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SUMMARY

Oncogene-induced senescence is characterized by
a stable cell growth arrest, thus providing a tumor
suppression mechanism. However, the underlying
mechanisms for this phenomenon remain unknown.
Here,weshow that adecrease indeoxyribonucleotide
triphosphate (dNTP) levels underlies oncogene-
induced stable senescence-associated cell growth
arrest. The decrease in dNTP levels is caused by
oncogene-induced repression of ribonucleotide
reductase subunit M2 (RRM2), a rate-limiting protein
in dNTP synthesis. This precedes the senescence-
associated cell-cycle exit and coincides with the
DNA damage response. Consistently, RRM2 down-
regulation is both necessary and sufficient for senes-
cence. Strikingly, suppression of nucleotide meta-
bolism by RRM2 repression is also necessary for
maintenance of the stable senescence-associated
cell growth arrest. Furthermore, RRM2 repression
correlates with senescence status in benign nevi and
melanoma, and its knockdown drives senescence of
melanoma cells. These data reveal the molecular
basis whereby the stable growth arrest of oncogene-
induced senescence is established and maintained
through suppression of nucleotide metabolism.
INTRODUCTION

Cellular senescence is defined as a state of stable cell growth

arrest (Campisi, 2005). Activation of oncogenes, such as RAS,

in normal mammalian cells typically triggers oncogene-induced

senescence (OIS) (Yaswen and Campisi, 2007), which is a

bona fide tumor suppressor mechanism in vivo (Campisi and
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d’Adda di Fagagna, 2007). For example, benign nevi formed by

human melanocytes that have undergone OIS are thought to

suppress melanomagenesis (Mooi and Peeper, 2006). Although

known to be important for tumor suppression, to date, the mo-

lecular mechanism underlying the stable OIS-associated cell

growth arrest remains unknown.

Oncogenic signaling triggers cellular senescence via various

senescence effectors. In particular, senescence induced by acti-

vated oncogenes such as RAS is characterized by a sustained

DNA damage response (DDR) triggered by aberrant DNA repli-

cation during the S phase of the cell cycle (Bartkova et al.,

2006; Di Micco et al., 2006). This ultimately activates the p53/

p21 and p16/pRB pathways (Serrano et al., 1997). Activation of

these signaling pathways cultivates the expression of markers

of senescence such as senescence-associated heterochromat-

in foci (SAHF), which are specialized domains of facultative het-

erochromatin that contribute to senescence by silencing prolifer-

ation-promoting genes (Narita et al., 2003; Zhang et al., 2007a),

and increased senescence-associated b-galactosidase (SA-

b-gal) activity (Dimri et al., 1995).

Cellular deoxyribonucleotide triphosphate (dNTP) levels play a

key role in regulating DNA replication and, consequently, cell

proliferation (Reichard, 1988). However, whether changes in

the nucleotide metabolic pathway play a role in regulating

OIS-associated stable cell growth arrest has never been investi-

gated. Ribonucleotide reductase (RNR) plays a key role in dNTP

biogenesis (Nordlund and Reichard, 2006). RNR is a tetrameric

complex consisting of two large catalytic subunits (termed

RRM1) and two small regulatory subunits (RRM2 or p53R2) (Nor-

dlund and Reichard, 2006). Notably, RRM2 is the regulatory sub-

unit that controls dNTP synthesis during the S phase of the cell

cycle, whereas RRM1 is present throughout the cell cycle (Eng-

ström et al., 1985). Importantly, RRM2 expression is rate-limiting

for RNR activity (Nordlund and Reichard, 2006). In contrast,

p53R2 is involved in supplying dNTPs for DNA repair and mito-

chondrial DNA synthesis in the G0/G1 phase of the cell cycle

(Håkansson et al., 2006). Whether RRM2 plays a role in

mailto:rzhang@wistar.org
http://dx.doi.org/10.1016/j.celrep.2013.03.004
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.celrep.2013.03.004&domain=pdf


regulating OIS, which is characterized by aberrant DNA replica-

tion, the DDR, and a stable cell growth arrest, has never been

investigated.

Here, we report that a decrease in dNTP levels underlies the

establishment and maintenance of the stable OIS-associated

cell growth arrest. We show that addition of exogenous nucleo-

sides is sufficient to overcome OIS-associated cell growth

arrest, which correlates with suppressing aberrant DNA replica-

tion and inhibiting the DDR. Mechanistically, we discovered that

the decrease in dNTP levels is caused by oncogene-induced

suppression of RRM2 expression. This correlates with the

recruitment of E2F7, an atypical E2F transcriptional repressor,

to its promoter. Indeed, we show that RRM2 downregulation

is both necessary and sufficient for the establishment and main-

tenance of the stable senescence-associated cell growth arrest.

Further underscoring the importance of this pathway in regu-

lating senescence in human cancers, we show that RRM2

expression inversely correlates with senescence status in human

nevi and melanoma specimens harboring oncogenic BRAF

or NRAS. Additionally, high RRM2 expression correlates with

poor overall survival in patients with melanoma with oncogenic

BRAF or NRAS. Finally, knockdown of RRM2 drives senescence

of melanoma cells harboring these activated oncogenes. Taken

together, our results reveal the mechanistic basis whereby an

activated oncogene establishes and maintains the stable senes-

cence-associated cell growth arrest by suppressing nucleotide

metabolism.

RESULTS

Exogenous Nucleosides Suppress OIS and Its
Associated Cell Growth Arrest
Senescent cells are characterized by a stable cell growth arrest

(Campisi, 2005), and nucleotide metabolism plays a critical role

in regulating cell growth (Reichard, 1988). To test the hypothesis

that nucleotide metabolism regulates OIS, IMR90 primary

human fibroblasts were infected with RAS-encoding retrovirus

to induce senescence (Figure S1A), and exogenous nucleosides

were added at the time of infection. Compared with controls,

addition of exogenous nucleosides significantly suppressed

the expression of markers of senescence such as SAHF forma-

tion (Figures 1A and 1B), SA-b-gal activity (Figures 1A and 1B),

and the upregulation of p16, p21, and p53 (Figure 1C). In addi-

tion, senescence induced by oncogenic RAS is characterized

by the DDR (Bartkova et al., 2006; Di Micco et al., 2006). Thus,

we examined markers of the DDR such as formation of gH2AX

foci in these cells. Compared with controls, addition of exoge-

nous nucleosides significantly decreased gH2AX foci formation

(Figures 1D and 1E). Next, we determined the effects of exoge-

nous nucleosides on the senescence-associated cell-cycle exit

by bromodeoxyuridine (BrdU) incorporation. Exogenous nucleo-

sides significantly increased BrdU incorporation in RAS-infected

cells compared with controls (Figures 1F and 1G). Finally, we

sought to determine the effects of exogenous nucleosides on

the OIS-associated cell growth arrest by colony-formation and

cell growth curve assays. Compared with RAS-alone controls,

there was a significant increase in colony formation (Figure 1H)

and cell growth (Figure 1I) in exogenous nucleoside-supple-
C

mented cells. Interestingly, senescence induced by DNA dam-

age reagents such as doxorubicin or etoposide was not affected

by addition of exogenous nucleosides (Figures S1B–S1I), sug-

gesting that the observed effects are not merely a consequence

of DNA damage. Based on these results, we conclude that exog-

enous nucleosides added at the time of infection are sufficient to

suppress OIS and its associated cell growth arrest.

Exogenous Nucleosides Are Sufficient to Overcome
the OIS-Associated Cell Growth Arrest in Established
Senescent Cells
We next wanted to determine the effects of exogenous nucleo-

sides on the stable OIS-associated cell growth arrest in estab-

lished senescent cells. To do so, stable senescence-associated

cell growth arrest was established by culturing RAS-infected

cells for 6 days, as evidenced by the minimal BrdU incorporation

in these cells compared with controls as well as no appreciable

cell growth during the experimental period (Figures S2A–S2C).

Then FACSwas performedwith C12FDG, a fluorogenic substrate

for SA-b-gal activity in live cells (Debacq-Chainiaux et al., 2009)

(Figure 2A). FACS-sorted senescent cells were further cultured

with or without exogenous nucleosides. We then examined the

expression of markers of senescence and proliferation in these

cells. Compared with controls, markers of senescence such as

SA-b-gal activity and p16 and p21 expression were all sup-

pressed by exogenous nucleosides (Figures 2B–2D). In contrast,

markers of cell proliferation, such as BrdU incorporation, were

increased in the established senescent cells exposed to exoge-

nous nucleosides (Figure 2E). Strikingly, addition of exogenous

nucleosides to these cells reversed the oncogene-induced sta-

ble senescence-associated cell growth arrest, as evidenced by

marked growth of these cells (Figure 2F). Notably, these obser-

vations were not due to a loss of RAS expression because

RAS was expressed at similar levels in these cells compared to

those without exposure to exogenous nucleosides (Figure S2D).

Similar observations were also made when RAS cells were al-

lowed to senescence for a longer period of time (e.g., exogenous

nucleosides added at day 12; Figures S2E–S2G). Likewise, we

also observed similar effects of exogenous nucleosides in

another primary human fibroblast cell line, WI38 (Figures S2H–

S2J), demonstrating that this is not a cell line-specific phenom-

enon. Interestingly, withdrawal of nucleosides from these cells

was sufficient for the cells to senesce again, as shown by an in-

crease in SA-b-gal activity (Figures 2G and 2H) and p21 and p16

expression (Figure 2I), and a decrease in both cyclin A expres-

sion (Figure 2I) and cell growth (Figure 2J). Taken together, these

data indicate that addition of exogenous nucleosides is sufficient

to overcome the stable OIS-associated cell growth arrest in es-

tablished senescent cells.

A Decrease in dNTP Levels Occurs Prior
to the OIS-Associated Cell-Cycle Exit
Because addition of exogenous nucleosides suppresses senes-

cence (Figures 1 and 2), we next sought to determine whether

changes in dNTP levels occur during OIS. Toward this goal, we

measured dNTP levels in control and RAS-infected IMR90 cells.

To limit the potential effects of cell cycle and cell proliferation

status on dNTP levels, we performed a detailed time course
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Figure 1. Exogenous Nucleosides Suppress OIS and Its Associated Cell Growth Arrest

(A) IMR90 cells were infected with control or RAS-encoding retrovirus with or without addition of the indicated concentration of nucleosides (NS) at the time of

infection. On day 6, drug-selected cells were examined for SAHF formation and SA-b-gal activity.

(B) Quantification of (A). Mean of three independent experiments with SEM is shown. *p < 0.05.

(C) Same as (A) but examined for expression of RAS, p21, p16, p53, and b-actin by immunoblotting.

(D) Same as (A) but stained for gH2AX foci formation. DAPI counterstaining was used to visualize nuclei.

(E) Quantification of (D). Mean of three independent experiments with SEM is shown. *p < 0.05.

(F) Same as (A) but labeled with BrdU for 1 hr. The incorporated BrdU was visualized by immunofluorescence. DAPI counterstaining was used to visualize nuclei.

(G) Quantification of (F). Mean of three independent experiments with SEM is shown. *p < 0.01.

(H) Same as (A), but an equal number of cells were inoculated in 6-well plates. After 2 weeks, the plates were stained with 0.05% crystal violet in PBS to visualize

colony formation. Shown are representative images of three independent experiments.

(I) Same as (A), but an equal number of cells were seeded in 6-well plates. The number of cells was counted at the indicated time points after infection. Mean of

three independent experiments with SEM is shown. *p < 0.05 compared with RAS-alone cells.

See also Figure S1.
analysis for cell-cycle distribution using FACS analysis, markers

of cell proliferation such as serine 10 phosphorylated histone H3

(pS10H3), andmarkers of senescence such as p21 and p16 (Fig-

ures S3A and S3B). Based on the time course analysis, we deter-

mined the dNTP levels on day 2, which is prior to the cell-cycle

exit, as further demonstrated by comparable BrdU incorporation

and cyclin A expression in RAS-infected cells compared to con-

trols (Figures S3C–S3E). Strikingly, the levels of all four dNTPs

were significantly decreased in RAS-infected cells compared

with controls at this time point (Figure 3A). Together, these

data support the idea that there is a decrease in dNTP levels,

which occurs prior to the OIS-associated cell-cycle exit.

Addition of exogenous nucleosides suppresses OIS-associ-

ated DDR (Figures 1C–1E), which is triggered by aberrant DNA

replication (Bartkova et al., 2006; Di Micco et al., 2006). More-

over, RAS significantly decreases dNTP levels prior to the senes-

cence-associated cell-cycle exit (Figure 3A). Thus, we sought to

determine whether the decrease in dNTP levels plays a role in

regulating aberrant DNA replication induced by oncogenic

RAS. Toward this goal, we determined the changes in the
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dynamics of DNA replication in control and RAS-infected cells

with or without exogenous nucleosides using the DNA-combing

analysis (Figures S3F and S3G). This allows for observation of

single-stranded DNA (ssDNA) to determine DNA replication

fork dynamics (namely elongating, terminated, and newly fired,

as illustrated in Figure S3G). Indeed, addition of exogenous

nucleosides significantly rescued the aberrant DNA replication

observed during RAS-induced senescence (Figure 3B). Notably,

this correlates with a significant restoration of dNTP levels in

RAS-infected cells supplemented with exogenous nucleosides

(Figure 3C). This result is consistent with the idea that the

observed effects are due to restoration of dNTP levels. Together,

these results support the premise that a decrease in dNTP levels

contributes to the aberrant DNA replication observed during

RAS-induced senescence.

Oncogene-Induced Repression of RRM2 Occurs Prior
to the Senescence-Associated Cell-Cycle Exit
We next wanted to determine the molecular mechanism

whereby dNTP levels decrease during OIS. RNR is a key enzyme



Figure 2. Exogenous Nucleosides Are Sufficient to Overcome the Stable OIS-Associated Cell Growth Arrest in Established Senescent Cells

(A) IMR90 cells were infected with RAS-encoding retrovirus. On day 6, drug-selected cells were subjected to flow cytometric sorting (FACS) of SA-b-gal-positive

cells using C12FDG as a substrate. Black bar indicates the gate used for sorting.

(B) FACS-sorted senescent cells were cultured without or with indicated concentrations of nucleosides for an additional 14 days. The cells were then stained for

SA-b-gal activity.

(C) Quantification of (B). Mean of three independent experiments with SEM is shown. *p < 0.001.

(D) Same as (B) but examined for p16, p21, and b-actin expression by immunoblotting.

(E) Same as (B) but labeled with BrdU for 1 hr. Mean of three independent experiments with SEM is shown.

(F) Same as (B), but an equal number of cells that overcome senescence or control (parental) cells were inoculated in 6-well plates, and the number of cells was

counted at the indicated time points. Mean of three independent experiments with SEM is shown.

(G) Cells that overcome senescence in the presence of exogenous nucleosides (50 nM) isolated from (B) (rescued cells) were continually cultured in the presence

of NS (control) or withdrawn from NS exposure for an additional 17 days and stained for SA-b-gal activity.

(H) Quantification of (G). Mean of three independent experiments with SEM is shown. *p < 0.01.

(I) Same as (G) but examined for p21, p16, cyclin A, and b-actin expression by immunoblotting.

(J) Same as (G), but an equal number of cells were inoculated in 6-well plates after withdrawal, and the number of cells was counted 4 days later. Mean of three

independent experiments with SEM is shown. *p < 0.05.

See also Figure S2.
in dNTP biosynthesis, and RRM2, the regulatory subunit of RNR,

is rate-limiting for this process (Nordlund and Reichard, 2006).

Thus, we sought to determine whether RRM2 expression is regu-

lated during OIS. To do so, we examined the protein levels of

RRM2 in control and RAS-infected cells in a detailed time course

study comparing the kinetics of RRM2 expression with the

expression of markers of cell proliferation such as cyclin A and

pS10H3. Strikingly, as early as day 1, when RAS cells are still

proliferating based on the expression of cyclin A and pS10H3

(Figures 4A and S3B), RRM2 protein expression was already

decreased in RAS-infected cells compared to controls (Fig-

ure 4A). At this time point, expression of other regulators of

dNTP metabolism, namely RRM1 and p53R2, was not

decreased (Figure S4A), demonstrating that this is specific to

RRM2. We next sought to determine the changes in RRM2

expression in cycling cells by staining for the RRM2 protein in

BrdU-positive cells (transiently labeled for 1 hr). The RRM2-
C

staining signal was specific because knockdown of RRM2

protein decreased the immunofluorescent signal (Figure S4B).

Indeed, RRM2 protein expression was decreased even in

BrdU-positive RAS-infected cells (Figure 4B). Notably, RRM2

downregulation coincided with the DDR as evidenced by the

accumulation of gH2AX (Figure 4A), suggesting that downregu-

lation of RRM2 may contribute to the DDR observed during

OIS. However, RRM2 downregulation was not a consequence

of the DDR because ionizing radiation, which induces DNA

damage, failed to suppress RRM2 expression (Figure S4C).

Together, these results indicate that RRM2 is downregulated

prior to the OIS-associated cell-cycle exit and coincides with

activation of the DDR during senescence.

We next sought to determine themolecular mechanism under-

lying downregulation of RRM2 during OIS. First, we asked

whether RRM2 is downregulated at the transcriptional level.

Accordingly, quantitative RT-PCR (qRT-PCR) was performed in
ell Reports 3, 1252–1265, April 25, 2013 ª2013 The Authors 1255



Figure 3. A Decrease in dNTP Levels Occurs Prior to the OIS-

Associated Cell-Cycle Exit

(A) IMR90 cells were infected with control or RAS-encoding retrovirus. On day

2, cellular dNTP levels were measured. Mean of three independent experi-

ments with SEM is shown. *p < 0.05.

(B) Same as (A), but RAS-infected cells were supplemented with or without the

indicated concentration of nucleosides at the time of infection. Mean of three

independent experiments with SEM is shown. *p < 0.05 control versus RAS;
#p < 0.05 RAS versus RAS plus 50 or 250 nM NS.

(C) Same as (B), but cellular dNTP levels were measured. Mean of three

independent experiments with SEM is shown. *p < 0.05 versus control;

#p < 0.05 versus RAS alone.

See also Figure S3.
control and RAS-infected cells. Similar to RRM2 protein expres-

sion, RRM2mRNA expression was significantly decreased after

RAS infection but prior to the senescence-associated cell-cycle

exit (i.e., at day 1; Figure 4C). Consistent with the idea that

decreased RRM2 mRNA expression is due to decreased tran-
1256 Cell Reports 3, 1252–1265, April 25, 2013 ª2013 The Authors
scription, there was a significant decrease in the activity of the

cloned human RRM2 gene proximal promoter (�1,071 to +76)

in the RAS-infected cells compared with controls (Figures 4D

and S4D). Together, we conclude that RRM2 is downregulated

at the transcriptional level, and this occurs before the senes-

cence-associated cell-cycle exit.

To identify the transcription factor that contributes to RRM2

repression during senescence, systematic promoter mapping

was performed. Notably, an E2F binding site within the proximal

promoter (�998 to�991) was identified to contribute to the sup-

pression of RRM2 transcription in response to RAS (Figure 4D;

data not shown). Deletion of the E2F binding site in the RRM2

promoter significantly restored promoter activity in RAS-infected

cells (Figure 4D). Chromatin immunoprecipitation (ChIP) experi-

ments using an E2F1 antibody demonstrated that the binding

of transcriptional activator E2F1 to the human RRM2 gene pro-

moter was significantly reduced in RAS-infected cells compared

with controls (Figure 4E). Interestingly, RRM2 is downregulated,

whereas the cells are highly proliferative, and other E2F1 target

genes such as cyclin A remain highly expressed (e.g., Figure 4A).

These results suggest that the RRM2 downregulation observed

during OIS is context dependent. To further determine themech-

anism of RRM2 downregulation, we performed ChIP analysis

using antibodies to the repressive E2F transcriptional factors

E2F4 and E2F7 (Chen et al., 2009). These data demonstrate

that binding of the atypical transcriptional repressor E2F7 to

the human RRM2 gene promoter was significantly enhanced in

RAS-infected cells compared to controls (Figure 4E), whereas

there was no change in E2F4 binding (data not shown). Indeed,

a detailed time course study revealed that downregulation of

RRM2 coincides with upregulation of E2F7 during RAS-induced

senescence (Figure 4F). These results indicate that an enhanced

association of the atypical transcriptional repressor E2F7 with

the RRM2 gene promoter and a simultaneous decrease in bind-

ing of transcriptional activator E2F1 to the RRM2 gene promoter

contribute to downregulation of RRM2 prior to the OIS-associ-

ated cell-cycle exit.

Knockdown of RRM2 Induces Senescence in Primary
Human Fibroblasts
We next wanted to determine whether RRM2 downregulation is

sufficient to induce senescence. To do so, we infected cells with

lentivirus encoding small hairpin RNAs to the human RRM2 gene

(shRRM2). The knockdown efficacy of shRRM2 was confirmed

by qRT-PCR and immunoblotting (Figures 5A and S5A). Consis-

tent with the hypothesis that RRM2 downregulation decreases

the dNTP levels observed during senescence, we determined

that knockdown of RRM2 caused a significant decrease in

dNTP levels (Figure S5B). In addition, we determined that knock-

down of RRM2 triggers aberrant DNA replication (Figures 5B

and S5C). Furthermore, DDR markers such as formation of

53BP1 and gH2AX foci were significantly induced by shRRM2

(Figures 5C, 5D, S5D, and S5E). Likewise, gH2AX and p53 pro-

tein expression was upregulated in shRRM2-expressing cells

compared to controls (Figures 5E and S5F). Together, these re-

sults support the idea that a decrease in dNTP levels caused by

RRM2 downregulation drives aberrant DNA replication and

consequently the DDR observed during OIS.



Figure 4. Oncogene-Induced Repression of RRM2 Occurs Prior to the OIS-Associated Cell-Cycle Exit

(A) IMR90 cells were infected with control or RAS-encoding retrovirus. The expression of RRM2, cyclin A, gH2AX, and b-actin was determined by immunoblotting

at the indicated time points after completing RAS infection.

(B) IMR90 cells were infected with control or RAS-encoding retrovirus. On day 1, the infected cells were labeled with BrdU for 1 hr, and the expression of RRM2 in

BrdU-incorporated cells was visualized by immunofluorescence.

(C) Same as (A), but cells were examined for RRM2 mRNA expression by qRT-PCR on day 1. Mean of three independent experiments with SEM is shown.

*p < 0.01.

(D) On day 2, drug-selected control or RAS-infected cells were electroporated with a luciferase reporter driven by aWT or E2F binding site-deleted (DE2F) mutant

human proximal RRM2 gene promoter. A luminescent b-gal reporter was used as an internal control to normalize the transfection efficacy. Mean of three in-

dependent experiments with SEM is shown. *p < 0.001 Control/WT versus RAS/WT; **p < 0.05 WT versus DE2F.

(E) Same as (C), but cells were examined for E2F1 and E2F7 binding to theRRM2 promoter by ChIP using an E2F1 or E2F7 antibody. An isotype-matched IgGwas

used as a control. Mean of three independent experiments with SEM is shown. *p < 0.001.

(F) IMR90 cells were infected with control or RAS-encoding retrovirus. Expression of RRM2, E2F1, and E2F7mRNAwas determined by qRT-PCR at the indicated

time points. Mean of three independent experiments with SEM is shown.

See also Figure S4.
Wenext determined whether knockdown of RRM2 is sufficient

to induce senescence and the associated cell-cycle exit.

Compared with controls, markers of senescence such as SA-

b-gal activity (Figures 5F, 5G, S5G, and S5H) were induced by

RRM2 knockdown. Consistently, markers of cell proliferation,

including expression of cyclin A and pS10H3 (Figures 5H and

S5I) and BrdU incorporation (Figures 5I, 5J, S5J, and S5K),

were lower in shRRM2-expressing cells. Indeed, senescence-

associated cell growth arrest was evident in RRM2 knockdown

cells, as demonstrated by assays such as colony formation (Fig-

ures 5K and S5L) and cell growth curves (Figure 5L). Together,

we conclude that knockdown of RRM2 induces cellular senes-

cence in primary human fibroblasts.

To limit the potential off-target effects of shRNAs, we per-

formed rescue experiments by infecting cells with a retrovirus

encoding a wild-type (WT) RRM2 cDNA together with a lenti-

virus encoding an shRRM2 that targets the 50 UTR of the

human RRM2 gene. Knockdown of endogenous RRM2 was

confirmed by downregulation of RRM2 mRNA measured by
C

qRT-PCR using primers targeting the 50 UTR (Figure 5A),

whereas expression of ectopic RRM2 was confirmed by

expression of RRM2 mRNA measured by qRT-PCR using

primers targeting the open reading frame (ORF) region and

immunoblotting (Figures 5A and 5E). Indeed, compared with

cells expressing shRRM2 alone, ectopic RRM2 expression

rescued the aberrant DNA replication induced by shRRM2 (Fig-

ure 5B). Additionally, the DDR induced by shRRM2 was also

suppressed by ectopic RRM2. Formation of gH2AX and

53BP1 foci (Figures 5C and 5D) and gH2AX and p53 expression

(Figure 5E) were significantly lower in cells expressing both

shRRM2 and ectopic RRM2 compared with shRRM2 alone.

Furthermore, expression of markers of senescence such as

SA-b-gal activity (Figures 5F and 5G) and upregulation of p21

(Figure 5H) was inhibited by ectopic RRM2 in the shRRM2-ex-

pressing cells. Moreover, ectopic RRM2 was sufficient to

rescue the senescence-associated cell-cycle exit induced by

RRM2 knockdown, as demonstrated by upregulation of cyclin

A and pS10H3 (Figure 5H), increased BrdU incorporation
ell Reports 3, 1252–1265, April 25, 2013 ª2013 The Authors 1257



Figure 5. Knockdown of RRM2 Decreases dNTP Levels and Induces Senescence of Primary Human Fibroblasts

(A) IMR90 cells were infected with a lentivirus-encoding shRRM2 that targets the 50 UTR of the humanRRM2 gene together with a retrovirus encoding a control or

WT RRM2. On day 6, expression of RRM2mRNA was determined by qRT-PCR using primers designed to its 50 UTR (only amplifies endogenous but not ectopic

RRM2 mRNA) or its ORF (amplifies both endogenous and ectopic RRM2 mRNA). Mean of three independent experiments with SEM is shown.

(B) Same as (A) but examined for DNA replication dynamics using the DNA-combing technique on day 2. Mean of three independent experiments with SEM is

shown. *p < 0.05 control versus shRRM2; #p < 0.05 shRRM2 alone versus shRRM2/RRM2.

(C) Same as (A) but examined for formation of 53BP1 and gH2AX foci by immunofluorescence at day 6.

(D) Quantification of (C). Mean of three independent experiments with SEM is shown. #p < 0.001 versus vector controls; *p < 0.001 versus shRRM2-only cells.

(E) Same as (A) but examined for RRM2, gH2AX, p53, and b-actin expression by immunoblotting.

(F) Same as (A) but stained for SA-b-gal activity.

(G) Quantification of (F). Mean of three independent experiments with SEM is shown. *p < 0.001.

(H) Same as (A) but examined for p21, cyclin A, pS10H3, and b-actin by immunoblotting.

(I) Same as (A) but labeled with BrdU for 1 hr, and the incorporated BrdU was visualized by immunofluorescence. DAPI counterstaining was used to visualize

nuclei.

(J) Quantification of (I). The relative percentage of BrdU-positive cells was calculated against vector controls. Mean of three independent experiments with SEM is

shown. *p < 0.001.

(K) Same as (A), but an equal number of the indicated cells were seeded in 6-well plates. After 2 weeks, the plates were stained with 0.05% crystal violet in PBS to

visualize colony formation. Shown are representative images from three independent experiments.

(L) Same as (K), but the number of cells was counted at the indicated time points. Mean of three independent experiments with SEM is shown. *p < 0.001

compared with cells expressing shRRM2 alone.

See also Figure S5.
(Figures 5I and 5J), colony formation (Figure 5K), and cell

growth (Figure 5L) compared to shRRM2 alone. Notably, the

ectopically expressed RRM2 levels were comparable to its
1258 Cell Reports 3, 1252–1265, April 25, 2013 ª2013 The Authors
endogenous level (Figures 5A and 5E), suggesting that the

observed effects are not due to supraphysiological levels of

RRM2 expression. Together, we conclude that knockdown of



RRM2 is sufficient to trigger aberrant DNA replication, the DDR,

and senescence in primary human cells.

Ectopic RRM2 Expression Is Sufficient to Overcome the
Stable OIS-Associated Cell Growth Arrest
We next sought to determine whether downregulation of RRM2

is necessary for the OIS-associated cell growth arrest. Toward

this goal, we ectopically expressed RRM2 in RAS-infected

cells. Compared with controls, ectopic RRM2 suppressed

markers of senescence such as SA-b-gal activity and SAHF

formation (Figures 6A and 6B) and upregulation of p16 and

p21 (Figure 6C). Indeed, ectopic RRM2 suppressed the OIS-

associated cell-cycle exit, as evidenced by the significant in-

crease in cyclin A and pS10H3 expression (Figure 6C) and

BrdU incorporation (Figures 6D and 6E). Ectopic RRM2 signifi-

cantly suppressed the OIS-associated growth arrest as deter-

mined by colony-formation assays (Figure 6F) and cell growth

curves (Figure 6G). Of note, to limit the effects of supraphysio-

logical levels of RRM2 expression, we expressed the ectopic

RRM2 at a level lower than that of control cells (Figure 6C).

Importantly, the observed effects correlated with the rescue

of dNTP levels by ectopic RRM2 in these cells (Figure 6H),

further supporting the idea that RRM2 downregulation plays a

major role in decreasing dNTP levels during OIS. In addition,

ectopic RRM2 significantly suppressed the aberrant DNA repli-

cation observed during RAS-induced senescence (Figure 6I).

This result suggests that RRM2 suppresses aberrant DNA

replication by rescuing the decrease in dNTP levels. Likewise,

the DDR was also suppressed by ectopic RRM2, as demon-

strated by a decrease in the formation of 53BP1 and gH2AX

foci (Figures 6J and 6K) as well as a decrease in p53 and

gH2AX protein expression (Figure 6L). Based on these data,

we conclude that RRM2 downregulation is necessary for

senescence, and restoration of dNTP levels by ectopic RRM2

expression suppresses senescence.

We found that exogenous nucleosides are sufficient to

overcome the OIS-associated cell growth arrest in established

senescent cells (Figure 2). Because ectopic RRM2 is sufficient

to rescue the decrease in dNTP levels during senescence

(Figure 6H), we next sought to determine whether ectopic

RRM2 expression is sufficient to overcome the stable OIS-

associated cell growth arrest in established senescent cells.

To do so, stably arrested senescent cells induced by RAS

were infected with a lentivirus encoding RRM2 (which can

infect growth-arrested, nondividing cells), and markers of

senescence and cell cycle were examined. Compared with

controls, markers of senescence such as SA-b-gal activity

and p16 expression were suppressed by the lentivirus-

mediated RRM2 expression (Figures 6M–6O). Significantly,

expression of RRM2 was able to overcome the stable OIS-

associated arrest, as evidenced by both increased pS10H3

expression and marked cell growth (Figures 6O and 6P).

These observations were not due to a loss of RAS expression

because RAS was expressed at similar levels in both control

and RRM2-expressing cells (Figure 6O). Together, these data

indicate that RRM2 repression is necessary for maintenance

of the stable senescence-associated cell growth arrest in

established senescent cells.
C

RRM2Repression Correlateswith Senescence Status in
Human Nevi and Malignant Melanoma Harboring
Oncogenic BRAF or NRAS
We next sought to determine the importance of our findings in a

pathologically relevant model. Benign human nevi harboring

activated oncogenes are comprised of oncogene-induced

senescent melanocytes (Michaloglou et al., 2005). In addition,

there is evidence to suggest that the progression of benign

nevi with oncogenic BRAF or NRAS into malignant melanoma

correlates with OIS bypass (Dankort et al., 2007; Dhomen

et al., 2009; Kuilman et al., 2010). Thus, we sought to validate

our findings by examining RRM2 expression in human benign

nevi and malignant melanoma specimens. First, we determined

whether RRM2 is downregulated during oncogenic BRAF or

NRAS-induced senescence of primary human melanocytes.

Indeed, RRM2 expression was significantly inhibited during

senescence of melanocytes induced by oncogenic BRAF or

NRAS (Figures 7A–7C and S6A–S6C). Similar to what we

observed in primary human fibroblasts (Figure 1), exogenous

nucleosides were able to suppress senescence induced by

oncogenic BRAF in primary human melanocytes (Figures S6D–

S6F). These results suggest that RRM2 expression may promote

melanoma by suppressing oncogenic BRAF or NRAS-induced

senescence.

We also determined that RRM2 expression was significantly

increased in human melanoma cells harboring oncogenic

BRAF or NRAS compared to normal human melanocytes (Fig-

ure 7D). Notably, it has previously been demonstrated that

supraphysiological levels of RRM2 promote tumorigenesis by

causing genomic instability and the DDR (D’Angiolella et al.,

2012; Xu et al., 2008). Consistently, we observed that physiolog-

ical levels of RRM2 suppress oncogenic RAS-induced DDR (Fig-

ure 6), whereas DDR markers such as gH2AX remain high in

RAS-infected cells expressing supraphysiological levels of

RRM2 (Figures S6G and S6H).

We next compared expression of RRM2, the senescence

marker p16, and the cell proliferation marker Ki67 in a cohort

of human benign nevi and melanoma specimens harboring

oncogenic BRAF or NRAS (Table S1). Strikingly, RRM2 expres-

sion was nearly negative in human nevi with oncogenic BRAF

or NRAS, whereas the expression of RRM2 was significantly

higher in the melanoma specimens with oncogenic BRAF or

NRAS (Figures 7E and 7F). Consistently, expression of p16

was significantly higher in benign human nevi compared to

malignant melanomas (Figures 7E and S6I). In contrast, expres-

sion of Ki67 was negative in benign human nevi and significantly

higher in melanoma specimens (Figures 7E and S6J). These re-

sults are consistent with the idea that the supraphysiological

levels of RRM2 observed in melanoma specimens contribute

tomelanoma by suppressing oncogenic BRAF or NRAS-induced

senescence. We next determined whether RRM2 expression

negatively correlates with survival in patients with melanoma

harboring oncogenic BRAF or NRAS. Indeed, high RRM2

expression significantly correlates with poor overall survival in

these patients with melanoma (Figure 7G). In contrast, expres-

sion of RRM1 does not correlate with the survival of patients

with melanoma harboring oncogenic BRAF or NRAS (Fig-

ure S6K). We conclude that RRM2 repression correlates with
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Figure 6. Ectopic RRM2 Expression Suppresses Senescence and Is Sufficient to Overcome the Stable OIS-Associated Cell Growth Arrest

(A) IMR90 cells were coinfected with retrovirus-encoding control or RAS together with or without RRM2. Cells were examined for SA-b-gal activity or SAHF

expression on day 6.

(B) Quantification of (A). Mean of three independent experiments with SEM is shown. *p < 0.05 control versus RAS; #p < 0.05 RAS alone versus RAS/RRM2.

(C) Same as (A) but examined for RAS, RRM2, cyclin A, pS10H3, p21, p16, and b-actin expression by immunoblotting.

(D) Same as (A), but the cells were labeled with BrdU for 1 hr, and the BrdU incorporation was visualized by immunofluorescence. DAPI counterstaining was used

to visualize nuclei.

(E) Quantification of (D). Mean of three independent experiments with SEM is shown. *p < 0.01.

(F) Same as (A), but an equal number of the indicated cells were seeded in 6-well plates. After 2 weeks, the plates were stained with 0.05% crystal violet in PBS to

visualize colony formation. Shown are representative images from three independent experiments.

(G) Same as (F), but the number of cells was counted at the indicated time points. Mean of three independent experiments with SEM is shown. *p < 0.01.

(H) Same as (A), but on day 2, the concentrations of all four dNTPs were examined. p < 0.05 control versus RAS (*) and p < 0.05 RAS alone versus RAS/RRM2 (#).

Mean of three independent experiments with SEM is shown.

(I) Same as (H) but examined for DNA replication dynamics using the DNA-combing technique on day 2. Mean of three independent experiments with SEM is

shown. *p < 0.05 control versus RAS; #p < 0.05 RAS alone versus RAS/RRM2.

(J) Same as (A) but examined for the formation of 53BP1 and gH2AX foci by immunofluorescence at day 6.

(K) Quantification of (J). Mean of three independent experiments with SEM is shown. *p < 0.05.

(legend continued on next page)
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the senescence status of human benign nevi and melanoma

specimens, and high RRM2 expression significantly correlates

with worse overall survival in patients with melanoma.

Finally, we wanted to determine whether melanoma cells

harboring activated oncogenes can be driven to undergo senes-

cence by knockdown of RRM2. To do this, UACC-62 human

melanoma cells were infected with two individual shRRM2s.

The knockdown efficacy of shRRM2s in UACC-62 cells was

confirmed by immunoblotting (Figure 7H). The growth of

UACC-62 cells was notably inhibited by knockdown of RRM2,

as determined by cell growth curves (Figure 7I) and colony

formation (Figure 7J). Interestingly, the DDR marker gH2AX

was upregulated by RRM2 knockdown (Figure 7H). To determine

whether these cells were undergoing senescence, SA-b-gal

activity was assessed. Indeed, UACC-62 cells infected with

shRRM2 had significantly increased SA-b-gal activity compared

to controls (Figures 7K and 7L). Similar results were also

obtained with another melanoma cell line, WM164 (Figures

S6L–S6P), suggesting that the observed effects are not cell

line specific. These results demonstrate that knockdown of

RRM2 in melanoma cells suppresses the growth of these cells

by triggering cellular senescence.
DISCUSSION

In this study, we demonstrate that a decrease in dNTP levels

underlies the establishment and maintenance of the stable

OIS-associated cell growth arrest. Mechanistically, we discov-

ered that the decrease in dNTP levels is due to the transcrip-

tional repression of the RRM2 gene through recruitment of

E2F7 prior to the senescence-associated cell-cycle exit. This

correlates with aberrant DNA replication and coincides with

the DDR during OIS. Notably, RRM2 downregulation is both

necessary and sufficient for senescence, which correlates with

its effects on the changes in cellular dNTP levels. Significantly,

we demonstrated that suppression of nucleotide metabolism

through RRM2 repression is necessary for maintenance of the

stable OIS-associated cell growth arrest because established

senescent cells can reenter the cell cycle after expression of

ectopic RRM2. Underscoring the physiological relevance of

the current discovery, we showed that RRM2 repression posi-

tively correlates with the senescence status of melanocytes in

human benign nevi and melanoma specimens harboring onco-

genic BRAF or NRAS. Additionally, high RRM2 expression

correlates with poor overall survival in patients with melanoma

harboring oncogenic BRAF or NRAS. Knockdown of RRM2 in

human melanoma cells with activated oncogenes drives senes-

cence of these cells, supporting the hypothesis that RRM2

promotes melanoma by suppressing the senescence tumor

suppression mechanism.
(L) Same as (A) but examined for p53, gH2AX, and b-actin expression by immun

(M) IMR90 cells were infected with RAS-encoding retrovirus. On day 6, establish

vector control. After an additional 14 days, the cells were stained for SA-b-gal ac

(N) Quantification of (M). Mean of three independent experiments with SEM is sh

(O) Same as (M) but examined for RAS, RRM2, p16, pS10H3, and b-actin expres

(P) Same as (M), but an equal number of cells were inoculated in 6-well plates, an

independent experiments with SEM is shown. *p < 0.05.

C

We show that addition of exogenous nucleosides in estab-

lished senescent cells is able to overcome the senescence-

associated cell growth arrest (Figure 2). In addition, knockdown

of RRM2 expression drives senescence and the associated cell

growth arrest (Figures 5 and S5). Conversely, ectopic RRM2 is

sufficient to overcome the stable senescence-associated cell

growth arrest (Figure 6). These observed effects correlate with

the changes in dNTP levels in these cells (Figures 5, 6, and

S5). Significantly, RRM2 repression, which drives the decrease

in dNTP levels, occurs prior to the senescence-associated

cell-cycle exit (Figures 4A and 4B), demonstrating that the

observed effects are not a consequence of senescence or its

associated cell growth arrest. These results support the premise

that the decrease in dNTP levels induced by RRM2 repression is

necessary and sufficient for establishing andmaintaining the sta-

ble senescence-associated cell growth arrest induced by acti-

vated oncogenes.

OIS is characterized by aberrant DNA replication during the

S phase of the cell cycle, which triggers the DDR (Bartkova

et al., 2006; Di Micco et al., 2006). Here, we show that dNTP

levels are decreased prior to the OIS-associated cell-cycle exit

(Figure 3A), and addition of exogenous nucleosides significantly

rescues the aberrant DNA replication and DDR during OIS

(Figures 1D, 1E, 3B, and 3C). These data indicate that there is

a correlation between the decrease in dNTP pools and aberrant

DNA replication and DDR during OIS. However, the effect of nu-

cleosides on OIS is not a consequence of DDR because senes-

cence induced by DNA-damaging agents such as doxorubicin

and etoposide is not affected by exogenous nucleosides (Fig-

ures S1B–S1I). This further supports the premise that the

decrease in dNTP levels is specifically linked to aberrant DNA

replication during OIS. Indeed, RRM2 knockdown decreases

dNTP levels and triggers aberrant DNA replication and the

DDR (Figures 5B–5D and S5C–S5E). Conversely, ectopic

RRM2 rescues the decrease in dNTP levels and suppresses

the aberrant DNA replication and DDR induced by activated on-

cogenes (Figures 6H–6K). Together, these data support a model

whereby oncogene-induced repression of RRM2 decreases the

dNTP levels, which triggers aberrant DNA replication and the

DDR and, ultimately, OIS-associated cell growth arrest. It is

possible that the DDR triggered by aberrant DNA replication is

irreparable in the context of oncogene activation because of

the lack of dNTPs due to RRM2 repression. This causes persis-

tent DDR observed in established senescent cells (Rodier et al.,

2009) and underlies the stable OIS-associated cell growth arrest.

One of the classical examples of OIS as a tumor suppression

mechanism is melanocytic nevi arising from oncogenic BRAF or

NRAS (Kuilman et al., 2010). The stable growth arrest observed

in these lesions is thought to prevent transformation of these

cells into malignant melanoma (Mooi and Peeper, 2006). Here,
oblotting.

ed senescent cells were infected with a lentivirus encoding RRM2 or an empty

tivity.

own. *p < 0.001.

sion by immunoblotting.

d the number of cells was counted at the indicated time points. Mean of three
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Figure 7. RRM2 Is Repressed in Human

Benign Nevi, whereas Overexpressed in

Melanoma; Knockdown of RRM2 Drives

Senescence of Melanoma Cells

(A) Melanocytes were infected with a lentivirus

encoding control or BRAFV600E. At 21 days after

infection, cells were examined for BRAF, RRM2,

p16, p21, pS10H3, gH2AX, and b-actin expression

by immunoblotting.

(B) Same as (A) but examined for SA-b-gal

activity.

(C) Quantification of (B). Mean of two independent

experiments with SEM is shown. *p < 0.01.

(D) RRM2 and b-actin expression in two individ-

ual isolations of normal human melanocytes and

the indicated human melanoma cell lines by

immunoblotting is shown. Mutation status of

BRAF and NRAS of the selected cell lines is

indicated.

(E) Immunohistochemical staining of RRM2, p16,

and Ki67 in benign human nevus (N) and human

melanoma tissue specimens harboring oncogenic

BRAF or NRAS. Shown are examples of a benign

human nevus and a human melanoma tissue

harboring oncogenic BRAFV600E. S, stroma; E,

epidermal compartments.

(F) Quantification of RRM2 staining in (E).

Expression of RRM2 in benign human nevi (n = 5)

and melanoma tissue specimens (n = 7) was

quantified using the histological score. Mean of

three independent experiments with SEM is

shown.

(G) A high level of RRM2 expression correlates

with shorter overall survival in human patients with

melanoma harboring oncogenic BRAF or NRAS.

The univariate overall survival curve (Kaplan-Meier

method) for patients with melanoma (n = 50) with

high or low RRM2 expression is detailed in

Experimental Procedures.

(H) UACC-62 human melanoma cells were in-

fected with control or two individual shRRM2s

encoding lentivirus. RRM2, cyclin A, gH2AX, and

b-actin expression was determined by immuno-

blotting.

(I) Same as (H), but an equal number of cells were

seeded in 6-well plates, and the number of cells

was counted at the indicated time points. Mean of

three independent experiments with SEM is

shown. *p < 0.05 compared with controls.

(J) Same as (I), but after 2 additional weeks, the

plates were stained with 0.05% crystal violet in PBS to visualize colony formation. Shown are representative images of three independent experiments.

(K) Same as (H) but stained for SA-b-gal activity.

(L) Quantification of (K). Mean of three independent experiments with SEM is shown. *p < 0.05 compared with controls.

See also Figure S6 and Table S1.
we found that RRM2 repression correlates with senescence

status in human melanocytic nevi and melanoma specimens

harboring oncogenic BRAF or NRAS (Figure 7). Interestingly,

as previously reported by Michaloglou et al. (2005), expression

of the senescence marker p16 in melanocytic nevi is heteroge-

neous with a proportion of negative expression cells (Fig-

ure 7E). In contrast, RRM2 repression occurs in nearly all

melanocytes within the benign nevi (Figures 7E and 7F). This

suggests that suppression of nucleotide metabolism plays a

broader role inmaintaining theOIS-associated stable cell growth
1262 Cell Reports 3, 1252–1265, April 25, 2013 ª2013 The Authors
arrest, such as the one observed in melanocytic nevi, compared

to p16. Together, these findings are consistent with the idea

that RRM2 repression is necessary for the stable cell growth

arrest observed in OIS-associated benign lesions such as mela-

nocytic nevi.

Cellular dNTP levels play a role in regulating cell proliferation

by controlling DNA synthesis (Reichard, 1988). Here, we show

that activation of oncogenes decreases dNTP levels in primary

human cells prior to OIS-associated cell growth arrest due to

oncogene-induced RRM2 downregulation (Figures 3 and 6H).



This suggests that RRM2 downregulation leads to an uncoordi-

nated cell proliferation and dNTP supply, which ultimately leads

to senescence and the associated cease of proliferation. Consis-

tently, changes in nucleotide metabolism have been implicated

in the early stages of cancer development. For example, the viral

oncogenic protein HPV16 E6/7 induces genomic instability by

suppressing dNTP synthesis (Bester et al., 2011). Furthermore,

we show that RRM2 repression correlates with senescence sta-

tus in human nevi or melanoma specimens harboring oncogenic

BRAF or NRAS (Figures 7 and S6). Consistently, knockdown of

RRM2 drives the senescence of melanoma cells harboring acti-

vated oncogenes (Figures 7H–7L and S6L–S6P). These data are

consistent with a model whereby RRM2 expression regulates

the OIS-associated cell growth arrest by acting as a key switch

for the coordinated cell proliferation and dNTP supply.

We show that RRM2 is downregulated at the transcriptional

level during OIS (Figures 4C and 4D). In addition, we show that

RRM2 transcriptional repression correlates with an enhanced

association with E2F7, a transcriptional repressor, with the pro-

moter of theRRM2 gene (Figure 4E). This correlates with a simul-

taneous decrease in binding of transcriptional activator E2F1 to

the RRM2 gene promoter. Indeed, E2F7 upregulation demon-

strated the same kinetics as RRM2 downregulation during OIS

(Figure 4F). Consistent with our observation, E2F7 has recently

been shown to be upregulated during the early stages of senes-

cence (Aksoy et al., 2012). In addition, RRM2 has also been

shown to be regulated by c-Myc (Liu et al., 2008), a key regulator

of the nucleotide biosynthetic pathway (Dang, 1999, 2011). Thus,

it is plausible that c-Myc may cooperate indirectly with E2F7 and

E2F1 in regulating RRM2 transcription prior to the senescence-

associated cell-cycle exit.

We found that RRM2 is significantly overexpressed in mela-

noma cells (Figures 7D–7F). Notably, supraphysiological levels

of RRM2 can lead to genomic instability, DNA damage, and

tumorigenesis by causing an imbalance in dNTP pools (D’Angio-

lella et al., 2012; Xu et al., 2008). Here, we show that supraphy-

siological levels of RRM2 observed in melanoma cells correlate

with loss of expression of markers of senescence in melanoma

specimens (Figure 7). In addition, we found that markers of the

DDR remain high in RAS-infected primary human fibroblasts ex-

pressing supraphysiological levels of RRM2 (Figures S6G and

S6H). These data support the notion that supraphysiological

levels of RRM2 suppress OIS and simultaneously promote

genomic instability by allowing error-prone replication due to

an imbalance in dNTP pools, which ultimately drives tumorigen-

esis. These data also demonstrate the important role of RRM2 in

cancer development by controlling dNTP pools. Indeed, RRM2

knockdown in human melanoma cells harboring oncogenic

BRAF suppressed the proliferation of these cells by triggering

senescence (Figures 7H–7L and S6L–S6P). The p53 and pRB

tumor suppressor pathways are key senescence effectors (Cam-

pisi and d’Adda di Fagagna, 2007; Courtois-Cox et al., 2008;

Kuilman et al., 2010). Notably, p53 is mutated in the WM164

cell line (Weiss et al., 1993). In addition, p16 is deleted in the

UACC-62 cell line (Ikediobi et al., 2006) and mutated in the

WM164 cell line (Ohta et al., 1994). However, knockdown of

RRM2 in these cells was able to induce senescence (Figures

7H–7L and S6L–S6P). Therefore, senescence induced by
C

RRM2 inhibition in melanoma cells is independent of both p53

and p16. This indicates that human cancer cells that lack func-

tional p53 and p16 retain the capacity to undergo senescence

through suppressing RRM2. These data suggest that inhibition

of the nucleotide biosynthetic pathway by suppressing RRM2

represents a bona fide target for driving cancer cells to undergo

senescence.

In summary, suppression of nucleotide metabolism via RRM2

repression underlies the establishment and maintenance of the

stable cell growth arrest, the hallmark that characterizes OIS

as an important tumor suppression mechanism. These data

place altered nucleotide metabolism at the heart of OIS regula-

tion and provide the molecular basis by which the stable OIS-

associated cell growth arrest is established and maintained.

EXPERIMENTAL PROCEDURES

Retrovirus and Lentivirus Infections

Retrovirus production and transduction were performed as described previ-

ously (Tu et al., 2011; Ye et al., 2007; Zhang et al., 2005) using Phoenix cells

to package the infection viruses (Dr. Gary Nolan, Stanford University). Lenti-

virus was packaged using the ViraPower Kit (Invitrogen, Carlsbad, CA, USA)

following the manufacturer’s instructions and as described previously (Li

et al., 2010; Tu et al., 2011; Ye et al., 2007). Cells infectedwith viruses encoding

the puromycin-resistance gene were selected in 3 mg/ml puromycin.

FACS for C12FDG Expression

Cells were incubated with 33 mM C12FDG (Invitrogen) for 1 hr as described

previously by Debacq-Chainiaux et al. (2009). After rinsing with PBS,

C12FDG-positive cells were sorted using a FACS ARIAII (BD Biosciences,

San Jose, CA, USA).

DNA-Combing Analysis

Cells were pulse labeled for 10 min with medium containing 2 mM of BrdU

(Sigma-Aldrich), washed twice with PBS, incubated in regular medium for

20 min, and then chased for 20 min with medium containing 2 mM iododeox-

yuridine (IdU; Sigma-Aldrich). Harvesting and spreading of DNA fibers were

performed as previously described by Merrick et al. (2004). The DNA fibers

were stained with antibodies to BrdU (Abcam) and IdU (Fitzgerald Industries,

Acton, MA, USA), and the staining was visualized using secondary antibodies

labeled with FITC and Cy3, respectively. DNA fibers were counterstained with

a primary antibody to ssDNA (Millipore) and were visualized with a secondary

antibody labeled with Alexa Fluor 350 (Invitrogen), allowing the exclusion of

any broken or tangled fibers. DNA replication forks were scored as

elongating, terminated, or newly fired, as previously described by Bartkova

et al. (2006).

Measurement of dNTP Concentrations in Cells

Briefly, 53 106 cells were harvested and resuspended in 80%methanol. Cells

were vortexed and stored at�20�C overnight. Next, cells were boiled for 3min

and centrifuged at 4�C at 17,0003 g for 20 min. Supernatants were harvested

and dried using a vacuum centrifuge. Pellets were resuspended in nuclease-

free water and stored at �20�C until use. dNTP concentration was measured

as previously described by Wilson et al. (2011).

ChIP Analysis

ChIP in control and RAS-infected IMR90 cells was performed at day 2 as

previously described (Zhang et al., 2007b) using antibodies against E2F1

(Santa Cruz Biotechnology), E2F7 (Santa Cruz Biotechnology), or an isotype-

matched IgG control. Immunoprecipitated DNA was analyzed using SYBR

Green qPCR Mastermix (SA Biosciences, Valencia, CA, USA) against the

human RRM2 gene promoter region containing the E2F1/E2F7 binding

site using the following primers: forward, 50-CTCCAGCTCCTGGCCTCAA-30,
and reverse, 50-RCCGCGTGGACTGTTAATGC-30.
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Immunofluorescence, BrdU Labeling, and SA-b-Gal Staining

Immunofluorescence staining and BrdU labeling were performed as described

previously using antibodies described above (Tu et al., 2011; Zhang et al.,

2005, 2007a, 2007b). SA-b-gal staining was performed as previously

described (Dimri et al., 1995). For quantification, a minimum of 200 cells

from each group was examined.

Please see the Extended Experimental Procedures for further details.
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