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SUMMARY

Melanoma patients with oncogenic BRAFV600E mu-
tation have poor prognoses. While the role of
BRAFV600E in tumorigenesis is well established, its
involvement in metastasis that is clinically observed
in melanoma patients remains a topic of debate.
Here, we show that BRAFV600E melanoma cells
have extensive invasion activity as assayed by the
generation of F-actin and cortactin foci that mediate
membrane protrusion, and degradation of the
extracellular matrix (ECM). Inhibition of BRAFV600E

blocks melanoma cell invasion. In a BRAFV600E-
driven murine melanoma model or in patients’ tu-
mor biopsies, cortactin foci decrease upon inhibitor
treatment. In addition, genome-wide expression
analysis shows that a number of invadopodia-
related genes are downregulated after BRAFV600E

inhibition. Mechanistically, BRAFV600E induces
phosphorylation of cortactin and the exocyst sub-
unit Exo70 through ERK, which regulates actin
dynamics and matrix metalloprotease secretion,
respectively. Our results provide support for the
role of BRAFV600E in metastasis and suggest that
inhibiting invasion is a potential therapeutic strat-
egy against melanoma.
INTRODUCTION

Malignant melanoma is well known for its aggressive metastasis,

which accounts for most of patients’ deaths (Erdmann et al.,

2013). Approximately 50% of melanomas harbor activating mu-

tations in the BRAF protein kinase. Themost common BRAFmu-

tation is the substitution of valine at position 600 by glutamic acid
2012 Cell Reports 15, 2012–2024, May 31, 2016 ª 2016 The Author(s
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(V600E), which leads to constitutive activation of the kinase and

thus the RAS-RAF-MEK-ERK pathway (Davies et al., 2002; Wan

et al., 2004).

While the role of BRAFV600E in driving melanomagenesis is

well established, its role in melanoma invasion remains elusive,

because conflicting evidence exists in the literature. In both cell

culture and mouse models, oncogenic BRAF was reported to

induce cancer cell invasion by activating the Rho family of gua-

nosine triphosphatases (Makrodouli et al., 2011), downregula-

tion of PDE5A (Arozarena et al., 2011), and reorganization of

actin cytoskeleton (Klein et al., 2008). Studies also suggest

that BRAF mutation alone does not induce metastasis and pro-

teins such as b-catenin act as a central mediator of tumor

metastasis in a BRAFV600E/PTEN�/� mouse model of mela-

noma (Damsky et al., 2011). In clinical studies, the frequency

of BRAFV600E in metastatic melanomas is similar to primary

melanomas (Casula et al., 2004; Colombino et al., 2012). In

addition, BRAF or NRAS mutation status does not influence

the clinical outcomes in patients with metastatic melanoma

(Carlino et al., 2014). However, studies have shown that

BRAFV600E is correlated to a lower overall patient survival rate

compared to BRAF wild-type melanoma, which is similar to

what has been observed in other types of cancer (Cho et al.,

2006; Davies et al., 2002; Long et al., 2011; Menzies et al.,

2012; Nikiforova et al., 2003; Roth et al., 2010; Ugurel

et al., 2007; Van Cutsem et al., 2011; Yokota et al., 2011).

Clearly, a more definitive study of the role of BRAFV600E in mel-

anoma progression is needed.

Cancer cells initiate metastasis by invading through the extra-

cellular matrix (ECM). To degrade the ECM, cells secrete metal-

loproteinases (MMPs) via actin-based membrane protrusions

such as invadopodia (Hoshino et al., 2013b; Leong et al.,

2014; Linder, 2007; McNiven, 2013; Murphy and Courtneidge,

2011; Paz et al., 2014; Yamaguchi, 2012). The formation of

such invasion structures is controlled by signaling events that

lead to phosphorylation of a number of proteins, including cor-

tactin, which through neural Wiskott-Aldrich syndrome protein
).
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(N-WASP) and the Arp2/3 complex, initiates the dynamic reor-

ganization of the F-actin network (Bravo-Cordero et al., 2012;

Hoshino et al., 2013a, 2013b). Secretion of MMPs also requires

the proper function of the exocytosis machinery. The exocyst,

an octameric protein complex consisting of Sec3, Sec5, Sec6,

Sec8, Sec10, Sec15, Exo70, and Exo84, mediates the docking

of secretory vesicles to the plasma membrane during exocy-

tosis (Wu and Guo, 2015; He and Guo, 2009; Hsu et al.,

2004). Studies demonstrate that the exocyst is involved in

MMP secretion and cell migration (Sakurai-Yageta et al.,

2008; Liu et al., 2009; Lu et al., 2013; Ren and Guo, 2012;

Monteiro et al., 2013). The exocyst subunit Exo70 is a direct

phospho-substrate of ERK, which plays an important role in

MMP secretion in response to growth factor signaling (Ren

and Guo, 2012).

In this study, we systematically investigated the role of

BRAFV600E in promoting melanoma invasion using a number

of in vitro and in vivo approaches. We demonstrate that

BRAFV600E is involved in melanoma cell invasion. Inhibition of

BRAFV600E significantly reduces the number of cortactin foci

in a genetically engineered, BRAF-driven mouse melanoma

model and in melanoma patients’ tumor biopsies. Mechanisti-

cally, BRAFV600E promotes ERK-dependent phosphorylation

of both cortactin and Exo70, which in turn regulates actin

assembly and MMP secretion. Genome-wide expression

analysis shows a number of invadopodia-related genes are

regulated by BRAFV600E expression. Taken together, our study

suggests that BRAFV600E plays an important role in melanoma

invasion.

RESULTS

BRAFV600E Is Necessary for Melanoma Cell Migration
and Invasion
To investigate the role of BRAFV600E in controlling melanoma cell

invasion, we first inhibited BRAFV600Ewith either small interfering

RNA (siRNA) or the BRAF inhibitor PLX4720 in BRAFV600E-posi-

tive melanoma cells. The WM3211 cell line with wild-type BRAF

was included as a negative control. siRNA targeting both wild-

type BRAF and BRAFV600E (siBRAF) (Poulikakos et al., 2011)

effectively reduced the expression of BRAF in all four melanoma

cell lines (Figures S1A and S1B). While siBRAF did not affect the
Figure 1. BRAFV600E Is Necessary for Actin-Based Membrane Protrusio

Cells

(A) 1205Lu cells with different treatments were plated on coverslips coated with

phalloidin (green), and nuclei were stained with DAPI (blue). Areas of gelatin deg

(B) Quantification of Alexa 568-labeled gelatin degradation. n > 150 from three in

(C) In-gel zymography analysis shows that BRAF inhibition suppresses MMP-2

treated with PLX4720 for 48 hr and then incubated with serum-free medium for 12

(D) Quantification of MMP-2 secretion from different groups of cells in (C). n = 3.

(E) 1205Lu cells with different treatments were plated on coverslips coated with ge

(blue).

(F) Quantification of the percentage of cells with cortactin foci. n > 150 from thre

(G–J) WM793 cells with different treatments were plated on coverslips coated with

(green), and MT1-MMP or TKS5 (red). Quantification of the percentage of cells w

independent experiments.

*p < 0.05, **p < 0.01, ***p < 0.001. Scale bars, 10 mm. Error bars, and SD. Kruskal-W

was performed in (D) using software R v.2.14. See also Figures S1–S3.
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motility of WM3211 cells with wild-type BRAF, the motility was

significantly inhibited in BRAFV600E-positive 1205Lu, WM35,

andWM793melanoma cell lines (Figure S1C). Similar to siBRAF,

the BRAF inhibitor PLX4720 blocked the migration of 1205Lu,

WM35, and WM793 cells (Figure S1D).

Next, we examined whether inhibition of BRAFV600E

decreased the ability of melanoma cells to degrade ECM. The

1205Lu and WM793 cell lines treated with DMSO or transfected

with control luciferase siRNA displayed a high level of gelatin

degradation. In contrast, cells treated with PLX4720 or trans-

fected with BRAF siRNA showed less degradation (Figures 1A

and 1B; Figures S2A and S2B). MMP secretion mediates the

degradation of the ECM (Murphy and Courtneidge, 2011). To

test whetherBRAFV600E regulatesMMP secretion, we performed

the zymography assay, which quantifies MMP activity by in-gel

digestion of gelatin (Liu et al., 2008). The 1205Lu cells were trans-

fected with siBRAF or treated with PLX4720. Conditioned media

were collected and analyzed on a gel containing gelatin. As

shown in Figures 1C and 1D, both PLX4720 and siBRAF signifi-

cantly reduced the activity of MMP2 in the media.

Cancer cells invasion also requires actin-based membrane

protrusions that penetrate into the ECM (Friedl and Wolf,

2003; Linder, 2007; Murphy and Courtneidge, 2011; N€urnberg

et al., 2011). These invasion sites are often enriched with

F-actin and its regulators, such as cortactin and Tks5, together

with MMPs (Bowden et al., 1999; Eckert et al., 2011; Hoshino

et al., 2013b; Sharma et al., 2013). Inhibition of BRAFV600E

with either siBRAF or PLX4720 significantly reduced the num-

ber of F-actin/cortactin foci (Figures 1E and 1F; Figures S2C

and S2D). The F-actin/cortactin foci were likely invadopodia,

the actin-based membrane protrusions that penetrate into the

ECM (Friedl and Wolf, 2003; Linder, 2007; Murphy and Court-

neidge, 2011; N€urnberg et al., 2011). However, due to the

fast actin dynamics and accumulative ECM degradation by

MMPs, the F-actin/cortactin foci may not appear perfectly

co-localized with the sites of ECM degradation. To further verify

the invadopodia structures, we co-stained the cells for F-actin,

cortactin, MT1-MMP, or Tks5. As shown in Figures 1G–1J and

Figure S3, there were clear foci with co-localization of all three

proteins in control cells, suggesting the formation of invadopo-

dia. Upon PLX4720 treatment, the number of such foci was

significantly decreased.
n Formation and ECM Degradation in Human BRAFV600E Melanoma

Alexa 568-labeled gelatin (red) for 12 hr. F-actin was stained with Alexa-488-

radation were shown as black areas beneath the cells.

dependent experiments.

secretion in 1205Lu cells. The 1205Lu cells were transfected with siBRAF or

hr. Conditioned media were collected and analyzed on a gel containing gelatin.

latin for 5 hr. Cells were stainedwith cortactin (red), phalloidin (green), and DAPI

e independent experiments.

gelatin for 5 hr (G and I). Cells were stained with cortactin (magenta), phalloidin

ith cortactin-MT1-MMP or cortactin-TKS5 foci (H and J). n > 150 from three

allis one-way ANOVAwas performed in (B), (F), (H), and (J), and Student’s t test
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Figure 2. Transient Expression of BRAFV600E Is Sufficient to Promote Melanoma Cell Invasion

(A) WM3211-BRAFV600E cells were pretreated with Dox or DMSO for 4 hr and plated on coverslips coated with gelatin. The cells were still maintained in Dox

except control. After 5 hr of incubation, cells were stained with cortactin (red), phalloidin (green), and DAPI (blue).

(B) Quantification of the percentage of cells with cortactin foci. n > 150 from three independent experiments.

(C)WM3211-BRAFV600E cells were pretreated with Dox or DMSO for 4 hr and then plated on coverslips coated with Alexa 568-labeled gelatin (red). The cells were

maintained in Dox except control. After 12 hr of incubation, cells were stained with F-actin (green) and nuclei (blue).

(D) Quantification of Alexa 568-labeled gelatin degradation. n > 150 from three independent experiments.

(E) In-gel zymography analysis shows the effect of BRAFV600E on MMP-2 secretion in WM3211 cells. WM3211-BRAFV600E cells were treated with or without Dox

for indicated times, and the conditioned media were collected and analyzed by in-gel zymography. b-actin was detected by western blot.

(F) Quantification of MMP-2 secretion from different groups of cells in (E). n = 3.

(legend continued on next page)
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Transient Expression of BRAFV600E Is Sufficient to
Induce Cell Invasion
To further validate the role of BRAFV600E in melanoma cell inva-

sion, we tested whether BRAFV600E is sufficient to promote the

formation of actin-based protrusion and ECM degradation.

BRAFV600E was expressed under the doxycycline (Dox)-induc-

ible promoter in WM3211 cells that are wild-type for both

BRAF and NRAS (henceforth termed WM3211-BRAFV600E cells)

(Figures S4A and S4B) (Meerbrey et al., 2011). After 9 hr of Dox

treatment, the percentage of WM3211-BRAFV600E cells with

F-actin/cortactin foci was significantly higher than that of the

WM3211 control cells (Figures 2A and 2B). Using fluores-

cence-labeled degradation assay, we further found that forced

expression of BRAFV600E increased gelatin degradation by

approximately 1.5-fold compared to control cells (Figures 2C

and 2D).

To test whether BRAFV600E is sufficient to increase the

secretion of MMPs, we measured MMP secretion in WM3211-

BRAFV600E cells with or without Dox treatment using an in-gel

zymography assay. WM3211-BRAFV600E cells displayed a

more than 2-fold increase in MMP2 activity compared to that

of the control cells (Figures 2E and 2F). To confirm that the in-

crease in MMP2 activity was induced by BRAFV600E, we treated

cells with PLX4720 in the presence of Dox. PLX4720 significantly

inhibited the MMP-2 activity that was induced by BRAFV600E

expression (Figures 2G and 2H). These data suggest that tran-

sient expression of BRAFV600E is sufficient to promote ECM

degradation.

We also found that expression of BRAFV600E for 3 days

induced cell growth arrest, and some cells exhibited the senes-

cence-like phenotype (data not shown), similar to previous re-

ports that BRAFV600E induces cell growth arrest and senescence

as a cellular response to oncogenic BRAF (Damsky et al., 2011,

2015; Dankort et al., 2009; Dhomen et al., 2009; Michaloglou

et al., 2005; Vredeveld et al., 2012; Wajapeyee et al., 2008).

This will be discussed further later.

BRAFV600E-Mediated Invasion Is Dependent on ERK
Phosphorylation of Cortactin and Exo70
Next, we set out to understand howBRAFV600E promotes the as-

sembly of protrusive actin structures and secretion of MMPs.

Membrane protrusion is mediated by the recruitment and activa-

tion of actin regulatory proteins such as cortactin and Tks5

(Ayala et al., 2008; Seals et al., 2005). Cortactin can be phos-

phorylated at serine 418 (S418) by ERK, which is a key kinase in

the RAF-MEK-ERK cascade (Kelley et al., 2010; Martinez-Quiles

et al., 2004). We therefore examined the phosphorylation of

cortactin in response to BRAFV600E. Forced expression of

BRAFV600E increased phospho-ERK levels and the phosphoryla-

tion of cortactin by ERK at S418 in WM3211-BRAFV600E cells

(Figure 3A). In addition, PLX4720 or siBRAF suppressed the

phosphorylation of both ERK and cortactin in 1205Lu cells (Fig-
(G) In-gel zymography analysis shows that PLX4720 inhibits BRAFV600E-induced

(H) Quantification of MMP-2 secretion from different groups of cells in (G). n = 3.

*p < 0.05, ***p < 0.001. Scale bars, 10 mm. Error bars, SD. Student’s t test was perf

and (D) using software R v.2.14. See also Figure S4.
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ure 3B). Furthermore, treatment of 1205Lu cells with two MEK

inhibitors, U0126 or GSK1120212, significantly inhibited the

phosphorylation of ERK and cortactin (Figures 3C and 3D). Fluo-

rescence microscopy shows that these MEK inhibitors reduced

the number of cells with cortactin foci by approximately 3-fold

(Figures 3E–3H). Similarly, drug treatments significantly reduced

the number of foci with co-localization of F-actin, cortactin,

and Tks5 or those with co-localization of F-actin, cortactin,

and MT1-MMP (Figures S5 and S6). These foci likely represent

invadopodia.

Previous studies have shown that the exocyst mediates MMP

secretion during invasion (Sakurai-Yageta et al., 2008; Liu et al.,

2009; Monteiro et al., 2013; Ren and Guo, 2012). The exocyst

subunit Exo70 coordinates actin dynamics with exocytosis to

control cell invasion (Liu et al., 2009). ERK directly phosphory-

lates Exo70, thereby promoting exocytosis of MMPs (Ren and

Guo, 2012). We therefore hypothesize that BRAFV600E regulates

MMP2 secretion through Exo70. To test this hypothesis, we

determined whether Exo70 is required for MMP2 activity in

BRAFV600E-positive melanoma. Knockdown of Exo70 inhibited

MMP2 secretion and gelatin degradation (Figures 4A–4C).

Next, we examined the role of Exo70 in controlling tumor metas-

tasis using a melanoma xenograft model. We generated 1205Lu

stable cell lines expressing control short hairpin RNA (shRNA) or

Exo70 shRNA (shExo70) and injected them into immunodeficient

mice. Tumor metastasis was monitored over 5 weeks. While the

incidence of primary tumor was similar for each group, knock-

down of Exo70 effectively suppressed lung metastasis of

1205Lu cells (Figures 4D and 4E).

We performed an immunoprecipitation assay to determine

the level of Exo70 phosphorylation. Phosphorylation of Exo70

increased more than 6-fold upon the forced expression of

BRAFV600E in WM3211 cells, while the total expression level of

Exo70 remained unchanged (Figure 5A). We further examined

whether BRAFV600E promoted exocyst complex assembly,

which is necessary for the tethering of secretory vesicles to the

plasma membrane for exocytosis. As shown in Figures 5B and

5C, BRAFV600E promoted the association of Exo70 with Sec8,

another component of the exocyst complex. In addition, both

PLX4720 and siBRAF suppressed Exo70 phosphorylation and

its interaction with Sec8 (Figures 5D–5F). Because Exo70 is a

substrate of ERK, we also examined the effect of inhibition of

the BRAF-MEK-ERK pathway by a MEK inhibitor, U0126. As

shown in Figures 5G–5I, after the treatment with U0126, phos-

phorylation of Exo70 decreased by approximately 6-fold, and

the binding between Exo70 and Sec8 decreased by more than

5-fold.

BRAFV600E Is Necessary for Invasion in a Genetically
Engineered BRAF-Driven Mouse Melanoma
To further investigate the role of BRAFV600E in vivo, we used a

genetically engineered BRAF-drivenmouse (iBIP mice, inducible
MMP-2 secretion in WM3211 cells.

ormed in (F) and (H), and Kruskal-Wallis one-way ANOVAwas conducted in (B)



A B C D

E F

G
H

Figure 3. Actin-Based Membrane Protrusion Formation in BRAFV600E Cells Is Dependent on ERK

(A) WM3211-BRAFV600E cells were cultured with or without Dox for the indicated times and cell lysates were analyzed by western blot using antibodies against

ERK1/2, phospho-ERK1/2 (p-ERK1/2), cortactin, phospho-cortactin (p-CortactinS418), and b-actin.

(B–D) Cell lysates from 1205Lu cells with different treatments were analyzed by western blot using antibodies against ERK1/2, p-ERK1/2, cortactin,

p-CortactinS418, and b-actin.

(E–H) 1205Lu cells were treated with GSK1120212 or U0126 for 24 hr and then plated on coverslips coated with gelatin for 5 hr (E and G). Cells were stained with

cortactin (red), phalloidin (green), and DAPI (blue). Quantification of the percentage of cells with cortactin foci. n > 150 from three independent experiments

(F and H).

*p < 0.05. Scale bars, 10 mm. Kruskal-Wallis one-way ANOVA was performed using software R v.2.14. See also Figures S5 and S6.
BRAF INK/ARF PTEN) melanoma model (Kwong et al., 2015). As

described previously, the iBIP mice were generated with a Tet-

inducible human BRAFV600E transgene on a melanocyte-spe-

cific, Pten-null, and constitutive Cdkn2a-null background. Mice

with melanoma were treated with PLX4720 for 14 days. Pre-

treatment and early-treatment biopsies from the same mouse

were collected and stained with antibodies against cortactin

(Eckert et al., 2011; Leong et al., 2014; Lu et al., 2013). While

the pre-treatment tumor cells contained abundant cortactin

foci, treating the mice with PLX4720 significantly reduced the

number of cortactin foci (Figures 6A and 6B). During the time
course of the experiment, no acquired BRAF inhibition (BRAFi)

resistance was observed in the iBIP system.

To confirm the pharmacological effects and investigate the

mechanism underlying BRAFV600E-induced invasion, we took

advantage of the Dox-controllable BRAFV600E transgene. With

extinction of BRAFV600E expression upon Dox withdrawal, a lon-

gitudinal time course of 42 samples was analyzed by gene

expression microarray (GEO: GSE79972). To understand the

role of invadopodia regulation in relation to global gene expres-

sion, we first generated a knowledge-based invadopodia gene

set consisting of 38 genes (Murphy and Courtneidge, 2011).
Cell Reports 15, 2012–2024, May 31, 2016 2017
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Figure 4. Exo70 Activity Is Required for the Gelatin Degradation and Melanoma Metastasis

(A) In-gel zymography analysis showed that Exo70 knockdown inhibited MMP-2 secretion in 1205Lu cells. Cell lysates from indicated cells were analyzed by

western blot using anti-Exo70 and anti-b-actin antibodies.

(B) The gelatin degradation assay was performed in 1205Lu cells, which were transfected with Exo70 shRNA or vector control. Scale bars, 10 mm.

(C) Quantification of Alexa 568-labeled gelatin degradation per cell. n > 150 from three independent experiments.

(D) Representative images show H&E staining of metastatic tumor. Scale bars, 100 mm. The 1205Lu cells stably expressed vector control or Exo70 shRNA were

injected into nude mice. Tissue samples were collected after 35 days.

(E) Percentage of mice with metastasis tumors among the two groups of mice.

*p < 0.05, ***p < 0.001. Error bars, SD. Student’s t test was performed in (E), and Kruskal-Wallis one-way ANOVA was performed in (C) using software R v.2.14.
This includes regulatory kinases (e.g., RAC/RHO and PAKs),

actin regulatory proteins (e.g., ARPC and WASL), and proteases

(e.g., PLAUR andMMP9) that are implicated in different stages of

invadopodia formation and function (Murphy and Courtneidge,

2011). Upon gene set enrichment analysis (GSEA) of genes

that change over the full time course, we noted first that loss of

BRAF activity resulted in significant downregulation of ERK

signaling and ofmitosis and cell-cycle-related gene sets (Figures

6C–6E). These expected results serve as positive controls that

lend confidence to the analysis (Kwong et al., 2015). Strikingly,

the invadopodia gene set is significantly downregulated, on

par with cell-cycle genes, suggesting that invasion is one of

the most prominent functions regulated by BRAFV600E in this

model (Figures 6C–6E). Key genes including RHOA, PAK1, and

PAK3 are downregulated upon BRAF loss (Figure 6F), while

others including RAC1, CDC42, and CTTN are downregulated
2018 Cell Reports 15, 2012–2024, May 31, 2016
at later time points. These are consistent with our PLX4720

IHC results. These microarray analyses suggest that oncogenic

BRAF is essential for invadopodia formation in vivo and

BRAFV600E inhibition modulates pathways that affect multiple

stages of invasion.

Cortactin Foci in BRAFV600E-Positive Melanoma
Patients’ Clinical Samples
To examine how oncogenic BRAF regulates invasion in human

melanomas, we compared the cortactin foci in tumor biopsies

derived from six BRAF-mutated, treatment-naive melanoma pa-

tients and those derived from seven wild-type BRAF treatment-

naive melanoma patients. As shown in Figures 7A and 7B, the

number of cortactin foci in BRAFV600E patients’ tumor biopsies

was significantly higher than that with wild-type BRAF. To deter-

mine whether BRAFi therapy decreased the number of cortactin
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Figure 5. BRAFV600E Promotes Exo70 Phosphorylation and Exocyst Complex Assembly

(A) Phosphorylation of endogenous Exo70. WM3211-BRAFV600E cells were treated with or without Dox for the indicated times. Exo70 was immunoprecipitated

from the cell lysates using the anti-Exo70 antibody. The immunoprecipitation protein complexes were analyzed by SDS-PAGE and probed for anti-ERK1/2

phospho-substrate antibody. The total levels of Exo70 were used as a loading control.

(B) WM3211-BRAFV600E cells were treated with or without Dox for the indicated times, Exo70 and Sec8 were immunoprecipitated from the cell lysates and

analyzed by SDS-PAGE and probed for Exo70 and Sec8.

(C) Quantification of Exo70 and Sec8 binding in (B).

(D) 1205Lu cells were treated with BRAF siRNA, luciferase siRNA, DMSO, or PLX4720. Exo70 was immunoprecipitated and analyzed as described in (A).

(E) 1205Lu cells were treated with BRAF siRNA, luciferase siRNA, DMSO, or PLX4720. Exo70 and Sec8 were immunoprecipitated from the cell lysates, analyzed

by SDS-PAGE, and probed for Exo70 and Sec8.

(F) Quantification of Exo70 and Sec8 binding in (E).

(G) 1205Lu cells were treated with U0126, and Exo70 was immunoprecipitated and analyzed as described in (A).

(H) 1205Lu cells were treated with U0126. Exo70 and Sec8 were immunoprecipitated from the cell lysates, analyzed by SDS-PAGE, and probed for Exo70 and

Sec8.

(I) Quantification of Exo70 and Sec8 binding in (H).

*p < 0.05, **p < 0.01. Error bars, SD. Student’s t test was performed using software R v.2.14.
foci in vivo, we examined paired pre-treatment and early-treat-

ment (2 weeks) tumor biopsies from three BRAFV600E-positive

patients treated with vemurafenib. Vemurafenib significantly in-

hibited cortactin foci formation as exhibited in all three mela-

noma patients’ early-treatment tumor biopsies (Figures 7C and

7D). The data suggest a direct association between oncogenic

BRAF and invasion in human melanomas.
DISCUSSION

Tumor cell invasion constitutes the initial stage of cancer metas-

tasis. Here we studied the role of oncogenic BRAF in melanoma

cell invasion. Our data suggest that oncogenic BRAFV600E pro-

motes melanoma cell invasion by stimulating the formation of

actin structures and secretion of MMPs. Inhibiting BRAFV600E
Cell Reports 15, 2012–2024, May 31, 2016 2019
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Figure 6. BRAFV600E Is Necessary for Invasion in Genetically Engineered BRAF-Driven Mouse Melanoma Model

(A) Representative images of sections of iBIP mouse tumors stained with cortactin (red) and DAPI (blue). The sections are longitudinal biopsies from the same

tumor pre- and post-BRAF inhibition by PLX4720.

(B) Quantification of cortactin foci in primary tumors. Three pairs of primary tumor biopsies from different mice were examined. Six field images were taken for

each tumor sample.

(C–E) GSEA plots of the most significantly downregulated pathways after BRAF inhibition. Dox was withdrawn from iBIP mice to induce BRAF extinction in

established tumors and then analyzed by expression microarray. Genes decreasing over a time course of 90 days were analyzed by GSEA.

(F) The heatmap of microarray data showing the expression levels of the invadopodia-related gene set in iBIP mice after genetic BRAF inhibition.

**p < 0.01, ***p < 0.001. Scale bars, 50 mm. Student’s t tests were performed using software R v.2.14.
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Figure 7. The Number of Cortactin Foci in BRAFV600E Melanoma Patients Decrease upon Vemurafenib Treatment

(A) Representative images of humanmelanoma samples with wild-type BRAF or humanmelanoma sampleswithBRAFV600Emutant stained for cortactin (red) and

DAPI (blue).

(B) Quantification of cortactin foci in human melanoma samples. n = 6; six field pictures were taken for each melanoma sample.

(C) Representative images of human melanoma samples before treatment or samples after 14 days of vemurafenib treatment.

(D) Quantification of cortactin foci in patient melanoma samples. Pictures of five fields were taken for each melanoma sample.

Scale bars, 50 mm. ***p < 0.001. Error bars, SD. Student’s t tests were performed using software R v.2.14.
reduced the number of invasive activities, whereas transient

expression of BRAFV600E promoted cell invasion. Activation of

ERK by BRAFV600E stimulated the phosphorylation of cortactin

and Exo70, which in turn promoted actin reorganization and

MMP exocytosis. We further demonstrate that Exo70 knock-

down inhibits melanomas metastasis in nude mice. Both phar-

macological and genetic extinction of BRAF reduced cortactin

foci in the iBIP mouse model. In BRAF-mutated melanoma pa-

tients’ tumor biopsies, the number of cortactin foci was signifi-

cantly higher than that in patients with wild-type BRAF; the num-

ber of cortactin foci was significantly decreased in patients who

received short-term vemurafenib therapy. All of our in vitro and

in vivo studies indicate an intimate link between oncogenic

BRAF and cell invasion. It was reported that the frequency of

BRAF mutation in primary melanomas is comparable to that of

metastatic melanomas (Colombino et al., 2012). However, it

was also observed that BRAF mutation is associated with a

worse outcome at a later tumor stage; the median survival rate

of patients with BRAF mutant metastatic melanoma is lower

than that of patients with BRAF wild-type melanoma (Long

et al., 2011; Menzies et al., 2012). The role of BRAF-mediated

cell invasion may contribute to these clinical observations.

We find that short-term expression of BRAFV600E is sufficient

to promote invasion, whereas long-term expression of

BRAFV600E induces growth arrest, which is reminiscent of the

oncogene-induced senescence (OIS) documented previously
(Damsky et al., 2015; Dhomen et al., 2009; Michaloglou et al.,

2005; Vredeveld et al., 2012; Wajapeyee et al., 2008). Therefore,

it is likely that OIS inhibits the cell invasion phenotype shown at

the early stage of BRAFV600E expression, which explains the lack

of invasion observed in some studies. However, BRAF mutation

may provide a critical background for rapid progression to met-

astatic melanoma once another oncogenic mutation, such as

loss of PTEN, occurs (Damsky et al., 2011).

It was also shown that BRAF inhibitors promote tumor metas-

tasis in RAS mutant or BRAF inhibitor-resistant melanoma cells

(Sanchez-Laorden et al., 2014). As themitogen-activated protein

kinase pathway is reactivated in BRAF inhibitor-resistant cells,

this study is consistent with our results and supports the role

of RAF-MEK-ERK signaling in melanoma metastasis.

In summary, our studies demonstrate a role of BRAFV600E in

regulating melanoma invasion. Our data warrant further study

of metastatic properties of melanoma and suggest that inhibiting

invasion may be a therapeutic strategy for preventing melanoma

progression.
EXPERIMENTAL PROCEDURES

Cell Culture, Inhibitor Treatment, and Antibodies

Human melanoma cell lines were isolated from lesions defined by clinical and

histological criteria. These cells were cultured in RPMI 1640 medium, 5% fetal

bovine serum (v/v). Transfection and RNAi experiments are included in the
Cell Reports 15, 2012–2024, May 31, 2016 2021



Supplemental Information. For inhibitor treatment, cells were incubated with

1 mMPLX4720, 1 mMU0126, or 100 nMGSK1120212 for 24 hr before proceed-

ing to the invadopodia assay. Anti-cortactin antibody was purchased from

Santa Cruz, anti-TKS5 and anti-MT1-MMP antibody were purchased from

Millipore, anti-phospho-cortactin antibody (S418) was a gift from Dr. Scott

Weed (Kelley et al., 2010), and all other antibodies were from Cell Signal.

All clinical data and patients’ samples were collected following IRB approval

of the Hospital of the University of Pennsylvania, and informed consent was

obtained from all study participants. All animal studies were conducted in

accordance with NIH animal care and use guidelines, and mice were main-

tained according to the guidelines of the IACUC of the University of

Pennsylvania.

In-Gel Zymography

The in-gel zymography assay for MMP-2 activity was performed as described

previously (Liu et al., 2009). Briefly, the serum-free conditioned culture media

wascollectedandconcentrated.Samplesweresnap-frozen three times in liquid

nitrogen, mixed with loading buffer, and then separated on an 8% polyacryl-

amide/0.3% gelatin gel. The gel was washed three times in 2.5% Triton X-100

and then incubated in the MMP reaction buffer (50 mM of Tris-HCl [pH 8.0]

and5mMofCaCl2) for 36 to 72 hr at 37
�C.After the reaction, thegelwas stained

with Coomassie brilliant blue and destained overnight with destaining buffer.

In Situ Zymography

The protocol used to perform in situ zymography was adapted from the Muel-

ler laboratory (Artym et al., 2009). In brief, Alexa Fluor 568-conjugated gelatin

was prepared by Alexa Fluor 568 protein labeling (Molecular Probes). Cover-

slips were acid-washed and incubated with 50 mg/ml of poly-L-lysine (Sigma)

for 20 min and then cross-linked with 0.5% glutaraldehyde (Ted Pella) for

15 min. The coverslips were then inverted onto an 80 ml drop of gelatin

(0.2% gelatin and Alexa Fluor 568-labeled gelatin at an 7:1 ratio) for 10 min. Af-

ter washing in PBS, the coverslips were quenched with 5 mg/ml of NaBH4 for

15 min, followed by another wash with PBS. The coverslips were then incu-

bated in the growth medium; after 2 hr, 2 3 104 cells were plated on the cov-

erslips and incubated at 37�C for 8 hr. The cells were then fixed and stained for

immunofluorescence. Each experiment was repeated three times. Gelatin

degradation was quantified using ImageJ software.

Immunofluorescence Microscopy

For immunofluorescence assay, cells were fixed with 4% paraformaldehyde/

PBS for 15 min and then permeabilized in PBS containing 0.2% Triton X-100

for 5 min. The cells were pre-incubated in 5% BSA/PBS for 30 min and then

sequentially incubated with primary and secondary antibodies. Alexa-phalloi-

din (Molecular Probes) was used for F-actin staining. The images were

captured using a Leica CTR6000 confocal microscope at 6303magnification.

For tumor tissue immunofluorescence assay, paraffin sections of tumor sam-

ples were dewaxed and rehydrated in xylene and graded alcohols. After block-

ing in 10%BSA/PBST (PBSwith 0.5% Tween 20), the samples were incubated

with primary antibody overnight at 4�C and then incubated with the second

antibody for 2 hr. Finally, the slides were stained in DAPI and mounted with

Slowfade mounting buffer. Cells were imaged with the Leica DM IRB micro-

scope at 6303 magnification.

Xenograft Tumor Model and iBIP Mouse Model

Xenografts were generated as described previously (Lu et al., 2013). Tumors

were palpable at approximately 1 week, and caliper measurements were ob-

tained two times per week. Mice were sacrificed after 5 weeks, and all internal

organs were harvested and embedded in paraffin, sectioned, stained with

H&E, and then imaged. Mice with cancer metastases were counted, and sta-

tistical analysis was performed using Fisher’s exact test.

Generation and tumor genesis of iBIP mice was described previously

(Kwong et al., 2015). The procedure is included in the Supplemental

Information.

Statistical Analysis

Data were analyzed for normality using the Shapiro-Wilk normality test.

Nonparametric data were analyzed with Kruskal-Wallis one-way ANOVA, fol-
2022 Cell Reports 15, 2012–2024, May 31, 2016
lowed by Dunn’s multiple comparison test. Data with a normal distribution

were analyzed by Student’s test. All statistical analyses were performed using

software R v.2.14.

Microarray analysis used pre-ranked GSEA. Briefly, all genes were ranked

by the Spearman correlation to the length of Dox withdrawal to prioritize genes

with monotonic changes over time. The data were then run against the c5 gene

ontology gene set, including two additional gene sets, an ERK downregulated

gene set previously published (Kwong et al., 2015), and a newly generated and

knowledge-based invadopodia gene set.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and six figures and can be found with this article online at http://dx.doi.org/

10.1016/j.celrep.2016.04.073.
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