Index (NDVI) (NIR + Red)/(NIR-Red) [65,73,74]
Normalized Water Index (NDWI) (Green-NIR)/(Green + NIR) [75,76]

Optimized Soil Adjusted Vegetation Index (OSAVI) (NIR-Red)/(NIR + Red + 0.16) [63,70]
Renormalized Difference Vegetation Index (RDVI) (NIR-Red)/((NIR+ Red)**0.5) [62]

Soil Adjusted Vegetation Index (SAVI) (NIR-Red)/(NIR + Red + L) + (1 + L) [77,78]
Simple Ratio (SR) Red/NIR [70,79]

GaoFen-2 remote sensing data.

GF-2 images were accessed from China Resources Satellite Data and Application
Center (CRESDA, http://www.cresda.com/CN, (accessed on 31 May 2020)). The GF-2
sensor index is shown in Table 2. The satellite was equipped with panchromatic and
multispectral sensors (PMS), including a 0.8-m resolution panchromatic band and four
3.2-m resolution multispectral bands. Using the fast-line-of-sight atmospheric analysis
(FLAASH) model, radiometric calibration and atmospheric correction were performed.
The panchromatic and multispectral bands were resampled to 1-m and 4-m resolutions,
respectively, and fused into 1-m resolution data [50,68].

Table 2. GF-2 Satellite Sensor Specifications.

Specifications Panchromatic Multispectral

Spectral Range (µm) 0.45–0.89

B01—0.45–0.52
B02—0.52–0.59
B03—0.62–0.69
B04—0.77–0.89

Swath Width (2 camera) 45 km 45 km
Viewing Angle 0◦–25◦ 0◦–25◦

Repetition Cycle (days) 5 5
Spatial Resolution (m) 0.8 3.2

Global-mode Coverage Ability ~60 days ~60 days

We chose images with GF-2 and Landsat-8 imaging times close to each other and under
cloud-free conditions. The distribution of data in the study area is shown in Figure 1a.
Table 3 shows the imaging time of the Landsat-8 and GF-2 images. The imaging time
difference between the two data sources was within one week, which avoided large surface
occurrences caused by factors such as seasons and climate. In particular, the spatial
distribution of forests did not change significantly in a short period.

http://www.gscloud.cn/sources/accessdata
http://www.cresda.com/CN
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Table 3. Landsat8 and GF-2 imaging time.

Landsat Imaging
Time Landsat Path/Row GF-2 Imaging Time Time Interval (days)

2015/05/23 126/035 2015/05/23 0
2015/07/24 128/035 2015/07/21 +3
2015/08/04 125/033 2015/08/04 0
2015/09/08 114/028 2015/09/09 −1
2016/05/19 116/030 2016/05/18 +1
2016/06/27 133/033 2016/06/27 0
2016/07/07 123/029 2016/07/04 +3
2016/07/31 131/035 2016/07/31 0
2016/08/01 122/028 2016/08/02 −1
2016/08/19 120/026 2016/08/16 +3
2017/05/28 126/034 2017/05/26 +2
2017/06/14 117/031 2017/06/17 −3
2017/06/16 115/030 2017/06/16 0
2017/06/26 121/025 2017/06/23 +3
2017/071/6 117/027 2017/07/21 −5
2017/08/28 146/032 2017/08/29 −1
2017/09/02 117/027 2017/09/03 −1
2017/09/12 123/031 2017/09/20 −8
2017/09/27 116/028 2017/09/27 0
2017/09/28 123/032 2017/09/20 −8
2018/07/23 145/029 2018/07/19 +4

2.3. Existing FFC Products for Comparison

Two global-scale datasets were used to compare the FFC results in this study: Global
Forest Change 2000–2019 (GFC) [28] and Global Land Survey Landsat Tree Canopy Cover
Continuous Fields (GLS_TCC) [21]. GFC uses a decision tree algorithm and Landsat data
to generate annual global datasets with a resolution of 30 m and a time range from 2000 to
2019. GLS_TCC uses the RT algorithm to estimate the global 30-m resolution continuous
fields of tree cover based on Landsat reflectance data and land surface temperature data.
This dataset is produced every 5 years, and four datasets are currently available: 2000, 2005,
2010, and 2015.

3. Methodology

The methodology and experimental setup for this study are outlined in Figure 2. First,
preprocess the selected RS images and auxiliary data to construct the dataset required by
the machine learning model. Next, select MLAs and determine the optimal parameter
combination of the model through parameter tuning. Then, use cross-validation (CV), inde-
pendent validation, reference image data comparison, and other methods to compare and
evaluate these algorithms, and select the algorithm with the best stability and robustness
as the final estimation model. Finally, use the final model to estimate the FFC of TNR.
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3.1. Reference Data Sampling and Preprocessing

This subsection mainly describes the process of generating high-quality data for the
development of the model. It mainly includes the processing of GF-2 images, the matching
and processing of Landsat-8 RS images and reference data, and the construction and
processing of the reference FFC dataset:

(a) Choose 1-m resolution GF-2 images as reference image data. To extract forest and non-
forest information from it, we used the eCognition Developer (Version 9.0) software
combined with visual interpretation to realize the classification of GF-2 images (in
Figure 3) [80,81]. In the process of visual interpretation, forestland and non-forest
land are distinguished and judged according to the color, shape, and texture of the
ground objects and the spatial distribution characteristics of the shadow between the
ground objects, and then the wrong classification is manually edited and modified.
Then, extract sparse or independently distributed trees in the image to ensure that the
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extraction of forestland is correct. Finally, obtain the forest classification result of the
reference image.

(b) Extract the surface reflectance data of Landsat-8 images in the reference area, and cal-
culate the vegetation index based on the reflectance data. Register GF-2 classification
results with Landsat-8 data, and use a 5 × 5 sampling window for Landsat sampling,
because a larger sampling window will lose small areas or fragmented forest cover,
while a smaller sampling window will increase the spatial position inconsistency
between different data sources because of registration errors [23,82]. Calculate the
FFC in the corresponding sampling window.

(c) Construct a dataset with surface reflectance, vegetation indices, and terrain factors
as predictors, and FFC as the response variables. Divide the dataset into a training
set, test set, and independent validation set, and then train, verify, and evaluate
the model.
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The performance of MLAs depends on the quality of training samples. Because of
noise problems, unbalanced distribution of data samples, and the lack of representativeness
of samples, the data obtained according to the above methods cannot be directly used as
input for MLAs. We need to preprocess the data, including the detection of outliers, the
processing of missing and repeated values, data standardization, and feature selection [83].

Feature selection can reduce the computation time, prevent the model from being
too complex and which can lead to overfitting, and facilitate a better understanding of
the learning model or data by removing irrelevant and redundant data [84,85]. The RF
provides an assessment of the importance of the different feature variables in the prediction
process. To evaluate the importance of each feature (e.g., the satellite image band and
vegetation index), the RF switches one of the input random variables while keeping the rest
constant, and it measures the decrease in the accuracy using the OOB error estimation and
the decrease in the Gini index [86,87]. In this study, we used the RF model to analyze the
importance of the selected feature variables to the target value and ranked the importance
of the features, which is presented in Figure 4.
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The feature importance ranking results indicate that SAVI and SWIR_2 are the main
contributors to the models, and these two features are highly sensitive to soil and veg-
etation. The topographic information in the DEM makes a high contribution, and the
contribution of the image spectrum is ranked in the middle level. Some features have low
importance scores (IPVI, NDVI, and DVI), but this does not indicate that these features
are not sufficiently related to the FFC. This may be because the top-ranked features have a
higher correlation with the FFC, or because there is autocorrelation between the features.
Using the RF to rank the importance of the features allows for the selection of the features
with higher relevance to the target value. We eliminated the features with importance
scores of less than 0.01. We compared the accuracy of the model before and after the feature
selection, there is no obvious change, which demonstrates that the eliminated features had
no obvious effect on the model. In general, the selection of appropriate spectral indices,
topographical information, and other features has a significant impact on the estimation of
FFC. Finally, the estimation of the FFC can be interpreted as FFC = f(SAVI, SWIR_2, Blue,
DEM, GRVI, ARVI, Green, NIR, Slope, EVI, SWIR_1, RDVI).

3.2. Machine Learning Algorithms

MLAs have a wide range of applications in the field of RS. To obtain a model suitable
for this research, it was necessary to conduct a comprehensive comparative analysis of
each MLA. Table 4 lists the selected MLAs, including the ensemble algorithms (bagging
and boosting), MLP, DTR, LR, Ridge, ENe, LASSO, and KNN.

The bagging ensemble algorithm uses a decision tree as the base-learner and employed
bagging sampling to extract n samples from the original sample set, with k extractions,
to obtain k subsets of data, and finally, k models are trained. For the regression problem,
the mean of the k models is taken as the final result. The representative algorithms
are the RF [88], and the bagged decision trees [89]. The boosting ensemble algorithm
combines multiple weak learners into a strong learner through iteration. The training of
each learner depends on the results of the previous learner, and each time the samples
that are incorrectly estimated are weighted and the samples that are correctly estimated
are down-weighted. Finally, the multiple weak learners are weighted and combined. Its
representative algorithms include GBR [34] and Extreme Gradient Boosting (XGBoost) [38].
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Stacked generalization (SG) is a layered ensemble algorithm [90]. Take two layers as
an example. The first layer is called the base model, and its input is the original training set,
which is trained using a k-fold crossover. The second layer is called the meta-model, and
the output of the first layer is used as the training set for the retraining to obtain a complete
stacking model [91]. In contrast to bagging and boosting, the base model in the SG method
should be accurate and different. They can be bagging- and boosting-type algorithms, or
KNN, SVR, and so on, but they have to have both less similarity and better estimation
ability. The meta-model uses the estimation results of the base model as the input data for
the training. The meta-model can be a single model or an ensemble model [39,92]. The
construction process of the SG algorithm is shown in Figure 5. The optimal algorithm
among the various algorithms was selected as the base model through model comparison,
and different meta-models were chosen to construct the SG model.
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Each algorithm has a different performance when using different parameters, and
tuning the parameter is required to obtain the best estimation capability for each model. In
the process of model tuning, root mean squared error (RMSE) was used as the evaluation
metric of the model, and each set of parameters was evaluated using a grid search and
repeated 10-fold CV. Finally, the set of parameters with the smallest RMSE was selected
as the best combination of parameters for the model [93]. Table 4 lists the best parameter
combinations for each machine learning algorithm. After tuning, we used 80% of the data
in the entire dataset to train the model and used the other 20% of the data as the validation
set to verify the estimation performance of the selected parameters. (In the experiment,
we used scikit-learn to implement the required MLAs and the related processes based on
Python 3.7.1 http://scikit-learn.org, (accessed on 31 May 2020)).

Table 4. Statistics of selected algorithms.

Methods Name Optimal Parameters References

Bagging

Bagging Regressor (BAG) max_samples = 1.0
[94]n_estimators = 100

Random Forest (RF)
n_estimators = 425

[88,95]min_samples_split = 10
min_samples_leaf = 10

http://scikit-learn.org
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Table 4. Cont.

Methods Name Optimal Parameters References

Boosting

Ada Boost (ADA)
learning_rate = 0.03

[96]n_estimators = 225

Cat boost (CBR)
Iterations = 575

[97]learning_rate = 0.02

Gradient Boosting (GBR) n_estimators = 650
[34]learning_rate = 0.1

Light GBM (LGBM) n_estimators = 815
[98]learning_rate = 0.12

Extreme Gradient Boosting
(XGBoost)

n_estimators = 620
[99,100]max_depth = 5

learning_rate = 0.05

Stacking Stacked Generalization(SG) Depends on the base
models [33,101]

Linear

Linear Regression (LR) Default [102]
Ridge Default [103]

ElasticNet (ENe) Default [104]
Lasso (LASSO) Default [105]

Neural Networks Multi-layer perceptron (MLP)
solver = ‘adam’

[14,104]activation = ‘relu’
hiden_layer_sizes = (100,100)

Tree-based Decision Tree Regressor (DTR) Default [16,22,37]

K-Neighbors Regression (KNN) Default [106]

3.3. Evaluation Approaches

This study used three validation schemes to verify the model and experimental results:
model-based cross-validation, validation based on independent samples, and comparative
analysis with existing datasets.

1. 10-fold cross-validation: After repeating the 10-fold cross-validation 5 times to ensure
that all samples were tested, the RMSE, R2, and MAE of each model were calculated,
and their mean was calculated. The average value was used as an evaluation index of
the algorithm’s accuracy [107].

2. Independent validation:

(a) When data were obtained in each reference area, 20% of each set of reference
data was regarded as independent sample data (in Figure 6). When the model
was trained, this part of the data does not participate in the training of the
model. We used the trained model to predict this part of the data, compared
the prediction results with the observed values of the sample, and used RMSE,
R2, and MAE as evaluation indicators to achieve the evaluation of the model’s
predictive ability [108].

(b) A reference region with a geographical location that differs from that in Sec-
tion 2.2 is selected as the independent validation area, and this part of the data
is used as the input data of the trained model for the prediction. The predicted
results are compared with the observed value to verify the generalization
ability of the model. This part of the validation data has better independence
compared to the training and verification data in (a) have, because it is se-
lected as an independent region and does not participate in the training and
parameter optimization of the model.

3. Product inter-comparison: We used the model for data production, and compared and
verified the produced data with the Global Forest Change 2000–2019 (GFC) datasets
and GLS_TCC datasets.
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In this paper, the correlation coefficient (R2 Equation (1)), mean absolute error (MAE,
Equation (2)), and root mean square error (RMSE, Equation (3)) were selected as the
evaluation indicators of the model’s performance [42,87,109].

R2 = 1− ∑n
i (yi − ŷi)

2

∑n
i (yi − y)2 . (1)

MAE =
1
n ∑n

i = 1|yi − ŷ|. (2)

RMSE =

√
1
n ∑n

i = 1(yi − ŷ)2 (3)

In the equations yi, ŷi, and yi are the original values, the prediction results, and the
average value of the observations, respectively, and n is the number of observations.

4. Results Analysis
4.1. Comparing the Performance of Different ML Models

The performance and predictive ability of each model in Table 4 were statistically
analyzed. The figures and tables in this section show the performance of each model.
As summarized in the previous section, the DTR model is one of the most commonly
used models and therefore we use the DTR model as a standard model to evaluate the
performance of other models.

First, we evaluated all models using a 10-fold CV method repeated five times. The
results are presented in Table 5. The linear model was the worst type of all models, and
ENe was the worst one of the linear models (R2 = 0.759, MAE = 0.130, RMSE = 0.194); In
the bagging ensemble, the RF model was the best performing model; in boosting ensemble,
the LGBM model was the best performing model. The validation results of the RF were
slightly better than those of the LGBM. The results of the MLP, DTR, and KNN were not
very different.
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Table 5. 10-fold cross-validation results for all of the models.

Methods Name R2 MAE RMSE

Bagging BAG 0.992 0.020 0.035
RF 0.993 0.020 0.033

Boosting

ADA 0.938 0.074 0.098
CBR 0.991 0.025 0.038
GBR 0.989 0.026 0.042

LGBM 0.992 0.022 0.035
XGBoost 0.989 0.026 0.041

Linear

LR 0.832 0.108 0.162
Ridge 0.832 0.108 0.162
ENe 0.759 0.130 0.194

LASSO 0.768 0.130 0.191

NN MLP 0.988 0.028 0.043

Tree-based DTR 0.985 0.026 0.048

KNN KNN 0.989 0.024 0.041

We then used the validation dataset in Section 3.3 (2a) to evaluate the predictive ability
of each model. The scatter plots of the predicted and observed values of each model are
shown in Figure 7, where the red line represents the regression line of the predicted and
observed values. Table 6 provides the statistics of the results in Figure 7. The scatter plot in
Figure 7 shows that the scatter plots of ensemble models converged better, especially RF
and LGBM. The worst performance was that of the linear model. Their scatter plots are
more discrete and exhibit obvious overestimation of low-value areas.
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Table 6. Model estimation result statistics for independent datasets.

Methods Name R2 MAE RMSE Time(s)

Bagging BAG 0.989 0.020 0.039 2640
RF 0.991 0.019 0.035 6000

Boosting

ADA 0.952 0.068 0.093 440
CBR 0.988 0.022 0.041 214
GBR 0.989 0.021 0.040 2200

LGBM 0.991 0.019 0.035 125
XGBoost 0.989 0.021 0.038 342

Linear

LR 0.782 0.105 0.175 90
Ridge 0.782 0.105 0.175 90
ENe 0.649 0.139 0.224 100

LASSO 0.674 0.136 0.217 110

NN MLP 0.989 0.023 0.039 190

Tree-based DTR 0.980 0.026 0.053 146

KNN KNN 0.986 0.022 0.044 270

Table 6 shows the estimation results of each model on independent datasets. In the
bagging ensemble, the RF model was slightly better than BAG. In the boosting ensemble,
the LGBM model performed the best, and its evaluation index was the same as that of
the RF model (R2 = 0.991, MAE = 0.019, RMSE = 0.035). Overall, the integrated models,
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except for the ADA model, showed better performance than the DTR. Comparing all
algorithms, the R2 of the linear regression algorithm was less than 0.8, the MAE was
greater than 0.1, and the RMSE was greater than 0.17, the RMSE of the ENe model was
more than 0.2, which was the worst performance among the linear models. It can be
considered that linear models do not show the nonlinear relationship between FFC and
features, so linear models are not suitable for use in this study. The MLP model was better
than the linear models, and the evaluation index differed slightly from the DTR model.
The KNN slightly outperformed the DTR model. Thus, the RF model and LGBM model
in the ensemble algorithm performed better than other models in this study. The linear
model was the worst-performing model, so it will not be mentioned in the discussion of
the following experiments.

Considering that when building SG models, base models should have low correlation;
that is, the types of base models should be different, and base models should have good
performance. Based on the results of Table 6, the RF, DTR, LGBM, KNN, and MLP models
were selected as base models. The choice of meta-model also affects the performance of the
SG model. This study selected different meta-models to construct the SG algorithm model:
SG(LGBM), SG(RF), SG(KNN), SG(DTR), and SG(MLP). (SG(RF) denotes the method using
the RF algorithm as the meta-model).

Figure 8 shows the validation results of SG models in an independent dataset. The
scatter plot of the SG(DTR) model is more discrete. For the SG model, although the same
base models were selected, owing to the differences in meta-models, the performance of
each SG model was different. According to the statistics in Table 7, the SG(LGBM) model
performed the best (R2 = 0.991, MAE = 0.018, RMSE = 0.034). The RMSE of SG(MLP) was
0.001 higher than that of SG(LGBM). Thus, the two had the same performance. The worst
performer was SG(DTR) (R2 = 0.983, MAE = 0.025, RMSE = 0.048), which also indicates that
the meta-model plays an important role in the performance of the entire model. According
to the statistics in Tables 6 and 7, SG(LGBM) is the best performer among all models.
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Table 7. SG models estimation result.

Name R2 MAE RMSE Time(s)

SG(DTR) 0.983 0.025 0.048 14,363
SG(KNN) 0.990 0.020 0.038 14,907

SG(LGBM) 0.991 0.018 0.034 9307
SG(MLP) 0.991 0.018 0.035 14,357
SG(RF) 0.991 0.019 0.036 19,998

4.2. Model Validation Based on Independent Validation Area

We used the validation data described in Section 3.3 (2b) to further verify the base
model and the SG model. The validation data were taken from an independent area
that does not participate in any process of the above models, so the data had better
independence. The distribution of forests in these independent validation areas is quite
different and was used to verify the performance of different models under different forest
coverage conditions.

The scatter plots in Figure 9 are the estimated results of each model in the independent
validation area. Table 8 presents the statistics of the estimation accuracy of the model
in the three validation areas. In area 1, the models with the highest R2 were LGBM and
SG(LGBM) (R2 = 0.911). The MLP model had the best MAE (0.038) and RMSE (0.055). In
the stacking algorithm, SG(MLP) had the best MAE (0.047) and RMSE (0.060). It can be
considered that SG(MLP) was the best stacking model in this area. Although the R2 of MLP
was lower than LGBM, it had better MAE and RMSE, so MLP was the best base model in
this area, but also the best model compared to all models. The data distribution in area 2
was opposite to that in area 1, and the data were mainly distributed in high value. RF was
the best base model, SG(MLP) was the best-stacked model. In area 3, the SG(LGBM) model
had the best R2, MAE, and RMSE (0.984, 0.034, 0.046). In the base model, the RF model has
the best R2, MAE, and RMSE (0.983, 0.036, 0.048). The findings from the above analysis
indicate that the SG(LGBM) model is an ensemble model with better performance, and the
RF model is a base model with better overall performance.

Table 8. Statistics of the estimation results of each model in the independent validation areas.

Area 1 Area 2 Area 3

R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE

SG(DTR) 0.841 0.057 0.076 0.956 0.056 0.072 0.967 0.047 0.066
SG(KNN) 0.895 0.049 0.064 0.969 0.048 0.062 0.98 0.038 0.051

SG(LGBM) 0.911 0.048 0.061 0.971 0.043 0.056 0.984 0.034 0.046
SG(MLP) 0.907 0.047 0.06 0.973 0.043 0.056 0.983 0.035 0.048
SG(RF) 0.910 0.048 0.062 0.97 0.043 0.056 0.982 0.036 0.048

DTR 0.85 0.057 0.076 0.924 0.066 0.085 0.965 0.048 0.067
KNN 0.859 0.042 0.064 0.972 0.05 0.066 0.975 0.043 0.059

LGBM 0.911 0.046 0.059 0.972 0.047 0.061 0.982 0.038 0.048
MLP 0.903 0.038 0.055 0.973 0.043 0.056 0.983 0.037 0.049
RF 0.889 0.049 0.065 0.975 0.04 0.052 0.983 0.036 0.048
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We divided the data of all validation areas into five layers according to the interval of
0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, and 0.8–1. Based on the findings above, firstly, the RF model
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is the best base model and the SG(LGBM) is the best-integrated model. Considering that
the SG(MLP) model and the SG(LGBM) model are less different. The DTR model, as one
of the most used models, can be used as a standard model, so the DTR, RF, SG(LGBM),
and SG(MLP) models were chosen for comparative analysis. Table 9 shows the estimation
results for the four models. The scatterplot in Figure 10 shows the performance of the RF
model for estimating the stratified data. Figure 10a–e shows the estimation results for the
stratified data for different intervals and Figure 10f shows the performance of the model
for the whole data. the R2 for the stratified data is very limited due to the scattering pattern
along the short distances. Figure 11a,c,e are histograms of the evaluation indicators of
the three models at different levels. When the coverage was less than 0.2, the highest R2

was the SG(MLP) model (R2 = 0.634), and the DTR model performed the worst; when the
coverage is 0.2–0.4, SG(LGBM) performed best (R2 = 0.411, MAE = 0.061, RMSE = 0.076);
when the coverage was 0.6–1, SG(MLP) was the best model. The overall result elicited
the same conclusion: The estimation result of the integrated algorithm in the independent
validation area is significantly improved compared with the base model, especially for the
non-ensemble model.

Table 9. Performance statistics of models for stratified data.

FFC Strata 0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1 0–1

n_Points 51,218 2603 2362 5094 30,728 92,005

R2

DTR 0.462 0.247 0.138 0.218 0.035 0.965
RF 0.616 0.377 0.329 0.457 0.161 0.987

SG(LGBM) 0.623 0.411 0.351 0.504 0.175 0.988
SG(MLP) 0.634 0.388 0.362 0.539 0.199 0.989

MAE

DTR 0.017 0.086 0.091 0.101 0.067 0.042
RF 0.013 0.064 0.065 0.082 0.04 0.029

SG(LGBM) 0.013 0.061 0.064 0.076 0.041 0.028
SG(MLP) 0.012 0.063 0.063 0.077 0.041 0.028

RMSE

DTR 0.039 0.11 0.127 0.157 0.094 0.077
RF 0.028 0.079 0.086 0.106 0.055 0.049

SG(LGBM) 0.028 0.076 0.084 0.093 0.054 0.047
SG(MLP) 0.028 0.078 0.083 0.092 0.052 0.046
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values of the layered verification and overall verification.

Figure 11 b,d,f show the differences between the R2, MAE, and RMSE values of the
layered verification and overall verification: R2 had the largest variation range when
the coverage was greater than 0.8, and the variation range of MAE and RMSE when the
coverage was 0.2–0.8 is significantly higher than other coverage intervals. The DTR model
had the largest change in all stratified intervals, and the MAE and RMSE of the SG(LGBM)
model had the smallest changes when the coverage was 0.2–0.4 and 0.6–0.8. According to
the histogram in Figure 11, all models performed poorly when the coverage was between
0.2 and 0.8, in particular, the MAE and RMSE metrics were greatest for all models at
coverage levels of 0.6–0.8, which would suggest that the models had the worst performance
at this coverage condition. This is because when the coverage was 0.6–0.8, the surface
heterogeneity was greater than other coverages. Whether in sample acquisition or model
prediction, the similarity between different samples in the obviously heterogeneous mixed
region was greater, which caused errors in the training or prediction of the model and
affected the final estimation ability of the model.

Based on the comprehensive performance of all models, SG(LGBM) and SG(MLP)
model performance were slightly higher than the RF, and much higher than that of the
DTR model, indicating that the stacking method is better than some base models such as
the DTR model, but some base model (RF) has comparable results to stacking method.
As the model constructed by the SG method is a superposition of multiple base models,
it requires longer computing time and computing resources. Tables 6 and 7 list the time
required for each model.

4.3. Comparison with Existing Products

The performance of the SG algorithm was improved compared to the base model,
but the SG algorithm requires a longer calculation time and consumes more calculation
resources during its operation. Therefore, based on the consideration of the calculation
efficiency and estimation accuracy, in this section, the RF model was selected as the estima-
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tion model to estimate the FFC, and the estimated FFC was compared and verified with
other datasets. Figure 12 shows the distribution of forests in the TNR of different datasets,
including the FromGLC2017 dataset (Figure 12a), GLS_TCC (2015) dataset (Figure 12b),
GFC dataset (Figure 12c), and the FFC2017 dataset estimated by this model (Figure 12d).
From an intuitive point of view, the four figures all show the main distribution regularities
of the TNR forests. The forests are mainly distributed in the northeastern region, the central
region has a slightly lower distribution, and the northwestern region has the sparsest
distribution. However, there are differences in the spatial distribution of forests in these
figures. The area covered by forests in Figure 11b,d is more extensive than in Figure 11a,c,
especially the forests with a low cover density, and the forest cover in Figure 12c is more
consistent with the spatial distribution in Figure 12a.
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Forest Change (GFC) 2000–2018, and (d) FFC from June to September 2017.

We selected six areas as the validation dataset to compare and analyze the FFC, GFC,
and GLS_TCC. Figure 13 shows the comparison results.
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Figure 13. Comparison of datasets. (a) The base map is a Landsat-8 false-color image, and the bright green represents the
forest distribution map based on GF-2 images. (b) GFC datasets 2000–2018, (c) GLS_TCC datasets in 2015, (d) The FFC
dataset, (e) Pixel frequency distribution map, (f) Scatter plots of GFC and FFC, (g) Scatter plot of FFC and GLS_TCC, and (h)
Scatter plot of GLS_TCC and GFC. The legend of the dataset is marked at the bottom of the figure, and the data range of the
three datasets was uniformly distributed from 0 to 100.
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Figure 13 shows the results of the comparison among the datasets, Figure 13a shows
the result of aggregating the GF-2 forest distribution maps with a 1-m resolution into 30-m
resolution, which we call GF2AG30. The aggregated data are completely independent
throughout the experiment and can be used as true data. In the visual comparison, com-
pared with GLS_TCC and GFC, FFC has a better spatial distribution consistency with
GF2AG30. In areas (1) and (2), FFC contains more forest distribution details than GFC
and GLS_TCC, especially at the junctions of the forest and non-forest areas where the
changing trend of the forest density can be seen. Compared with GF2AG30 (Figure 13a) for
each area, in the non-forest areas, GLS_TCC is overestimated. For example, the white in
Figure 13(1a) indicates the value of 0, which means that there is no forest cover, but the
corresponding Figure 13(1c) indicates that there is forest cover. In the forest-covered areas,
GFC is underestimated. The distributions of the forests in areas (5) and (6) are discrete, but
the results of GFC show that there is basically no forest cover in these two areas. Figure 13e
shows a stacked histogram of the frequency distributions of the four datasets for each area,
which illustrates the differences in the frequencies and distribution ranges of the datasets.
In general, the ranges of the four datasets have obvious differences. First, the value range
of GF2AG30, FFC, and GFC is 0–100%, but GLS_TCC basically does not have a pixel value
of greater than 80%. In forest-covered areas 1 and 2, the data distributions of GF2AG30,
FFC, and GFC are relatively consistent; while in GLS_TCC, the forest coverage in these two
areas is concentrated between 50% and 60%. In areas 3 and 4, GLS_TCC is concentrated at
about 50%; while GFC is concentrated at about 40% in area 3 and at about 60% in area 4.
Compared with GF2AG30, GLS_TCC and GFC are underestimated. The forest distribution
of FFC is more consistent with that of GF2AG30 than in GLS_TCC and GFC. The land
cover in areas 5 and 6 is dominated by non-forest vegetation, and the forests are scattered.
GF2AG30 and FFC show the characteristics of the forest distribution better, while GLS_TCC
exhibits overestimation in the low-value areas and underestimation in the high-value areas.
In Figure 13f–h are the scatter density plots of the correlations between FFC and GF2AG30,
GLS_TCC and GF2AG30, and GFC and GF2AG30, respectively. Overall, FFC has the
highest correlation with GF2AG30, followed by GLS_TCC and GF2AG30, and GF2AG30
has the worst correlation with GFC.

5. Discussion
5.1. Algorithmic Factors

In this study, we used a combination of Landsat and GF-2 RS images to evaluate
the applicability, stability, and generalization ability of several MLAs at estimating the
FFC. In this study, a variety of SG models were constructed, and the results show that the
SG models with different meta-models have different performances, among which the
SG(LGBM) and SG(MLP) models achieved the best-estimated results and the estimation
accuracy was improved compared to the base model (DTR). Since the SG model is based
on the fusion of multiple MLAs, its computational efficiency is related to the selection of
the base model and meta-model. The more base-model or more complex meta-model is
selected, the more computational resources are required and the longer the computation
time. Some studies have demonstrated the advantages of integrated models over base
models [33,110], but Wen and Hughes [39] concluded that although integrated models have
high predictive power, some of their metrics are inferior to the RF models. The SG model
developed in this paper is significantly better than a base model such as the DTR, but it
has a limited accuracy improvement compared to the integrated type of RF. To obtain the
obvious advantages of the SG method, further research and discussion of the applicability
of the SG model and the selection of base models are needed.

5.2. Time Factors

Relevant studies have demonstrated that using continuous fractions instead of classi-
fication classes can enhance the assessment of the forest status and its changes [20,21,28].
In addition, the quality of the samples is related to the performance of the model and the
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accuracy of the parameter estimation, while the temporal consistency between the reference
image and the image to be estimated affects the quality of the sample. In this study, Landsat
and GF-2 remote sensing images with small differences in imaging time were selected
to ensure the consistency of the extracted information. However, the differences in the
revisit periods of the two satellite sensors and the influence of the weather factors, and
the amount of time-consistent image data were small. The study area contains a variety
of forest types, and different types of forests behave differently on remote sensing images
with seasonal changes, especially deciduous broadleaf forests that change significantly
with the season [20]. The RS data selected in this study were mostly obtained in the forest
growing season, which may limit the time range of the model’s usage due to the lack of
samples from other seasons [18,20]. Therefore, in future research, it will be necessary to
consider the combined use of multi-source data to increase the representativeness of the
sample and to explore the effects of different forest types and tree species on the estimation
of forest coverage under seasonal changes.

5.3. Sample Representativeness Factor

One of the key challenges in estimating forest attributes such as FFC using medium
spatial resolution satellite imagery is the difficulty in overcoming background soil re-
flectance, especially in low-density sparse forests [57]. The entire study area contains a
large amount of non-forest vegetation and low-density woodlands, which are prone to
higher errors if the information is not sufficiently representative [18,20]. We increased the
proportion of low-value samples in the entire dataset to improve the representativeness
of the samples. However, the inclusion of too much low-value data tends to cause an un-
balanced distribution of samples and leads to more errors in the model estimation. In this
study, a 5 × 5 sampling window was used to reduce the effect of the spatial misregistration
between the Landsat and GF-2 data. It is easy to generate samples with errors in sparse
woodlands or forest boundaries, and such errors have a negative impact on the training
and application of the model. Therefore, to ensure the representativeness of the data, our
future work will pay more attention to the extraction and analysis of low-density forest
information and improve the accuracy of sample extraction.

5.4. Differences between Data Products

The comparison between the FFC, GFC, and GLS_TCC datasets shows that there are
large differences between them, and the differences are due to several reasons:

Source data differences: The GLS_TCC dataset is an annual composite. For exam-
ple, the 2005 GLS_TCC is a composite of Landsat-5 and Landsat-7 images from 2003 to
2008 [21,111]. Similarly, the GFC is an annual synthesized data product. In contrast, the
validation data in this paper are time-determined images, which can be considered to be
instantaneous data from the image at the moment of imaging. Inconsistency in the timing
of the data may be a reason for the discrepancy between the different products.

Differences in sample data: Both the GLS_TCC and GFC refer to the MOD44B_VCF
data product when selecting the samples and constructing the models, and inevitably, they
inherit the uncertainty that exists in the product itself [21]. The use of the 250 m resolution
MOD44BVCF limits the ability to acquire canopy cover values below 30 m [21,112], while
the reference data of the FFC is a higher resolution remote sensing image with a stronger
ability to acquire fine canopy cover data.

Algorithm differences: The GLS_TCC uses the standard regression tree (RT) algorithm,
and the GFC uses the decision regression tree (RT) method. In this study, several algorithms
were compared and it was concluded that the DT algorithm is computationally efficient,
but its estimation accuracy and ability to prevent overfitting are not as good as those of the
ensemble method. In this study, ensemble learning methods such as the RF were chosen.
Although the computational efficiency is not as good as that of the DT, which has a better
model generalization ability and estimation performance [83,113].
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6. Conclusions

This study aimed to estimate the 30-m resolution FFC in the TNR of China. Landsat
RS images were used to obtain band information and the vegetation index, GF-2 RS images
were used as reference image data to obtain forest coverage information in the study area
combined with auxiliary topographic factors, and machine learning methods were used to
construct a method for estimating forest coverage in China’s TNR model. The results of
the cross-validation and independent validation indicate that simple linear models cannot
accurately represent the relationships between features and the FFC. The performance
of ensemble models was better than that of other types of models, and RF (R2 = 0.991,
MAE = 0.019, RMSE = 0.035) and LGBM (R2 = 0.991, MAE = 0.019, RMSE = 0.035) were the
best of bagging ensemble models and boosting ensemble models, respectively. In this study,
five models (RF, LGBM, MLP, DTR, KNN) with lower correlations but better performances
were selected as the base models, and multiple SG algorithms were constructed using
different meta-models. The results show that the selection of the meta-model is one factor
that affects the performance of the SG algorithms. Moreover, the best SG model SG(LGBM)
(R2 = 0.991, MAE = 0.018, RMSE = 0.034) had a better performance than the DTR (R2 = 0.980,
MAE = 0.026, RMSE = 0.053). The results of stratification statistics indicate that when the
coverage is below 0.2 and the coverages are above 0.8. The model has better performance,
but the estimation ability of the model decreases between the coverages of 0.2 and 0.8.
There are two possible reasons for this: (1) the number of samples in the range of 0.2 to 0.8
is small during the model training and model validation, so the model’s estimation ability
in this range is weak; (2) Because the forest is not completely closed within the 0.2–0.8
cover range, the surface coverage is complex and the heterogeneity is high, which also
indicates that further research is needed for areas with high surface heterogeneity. Through
the comparative analysis of the dataset in the independent validation area, the GLS_TCC
data were underestimated in the validation area, and the GFC data were underestimated
in the high-value area, and through comparison with the forest aggregation map of the
validation area, the forest distribution of the FFC had better consistency with the reference
data and showed more detailed forest distribution trends. In addition, we also need to
implement a more accurate validation of the estimated FFC and compare it with previous
studies and data, as well as a more detailed study of the FFC for regions with a high
surface heterogeneity.
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