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Abstract: Mapping surface all-wave net radiation (Rn) is critically needed for various applications.
Several existing Rn products from numerical models and satellite observations have coarse spatial
resolutions and their accuracies may not meet the requirements of land applications. In this study,
we develop the Global LAnd Surface Satellite (GLASS) daytime Rn product at a 5 km spatial
resolution. Its algorithm for converting shortwave radiation to all-wave net radiation using the
Multivariate Adaptive Regression Splines (MARS) model is determined after comparison with
three other algorithms. The validation of the GLASS Rn product based on high-quality in situ
measurements in the United States shows a coefficient of determination value of 0.879, an average
root mean square error value of 31.61 Wm´2, and an average bias of ´17.59 Wm´2. We also compare
our product/algorithm with another satellite product (CERES-SYN) and two reanalysis products
(MERRA and JRA55), and find that the accuracy of the much higher spatial resolution GLASS Rn

product is satisfactory. The GLASS Rn product from 2000 to the present is operational and freely
available to the public.
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1. Introduction

Surface all-wave net radiation (Rn), characterizing the available radiative energy at the Earth’s
surface that is usually called surface radiation budget, is the difference between total upward and total
downward radiation. Mathematically, Rn consists of four components:

Rn “ Rns ` Rnl ,
Rns “ Rsi ´ Rso “ p1´ αqRsi

Rnl “ Rli ´ Rlo

(1)

where Rns is the net shortwave radiation, Rnl is the net longwave radiation, Rsi is the incident
shortwave radiation, Rso is the reflected shortwave radiation calculated by Rso = α*Rsi where α is
shortwave broadband albedo, Rli is the downward longwave radiation, and Rlo is the outgoing
longwave radiation.

Rn drives the processes of evapotranspiration and air and soil heat fluxes, as well as other smaller
energy-consuming processes such as photosynthesis [1,2]. Rn is a critical parameter to estimate
evapotranspiration [3–5]. The net surface radiation controls the energy and water exchanges between
the biosphere and the atmosphere, and has major influences on the Earth’s weather and climate [6,7].
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Thus, reliable spatial and temporal Rn information is required for many applications. However, in
spite of its importance, directly measured Rn is available only from a very small number of standard
radiometric observatories because of the expensive instrumentation and constant maintenance needed
to guarantee that reliable measurements can be provided [8]; these in situ measurements are thus
unable to characterize the spatial variation.

Alternative methods for obtaining Rn are meteorological reanalysis and satellite remote sensing [9].
Table 1 gives detailed information about the commonly used Rn products. Reanalysis products
are usually derived by merging available observations with an atmospheric model to obtain the
best estimate of the states of the atmosphere and land surface [10], while existing remote sensing
products are generated mostly based on a radiative transfer model with inputted atmospheric and
surface parameters. From Table 1, we can see that the spatial resolutions of these products are too
coarse for many land applications although they are temporally continuous and globally complete.
Another issue is that the accuracies of these products vary considerably and may not meet the
application requirements, such as the global change research [9–11]. Therefore, a new long-time
high-resolution global Rn product with both high accuracy and fine temporal-spatial resolutions is
urgently needed.

Table 1. Characteristics of the commonly used Rn datasets.

Product Spatial Resolution Temporal
Resolution

Period Reference

Reanalysis products

NCEP/CFSR T382 (38 km) 6 hourly 1979–2010 [10,12]

NASA/MERRA 0.5˝ ˆ
2
3

˝ hourly 1979–present [13]

ERA40 T159 (125 km) 6 hourly 1957–2002 [14]
ERA-Interim T255 (80 km) 3 hourly 1980–present [15]
JRA55 T319 (~55 km) 3 hourly 1958–present [16]
NCEP/NCAR RII T62 (200 km) 6 hourly 1979–present [17]

remotely sensed products

CERES-SYN 1˝ 3 hourly 2000–present [18]
GEWEX-SRB 1˝ 3 hourly 1983–2007 [19,20]
ISCCP-FD 280 km 3 hourly 1983–2011 [21]

Many geostationary and polar-orbiting satellite data are at the kilometer spatial resolution and
can be potentially used for estimating the individual components of Equation (1), such as incident
shortwave radiation [22] and albedo [23,24]. If all components in Equation (1) are known, the
calculation of Rn is straightforward [25]. The difficulty in generating the global Rn product using
Equation (1) is the estimation of the thermal components under the cloudy conditions. This is the
reason why many studies focus primarily only on shortwave [26–28] or clear-sky conditions [29]. If we
know the exact atmospheric and surface properties, radiative transfer models enable us to calculate
surface net radiation. However, it is extremely difficult to generate a complete set of atmosphere and
surface products for model calculation at a high resolution. The most practical solution is to estimate
incident shortwave radiation directly from satellite observations and then convert it into all-wave net
radiation using either linear [30–34] or nonlinear [35,36] models. Jiang et al. [37] recently developed
two artificial neuron networks models using comprehensive global in situ observations and found that
the nonlinear models can produce better accuracy than the linear models.
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The primary objective of this study is to generate the accurate long-term high-resolution
Global LAnd Surface Satellite (GLASS) Rn product. The GLASS product suite is for the long-term
environmental change studies [38,39] and continuously expanding. For generating such a global
product, algorithm development is the key and we must therefore balance the accuracy and
computational efficiency of the algorithm. To achieve this objective, we explore two new nonlinear
models: Multivariate Adaptive Regression Splines (MARS) and Support Vector Regression (SVR).
After comparing them with two models developed earlier [17,20], we select the MARS model to
produce the GLASS Rn product at a 5 km spatial resolution. The resulting high-resolution GLASS
Rn product is further validated, compared with one satellite product and two reanalysis products.
The details are presented in the following sections.

2. Data and Models

2.1. Data

The data used in this study are comprised of in situ radiation measurements, remote sensing
products, and meteorological reanalysis data. The remote sensing products and reanalysis data were
used to map Rn on a global scale. Based on the characteristics of these data, multiple trial experiments
and pre-processing with strict quality control were conducted, and data were aggregated to a daytime
or diurnal scale. The variables considered in this study are shown in Table 2. The readers are referred
to Jiang et al. [37] for more information about these data.

Table 2. Variables explanation and source.

Abbr. Name Unit Source

Response variable Rn Daytime surface net radiation Wm´2 In situ

Independent
variables

Rsi Daily surface incoming solar radiation Wm´2 In situ

Rsi* Daily surface incoming solar radiation Wm´2 Remotely Sensed
data (GLASS
products)

ABD Daily surface albedo
NDVI Daily Normalized Difference Vegetation Index

Ta Daytime air mean temperature ˝C
Reanalysis
product
(MERRA)

Tmin Daytime air minimum temperature ˝C
Tmax Daytime air maximum temperature ˝C
PS Daytime surface air pressure Pa
W Daytime wind speed ms´1

RH Daytime mean relative humidity %

Calculated
ea Daytime water vapor pressure KPa
dr Inverse relative Earth´Sun distance
CI Clearness Index
BI Brightness Index

Rsi* stands for the GLASS Rsi product and was used for global GLASS daytime Rn production in this study.

As described above, more than 8000 validation samples were selected from the observations
made in 2008, and most of them were from 25 sites. Table 3 gives detailed information
about these sites, which were mainly from the ARM (http://www.arm.gov/) and SURFRAD
(http://www.srrb.noaa.gov; [40]) observation networks. This ensures that the data are of the best
quality currently available. The distribution of the 25 sites is shown in Figure 1. All ARM and
SURFRAD data are carefully checked, and quality-control information is supplied with the data
(ftp://aftp.cmdl.noaa.gov/data/radiation/surfrad/) and http://www.archive.arm.gov/; [41]).
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Table 3. Information about the 25 validation sites.

Site Lat, Lon Land Cover Height (m) Project

Larned, Kansas: E01 38.20˝N, 99.32˝W Cropland 632 ARM
LeRoy, Kansas: E03 38.20˝N, 95.60˝W Cropland 338 ARM
Plevna, Kansas: E04 37.95˝N, 98.33˝W Rangeland 513 ARM

Halstead, Kansas: E05 38.11˝N, 97.51˝W Wheat 440 ARM
Towanda, Kansas: E06 37.84˝N, 97.02˝W Alfalfa 409 ARM
Elk Falls, Kansas: E07 37.38˝N, 96.18˝W Pasture 283 ARM

Coldwater, Kansas: E08 37.33˝N, 99.31˝W Rangeland 664 ARM
Tyro, Kansas: E10 37.07˝N, 95.79˝W Alfalfa 248 ARM

Byron, Oklahoma: E11 36.88˝N, 98.29˝W Alfalfa 360 ARM
Pawhuska, Oklahoma: E12 36.84˝N, 96.43˝W Prairie 331 ARM

Lamont, Oklahoma: E13 36.61˝N, 97.49˝W Pasture 318 ARM
Ringwood, Oklahoma: E15 36.43˝N, 98.28˝W Pasture 418 ARM

El Reno, Oklahoma: E19 35.56˝N, 98.02˝W Pasture 421 ARM
Meeker, Oklahoma: E20 35.56˝N, 96.99˝W Pasture 309 ARM

Okmulgee, Oklahoma: E21 35.62˝N, 96.07˝W Forest 240 ARM
Cordell, Oklahoma: E22 35.35˝N, 98.98˝W Rangeland 465 ARM

Cyril, Oklahoma: E24 34.88˝N, 98.21˝W Wheat 409 ARM
Earlsboro, Oklahoma: E27 35.27˝N, 96.74˝W Pasture 300 ARM

Bondville: SF_BND 40.05˝N, 88.37˝W Cropland 230 SURFRAD
Boulder: SF_TBL 40.13˝N, 105.24˝W Grassland 1689 SURFRAD

Desert Rock: SF_DRA 36.63˝N, 116.02˝W Desert 1007 SURFRAD
Fort Peck: SF_FPK 48.31˝N, 105.10˝W Grassland 634 SURFRAD

Goodwin Creek: SF_GCM 34.25˝N, 89.87˝W Grassland 98 SURFRAD
Penn. State: SF_PSU 40.72˝N, 77.93˝W Cropland 376 SURFRAD
Sioux Falls: SF_SXF 43.73˝N, 96.62˝W Shrubland 473 SURFRAD
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(LM) [21], and a general regression neural network (GRNN) model [20]. To the best of our knowledge, 
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appendix. After validation and inter-comparison, the MARS model was determined to generate the 
GLASS daytime Rn product. Second, the MARS model was applied to the all-wave daytime Rn 

product by converting the GLASS Rsi product using other satellite products (e.g., NDVI and albedo) 
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Figure 1. Distribution of the 25 validation sites in the United States.

2.2. Methods

The overall flowchart of this study is shown in Figure 2. First, the GLASS Rn algorithm was
determined by comparing four Rn estimation models (Section 3), including the multivariate adaptive
regression splines (MARS), the support vector regression (SVR) model, a linear regression model
(LM) [21], and a general regression neural network (GRNN) model [20]. To the best of our knowledge,
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the first two models are the first to be applied for estimating surface net radiation. The details of
the MARS model are introduced in this section, while the other three models are outlined in the
Appendix. After validation and inter-comparison, the MARS model was determined to generate
the GLASS daytime Rn product. Second, the MARS model was applied to the all-wave daytime Rn

product by converting the GLASS Rsi product using other satellite products (e.g., NDVI and albedo)
and meteorological information from MERRA (Section 4.1). Finally, the accuracy of the new GLASS
Rn product was evaluated by validating it against the site observations and comparing it with other
Rn products: one remotely sensed product (CERES-SYN), and two reanalysis products (MERRA and
JRA55) (Section 4.2).Remote Sens. 2016, 8, 222 
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MARS is a nonlinear and nonparametric regression model proposed by Friedman [42]. MARS is a
generalization of the stepwise linear regression procedure for fitting an adaptive nonlinear regression
to data. It is more flexible in modeling relationships that are nearly additive or involve interactions
with variables. MARS uses expansions in piecewise linear basis functions of the form:

px´ tq` “

#

x´ t x ą t
0 x ď t

and

px´ tq´ “

#

t´ x x ă t
0 x ě t

(2)

with x = t being a knot (linear splines). The smoothing function f is a linear expansion of the
basic functions,

f pxq “
ÿ

j“1

θjhjpxjq (3)

where hjpxjq are the piecewise linear basis functions and θj are the coefficients that are estimated by
minimizing the residual sum-of-squares using standard linear regression.

In this study, MARS was first applied for daytime Rn estimation. It was implemented on the
R platform with the package “mda,” in which the input variables can be selected automatically.
After extensive experiments, the maximum interaction degree between variables in MARS was set to 2,
and the backward stepwise process was carried out to train the MARS model.

3. GLASS Daytime Rn Algorithm

The four models (LM, MARS, GRNN, and SVR) were trained one by one with half of the total
number of in situ measurements and their corresponding reanalysis and satellite datasets (Figure 2).
Four predictions were then produced by the other part of the independent validation dataset and
compared. The results are shown in Figure 3 and summarized in Table 4. Three measurements
of the fitting statistics were compared: R-square (R2), root mean square error (RMSE), and bias.
The computational times are also given in Table 4 for better comparison. In the present study, all the
models were implemented under the Microsoft Windows 7 system on a Intel Core 3.20 GHz PC with
8 GB memory.

Based on these comparison results (mainly R2 and RMSE values since the bias values are relatively
small), it is clear that the predictive abilities of the GRNN and SVR models were similar and also
better than those of the other two models. The LM model performed the worst and the MARS model’s
performance was intermediate. However, the computational times for model training and fitting
differed considerably between the four models (see Table 4). In short, the computational efficiencies of
the GRNN and SVR models were very low when large datasets were applied, and these two models
are unsuitable for generating the long-term GLASS daytime Rn product. Extensive experiments were
then performed to determine if the sample sizes could be reduced without decreasing the data fitting
accuracy using these two machine learning models. Taking the SVR model as an example, it was found
that the fitting accuracy linearly decreased when the training samples were reduced in size (Table 5),
resulting in a data fitting accuracy very close to the result of the MARS model (Table 4) when the time
for training and fitting was acceptable. The situation for the GRNN model was similar. Given the
trade-off between computational time and prediction accuracy, the MARS model was accepted as the
first option for GLASS daytime Rn production.
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Table 4. The statistic results of the four models.

R2 RMSE (Wm´2) Bias (Wm´2) Training Time Fitting Time

LM 0.90 39.57 ´0.18 <60 s <60 s
MARS 0.91 36.98 ´0.26 <60 s <60 s
GRNN 0.93 33.49 ´0.62 >72 h >72 h
SVR 0.94 32.28 ´1.11 >72 h >48 h

Table 5. Fitting accuracy in SVR with different sample sizes.

Sample Size R2 RMSE (Wm´2) Bias (Wm´2)

218,516 0.94 32.28 ´1.11
22,298 0.93 34.22 ´2.23
11,395 0.92 35.62 ´2.73
7755 0.92 36.01 ´2.06

To achieve a better understanding of the applicability of the MARS model, all samples were
grouped into four categories in accordance with Jiang et al. [43], and the prediction accuracy of the
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MARS model for these four categories was compared. Jiang et al. [43] found that NDVI = 0.2 can be
used as the threshold to identify vegetated surfaces, and three more classes can be roughly divided
based on albedo according to the different relations between Rsi and Rn when NDVI < 0.2 (see Table 6).
The comparison fitting results are shown in Table 7. In general, the four categories correspond to the
major land cover types found on Earth: S1–wetland; S2–desert or barren land with sparse vegetation;
S3–snow/ice; and S4–the remaining vegetated surfaces. Furthermore, the seasonal information can
also be represented by these categories. The results shown here were similar to our previous study [43]
whereby the simulation accuracies are much better for S1 and S4, because the Rsi is the dominant factor
for Rn for these two categories. Keep in mind that the statistical values are considerably different for
snow/ice surfaces (S3) due to the high albedo and clustering of all points. The results proved the
robustness of the MARS model in Rn estimation.

Table 6. Four classifications based on combinations of Normalized Difference Vegetation Index (NDVI)
and albedo (see Table 2, with their corresponding numbers of samples.

Class Classification Criteria No. of Samples

S1 NDVI < 0.2 and albedo ď 0.25 8967
S2 NDVI < 0.2 and 0.25 < albedo < 0.7 8317
S3 NDVI < 0.2 and albedo ě 0.7 10,064
S4 NDVI ě 0.2 167,739

Table 7. Validation statistics for the MARS model for these four categories.

S1 S2 S3 S4

R2 0.87 0.54 0.13 0.91
RMSE (Wm´2) 42.89 47.46 18.21 36.81
bias (Wm´2) ´0.13 0.51 ´0.53 ´0.28

4. GLASS Rn Daytime Product Generation

4.1. GLASS Daytime Rn Product

After the MARS model was chosen as the GLASS daytime Rn algorithm, the global GLASS
daytime Rn product was generated and evaluated. For the global data production, the GLASS Rsi
product was applied as the input instead of the in situ Rsi measurements. The GLASS Rsi product
was generated from multiple polar-orbiting and geostationary satellite datasets with a look-up table
algorithm. The validation results demonstrated that this product was superior to other products [44].
The instantaneous 3-hourly GLASS Rsi was first aggregated into a daytime temporal scale, then the
climatic factors from the MERRA reanalysis product were resampled into 5 km spatial resolution
to match the GLASS Rsi. The GLASS NDVI and GLASS ABD products were also used as inputs.
Their spatial resolution is 5 km but temporal resolution is eight-day; therefore, each day during the
eight-day period was set to be the same, assuming little variation at the surface over the period.

More than 8000 samples from 25 sites in 2008 were extracted for independent validation of the
GLASS daytime Rn product. All other samples from 251 sites were used for the MARS model training.
The MARS model was then used to produce the GLASS daytime Rn product. Finally, the GLASS
daytime Rn product from 2000 to the present with spatial resolution 0.05 deg (~5 km) in global coverage
was generated in this study.

Figure 4b shows the GLASS daytime Rn in day 274 of 2008 (30 September 2008), a randomly
selected date. The MERRA daytime Rn for the same day is also shown in Figure 4a for comparison.
From the two plots, we concluded that the spatial distribution of Rn is visually similar between the two
products, but large discrepancies occur over many regions, such as the northern part of South America
and over the Chinese mainland. In addition, the GLASS daytime Rn product gives more details
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compared with the MERRA dataset because of its higher spatial resolution. To identify which product
is more accurate, more validation results of the two products compared with the site observations
will be provided in Section 4.2. Note the missing values over part of the Arctic region and the entire
Antarctic region due to the missing inputs of the GLASS Rsi product.
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4.2. Validation and Comparison

For further evaluation, one remotely sensed product (CERES-SYN) and two model reanalysis
products (MERRA and JRA55) were used for inter-comparison with the GLASS Rn product;
spatio-temporal information about the datasets is given in Table 1. The CERES-SYN product is
obtained by merging CERES observations aboard the NASA Terra and Aqua satellites with radiances
observed from five geostationary satellites [18,45]. The MERRA product is provided by NASA’s Global
Modeling and Assimilation Office (GAMO); it is designed to integrate with NASA’s Earth Observing
System (EOS) satellite data for use in climate analysis [46]. JRA55 is offered by the Japan Meteorological
Agency (JMA) by using the TL319 version of JMA’s operational data assimilation system in which
several newly available and improved past observations were used. JRA55 is recognized as an upgrade
to JRA 25 and is considerably better than JRA25 [16,47]. After transferring to the local time of each
pixel, the three products were integrated into a daytime temporal scale according to the sunrise and
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sunset time, and then, along with the GLASS daytime Rn product, they were validated against the
respective in situ measurements; the results are shown in Figure 5.
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JRA55 (d) against the in situ measurements.

Based on the results, the GLASS and CERES-SYN daytime Rn products were superior to the other
two reanalysis products, MERRA and JRA55. By comparing the average RMSE and bias values, it
becomes clear that the GLASS daytime Rn product is better than the CERES-SYN product. The average
RMSE of GLASS daytime Rn was 31.61 Wm´2 and the average bias was ´17.59 Wm´2, compared to
35.58 Wm´2 and ´31.00 Wm´2 for CERES-SYN’s average RMSE and average bias. Comparison also
showed that the GLASS product had increased low values and decreased high values (Figure 5a),
whereas the CERES-SYN product was larger overall than the measurements (Figure 5b). In addition,
the validation accuracy of each site between GLASS and the measurements are shown in Table 8.
The R2 values of most sites were larger than 0.85, the RMSE values were mostly around 30 Wm´2, and
the bias values were chiefly smaller than 25 Wm´2, thereby demonstrating that the accuracy of the
GLASS daytime Rn product is satisfactory with most applications.
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Table 8. Validation results between GLASS daytime Rn and the observations of 25 validation sites.

Site R2 RMSE (Wm´2) Bias (Wm´2) Site R2 RMSE (Wm´2) Bias (Wm´2)

E01 0.92 30.00 10.91 E21 0.88 36.24 6.11
E03 0.89 34.20 18.57 E22 0.89 28.62 16.01
E04 0.87 34.54 12.53 E24 0.91 28.52 6.41
E05 0.90 32.78 16.90 E27 0.90 30.51 21.88
E06 0.89 32.19 21.70 SF_BND 0.86 38.26 22.42
E07 0.91 32.16 28.34 SF_DRA 0.67 37.81 10.18
E11 0.92 29.10 17.12 SF_FPK 0.83 37.13 27.34
E12 0.89 32.39 2.74 SF_GCM 0.86 38.12 15.71
E13 0.92 27.42 15.61 SF_PSU 0.88 35.03 34.29
E15 0.92 28.07 18.15 SF_SXF 0.88 37.85 18.18
E19 0.91 27.36 16.48 SF_TBL 0.75 42.35 20.89
E20 0.91 28.65 22.32

Two site examples are also given in Figure 6. Here, the CERES-SYN product was selected because
of its best performance among the three products. The two plots show that the GLASS daytime
Rn matched the site observations very well and that the CERES-SYN product was larger than the
measurements and the GLASS product although the variations were reasonable. Overall, the GLASS
daytime Rn product has the potential to be one of the best Rn products available for future applications.Remote Sens. 2016, 8, 222 
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5. Summary

A new Rn product that offers high spatiotemporal resolution, high accuracy, and global coverage
over long time periods is urgently needed for a variety of applications. To achieve this goal, we
developed the GLASS daytime Rn product. To determine the GLASS daytime Rn production algorithm,
four models (LM, MARS, GRNN, and SVR) that convert incident shortwave radiation to all-wave net
radiation were trained for Rn estimation and validated with high-quality measurements made in the
United States. The validation results indicate that the GRNN and SVR models had the best prediction
accuracy over the other two empirical models, although it was unacceptably time consuming, and that
the performance of the MARS model is promising. A further experiment also demonstrated that the
MARS model is robust under various conditions. Therefore, as a result of the trade-off between the
practical requirements of applications and data fitting accuracy requirements, the MARS model was
selected as the final GLASS daytime Rn product algorithm. Finally, a global coverage GLASS daytime
Rn product with a 5 km spatial resolution and daytime temporal resolution in 2008 was generated
using the MARS model.

The new daytime Rn product was validated against measurements from 25 independent sites, and
was also compared with one remotely sensed Rn product, CERES-SYN, and two reanalysis Rn products,
MERRA and JRA55. The validation results illustrate that the new GLASS daytime Rn product delivers
more detail at the global scale due to its relatively high spatial resolution and does so without spatial
gaps, except for the Arctic and Antarctic regions, and that it has a continuous time series because
the all-sky conditions were considered in the MARS algorithm and the GLASS incident shortwave
radiation product. The validation results of the GLASS daytime Rn product at the 25 sites were very
satisfactory with most applications, with an overall coefficient of determination of 0.88, an average
RMSE of 31.61 Wm´2, and an average bias of 17.59 Wm´2. The results of comparing the GLASS
with three other products also proved that this new daytime Rn product performed much better than
the two reanalysis products and similar to CERES-SYN but with a much higher spatial resolution.
Overall, the results in the present study show that the GLASS daytime Rn product generated by the
MARS model is superior to other presently available products.

Although it is common practice in the literature, validating satellite products and reanalysis
datasets at a spatial resolution scale from a few to hundreds of kilometers using “point” ground
measurements directly provides questionable results. It is valid only if the atmospheric and surface
conditions are homogeneous. An upscaling process using intermediate-resolution products is necessary
for many heterogeneous landscapes and atmospheric conditions [48]. A further project conducted by
us for addressing the scaling issue is underway, and the results will be presented in the near future.
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Appendix

Three empirical models for Rn estimation

A. Linear Regression (LM) Model

Jiang et al. [43] developed a new linear regression model based on a previous study [49] by
incorporating NDVI and RH. The validation results demonstrated that this new model performed
better than other popular linear regression models under various conditions. Thus, this model was
one choice for GLASS daytime Rn production and is denoted as “LM” in this study:

Rn “ arRsip1´ αq `DT6
a,K ´ σT4

a,Ks ` bCI
`cNDVI ` dRH% ` e

(A1)

where D = 5.31ˆ 10´13Wm´2K´6 is an empirical constant suggested by Swinbank [50], a, b, c, d,
and e are regression coefficients, Ta,K “ Ta,˝C ` 273.15 is the absolute mean air temperature, and σ is
Stefan-Boltzmann constant (5.67ˆ 10´8WK´4m´2). The definition of the other variables can be found
in Table 2.

B. General Regression Neural Network (GRNN) Model

The GRNN is a generalization of radial function networks and probabilistic neural networks
developed by Specht [51]. Jiang et al. [37] applied the GRNN model for daytime Rn estimation, and the
evaluation results proved that this model worked very well and was stable under various conditions.
The architecture of the GRNN model used in this study is shown in Figure A1. The GRNN has a
multi-input-output (one output in this study) architecture, and includes four layers: the input layer,
the pattern layer, the summation layer, and the output layer. The input layer provides all of the
variables to the neurons in the pattern layer; each neuron represents a training pattern, and its output
is a measure of the distance of the input from the stored patterns. The summation layer has two
types of summation neurons: one to compute the sum of the weighted outputs of the pattern layer,
and the other to calculate the unweighted outputs of the pattern neurons. Finally, the output layer
performs a normalization step to yield the predicted value of the output variable. In accordance
with Jiang et al. [37] and Xiao et al. [52], the Gaussian kernel function was used for GRNN training in
the present study, and the smoothing parameter in the kernel function was the only free parameter
that needed to be determined. Thus, GRNN training was essentially optimization of the smoothing
parameter and the architecture and weights of a GRNN were determined when the input was given.
More details for the optimal smoothing parameter selection can be found in Xiao et al. [52]. Because all
of the parameters in a GRNN can be determined automatically, the entire training dataset was used
for GRNN training, as was the case for the LM and MARS models, and all of the inputs were linearly
scaled before training, as was done by Jiang et al. [37]. The GRNN modeling was implemented on the
C platform.



Remote Sens. 2016, 8, 222 14 of 17

Remote Sens. 2016, 8, 222 

13 

A. Linear Regression (LM) Model 

Jiang et al. [43] developed a new linear regression model based on a previous study [49] by 
incorporating NDVI and RH. The validation results demonstrated that this new model performed 
better than other popular linear regression models under various conditions. Thus, this model was 
one choice for GLASS daytime Rn production and is denoted as “LM” in this study: 

edRHcNDVI
bCITDTRaRn KaKasi

+++
+−+−=

%

4
,

6
, ])1([

         

σα  
(A1) 

where D = 62131031.5 −−−× KWm is an empirical constant suggested by Swinbank [50], a, b, c, d, and e 
are regression coefficients, 15.273,, += °CaKa TT is the absolute mean air temperature, and σ is 

Stefan-Boltzmann constant ( 2481067.5 −−−× mWK ). The definition of the other variables can be found 
in Table 2.  

B. General Regression Neural Network (GRNN) Model 

The GRNN is a generalization of radial function networks and probabilistic neural networks 
developed by Specht [51]. Jiang et al. [37] applied the GRNN model for daytime Rn estimation, and 
the evaluation results proved that this model worked very well and was stable under various 
conditions. The architecture of the GRNN model used in this study is shown in Figure A1. The GRNN 
has a multi-input-output (one output in this study) architecture, and includes four layers: the input 
layer, the pattern layer, the summation layer, and the output layer. The input layer provides all of 
the variables to the neurons in the pattern layer; each neuron represents a training pattern, and its 
output is a measure of the distance of the input from the stored patterns. The summation layer has 
two types of summation neurons: one to compute the sum of the weighted outputs of the pattern 
layer, and the other to calculate the unweighted outputs of the pattern neurons. Finally, the output 
layer performs a normalization step to yield the predicted value of the output variable. In accordance 
with Jiang et al. [37] and Xiao et al. [52], the Gaussian kernel function was used for GRNN training in 
the present study, and the smoothing parameter in the kernel function was the only free parameter 
that needed to be determined. Thus, GRNN training was essentially optimization of the smoothing 
parameter and the architecture and weights of a GRNN were determined when the input was given. 
More details for the optimal smoothing parameter selection can be found in Xiao et al. [52]. Because 
all of the parameters in a GRNN can be determined automatically, the entire training dataset was 
used for GRNN training, as was the case for the LM and MARS models, and all of the inputs were 
linearly scaled before training, as was done by Jiang et al. [37]. The GRNN modeling was 
implemented on the C platform. 

 

Input layer Pattern layer Summation layer Output layer

…

…

…

…

…

… y

x1

x2

xj

xn

Figure A1. General regression neural networks (GRNN) with multi-input-one-output architecture.
The inputs xi (i = 1, . . . , n) are shown in Table 2, and the output y represents Rn.

C. Support Vector Regression (SVR) Model

The SVR is a method proposed by [53] to solve regression problems using support vector machines
(SVM). Intuitively, SVR works by performing a nonlinear mapping of the data from the input space to
a higher dimensional feature space where linear regression can then be performed. In the case of a
linear SVR model, if the training data are of the form tpx1, y1q, px2, y2q, ¨ ¨ ¨ , pxn, ynqu (xi P Rd, yi P R,
and n is the sample number), then the solution function takes the form:

f pxq “
n

ÿ

i“1

pαi ´ α˚
i qxxi, xy ` b (A2)

where x¨, ¨y represents the dot product of two points and the variables αi, α˚
i , and b are calculated by

the SVR algorithm. It is noted that only some of the patterns will have an impact on the final solution
when the term pαi ´ α˚

i q is nonzero, and these nonzero patterns are referred to as the support vectors.
However, the input data must first be transformed into a higher dimensional feature space using a
nonlinear mapping function when the SVR model is nonlinear. In accordance with Mercer’s theorem,
a kernel function was used without ever explicitly computing the mapping, then the original solution
function was changed according to the following equation:

f pxq “
n

ÿ

i“1

pαi ´ α˚
i qkxxi, xy ` b (A3)

This solution is obtained by solving the convex optimization problem:

max

$

’

’

&

’

’

%

´
1
2

n
ř

i,j“1
pαi ´ α˚

i qpαj ´ α˚
j qkxxi, xjy

´ε
n
ř

i“1
pαi ` α˚

i q `
n
ř

i“1
yipαi ´ α˚

i q

(A4)

Subject to
n
ř

i“1
pαi ´ α˚

i q “ 0 and αi, α˚
i P r0, Cs where xi and yi are the input-output pairs of the

training data, αi and α˚
i are the variables to be discovered, and ε and C are constants. The constant

ε represents the SVR algorithm’s tolerance for errors. The area within ˘ε of the learned function is
referred to as the SVR regression tube, and any errors that fall within this tube are ignored. The constant
C is referred to as the penalty factor, which controls the trade-off between the complexity of the
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function and the frequency with which errors are allowed to fall outside of the SVR regression
tube. The constants ε, C, and the parameter to be set in the kernel function are usually called
“hyper-parameters”; previous studies proved that the simulation results of SVR were sensitive to the
selection of the hyper-parameters.

In the present study, the “eps-regression” was selected as the SVR regression type, and the radial
basis kernel function was used. Thus, three parameters (ε, C, and γ) must be determined for SVR
training. To obtain the optimal SVR model, the training dataset was further randomly divided
into 80% and 20% proportions for model building and testing, respectively, and the step-by-step
search method was applied to model building to obtain the optimal hyper-parameters. Thus,
the range of hyper-parameters was predefined as (ε P r0.01, 1s, C P r1, 100s, and γ P r0.01, 1s).
Several combinations of the hyper-parameters were then tried for SVR building and testing, and
finally the optimal combination was determined based on which combination provided the best testing
accuracy. SVR modeling was also implemented on the R platform with the“e1071” package [54], and
all inputs were Z-score normalized before training.
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