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N E T W O R K  S C I E N C E

Belief propagation for networks with loops
Alec Kirkley1*†, George T. Cantwell1,2†, M. E. J. Newman1,2,3

Belief propagation is a widely used message passing method for the solution of probabilistic models on networks 
such as epidemic models, spin models, and Bayesian graphical models, but it suffers from the serious shortcoming 
that it works poorly in the common case of networks that contain short loops. Here, we provide a solution to this 
long-standing problem, deriving a belief propagation method that allows for fast calculation of probability distri-
butions in systems with short loops, potentially with high density, as well as giving expressions for the entropy 
and partition function, which are notoriously difficult quantities to compute. Using the Ising model as an exam-
ple, we show that our approach gives excellent results on both real and synthetic networks, improving substan-
tially on standard message passing methods. We also discuss potential applications of our method to a variety of 
other problems.

INTRODUCTION
Many complex phenomena can be modeled using networks, which 
provide powerful abstract representations of systems in terms of 
their components and interactions (1). Phenomena of interest are 
often modeled using probabilistic formulations that capture the 
probabilities of states of network nodes. Examples include the 
spread of epidemics through networks of social contacts (2), cas-
cading failures in power grids (3), and the equilibrium behavior of 
spin models such as the Ising model (4). Networks are also used 
to represent pairwise dependencies between variables in statistical 
models that do not otherwise have a network component as a con-
venient tool for bookkeeping and visualization of model structure 
(5). Such “graphical models,” which allow us to represent the condi-
tional dependencies between variables in a nonparametric manner, 
form the foundation for many modern machine learning tech-
niques (6).

The solution of probabilistic models like this presents a chal-
lenge. Analytic methods such as those used for regular lattices do 
not generalize to the more complex topologies of networks, and 
mean field and other standard approximations often fail to take 
crucial details of network structure into account. Numerical meth-
ods can be successful but are computationally demanding on larger 
networks and sometimes give results of poor accuracy. Message 
passing or “belief propagation” methods offer an alternative and 
promising approach that straddles the line between analytic and 
numerical techniques (7, 8). Message passing works by deriving a 
set of self-consistent equations satisfied by the variables or proba-
bilities of interest and then solving those equations by numerical 
iteration. The name “message passing” comes from the fact that the 
equations can be thought of as representing messages passed be-
tween neighboring nodes in the network.

Standard formulations of message passing, however, have a cru-
cial weakness: They rely on the assumption that the states of the 
neighbors are uncorrelated with one another, which is only true if 
the network contains no loops. Unfortunately, almost all real-world 
networks do contain loops, and usually many of them (9), so 

standard message passing can give quite poor results in practical 
situations. Here, we propose a solution to this problem in the form 
of a new class of message passing methods for probabilistic models 
on “loopy” networks. These methods open up a host of possibilities 
for novel network calculations, many of which we discuss here.

The limitations of traditional message passing have been widely 
noted in the past, and a number of previous attempts have been 
made to remedy them. The only truly loopless networks are trees, 
but standard message passing methods have been shown to give 
good results on networks that satisfy the weaker condition of being 
“locally tree-like,” meaning that local regions of the network take 
the form of trees, although the network as a whole is not a tree. In 
effect, this means that the network can contain long loops but not 
short ones (1). However, realistic networks often fail to satisfy even 
this weaker condition and contain many short loops. Message pass-
ing has been extended to certain classes of random graphs with 
short loops, such as Husimi graphs (10–12) and other tree-like 
agglomerations of small loopy subgraphs (13, 14), but these tech-
niques are not generally applicable to real-world networks. Alterna-
tively, one can incorporate the effect of loops by using a perturbative 
expansion around the loopless case (15, 16), although this approach 
becomes progressively less accurate as the number of loops increas-
es and is therefore best suited to networks with a low loop density, 
which rules out a large fraction of real networks, whose loop density 
is often high (9,  17). Perhaps the best known extension of belief 
propagation, and the one most similar to our own approach, is the 
method known as generalized belief propagation (18), which is 
based on the idea of passing messages not just between pairs of 
nodes but between larger groups. This method is, however, quite 
complicated to implement and requires explicit construction of 
the groups, which involves nontrivial preprocessing steps (19). The 
method we propose requires no such steps.

In (20), we previously described message passing schemes for 
percolation models and spectral calculations on loopy networks. 
Here, we extend this approach to the solution of general probabilis-
tic models. We derive a factorization of the probability of states for 
such models that allows us to write self-consistent message passing 
equations for the marginal probabilities on sets of nodes in a neigh-
borhood around a given reference node. From these equations, we 
can then calculate a range of quantities of interest such as single-site 
marginals, partition functions, and entropies. To ground our dis-
cussion, we use the Ising model as an example of our approach, 
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showing how our improved message passing methods can produce 
better estimates for this model than regular message passing. We 
show that our methods are asymptotically exact on networks whose 
loop structure satisfies certain general conditions and give good ap-
proximations for networks that deviate from these conditions. We 
give example results for the Ising model on both real and artificial 
networks and also discuss applications of our method to a range of 
other problems, emphasizing its wide applicability.

MATERIALS AND METHODS
Our first step is to develop the general theory of message passing for 
probabilistic models on loopy networks. With an eye on the Ising 
model, our discussion will be in the language of spin models, 
although the methods that we describe can be applied to any probabi-
listic model with pairwise dependencies between variables, making 
it suitable for a broad range of calculations in probabilistic modeling.

Model description
Consider a general undirected, unweighted network G composed of 
a set V of nodes or vertices and a set E of pairwise edges. The net-
work can be represented mathematically by its adjacency matrix A 
with elements Aij = 1 when nodes i and j are connected by an edge 
and 0 otherwise. On each node of the network, there is a variable or 
spin si, which is restricted to some discrete set of values S. In a com-
partmental model of disease propagation, for instance, si ∈ S = 
{0 (susceptible),1 (infected),2 (removed)} could be the infection 
state of a node (21, 22). In a spatial model of segregation, si ∈ S = 
{0 (unoccupied),1 (occupied)} could represent land occupation (23).

Spins si and sj interact if and only if there is an edge between 
nodes i and j, a formulation sufficiently general to describe a large 
number of models in fields as diverse as statistical physics, machine 
learning, economics, psychology, epidemiology, and sociology (24–30). 
Interactions are represented by an interaction energy gij(si, sj∣ij), 
which controls the preference for any particular pair of states si and 
sj to occur together. The quantity ij represents any external pa-
rameters, such as temperature in a classical spin system or infection 
rate in an epidemiological model, which control the nature of the 
interaction. We also allow for the inclusion of an external field fi(si∣i) 
with parameters i, which controls the intrinsic propensity for si to 
take an particular state. This could be used, for instance, to encode 
individual risk of catching a disease in an epidemic model.

Given these definitions, we write the probability P(s∣, ) that 
the complete set of spins takes value s in the Boltzmann form

	​ P(s | ,  ) = ​ ​e​​ −H(s|,)​ ─ Z(, )  ​​	 (1)

where the Hamiltonian

	​ H(s | ,  ) = − ​  ∑ 
(i,j)∈E

​​​ ​g​ ij​​(​s​ i​​, ​s​ j​​ | ​​ ij​​ ) − ​ ∑ 
i∈V

​​​ ​f​ i​​(​s​ i​​ | ​​ i​​)​	 (2)

is the log probability of the state to within an arbitrary additive con-
stant, and the partition function

	​ Z(,  ) = ​∑ 
s
​ ​ ​ ​e​​ −H(s|,)​​	 (3)

is the appropriate normalizing constant, ensuring that P(s∣, ) 
sums to unity. Here, we will primarily be concerned with comput-
ing the single-site (or one-point) marginal probabilities

	​​ q​ i​​(​s​ i​​ ) = ​ ∑ 
s∖​s​ i​​

​​​P(s | , )​	 (4)

where s ∖ si denotes all spins with the exception of si. For conve-
nience, we have dropped  and  from the notation on the left of the 
equation, but it should be clear contextually that qi depends on both 
of these variables.

The one-point marginals reveal useful information about physi-
cal systems, such as the magnetization of classical spin models or 
the position of a phase transition. They are important for statistical 
inference problems, where they give the posterior probability of a 
variable taking a given state after averaging over contributions from 
all other variables (e.g., the total probability of an individual being 
infected with a disease at a given time). Unfortunately, direct com-
putation of one-point marginals is difficult because the number of 
terms in the sum in Eq. 4 grows exponentially with the number of 
spins. The message passing method gives us a way to get around this 
difficulty and compute qi accurately and rapidly.

Message passing can also be used to calculate other quantities. 
For instance, we will show how to compute the average energy (also 
called the internal energy), which is given by

	​ U(,  ) = ​∑ 
s
​ ​ ​H(s | ,  ) P(s | , )​	 (5)

The average energy is primarily of interest in thermodynamic cal-
culations, although it may also be of interest for statistical inference, 
where it corresponds to the average log likelihood.

We can also compute the two-point correlation function be-
tween spins

	​ P(​s​ i​​  =  x, ​s​ j​​  =  y ) = P(​s​ j​​  =  y | ​s​ i​​  =  x) ​q​ i​​(​s​ i​​  =  x)​	 (6)

This function can be computed by first calculating the one-point 
marginal qi(si = x), then fixing si = x and repeating the calculation 
for sj. The same approach can also be used to compute n-point cor-
relation functions.

Message passing equations
Our method operates by dividing a network into neighborhoods 
(20). A neighborhood ​​N​i​ 

(r)​​ around node i is defined as the node i 
itself and all of its edges and neighboring nodes, plus all nodes and 
edges along paths of length r or less between the neighbors of i. See 
Fig. 1 for examples. The key to our approach is to focus initially on 
networks in which there are no paths longer than r between the 
neighbors of i, meaning that all paths are inside ​​N​i​ 

(r)​​. This means 
that all correlations between spins within ​​N​i​ 

(r)​​ are accounted for by 
edges that are also within ​​N​i​ 

(r)​​, which allows us to write exact mes-
sage passing equations for these networks. Equivalently, we can de-
fine a primitive cycle of length r starting at node i to be a cycle (i.e., 
a self-avoiding loop) such that at least one edge in the cycle is not on 
any shorter cycle beginning and ending at i. Our methods are then 
exact on any network that contains no primitive cycles of length 
greater than r + 2.

This approach gives us a series of methods where the rth mem-
ber of the series is exact on networks that contain primitive cycles of 
length r + 2 and less only. The calculations become progressively 
more complex as r gets larger: They are very tractable for smaller 
values but become impractical when r is large. In many real-world 
networks, the longest primitive loop will be relatively long, 
requiring an infeasible computation to reach an exact solution. 
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However, long loops introduce smaller correlations between vari-
ables than short ones, and moreover, the density of long loops is, in 
many cases, low: The network is “locally dense but globally sparse.” 
In this situation, we find that the message passing equations for low 
values of r, while not exact, give excellent results. They account cor-
rectly for the effect of the short loops in the network while making 
only a small approximation by omitting the long ones.

In practice, quite modest values of r can give good results. The 
smallest possible choice is r = 0, which corresponds to assuming 
that there are no loops in the network at all and that the network is 
a tree. This is the assumption made by traditional message passing 
methods, and it gives poor results on many real-world networks. 
The next approximation after this, however, with r = 1, which cor-
rectly accounts for the effect of loops of length three in the network 
(i.e., triangles), produces substantially better results, and the r = 2 
approximation (which includes loops of length three and four) is, in 
many cases, impressively accurate. In the following developments, 
we drop r from our notation for convenience—the same equations 
apply for all values of r.

Having defined the initial neighborhood Ni, we further define a 
neighborhood Nj ∖ i to be node j plus all edges in Nj that are not 
contained in Ni and the nodes at their ends. Our method involves 
writing the marginal probability distribution on the spin at node i in 
terms of a set of messages received from nodes j that are in Ni, in-
cluding nodes that are not immediate neighbors of i. (This contrasts 
with traditional message passing in which messages are received 
only from the immediate neighbors of i.) These messages are then, 
in turn, calculated from further messages j receives from nodes k ∈ 
Nj ∖ i and so forth.

When written in this manner, the messages i receives are inde-
pendent of one another in any network with no primitive cycles 
longer than r + 2. Messages received from any two nodes j1 and j2 
within Ni are necessarily independent, since they are calculated 
from the corresponding neighborhoods Nj1 ∖ i and Nj2 ∖ i, which are 
disconnected from one another: If they were connected by any path, 
then that path would create a primitive cycle starting at i but passing 
outside of Ni, of which by hypothesis there are none. By the same 

argument, we also know that Nj ∖ i and Ni only overlap at the single 
node j for any j ∈ Ni.

This much is in common with our previous approach in (20), 
but to apply these ideas to the solution of probabilistic models, we 
need to go further. Specifically, we now show how this neighbor-
hood decomposition allows us to factorize the Hamiltonian into a 
product of independent sums over the individual neighborhoods, 
with interactions that can be represented by messages passed be-
tween neighborhoods. Consider Ni as comprising a central set of 
nodes and edges surrounding i, then we can think of the set of 
neighborhoods Nj ∖ i for all j ∈ Ni as comprising the next “layer” in 
the network, the sets Nk ∖ j for all k ∈ Nj ∖ i as a third layer, and so 
forth until all nodes and edges in the network are accounted for. In 
a network with no primitive cycles longer than r + 2, this procedure 
counts all interactions exactly once, allowing us to rewrite our 
Hamiltonian as a sum of independent contributions from the vari-
ous layers, thus

	​​
H(s ) = ​H​ ​N​ i​​​​(​s​ ​N​ i​​​​ ) + ​ ∑ 

j∈​N​ i​​
​​​ ​H​ ​N​ j∖i​​​​(​s​ ​N​ j∖i​​​​ ) + ​ ∑ 

j∈​N​ i​​
​​​​  ∑ 
k∈​N​ j∖i​​

​​​ ​H​ ​N​ k∖j​​​​(​s​ ​N​ k∖j​​​​)
​   

+ ​ ∑ 
j∈​N​ i ​​

​​​​  ∑ 
k∈​N​ j∖i ​​

​​​​  ∑ 
l∈​N​ k∖j​​

​​​ ​H​ ​N​ l∖k​​​​(​s​ ​N​ l∖k​​​​ ) + … ,
 ​​	  (7)

where sNi and sNj ∖ i are the sets of spins for the nodes in the 
neighborhoods Ni and Nj ∖ i, and we have defined the local 
Hamiltonians

	​​ H​ ​N​ i​​​​(​s​ ​N​ i​​​​ ) = − ​  ∑ 
(j,k)∈​N​ i​​

​​​ ​g​ jk​​(​s​ j​​, ​s​ k​​ | ​​ jk​​ ) − ​f​ i​​(​s​ i​​ | ​​ i​​)​	 (8)

	​​ H​ ​N​ j∖i​​​​(​s​ ​N​ j∖i​​​​ ) = − ​  ∑ 
(k,l)∈​N​ j∖i​​

​​​ ​g​ kl​​(​s​ k​​, ​s​ l​​ | ​​ kl​​ ) − ​f​ j​​(​s​ j​​ | ​​ j​​)​	 (9)

The decomposition of Eq. 7 is illustrated pictorially in Fig. 1.
The essential feature of this decomposition is that it breaks sums 

over spins such as those in Eqs. 3 and 4 into a product of sums over 
the individual neighborhoods {Nj ∖ i}j ∈ Ni. Because these neighbor-
hoods are, as we have said, independent, this means that the parti-
tion function and related quantities factorize into products of sums 
over a few spins each, which can easily be performed numerically. 
For instance, the one-point marginal of Eq. 4 takes the form

	​​
​q​ i​​(​s​ i​​  =  x ) ∝ ​  ∑ 

​s​ ​N​ i​​​​:​s​ i​​=x
​​​ ​e​​ −​H​ ​N​ i​​​​(​s​ ​N​ i​​​​)​ ​ ∏ 

j∈​N​ i​​
​​​ ​ ∑ 
​s​ ​N​ j∖i​​∖j​​

​​​ ​e​​ −​H​ ​N​ j∖i​​​​(​s​ ​N​ j∖i​​​​)​
​   

 × ​  ∏ 
k∈​N​ j∖i​​

​​​ ​  ∑ 
​s​ ​N​ k∖j​​∖k​​

​​​ ​e​​ −​H​ ​N​ k∖j​​​​(​s​ ​N​ k∖j​​​​)​…,
  ​​	 (10)

which can be written recursively as

	​​ q​ i​​(​s​ i​​  =  x ) = ​ 1 ─ ​Z​ i​​
 ​ ​  ∑ 
​s​ ​N​ i​​​​:​s​ i​​=x

​​​ ​e​​ −​H​ ​N​ i​​​​(​s​ ​N​ i​​​​)​ ​ ∏ 
j∈​N​ i​​

​​​ ​q​ i←j​​(​s​ j​​)​	 (11)

with

	​​ ​q​ i←j​​(​s​ j​​  =  y ) = ​  1 ─ ​Z​ i←j​​
 ​ ​  ∑ 
​s​ ​N​ j∖i​​​​:​s​ j​​=y

​​​ ​e​​ −​H​ ​N​ j∖i​​​​(​s​ ​N​ j∖i​​​​)​ ​  ∏ 
k∈​N​ j∖i​​∖j

​​​ ​q​ j←k​​(​s​ k​​)​​	 (12)

where the normalization constants Zi and Zi ← j ensure that the marginals 
qi and messages qi ← j are normalized so that they sum to 1. (In prac-
tice, we simply normalize the messages by dividing by their sum.) 
The quantity qi ← j(sj) is equal to the marginal probability of node j 
having spin sj when all the edges in Ni are removed. Alternatively, 

Fig. 1. Hamiltonian expansion diagram, with r = 2. The focal node is in red, while 
the rest of its neighborhood N0 is in green. Nodes and edges in purple represent 
the neighborhood N1 ∖ 0 excluding node 1. We also label the corresponding spin 
and message variables used in Eqs. 11 and 12.
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one can think of it as a local external field on node j that influences 
the probability distribution of sj. To make this more explicit, one 
could rewrite Eq. 11 as

	​​ q​ i​​(​s​ i​​  =  x ) = ​ 1 ─ ​Z​ i​​
 ​ ​  ∑ 
​s​ ​N​ i​​​​:​s​ i​​=x

​​​ ​e​​ −​H​ ​N​ i​​​​(​s​ ​N​ i​​​​)+​∑ j∈​N​ i​​​ ​​log ​q​ i←j​​(​s​ j​​)​​	 (13)

where log qi ← j(sj) plays the role of the external field.
Equations 11 and 12 define our message passing algorithm and 

can be solved for the messages qi ← j by simple iteration, starting 
from any suitable set of starting values and applying the equations 
repeatedly until convergence is reached.

With only slight modification, we can use the same approach to 
calculate the internal energy as well. The contribution to the inter-
nal energy from the interactions of a single node i is ​​1 _ 2​ ​∑ j:​A​ ij​​=1​ ​​ g(​s​ i​​, ​s​ j​​ | ​
​ ij​​ ) + f(​s​ i​​ | ​​ i​​)​, where the factor of ​​1 _ 2​​ compensates for double counting 
of interactions. Summing over all nodes i and weighting by the ap-
propriate Boltzmann probabilities, the total internal energy is

	​​ ​U  = ​  ∑ 
i∈V

​​​ ​ 1 ─ ​Z​ i​​
 ​ ​∑ 
​s​ ​N​ i​​​​

​ ​​​[​​ ​ 1 ─ 2 ​ ​  ∑ 
j:​A​ ij​​=1

​​​g(​s​ i​​, ​s​ j​​ | ​ω​ ij​​ ) + f​(​​ ​s​ i​​ | ​θ​ i​​​)​​​]​​ ​e​​ −​H​ ​N​ i​​​​(​s​ ​N​ i​​​​)​ ​ ∏ 
j∈​N​ i​​

​​​ ​q​ i←j​​(​s​ j​​) ​​​(14)

All of the quantities appearing here are known a priori, except for 
the messages qi ← j(sj) and the normalizing constants Zi, which are 
calculated in the message passing process. Performing the message 
passing and then using the final converged values in Eq. 14 then 
gives us our internal energy.

Implementation
For less dense networks, those with node degrees up to about 20, the 
message passing equations of Eqs. 11 and 12 can be implemented 
directly and work well. The method is also easily parallelizable, as 
we can update all messages asynchronously based on their values from 
the previous iteration and compute the final marginals in parallel.

For networks with higher degrees, the calculations can become 
unwieldy, the huge reduction in complexity due to the factorization 
of the Hamiltonian notwithstanding. For a model with t distinct 
spin states at every node, the sum over states in the neighborhood of 
i has t∣Ni∣ terms, which can quickly become computationally expen-
sive to evaluate. Moreover, if just a single node has too large a 
neighborhood, then it can make the entire computation intractable, 
as that single neighborhood can consume more computational power 
than is available.

In such situations, therefore, we take a different approach. We 
note that Eq. 12 is effectively an expectation

	​​ q​ i←j​​(​s​ j​​  =  y ) = 〈 ​δ​ ​s​ j​​,y​​ ​〉​ ​N​ j∖i​​​​​	 (15)

where we use the shorthand

	​​ 〈A〉​ ​N​ j∖i​​​​  = ​  ∑ 
​s​ ​N​ j∖i​​​​

​​​A(​s​ ​N​ j∖i​​​​ ) ​ 
​e​​ −​H​ ​N​ j∖i​​​​(​s​ ​N​ j∖i​​​​)​ ​∏ k∈​N​ j∖i​​∖j​ ​​ ​q​​s​ k​​​ j←k​

  ──────────────  
​Z​​ i←j​

  ​​	 (16)

We approximate this average using Markov chain Monte Carlo 
importance sampling over spin states, and, after convergence of the 
messages, the final estimates of the marginals qi can also be obtained 
by Monte Carlo, this time on the spins in Ni. We describe the details 
in Results.

Calculating the partition function
The partition function Z is perhaps the most fundamental quantity 
in equilibrium statistical mechanics. From a knowledge of the par-
tition function, one can calculate virtually any other thermodynam-
ic variable of interest. Objects equivalent to Z also appear in other 
fields, such as Bayesian statistics, where the quantity known as the 
model evidence, the marginal likelihood of observed data given a 
hypothesized model, is mathematically analogous to the partition 
function and plays an important role in model fitting and selec-
tion (31–33).

Unfortunately, the partition function is difficult to calculate in 
practice. The calculation can be done analytically in some special 
cases (34, 35), but direct numerical calculations are difficult due to 
the need to sum over an exponentially large number of states, and 
Monte Carlo is challenging because of the difficulty of correctly 
normalizing the Boltzmann distribution.

Another concept central to statistical mechanics is the entropy

	​ S  =  − ​∑ 
s
​ ​ ​P(s ) ln P(s)​	 (17)

which has broad applications not just in physics but across the sci-
ences (36–38). Like the partition function, entropy is difficult to 
calculate numerically, and for exactly the same reasons, since the 
two are closely related. For the canonical distribution of Eq. 1, the 
entropy is given in terms of Z by S = ln Z + U. Although we know 
the internal energy U therefore (which is relatively straightforward 
to compute), the entropy is at least as difficult to calculate as the 
partition function. The fundamental difficulty of normalizing 
the Boltzmann distribution is equivalent to establishing the zero 
of the entropy, a well-known hard problem (unsolvable within 
classical thermodynamics, requiring the additional axiom of the 
Third Law).

As we now show, the entropy can be calculated using our mes-
sage passing formalism by appropriately factorizing the probability 
distribution over spin states. Since we have already developed a pre-
scription for computing U (see Eq. 14), this also allows us to calcu-
late the partition function. The details of the procedure are quite 
involved and do not follow straightforwardly from the previous dis-
cussion, so we defer the derivation to the Supplementary Materials, 
section S4. As shown there, the state probability P(s) in Eq. 1 can be 
rewritten in the factorized form

	​ P(s ) = ​ 
​∏ i∈G​ ​​ P(​s​ ​N​ i​​​​)  ────────────  

​∏ ((i,j))∈G​ ​​ P ​(​s​ ​∩​ ij​​​​)​​ 2/|​∩​ ij​​|​
 ​​	 (18)

where P(sNi) is the joint marginal distribution of the variables in the 
neighborhood of node i, P(s∩ij) is the joint marginal distribution in 
the intersection ∩ij = Ni ∩ Nj of the neighborhoods Ni and Nj, and 
((i, j)) denotes pairs of nodes that are contained in each other’s 
neighborhoods.

By a series of manipulations, this form can be further expressed 
as the pure product

	​​ ​P(s ) = ​[​​​  ∏ 
((i,j))∈G

​​​P ​(​s​ ​∩​ ij​​​​)​​ 1/​(​​​|​∩​ ij​​|​ 
2

 ​​ )​​​​]​​​[​​​  ∏ 
(i,j)∈G

​​​P ​(​s​ i​​, ​s​ j​​)​​ ​W​ ij​​​​]​​​[​​​ ∏ 
i∈G

​​​P ​(​s​ i​​)​​ ​C​ i​​​​] ​​​​​	(19)
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where

	​​ W​ ij​​  =  1 − ​  ∑ 
((l,m))∈G

​​​ ​  1 ─ 
​(​​​|​∩​ lm​​|​ 

2
 ​​ )​​

 ​ ​1​ {(i,j)∈​∩​ lm​​}​​​	 (20)

with 1{…} being the indicator function, and

	​​ ​C​ i​​  =  1 − ​(​​​ ∑ 
j∈​N​ i​​

​​​ ​  1 ─ |​∩​ ij​​ | − 1 ​​)​​ − ​(​​​  ∑ 
j∈​N​i​ 

(0)​
​​​ ​W​ ij​​​)​​​​	 (21)

Substituting Eq. 19 into Eq. 17, we get an expression for the en-
tropy, thus

	​​  

S  =  −  ​  1 ─ 
​(​​​|​∩​ ij​​|​ 

2
 ​​ )​​

 ​ ​  ∑ 
((i,j))∈G

​​​P(​s​ ​∩​ ij​​​​ ) ln P(​s​ ​∩​ ij​​​​)

​    
− ​  ∑ 

(i,j)∈G
​​​ ​W​ ij​​ P(​s​ i​​, ​s​ j​​ ) ln P(​s​ i​​, ​s​ j​​ ) − ​ ∑ 

i∈G
​​​ ​C​ i​​ P(​s​ i​​ ) ln P(​s​ i​​)

​​	 (22)

Note that, like the well-known Bethe approximation for the en-
tropy (39), this expression not only has contributions from the one- 
and two-point marginals P(si) and P(si, sj) of Eqs. 6 and 11 but also 
contains a term that depends on the joint marginal P(s∩ij) in the 
intersection ∩ij, which may be nontrivial if r > 0. As shown in the 
Supplementary Materials, section S4, we can calculate this joint 
marginal using the message passing equation

	​ P(​s​ ​∩​ ij​​​​ ) = ​  1 ─ ​Z​ ​∩​ ij​​​​
 ​ ​e​​ −H(​s​ ​∩​ ij​​​​)​ ​q​ i←j​​(​s​ j​​ ) ​  ∏ 

k∈​∩​ ij​​∖j
​​​ ​q​ j←k​​(​s​ k​​)​	 (23)

where H(s∩ij) denotes the terms of the Hamiltonian of Eq. 2 that fall 
within ∩ij and Z∩ij is the corresponding normalizing constant. For 
∣∩ij∣ sufficiently small, Z∩ij can be computed exactly. In other cases, 
we can calculate it using Monte Carlo methods similar to those that 
we used previously for the marginals P(si).

Ising model calculations
As an archetypal application of our methods, we consider the 
Ising model on various example networks. The ferromagnetic 
Ising model in zero external field is equivalent in our notation to 
the choices

	​​ g​ ij​​(​s​ i​​, ​s​ j​​ ) = −  ​A​ ij​​ ​s​ i​​ ​s​ j​​,   ​f​ i​​(​s​ i​​ ) = 0​	 (24)

where  = 1/T is the inverse temperature. Note that temperature in 
this notation is considered a part of the Hamiltonian. It is more 
conventional to write temperature separately, so that the Hamilto-
nian has dimensions of energy rather than being dimensionless as 
here, but absorbing the temperature into the Hamiltonian is nota-
tionally convenient in the present case. It effectively makes the tem-
perature a parameter ij in Eq. 2 (and all ij are equal).

As example calculations, we will compute the average magneti-
zation M, which is given by

	​​ M  = ​ |​​〈 ​ 1 ─ N ​ ​ ∑ 
i=1

​ 
N

 ​​ ​s​ i​​ 〉​|​​  = ​  1 ─ N ​​|​​​ ∑ 
i=1

​ 
N

 ​​ [ 2 ​q​ i​​(​s​ i​​  =  + 1 ) − 1 ] ​|​​​​	 (25)

and the heat capacity C, given by

	​ C  = ​  dU ─ dT ​  =  − ​​​ 2​ ​ dU ─ d ​​	 (26)

As detailed in section S1, we use an extension of the message 
passing equations to compute C that avoids having to use a numer-
ical derivative to evaluate Eq. 26. Briefly, we consider the messages 
qi ⃪ j to be a function of , then define their derivatives with respect 
to  as their own set of messages

	​​ η​ i←j​​  = ​ 
​dq​ i←j​​ ─ dβ  ​​	 (27)

with their own associated message passing equations derived by 
differentiating Eq. 12. We then compute the heat capacity C by dif-
ferentiating Eq. 14, expressing the result in terms of the ηi←j, and 
substituting it into Eq. 26.

Behavior at the phase transition
In many geometries, the ferromagnetic Ising model has a phase 
transition at a nonzero critical temperature between a symmetric 
state with zero average magnetization and a symmetry broken state 
with nonzero magnetization. Substituting Eq. 24 into Eqs. 11 and 
12, we can show that the message passing equations for the Ising 
model always have a trivial solution ​​q​ i←j​​(​s​ j​​ ) = ​1 _ 2​​ for all i, j. This 
choice is a fixed point of the message passing iteration: When start-
ed at this point, the iteration will remain there indefinitely. Looking 
at Eq. 25, we see that this fixed point corresponds to magnetization 
M = 0. If the message passing iteration converges to this trivial fixed 
point, therefore, it tells us that the magnetization is zero, and we are 
above the critical temperature; if it settles elsewhere, then the mag-
netization is nonzero, and we are below the critical temperature. 
Thus, the phase transition corresponds to the point at which the 
fixed point changes from being attracting to being repelling.

This behavior is well known in standard belief propagation, 
where it has been shown that, on networks with long loops only, 
there is a critical temperature TBP below which the trivial fixed point 
becomes unstable and hence the system develops nonzero magneti-
zation and that this temperature corresponds precisely to the con-
ventional zero-field continuous phase transition on these networks 
(40). Extending the same idea to the present case, we expect the 
phase transition on a loopy network to fall at the corresponding 
transition point between stable and unstable in our message pass-
ing formulation.

Moreover, because the values of the messages at the trivial fixed 
point are known, we can compute an expression for the phase tran-
sition point without performing any message passing. We treat the 
message passing iteration as a dynamical system and perform a lin-
ear stability analysis of the trivial fixed point. Perturbing around ​
q  = ​ 1 _ 2​​ (shorthand for setting all ​​q​ i←j​​  = ​ 1 _ 2​​) and keeping terms to lin-
ear order, we find that the dynamics is governed by the Jacobian

	​​ J​ j→i,ν→μ​​  = ​​ 
∂ ​q​ i←j​​ ─ ∂ ​q​ μ←ν​​

 ​​|​​​ 
q=1/2

​​  = ​​    B ​​ j→i,ν→μ​​ ​D​ j→i,ν→μ​​​	 (28)

where ​​ ~ B ​​ is a generalization of the so-called non-backtracking ma-
trix (41) to our loopy message passing formulation
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	​​ ​​   B ​​ j→i,→​​  = ​ {​​ ​
1

​ 
 if j  =   and   ∈ ​ N​ j∖i​​​  

0
​ 

 otherwise,
 ​ ​​	 (29)

and Dj → i,  →  is a correlation function between the spins s and s 
within the neighborhood Nj ∖ i—see section S3 for details.

When the magnitude of the leading eigenvalue max of this 
Jacobian is less than 1, the trivial fixed point is stable; when it is 
greater than 1, the fixed point is unstable. Hence, we can locate the 
phase transition temperature by numerically evaluating the Jacobian 
and locating the point at which ∣max∣crosses 1, for instance, by 
binary search.

Equation 29 is also useful in its own right. The non-backtracking 
matrix has numerous applications within network science, for in-
stance in community detection (41), centrality measures (42), and 
percolation theory (43). The generalization defined in Eq. 29 could 
be used to extend these applications to loopy networks, although we 
will not explore such calculations here.

RESULTS
A model network
As a first example application, we examine the behavior of our 
method on a model network created precisely to have short loops 
only up to a specified maximum length. The network has short 
primitive cycles only of length r + 2 and less for a given choice of r, 
although it can also have long loops—it is locally dense but globally 
sparse in the sense discussed previously. This turns out to be a cru-
cial point. The Ising model does not have a normal phase transition on a 
true tree, because, at any finite temperature, there is always a nonzero 
density of defects in the spin state (pairs of adjacent spins that are 
oppositely oriented), which, on a tree, divide the network into finite 
sized regions, imposing a finite correlation length and hence no critical 
behavior. Similarly, in the case of a network with only short loops and 
no long ones, there is no true phase transition. The long loops are 
necessary to produce criticality, a point discussed in detail in (44).

To generate networks that have short primitive cycles only up to 
a certain length, we first generate a random bipartite network—a 
network with two types of nodes and connections only between un-
like kinds—then “project” down onto one type of node, producing 
a network composed of a set of complete subgraphs or cliques. In 
detail, the procedure is as follows.

1) We first specify the degrees of all the nodes, of both types, in 
the bipartite network.

2) We represent these degrees by “stubs” of edges emerging, in 
the appropriate numbers, from each node, then we match stubs at 
random in pairs to create our random bipartite network.

3) We project this network onto the nodes of type 1, meaning 
that any two such nodes that are both connected to the same neigh-
bor of type 2 are connected directly with an edge in the projection. 
After all such edges have been added, the type 2 nodes are discarded.

4) Last, we remove a fraction p of the edges in the projected net-
work at random.

If p = 0, then the network is composed of fully connected cliques, 
but when p > 0, some cliques will be lacking some edges; hence, the 
network is composed of a collection of subgraphs of size equal to 
the degrees of the corresponding nodes of type 2 from which they 
were projected. If we limit these degrees to a maximum value of r + 
2, then there will be no short loops of length longer than this.

Figure 2 shows the magnetization per spin, entropy, and heat 
capacity for the ferromagnetic Ising model on an example network 
of 9447 nodes and 13,508 edges generated using this procedure with 
r = 2 and p = 0.6. We also limit the degrees of the type 1 nodes in the 
bipartite graph to a maximum of 5, which ensures that no neighbor-
hood in the projection is too large to prevent a complete summation 
over states and hence that Monte Carlo estimation of the sums in 
the message passing equations is unnecessary.

Results are shown for belief propagation calculations with r = 0, 
1, and 2, the last of which should, in principle, be exact except for 
the weak correlations introduced by the presence of long loops in 
the network. We also show in the figure the magnitude of the lead-
ing eigenvalue of J for each value of r. The points at which this ei-
genvalue equals 1, which give estimates of the critical temperature 
for each r, are indicated by the vertical lines. Also shown in the fig-
ure for comparison are results from direct Monte Carlo simulations 
of the system, with the entropy calculated from values of the heat 
capacity computed from energy fluctuations and then numerically 
integrated using the identity

Fig. 2. Ferromagnetic Ising model critical behavior on synthetic network. The 
top panel shows the average magnetization, while the bottom one shows the heat 
capacity and the entropy (the latter shifted up for visualization purposes). Results are 
shown for r = 0, 1, 2 and direct Monte Carlo simulation (denoted MCMC). The magni-
tude of the leading eigenvalue for the Jacobian is also shown in the top panel for 
all three values of r, and we can see that the apparent positions of the phase transition, 
revealed by discontinuities in the physical quantities or their gradients, correspond 
closely to the temperatures at which the associated eigenvalues are equal to 1.
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	​ S  = ​ ∫0
​ 

T
 ​​ ​ C(T) ─ T  ​ dT​	 (30)

The message passing simulations offer significantly faster results 
for this system: For r = 2, message passing was about 100 times fast-
er than the Monte Carlo simulations.

Looking at Fig. 2, we can see that as we increase r, the message 
passing results approach those from the direct Monte Carlo, except 
close to the phase transition, where the Monte Carlo calculations 
suffer from finite size effects that smear the phase transition, to 
which the message passing approach appears largely immune. 
While the results for conventional belief propagation (r = 0) are 
quite far from the direct Monte Carlo results, most of the improve-
ment in accuracy from our method is already present even at r = 1. 
Going to r = 2 offers only a small additional improvement in 
this case.

The apparent position of the phase transition aligns well with the 
predictions derived from the value of the Jacobian for each value of 
r. The transition is particularly clear in the gradient discontinuity of 
the magnetization. For r = 1 and 2, the heat capacity appears to ex-
hibit a discontinuity at the transition, which differs from the diver-
gence we expect on low-dimensional lattices but bears a resemblance 
to the behavior seen on Bethe lattices and other homogeneous tree-
like networks (7, 45, 46).

Real-world networks
For our next example, we look at an application on a real-world 
network, where we do not expect the method to be exact, although 
as we will see it nonetheless performs well. The network that we 
examine has larger local neighborhoods than our synthetic exam-
ple, which means that we are not able to sum exhaustively over all 
configurations of the spins sNj ∖ i in Eq. 12 (and similarly sNi in Eq. 11) 
so, as described in Implementation, we instead make use of Monte 
Carlo sampling to estimate the messages qi ← j and marginals qi.

The summation over local spins in Eq. 12 is equivalent to com-
puting the expectation in Eq. 15. To calculate qi ← j(sj = y), we fix the 
values of the incoming messages {qj ← k} and perform Monte Carlo 
sampling over the states of the spins in the neighborhood Nj ∖ i with 
the Hamiltonian of Eq. 9. Then, we compute the average in Eq. 15 
separately for the cases y = 1 and −1 and normalize to ensure that 
the results sum to one. The resulting values for qi ← j can then be 
used as incoming messages for calculating other messages in other 
neighborhoods. We perform the Monte Carlo using the Wolff clus-
ter algorithm (47), which makes use of the Fortuin-Kasteleyn per-
colation representation of the Ising model to flip large clusters of 
spins simultaneously and can significantly reduce the time needed 
to obtain independent samples, particularly close to the critical 
point. Once the messages have converged to their final values, we 
compute the marginals qi by performing a second Monte Carlo, this 
time over the spins sNi

 with the Hamiltonian of Eq. 8. More details 
on the procedure are given in section S2.

The Monte Carlo approach combines the best aspects of mes-
sage passing and traditional Monte Carlo calculations. Message 
passing reduces the sums we need to perform to sets of spins much 
smaller than the entire network, while the Monte Carlo approach 
markedly reduces the number of spin states that need to be evalu-
ated. The approach has other advantages too. For instance, because 
of the small neighborhood sizes, it shows improved performance in 
systems with substantial energy barriers that might otherwise impede 

ergodicity, such as antiferromagnetic systems. But perhaps its big-
gest advantage is that it effectively allows us to sample very large 
numbers of states of the network without taking very large samples 
of individual neighborhoods. If we sample k configurations from 
one neighborhood and k configurations from another, then, in ef-
fect, we are summing over k2 possible combinations of states in the 
union of the two neighborhoods. Depending on the value of r, there 
are at least 2m neighborhoods Nj ∖ i in a network, where m is the 
number of edges, and hence we are effectively summing over at least 
k2m states overall, a number that increases exponentially with network 
size. Effective sample sizes of 101000 or more are easily reachable, far 
beyond what is possible with traditional Monte Carlo methods.

Figure 3 shows the results of applying these methods with r = 
0…4 to a network from (48) representing the structure of an electric 
power grid, along with results from direct Monte Carlo simulations 
on the same network. As the figure shows, the magnetization is 
again poorly approximated by the traditional (r = 0) message pass-
ing algorithm but improves as r increases. In particular, the behav-
ior in the region of the phase transition is quite poor for r = 0 and 
does not provide a good estimate of the position of the transition. 
For r = 1 and 2, however, we get much better estimates, and for r = 
3 and 4, the method approaches the Monte Carlo results quite close-
ly, with the critical temperature falling somewhere in the region of 
T = 1.6 in this case. We also see a much clearer phase transition in 
the message passing results than in the standard Monte Carlo be-
cause of finite size effects in the latter. These results all suggest that, 
for real systems, our method can give substantial improvements 
over both ordinary belief propagation and direct Monte Carlo 
simulation and, in some cases, show completely different behavior 
altogether.

DISCUSSION
Here, we have presented a new class of message passing algorithms 
for solving probabilistic models on networks that contain a high 
density of short loops. Taking the Ising model as an example, we 
have shown that our methods give substantially improved results in 
calculations of magnetization, heat capacity, entropy, marginal spin 
probabilities, and other quantities over standard message passing 
methods that do not account for the presence of loops. Our meth-
ods are exact on networks with short loops up to a fixed maximum 
length, which we can choose, and can give good approximations on 
networks with loops of any length.

Message passing methods for probabilistic models on loopy net-
works have been proposed in the past, the best known being the 
generalized belief propagation method of Yedidia et al. (18). Gener-
alized belief propagation uses a region-based approximation (49), 
in which the free energy ln Z is approximated by a sum of indepen-
dent local free energies of regions within the network. Once the re-
gions are defined, it is straightforward to write down belief propagation 
equations, which can be used to calculate marginals and other quanti-
ties of interest, including approximations to the partition function 
and entropy. Perhaps the best known example of generalized belief 
propagation, at least within the statistical physics community, is the 
cluster variational method, in which the regions are defined so as to 
be closed under the intersection operation (24), and the resulting 
free energy is called the Kikuchi free energy (50).

The accuracy and complexity of generalized belief propagation 
is determined by the specific choice of regions, which has been 
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described as being “more of an art than a science” (39). Loops con-
tained within regions are correctly accounted for in the belief 
propagation, while those that span two or more regions are not and 
introduce error. At the same time, the computational complexity of 
the belief propagation calculations increases exponentially with the 
size of the regions (39), so choosing the right regions is a balancing 
act between enclosing as many loops as possible while not making 
the regions too large. A number of heuristics have been proposed 
for choosing the regions (19, 51, 52), but real-world networks can 
pose substantial difficulties because they often contain both high 
degrees and many loops (1), which effectively forces us to compro-
mise either by leaving loops out or by using very large regions. Our 
method can have a substantial advantage in these systems because it 
can accommodate large, tightly connected neighborhoods through 
local Monte Carlo sampling. Our method also has the benefit that 
the neighborhoods are constructed automatically based on the net-
work structure rather than being chosen by the user.

There are many ways in which the methods and results of this 
paper could be extended. We have studied only one application 
in detail, the Ising model, but the formalism that we present is a 
general one that could be applied to many other models. In princi-
ple, any model with sparse pairwise interactions (i.e., interactions 

whose number scales subquadratically with the number of vari-
ables) could be studied using these methods. For example, there is a 
large class of generative models of networks in which edges appear 
with probabilities that depend on the properties of the adjacent 
nodes. Examples include the Chung-Lu model (53) and the stochas-
tic block model and its variants (54, 55). If we assume an observed 
network to be drawn from such a model, then we can use statistical 
inference to estimate the values of hidden node attributes that influ-
ence edge probability, such as community membership. Our mes-
sage passing methods could be applied to such inference calculations 
and could, in principle, give more accurate results in the common 
case where the observed network contains many short loops.

Another potential application in the realm of statistical inference 
is the inverse Ising model, the problem of inferring the parameters 
of an Ising or Ising-like model from an observed sequence of spin 
states, which has numerous applications including the reconstruc-
tion of neural pathways (56), the inference of protein structure (57), 
and correlations within financial markets (58). It can be shown that 
the one- and two-point correlation functions of the observed spins 
are sufficient statistics to reliably estimate coupling and external 
field parameters (59), and our method could be used to compute 
these statistics on loopy networks to greater accuracy than with tra-
ditional message passing and faster than standard Monte Carlo sim-
ulation. Other potential applications, further afield from traditional 
statistical physics, include the solution of constraint satisfaction 
problems, coding theory, and combinatorial optimization.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/17/eabf1211/DC1

REFERENCES AND NOTES
	 1.	 M. E. J. Newman, Networks (Oxford Univ. Press, ed. 2, 2018).
	 2.	 I. Z. Kiss, J. C. Miller, P. L. Simon, Mathematics of Epidemics on Networks (Springer 

International Publishing, 2017).
	 3.	 B. A. Carreras, V. E. Lynch, I. Dobson, D. E. Newman, Dynamical and probabilistic 

approaches to the study of blackout vulnerability of the power transmission grid, in 
Proceedings of the 37th Annual Hawaii International Conference on System Sciences 
(Institute of Electrical and Electronics Engineers, 2004), pp. 7–14.

	 4.	 S. N. Dorogovtsev, A. V. Goltsev, J. F. F. Mendes, Ising model on networks with an arbitrary 
distribution of connections. Phys. Rev. E 66, 016104 (2002).

	 5.	 M. I. Jordan, Learning in Graphical Models (Kluwer Academic Publishers, 1998).
	 6.	 D. Koller, N. Friedman, Probabilistic Graphical Models: Principles and Techniques (MIT Press, 

2009).
	 7.	 H. A. Bethe, Statistical theory of superlattices. Proc. R. Soc. Lond. A 150, 552–575 (1935).
	 8.	 M. Mezard, A. Montanari, Information, Physics, and Computation (Oxford Univ. Press, 

2009).
	 9.	 D. J. Watts, S. H. Strogatz, Collective dynamics of “small-world” networks. Nature 393, 

440–442 (1998).
	 10.	 M. Eckstein, M. Kollar, K. Byczuk, D. Vollhardt, Hopping on the Bethe lattice: Exact results 

for densities of states and dynamical mean-field theory. Phys. Rev. B 71, 235119 (2005).
	 11.	 F. L. Metz, I. Neri, D. Bollé, Spectra of sparse regular graphs with loops. Phys. Rev. E 84, 

055101 (2011).
	 12.	 D. Bollé, F. L. Metz, I. Neri, On the spectra of large sparse graphs with cycles. 

arXiv:1206.1512 (2012).
	 13.	 M. E. J. Newman, Random graphs with clustering. Phys. Rev. Lett. 103, 058701 (2009).
	 14.	 S. Yoon, A. V. Goltsev, S. N. Dorogovtsev, J. F. F. Mendes, Belief-propagation algorithm 

and the Ising model on networks with arbitrary distributions of motifs. Phys. Rev. E 84, 
041144 (2011).

	 15.	 A. Montanari, T. Rizzo, How to compute loop corrections to the Bethe approximation. 
J. Stat. Mech. 2005, 10011 (2005).

	 16.	 M. Chertkov, V. Y. Chernyak, Loop calculus in statistical physics and information science. 
Phys. Rev. E 73, 065102 (2006).

	 17.	 M. E. J. Newman, J. Park, Why social networks are different from other types of networks. 
Phys. Rev. E 68, 036122 (2003).

Fig. 3. Ferromagnetic Ising model critical behavior on a power grid network. 
Message passing and Monte Carlo calculations of the average magnetization, 
entropy, and specific heat on the “494 bus power system” network from (48). Results 
are shown for r = 0…4 and direct Monte Carlo simulation (MCMC). Again, the message 
passing results approximate the real solution progressively better as r grows larger.

D
ow

nloaded from
 https://w

w
w

.science.org on Septem
ber 19, 2022

http://advances.sciencemag.org/cgi/content/full/7/17/eabf1211/DC1
http://advances.sciencemag.org/cgi/content/full/7/17/eabf1211/DC1
https://arxiv.org/abs/1206.1512


Kirkley et al., Sci. Adv. 2021; 7 : eabf1211     23 April 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

9 of 9

	 18.	 J. S. Yedidia, W. T. Freeman, Y. Weiss, Generalized belief propagation, in Proceedings of 
the 13th International Conference on Neural Information Processing Systems (MIT Press, 
2000), pp. 668–674.

	 19.	 M. Welling, On the choice of regions for generalized belief propagation, in Proceedings of 
the 20th Conference on Uncertainty in Artificial Intelligence (AUAI Press, 2004), pp. 585–592.

	 20.	 G. T. Cantwell, M. Newman, Message passing on networks with loops. Proc. Natl. Acad. Sci. 
U.S.A. 116, 23398–23403 (2019).

	 21.	 W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory 
of epidemics. Proc. R. Soc. Lond. A 115, 700–721 (1927).

	 22.	 R. Durrett, Spatial Epidemic Models: Their structure and Relation to Data (Cambridge Univ. 
Press, 1995).

	 23.	 D. Stauffer, S. Solomon, Ising, Schelling and self-organising segregation. Eur. Phys. J. B. 57, 
473–479 (2007).

	 24.	 A. Pelizzola, Cluster variation method in statistical physics and probabilistic graphical 
models. J. Phys. A 38, R309–R339 (2005).

	 25.	 S. Geman, C. Graffigne, Markov random field image models and their applications to 
computer vision, in Proceedings of the International Congress of Mathematicians 
(International Congress of Mathematicians, 1986), pp. 2.

	 26.	 M. Yasuda, T. Horiguchi, Triangular approximation for Ising model and its application 
to Boltzmann machine. Physica A 368, 83–95 (2006).

	 27.	 A. Decelle, F. Krzakala, C. Moore, L. Zdeborová, Asymptotic analysis of the stochastic 
block model for modular networks and its algorithmic applications. Phys. Rev. E 84, 
066106 (2011).

	 28.	 W.-X. Zhou, D. Sornette, Self-organizing Ising model of financial markets. Eur. Phys. J. B. 
55, 175–181 (2007).

	 29.	 S. Galam, Rational group decision making: A random field Ising model at T = 0. Physica A 
238, 66–80 (1997).

	 30.	 D. Stauffer, Social applications of two-dimensional Ising models. Am. J. Phys. 76, 470–473 
(2008).

	 31.	 D. J. MacKay, Information Theory, Inference and Learning Algorithms (Cambridge Univ. 
Press, 2003).

	 32.	 H. S. Migon, D. Gamerman, F. Louzada, Statistical Inference: An Integrated Approach (CRC 
Press, 2014).

	 33.	 N. Friel, J. Wyse, Estimating the evidence—A review. Statistica Neerlandica 66, 288–308 
(2012).

	 34.	 S. Salinas, Introduction to Statistical Physics (Springer, 2001).
	 35.	 R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, 1982).
	 36.	 C. E. Shannon, Prediction and entropy of printed English. Bell Syst. Tech. J. 30, 50–64 (1951).
	 37.	 W. Bialek, Biophysics: Searching for Principles (Princeton Univ. Press, 2012).
	 38.	 P. Cabral, G. Augusto, M. Tewolde, Y. Araya, Entropy in urban systems. Entropy 15, 

5223–5236 (2013).
	 39.	 J. S. Yedidia, W. T. Freeman, Y. Weiss, Understanding belief propagation and its 

generalizations. Explor. Artificial Intell. New Millennium 8, 236–239 (2003).
	 40.	 J. Mooij, H. Kappen, On the properties of the Bethe approximation and loopy belief 

propagation on binary networks. J. Stat. Mech. 2005, P11012 (2005).
	 41.	 F. Krzakala, C. Moore, E. Mossel, J. Neeman, A. Sly, L. Zdeborová, P. Zhang, Spectral redemption 

in clustering sparse networks. Proc. Natl. Acad. Sci. U.S.A. 110, 20935–20940 (2013).
	 42.	 T. Martin, X. Zhang, M. E. J. Newman, Localization and centrality in networks. Phys. Rev. E 

90, 052808 (2014).
	 43.	 B. Karrer, M. E. J. Newman, L. Zdeborová, Percolation on sparse networks. Phys. Rev. Lett. 

113, 208702 (2014).
	 44.	 A. Allard, L. Hébert-Dufresne, On the accuracy of message-passing approaches to 

percolation in complex networks. arXiv:1906.10377 (2019).

	 45.	 F. Mancini, A. Naddeo, Equations-of-motion approach to the spin-12 Ising model 
on the Bethe lattice. Phys. Rev. E 74, 061108 (2006).

	 46.	 S. N. Dorogovtsev, A. V. Goltsev, J. F. Mendes, Critical phenomena in complex networks. 
Rev. Mod. Phys. 80, 1275–1335 (2008).

	 47.	 U. Wolff, Collective Monte Carlo updating for spin systems. Phys. Rev. Lett. 62, 361–364 
(1989).

	 48.	 T. A. Davis, Y. Hu, The University of Florida sparse matrix collection. ACM Trans. Math. 
Softw. 38, 1–25 (2011).

	 49.	 J. S. Yedidia, W. T. Freeman, Y. Weiss, Constructing free-energy approximations 
and generalized belief propagation algorithms. IEEE Trans. Inf. Theory 51, 2282–2312 
(2005).

	 50.	 R. Kikuchi, A theory of cooperative phenomena. Phys. Rev. 81, 988–1003 (1951).
	 51.	 H. J. Kappen, W. Wiegerinck, Novel iteration schemes for the cluster variation method, in 

Advances in Neural Information Processing Systems (MIT Press, 2002), pp. 415–422.
	 52.	 P. Pakzad, V. Anantharam, Minimal graphical representation of Kikuchi regions, in 

Proceedings of the Annual Allerton Conference on Communication Control and Computing 
(University of Illinois, 2002), pp. 1586–1595.

	 53.	 F. Chung, L. Lu, The average distances in random graphs with given expected degrees. 
Proc. Natl. Acad. Sci. U.S.A. 99, 15879–15882 (2002).

	 54.	 P. W. Holland, K. B. Laskey, S. Leinhardt, Stochastic blockmodels: First steps. Soc. Networks 
5, 109–137 (1983).

	 55.	 B. Karrer, M. E. J. Newman, Stochastic blockmodels and community structure in networks. 
Phys. Rev. E 83, 016107 (2011).

	 56.	 E. Schneidman, M. J. Berry II, R. Segev, W. Bialek, Weak pairwise correlations imply 
strongly correlated network states in a neural population. Nature 440, 1007–1012 (2006).

	 57.	 F. Morcos, A. Pagnani, B. Lunt, A. Bertolino, D. S. Marks, C. Sander, R. Zecchina, 
J. N. Onuchic, T. Hwa, M. Weigt, Direct-coupling analysis of residue coevolution captures 
native contacts across many protein families. Proc. Natl. Acad. Sci. U.S.A. 108,  
E1293–E1301 (2011).

	 58.	 T. Bury, Market structure explained by pairwise interactions. Physica A 392, 1375–1385 
(2013).

	 59.	 H. C. Nguyen, R. Zecchina, J. Berg, Inverse statistical problems: From the inverse Ising 
problem to data science. Adv. Phys. 66, 197–261 (2017).

Acknowledgments 
Funding: This work was funded in part by the U.S. Department of Defense NDSEG fellowship 
program (to A.K.) and by the National Science Foundation under grants NSF IIS-1838251 (to 
G.T.C.), DMS–1710848 and DMS–2005899 (to M.E.J.N.). Author contributions: A.K., G.T.C., and 
M.E.J.N. designed the study; A.K. performed the simulations; and A.K. and G.T.C. performed the 
mathematical analysis. All authors contributed to writing the manuscript. Competing 
interests: The authors declare that they have no competing interests. Data materials and 
availability: All data needed to evaluate the conclusions in the paper are present in the paper 
and/or the Supplementary Materials, except for the power grid data, which are available from 
the original source in (48): https://dl.acm.org/doi/10.1145/2049662.2049663. Additional data 
related to this paper may be requested from the authors.

Submitted 5 October 2020
Accepted 9 March 2021
Published 23 April 2021
10.1126/sciadv.abf1211

Citation: A. Kirkley, G. T. Cantwell, M. E. J. Newman, Belief propagation for networks with loops. 
Sci. Adv. 7, eabf1211 (2021).

D
ow

nloaded from
 https://w

w
w

.science.org on Septem
ber 19, 2022

https://arxiv.org/abs/1906.10377
https://dl.acm.org/doi/10.1145/2049662.2049663


Use of this article is subject to the Terms of service

Science Advances (ISSN 2375-2548) is published by the American Association for the Advancement of Science. 1200 New York Avenue
NW, Washington, DC 20005. The title Science Advances is a registered trademark of AAAS.
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim
to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Belief propagation for networks with loops
Alec KirkleyGeorge T. CantwellM. E. J. Newman

Sci. Adv., 7 (17), eabf1211. • DOI: 10.1126/sciadv.abf1211

View the article online
https://www.science.org/doi/10.1126/sciadv.abf1211
Permissions
https://www.science.org/help/reprints-and-permissions

D
ow

nloaded from
 https://w

w
w

.science.org on Septem
ber 19, 2022

https://www.science.org/about/terms-service

