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Abstract
Urban expansion leads to surface changes that disrupt hydrological processes and increases
flooding risks in cities. This increase may be severe in urban megaregions where clusters of cites
have agglomerated. The China Ecological Redline Policy (ERP) is a national policy that protects
priority areas with high-value ecosystem services. However, it is not clear how the ERP alters
megaregion expansion and what this means for surface runoff across entire regions. By integrating
specified models, we developed future urban expansion scenarios for 2030 with and without the
ERP in the Chinese Beijing-Tianjin-Hebei (BTH) megaregion. The annual surface runoff volume
under the ERP scenario decreased by 78 million m3 compared to the non-ERP involved scenario,
but the ERP effectiveness at surface runoff regulation was different between the ecological redline
areas (ERAs) and the non-ERAs. This suggested that multi-solutions should be incorporated into
megaregions, such as regional ERPs and local, nature-based solutions, which could efficiently
reduce the risk of urban flooding across whole regions.

1. Introduction

The development-environment conflict has become
a major challenge across the globe, particularly in
areas where rapid urbanization has increased the ten-
sion between urbanization, environmental protec-
tion, and economic growth (Bai et al 2012, Du et al
2018,Wing et al 2018). During the urban growth pro-
cess, large areas of land are converted to impervi-
ous surfaces, which are known to affect surface run-
off, and subsequent flood control and management
in many urban areas (Trinh and Chui 2013, Hoek-
stra et al 2018, Zhang and Chui 2019). Increased run-
off coefficients and shorter concentration times lead
to increased flood risk (Nirupama and Simonovic
2007, Kjeldsen 2010, Guneralp et al 2015). Many cit-
ies have suffered urban flooding. For example, an
urban flooding event that occurred in Beijing in 2012
caused 70 deaths and economic losses of 16 billion
RMB (Wang et al 2020). Furthermore, city agglomer-
ation is an important economic development strategy

in China. The government has promoted the emer-
gence of large-scale urban agglomeration develop-
mentmodes. Many cities have now agglomerated and
closely interact with each other. This has resulted in
significant changes to land use patterns and surface
runoff across a whole region rather than a single city
(Day et al 2014, Sahana et al 2018). Therefore, it is
very important to assess how the expansion of urban
agglomeration affects surface runoff, and to explore
possible measures and coordinated development in
cities that could potentially improve floodmitigation.

Despite a growing need to find policy solu-
tions that minimize the negative impacts of urban
expansion on surface runoff, most practical solutions
remain limited to local scales. At a local scale, the
main actions have focused on urban storm water
management, such as the introduction of low-impact
development plans in the United States, the sus-
tainable urban drainage system in the United King-
dom, and the sponge city proposed by China (Hamel
et al 2013,Mcgrane 2015, Satyavati and Shirishkumar
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2018). These efforts are effective solutions for regu-
lating urban surface runoff that utilize the ecological
functions (e.g. infiltration, storage, and interception)
of specific land uses/covers. These are also known
as nature-based measures and include green roofs,
storm water parks, and permeable pavements, etc
(Elliott and Trowsdale 2007, Imran et al 2013, Zolch
et al 2017, Akther et al 2018, Du et al 2020). How-
ever, few studies have focused onmitigation solutions
at larger scales, such as urban megaregions. This is
due to the gathered development patterns of urban
megaregions. These development patterns have led to
more complicated land use/cover dynamics and con-
sequent surface runoff than the ones found in indi-
vidual cities. Some studies have shown that optimiz-
ing the spatial layout ofmegaregion expansion should
reduce the risk of urban flooding (Wiering et al 2017).

The Ecological Redline Policy (ERP) was pro-
duced by the Chinese national government and its
aim was to resolve the conflicts between regional
conservation and development (Jia et al 2018). This
policy has established priority conservation zones
through the use of ecological redline areas (ERAs) at
a regional scale, and these redline areas are based on
ecosystem services assessments (Bai et al 2018). Eco-
system services are potentially important to human
well-being, and are deemed an effective approach for
identifying ERAs (Zhang et al 2020). Currently, the
ERP is being promoted at the national scale (Jia et al
2018), and several provinces or cities are currently
delimitating their ecological redline areas (Bai et al
2016). Some studies have assessed the effects of the
ERP on urban expansion (Jia et al 2018, Bai et al
2018). For example, Bai et al (2018) found that the
ERP in Shanghai led to a decrease in constructed area
and an increase in forest compared to the baseline
scenario. However, there has been no attempt to
determine the most efficient ways of integrating the
ERP into megaregion expansion and investigate the
subsequent effects on surface runoff.

In this study, we examined the impact of the ERP
on urban expansion and its potential effect on sur-
face runoff across the Beijing-Tianjin-Hebei (BTH)
megaregion in China. This large urban region is one
of themost importantmegaregions in the eastern part
of north China and is facing a serious development-
environment conflict. The aims were to investigate
(1) ways of integrating the ERP into megaregion
expansion; (2) what effects the ERP would have on
megaregion expansion; and (3) how the alterations
to megaregion expansion by the ERP would further
affect surface runoff in the megaregion. First, we sim-
ulated the future land use/cover patterns of the BTH
megaregion under different scenarios. These were the
regular trend scenario (RT), which did not consider
the impact of the ERP, and the ecological protec-
tion scenario trend (EPT), which did include the
ERP. Second, we simulated the annual surface run-
off under the two different scenarios and analyzed

the impacts of different megaregion expansion scen-
arios on the surface runoff process at regional to sub-
regional scales. Finally, we briefly discuss the policy
and scientific implications of the results.

2. Methods

2.1. Land use/cover (LULC) scenarios
We created three LULC scenarios in order to analyze
the differences due to LULC change with and without
the ERP and the further effects on surface runoff in
the BTH region. These scenarios were

Baseline 1 (BL) is a baseline scenario, which is the
actual LULC map in 2015.

Scenario 1 (S1) is the regular trend (RT) scenario
for 2030 without considering the impact of the ERP
on LULC allocation.

Scenario 2 (S2) is an ecological protection trend
(EPT) scenario for 2030, which considers the effect of
the ERP.

2.2. Land use/cover classification
We used the Landsat-TM images from June–October,
2015 to generate the baseline land use/cover map
(BL), with a spatial resolution of 30 m × 30 m.
There are six land use/cover types in the BTH region,
which are wetland, barren land, forest land, imper-
vious land, grassland, and cultivated land. A back-
dating approach and an object-based method were
integrated to identify the land use/cover types in 2015.
We used the land use/cover classification of 2010
as the basic reference map to extract the changes
in the land use/cover between 2010 and 2015, and
then the change area was further classified. We used
the stratified random sampling scheme to select loc-
ations within the cities and compared the image
classifications to reference land use data created
from the visual interpretation of high spatial resolu-
tion SPOT images (2.5 m) in eCognition Developer
(www.ecognition.com/). The overall accuracy, Kappa
statistic, and average producer and user accuracies
exceeded 93%, 0.8, 80%, and 94%, respectively.

2.3. Evaluation of ecosystem services
A national ecosystem services assessment has been
implemented in China (Ouyang et al 2016) and the
assessment methods used in a previous study were
applied to the BTH megaregion (Liu et al 2018).
Based on the importance of ecosystem services to
this megaregion and the availability of spatial data,
we selected six ecosystem services and then used
the national ecosystem services assessment methods
to map ecological redline areas in the BTH region
for 2015. The six services were soil retention, water
retention, carbon sequestration, sand storm preven-
tion, floodmitigation, and habitat provision for biod-
iversity. The data sources and data reliabilities are
shown as table 1.
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Table 1. Principal data sources.

Data Resolution Source

Ecosystem types 90 m, Landsat TM the Institute of Remote Sensing Applica-
tions of the Chinese Academy of Sciences

Temperature 0.5 degree China National Meteorological Information
Center

DEM 90 m the Shuttle Radar Topography Mission
(SRTM)

Precipitation 1:6 000 000 China National Meteorological Information
Center

Soil map and attribute data 1:1 000 000 China Soil Science Database
Evapotranspiration 90 m the Institute of Geographic Sciences and

Natural Resources Research, Chinese
Academy of Science

Vegetation cover 250 m Chinese Academy of Sciences
Aboveground biomass 250 m Institute of Remote sensing and Digital

Earth, Chinese Academy of Science
Average annual rainfall erosivity - Beijing Normal University

(1) Soil retention: this refers to soil reserved by
ecosystems. The universal soil loss equation (USLE)
was used to calculate soil retention, and was cal-
culated by the InVEST model. The USLE can be
expressed as follows (Yang et al 2016):

SC= R×K× LS× (1−C)

where SC represents the soil retention capacity (t/ha),
R is the rainfall erosivity factor, K is the soil erodib-
ility factor, LS is the topographic factor, and C is the
vegetation cover factor.

Among them, R was calculated by the daily rain-
fall erosivity model and the input data was the daily
precipitation data, which was acquired from the
China National Meteorological Information Center;
K was closely related to soil characteristics and was
estimated using the erosion/productivity impact cal-
culator (EPIC); the soil data was obtained from the
China Soil Science Database; LS reflected the impact
of slope length and steepness on soil retention and
was calculated based on an empirical formula (Wei
et al 2002); and C was obtained from relevant for-
eign and domestic literature (Wei et al 2002, Rao et al
2014).

(2) Water retention: This refers to water retained
in ecosystems. Water retention was estimated using
the water balance equation (Gong et al 2017):

TQ= (P−R− ET)×A

where TQ is total water retention (m3); P is precipita-
tion (mm); R is storm runoff (mm); ET is evapotran-
spiration (mm); and A is the area of a specific ecosys-
tem (m2).

Major data inputs for the water retention calcu-
lation include rainfall data, runoff data, and evapo-
transpiration data for 2015. The evapotranspiration
data were obtained from the Institute of Geographic
Sciences and Natural Resources Research, Chinese
Academy of Science. The storm runoff was calculated

bymultiplying precipitation by the runoff coefficient,
which was estimated from previous studies (Gong
et al 2017). All the input data were standardized and
we used the spatial analyst tool in ArcGIS to calculate
the total water retention.

(3) Carbon storage: this refers to the carbon in
terrestrial ecosystems. After referring to the national
ecosystem services assessment (Ouyang et al 2016),
we calculated the biomass carbon storage of three eco-
system types in the BTH region. These were forest,
grassland, and wetland ecosystems. The calculation
formula is as follows (Lewis et al 2009):

BCS= Bi ×CCi ×ARi × 10−6

where BCS is the biomass carbon storage; Bi is the
biomass density of ecosystemi(t/km2), which was
obtained from the Institute of Remote Sensing and
Digital Earth, Chinese Academy of Science; CCi is the
carbon content in the ecosystem biomass, which is 0.5
for forest and wetland, and 0.45 for grassland (Fang
et al 2010); and ARi is the area of each grid cell.

(4) Sand storm prevention: This refers to sand
reserved by ecosystems. We used the revised wind
erosion equation (RWEQ) to estimate the sand storm
prevention service, which was a function of the
weather factor (WF), soil erodibility factor (EF), soil
crust factor (SCF), surface roughness (K’), and veget-
ation cover parameter (C) (Borrelli et al 2017). The
sand storm prevention volume was equal to the dif-
ference between the soil loss (SL) under the bare land
condition and the vegetation cover condition The
RWEQ model can be expressed as follows:

Qmax = 109.8
[
WF× EF× SCF×K

′ ×C
]

S= 150.71
(
WF× EF× SCF×K

′ ×C
)−0.3711

SL =
2×z
S2 Qmax × e−(z/s)2

3
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where Qmax is the maximum transport capacity
(kg/m); S is the critical field length (m); Z is the dis-
tance from the upwind edge of the field (m); and SL
is the soil loss (kg/m2).

Among them, WF was calculated by dividing the
total wind value for each period by 500 and multiply-
ing by the number of days in the period (Ouyang
et al 2016); the weather data were obtained from the
China National Meteorological Information Center;
EF reflected the relationship between wind erosion
and soil physical and chemical properties; and SCF
reflected the resistance of soil aggregates and crusts
to windblown sand and was calculated using the SCF
equation (Borrelli et al 2017). C has a significant
effect on sand storm prevention and the vegetation
cover data was acquired from the Chinese Academy of
Sciences. The fraction of the ground surface covered
with non-erodible plant material, and the silhouettes
from standing plant residues and growing crop can-
opies were used in the RWEQ model to estimate the
effect of vegetation cover (C) on sand storm preven-
tion (Bilbro and Fryear 1994). The original RWEQ
model was for the field scale, whereas our study was
at a regional scale. Therefore, we used the roughness
caused by the topography to replace the soil ridge
roughness (K’), and was calculated using the Smith-
Carson equation (Ouyang et al 2016).

(5) Flood mitigation: this refers to the flood mit-
igating volume of wetlands (e.g. lakes, reservoirs, and
swamps). The national ecosystem services assessment
(Ouyang et al 2016) was used to evaluate the flood
mitigation capacity of various wetland types in the
BTH megaregion. The area of wetlands was derived
from the LULC data, and the storage capacity of wet-
lands was obtained from the Records for Chinese
Lakes and The China Water Statistical Yearbook.

For lakes, available storage capacity was used as an
indicator tomeasure floodmitigation capacity, which
was a function of lake area (Ouyang et al 2016). The
calculation formula is as follows:

Ln(Cl) = 1.128Ln(A)+ 4.924

whereCl is the available storage capacity (104 m3) and
A is the lake area (km2). The coefficient was obtained
from Ouyang et al (2016).

For reservoirs, the flood control storage capacity
(Cr) was used as the flood mitigating indicator (104

m3), which was calculated based on its total storage
capacity ((104 m3)), and the coefficient was obtained
from Ouyang et al (2016):

Cr = Ct × 0.35

For swamps, the surface stagnation of water (Cs)
was used as the flood mitigation indicator (104 m3).
Cs was calculated by multiplying the swamp area (A
(km2)) by the average maximum depth in a flood
period (D (cm)), and 1 m was used as the depth

(Zhao et al 2003):

Cs = A×D

(6) Provision of habitat for biodiversity: this refers
to the total habitat area covered by indicator species.
China performed a national biodiversity assessment
in 2010 (Ouyang et al 2016). Due to the lack of spe-
cies category and suitable habitat data, we adopted the
corresponding evaluation results for the BTH region,
which were based on the national assessment result
(Ouyang et al 2016).

The national biodiversity assessment process was
as follows: firstly, a total of 2820 species were selec-
ted as indicators to estimate biodiversity, including
endemic, endangered, and nationally protected spe-
cies. Then different protection targets (60%, 40%, or
30%) were assigned to species with different levels
of rarity so that site selections could be carried out.
Secondly, a habitat mapping process was developed
using a simplified conceptual model (Xu et al 2009),
andMARXAN (Klein et al 2010), a site selection soft-
ware program, used an irreplaceability index tomeas-
ure the biodiversity conservation value for each ana-
lytical unit. In our study, we used the ‘high’ and ‘very
high’ areas of the national biodiversity assessment to
delineate ecological redlines. The simplified concep-
tual model is as follows:

pHi = CiIH

where pHi indicates whether polygon i is a potential
habitat or not; Ci is the historical distributions of the
indicator species in county i; I is the overlap of suit-
able elevation, slope, and aspect for the species; and
H is suitable habitat for the species (Xu et al 2009).

2.4. Delineation of the ecological protection
redline areas
We created an integrated index based on the six eco-
system services estimated above. This index, together
with the information about ecosystem services and
the relative abilities of different areas to supply them
were used to map the ERAs.

The delineation of ERAs was undertaken using
ArcGIS and the processes were as follows (Ouyang
et al 2016): (1) we calculated the supply of each eco-
system service in a grid cell; (2) to quantify the rel-
ative importance of each grid cell for a single ser-
vice, all grid cells were sorted by the supply of a spe-
cific ecosystem service in descending order, calcu-
lated the cumulative proportion of the specific eco-
system service across all grid cells, and then classi-
fied each grid into one of four levels of importance
(very high, high, medium and normal). For example,
we assigned ‘very high’ to the grids with cumulat-
ive proportion between 0% and 50%, ‘high’ to the
grids with cumulative proportion between 50% and
75%, ‘medium’ to the grids with cumulative propor-
tion between 75% and 90%, and ‘normal’ to the grids

4
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with cumulative proportion between 90% and 100%;
(3) By overlay analysis, the relative importance of each
service was synthesized into a composite index of eco-
system service importance using the maximum val-
ues method. The composite index value equaled the
highest importance value of any ecosystem service in
each grid cell. Finally (4), the ‘very high’ and ‘high’
grid cells were defined as the ERAs.

2.5. Land use/cover scenarios
We used the CLUE-S model to simulate the different
land use scenarios for 2030 (S1 (RT) and S2 (ERT))
based on the ERAs. The CLUE-S model is a spatially
explicit model that can integrate the analysis of land
use/cover change with the driving forces. The model
mainly had two main parts, a non-spatial demand
module and a spatially explicit allocation module
(Verburg et al 1999, 2002). For the non-spatial mod-
ule, the areal demands for different land use types on
a yearly basis of the study area need to specify. Then,
for the spatially explicit allocation module, the areal
demands for different land use types will be allocated
at specific location according to driving forces. The
main advantages of this model were that it could sim-
ulate different scenarios and different land use/cover
types at the same time by integrating spatial and non-
spatial driving factors (Liu et al 2017a).

To simulate the LULC allocations in the BTH
megaregion under the two different scenarios for
2030, in the RT scenario, we determined the yearly
areal demands of different land use types based on the
annual average LULC change from 2000 to 2015 by
using the linear trend extrapolation (Liu et al 2018).
In the EPT scenario, we determined the yearly areal
demands of impervious land as similar to that in the
RT scenario, while the areal demand of the wetlands,
the forest, cultivated land a was according to the goals
of the Wetland Conservation Plan (2015–2030) of
Hebei, and the Master Plan (2006–2020) of Beijing,
Tianjin andHebei. Then the CLUE-Smodel allocated
the areal land use demands for the time interval of one
year. In the RT scenario, there was no spatial restric-
tions, and in the EPT scenario, the ecosystem redline
areas were set as a spatial restriction.

The logistic regressionmodel was used to identify
the potential factors driving the spatial allocation
of land use/cover (Islam et al 2018). We selected 14
driving forces based on previous research (Liu et al
2017b). These 14 driving forces were divided into
three classes, which were the geographical, social, and
economic factors (table 3). To simplify the analysis, all
the variables were transformed into the raster format
(Verburg et al 2002). In addition, the goodness of fit
of the logistic regression model was evaluated using
the curve of receiver operating characteristic (ROC)
method, which can evaluate the predicted probabilit-
ies by comparing them with the observed values over
the whole domain (Phung et al 2019). The area below

Table 2. CN values for the different land use/cover types in the
Haihe basin.

Hydrological soil group

Land use types A B C D

Wetland 98 98 98 98
Barren land 77 86 91 94
Forest land 48 68 79 85
Impervious land 89 92 94 96
Grassland 52 74 81 86
Cultivated land 64 75 82 86

the ROC curve represents the ROC value, whose pre-
diction accuracy improves as the value gets closer to 1
(Lamichhane and Shakya 2019).

Finally, we used the CLUE-S model to gener-
ate future land use scenarios. The Kappa coefficient
was used to assess the effectiveness of the CLUE-S
model. It evaluates simulated probabilities by com-
paring themwith ideal probabilities. In this study, the
LULC simulation result for 2015 was compared with
the interpreted LULC map to calibrate the land use
type specific conversion and assess the accuracy of the
CLUE-S model.

2.6. Simulation of average annual surface runoff
We estimated the average annual surface runoff under
different land use scenarios using the long-term
hydrological impact assessment (L-THIA) model,
which was developed by Purdue University in the
United States.

The L-THIA model is a distributed hydrological
model, and can be used to simulate surface runoff on
a large spatial-temporal scale (Lim et al 2006). The L-
THIAmodel is based on the SCS-CN (Soil Conserva-
tion Service-Curve Number) method (Shadeed and
Almasri 2010, Li et al 2018), which simulates the run-
off volume for each grid cell from the CN value and
daily rainfall. The CN value is a dimensionless para-
meter that comprehensively reflects land use type, soil
group, and antecedent moisture conditions (Bhaduri
et al 2000).

The calculation formula for the L-THIA model is
as follows: {

Q = (P − Ia)
2

(P − Ia) + S , Ia < P

Q = 0, Ia ≥ P

Ia = 0.2S

S=
1000

CN
− 10

where, Q is runoff (mm); P is rainfall (mm); Ia is
initial abstraction (mm); and S is potential maximum
retention after runoff begins.
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The data required for the model included land
use data, soil data, hydrological data, and meteorolo-
gical data. The soil data for the BTHmegaregion were
obtained from the China Soil Database and classified
into four categories (A, B, C, and D) according to the
classification standard of the United States Depart-
ment of Agriculture, as required for L-THIA model.
Soil permeability decreased from A to D. The daily
runoff data from 1950 to 2015 were used to oper-
ate the L-THIA model and were acquired from The
China National Meteorological Information Center.
The L-THIAmodelwas validated using observed run-
off data from Luanxian reservoir, Wangkuai reser-
voir, and Xidayang reservoir, and the relative error
was ± 10%, which indicated that the model could
accurately simulate the surface runoff in the BTH
region (Ju et al 2020) (figure 1). The CN values for the
BTH region were obtained from Ju et al (2020) and
are shown in table 2.

The surface runoff volume is closely related to
the size of accumulated surface area. Therefore, we
used the normalized average annual runoff depth
(NAARD) to characterize the surface runoff genera-
tion ability by eliminating the impact of city size on
surface runoff. The calculation formula is as follows
(Chen et al 2017):

NAARDcity =
RVcity

Acity
× 1000

where NAARDcity is the normalized average annual
runoff depth for a city (mm); RVcity is the average
annual runoff volume for a city (m3); and Acity is the
administrative area of a city (m2).

3. Results

3.1. The ecological redline areas in the BTH region
In general, the ERAs covered about 106 173.36 km2

in total and accounted for 49.53% of the BTH region
(figure 2). The spatial distribution of the ERAs in the
BTH region was uneven, and the northern and west-
ern mountains, the eastern Bohai Bay coastline, and
inland lakes were the primary ecological reserves.

The ecosystem services within the ERAs also had
different spatial distributions (figure 2). Within the
ERAs, the soil retention conservation areas were con-
centrated in the Yanshan and Taihangshan moun-
tains in the northern and western parts of the BTH
region. They covered 103 245.10 km2. Water reten-
tion zones within the ecological redline areas covered
72 277.81 km2. They were mainly distributed along
the eastern coastlines, in inland lakes, and the bound-
ary between mountains and plains. Carbon sequest-
ration areas within the ERAs were mainly distrib-
uted in the Yanshan Mountains of the northern
BTH region, and their area covered 69 405.00 km2

in total. Sand storm prevention and conservation
areas covered 59 637.20 km2, and only occurred in
the northwestern forest of the BTH region. The

flood mitigation area distribution was similar to
water retention and the area within the redline area
covered 81 510.50 km2. The biodiversity areas covered
31 845.79 km2, and mainly occurred in the northern,
central, and southern parts of the BTH region.

3.2. Urban expansion of the BTHmegaregion
under the different scenarios
The logistic regression results are shown in table 3.
The ROC value for each LULC type was greater than
0.7, which indicated that the regression model was
suitable. Comparing the LULC simulation result with
the interpreted LULC map for 2015 allowed us to
obtain a Kappa coefficient of 0.79, which showed that
the CLUE-S model performed satisfactorily.

The total BTHmegaregion expansion patterns for
2030 under the different scenarios were similar, but
the change ranges for the different LULC types var-
ied (figure 3, table 4). For example, the increases in
impervious land across the BTH megaregion under
the two 2030 scenarios were similar when compared
to the baseline scenario in 2015, but their spatial
occurrence was distinct. The impervious land in the
BTH megaregion increased by 26.34% under the RT
scenario relative to 2015 and increased by 25.02%
under the EPT scenario. A comparison of the RT and
EPT scenarios showed that there was an obvious dif-
ference in urban expansion inside and outside the
ERAs. Inside the ERAs, the increase in impervious
landwas 1890 km2 under theRT scenario for 2030 rel-
ative to 2015, but there was no increase under the EPT
scenario. Outside the ERAs, the increase in imper-
vious land was 411.04 km2 under the RT scenario
for 2030 relative to 2015, whereas the increase was
5707.08 km2 under the EPT scenario. The increase
in impervious land outside the ERAs under the EPT
scenario for 2030 was about 1589.04 km2 more than
under the RT scenario relative to the baseline in 2015.
For example, the increase in impervious land across
Baoding and Handan under the EPT scenario was
94.32 and 104.04 km2 more than under the RT scen-
ario, respectively.

In addition, the cultivated land decreased under
both 2030 scenarios, but the cultivated land under the
EPT scenario decreased slightly less than that under
the RT scenario. In contrast, under the EPT scenario,
there was substantial increase in wetland relative to
the RT scenario. For example, the total wetland area
for 2030 under the EPT scenario increased by 9.20%
compared to 2015, but decreased by 8.36% under the
RT scenario. The forest area under the EPT scenario
increased 221.04 km2 more than under the RT scen-
ario. The most obvious difference in land use change
between the RT and EPT scenarios occurred in the
northern part of the BTH megaregion, especially in
Beijing, Chengde, and Zhangjiakou. In contrast, the
land use changes in the other regions within the BTH
megaregion were similar under the two future scen-
arios.
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Figure 1. Location of the hydrological station. (a). Watersheds of three hydrological stations and their distribution in the BTH
region. (b). River network in the three hydrological station watersheds.

At the sub-region level, the impervious land in
most cities across the BTHmegaregion had expanded
by 2030 relative to 2015 under both 2030 scenarios,
but there were certain differences between the scen-
arios (table 5). Generally, there were two major dif-
ferences between the two 2030 scenarios. In one case,
urban expansionunder the EPT scenariowas less than
under the RT scenario. There were three cities fol-
lowing this type of expansion, which were Beijing,
Tianjin, and Chengde. The largest decrease in imper-
vious land had occurred in the mega-city of Beijing
by 2030 under the EPT scenario compared to the RT
scenario, and the reduced area was 697.32 km2. There
were ten cities where urban expansion under the EPT
scenario for 2030 was faster than under the RT scen-
ario. Among these cities, the largest increase in imper-
vious land by 2030 under the EPT scenario occurred
in Zhangjiakou, at 156.24 km2.

3.3. Impacts of BTHmegaregion expansion on
surface runoff under the different scenarios
Generally, on regional scale, the total average annual
surface runoff for the entire BTHmegaregion by 2030
under both the EPT and RT scenarios increased relat-
ive to that in 2015 (table 6). The total surface runoff
for 2030 under the RT scenario increased by 5.87%
(8.46 hundred million m3) relative to 2015, and
increased by 5.33% (7.68 hundred million m3) under
the EPT scenario. The megaregion expansion under
the EPT scenario reduced potential surface runoff
by 78 million m3 across the entire BTH megaregion
compared to the RT scenario. In addition, the contri-
butions of the different land use/cover types to sur-
face runoff across the BTH megaregion were differ-
ent. What was noteworthy was that the surface run-
off generated from impervious land made the largest

contribution to the total runoff among all land use/-
cover types in 2030, whereas it was farmland that con-
tributed the most to total runoff in 2015. The con-
tribution to surface runoff made by impervious land
was 32.83% in 2015, and will be 38.56% and 38.68%
in 2030 under the RT and EPT scenarios, respectively.

There was an obvious difference in the surface
runoff change between inside and outside the ERAs
from 2015 to 2030 under the RT and EPT scenarios
(table 7). The total surface runoff for 2030 under the
EPT scenario decreased by 4.45% (2.57 hundred mil-
lion m3) relative to the RT scenario inside the ERAs,
whereas it increased by 1.88% (1.78 hundred million
m3) outside the ERAs. Furthermore, in the two future
scenarios, forest landmade the largest contribution to
the surface runoff inside the ERAs because it accoun-
ted for 50% of the total surface runoff. Impervious
land and cultivated land had the two highest surface
runoff contribution rates outside the ERAs, and the
total contribution made by the two land use types
exceed 90% under both future scenarios.

At the city scale, the normalized average annual
runoff depth (NAARD) for most cities increased
under both the RT and EPT scenarios by 2030 relat-
ive to that in 2015, but there were also distinct among
cities for the two scenarios (figure 4, table 8). Com-
pared to the baseline scenario in 2015, Tianjin city
showed the largest increase (17.71 mm) in NAARD,
followed by Beijing (10.82 mm) under the RT scen-
ario. In contrast, under the EPT scenario, Tianjin
city also showed the largest increase in NAARD at
15.96 mm, but Beijing was ranked fourth (6.04 mm).
Thus, the impacts of the ERP on the different cit-
ies in terms of city-level surface runoff were differ-
ent to the RT scenario. There were three cities where
the ERP could reduce the NAARD relative to the RT
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Figure 2. Spatial patterns for ecosystem services provision in 2015. (a). Ecological redline area for the BTH region in 2015. (b).
Soil retention distribution (t km−2). (c). Water retention distribution (m3 km−2). (d). Carbon sequestration distribution
(t km−2). (e). Sand storm prevention distribution (t km−2). (f). Flood mitigation distribution (m3 km−2). (g). Provision of
habitat for biodiversity. The value represents the importance of each grid cell, ‘1’ to ‘4’ represents ‘very high’, ‘high’, ‘medium’, and
‘normal’, respectively.

scenario. For example, the NAARD for Beijing by
2030 under the EPT scenario decreased by 4.79 mm
(–5.52%) relative to that under the RT scenario. In
contrast, the urban expansion under the EPT scen-
ario might increase the NAARD of ten cities com-
pared to the RT scenario. Among these cities, Handan
showed the largest NAARD increase. The EPT res-
ults for Handan showed that there would be an addi-
tional 1.71 mm (1.75%) ofNAARD relative to the RT
scenario.

4. Discussion

Under the current development trends, megaregions
in China will continue to expand, and this will inevit-
ably intensify the conflicts between development and
the environment (Fang et al 2018). This is a consid-
erable challenge that decision makers must confront.
Our results showed that under the RT scenario for
2030, surface runoff in the BTH would increase by
8.46 hundred million m3 in total, compared to the
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Figure 3. LULC maps under the three different scenarios in the BTH agglomeration. (a). Baseline scenario., which shows the
actual LULC map in 2015. (b). Regular trend scenario for 2030 with no ecological redline policy constraint. (c). Ecological
protection trend scenario for 2030, which includes the Ecological Redline Policy. d. Spatial difference in BTH megaregion
expansion under the RT and EPT scenarios between 2015 and 2030.

Table 7. Average annual surface runoff rates inside and outside the ERAs under the two future scenarios in the BTH megaregion.

Regular trend scenario Ecological protection scenario

Scenarios Inside the ERAs /108m3 Outside the ERAs /108m3 Inside the ERAs /108m3 Outside the ERAs /108m3

Barren land 0.46 0.34 0.47 0.01
Forest land 29.78 3.56 29.87 3.63
Impervious land 9.68 49.17 6.27 52.47
Grassland 9.35 1.92 8.96 1.83
Cultivated land 8.51 39.87 9.65 38.70
Total 57.78 94.86 55.21 96.64

baseline in 2015, which is nearly 1/3 of total domestic
water consumption in Beijing. This may reduce the
already limited water resources and increase the flood
risk that the BTH megaregion is currently facing (Li
et al 2020). Therefore, researchers and policy makers

in China need to minimize the negative impact of
megaregion expansion on surface runoff.

Our study attempted to explore whether the
national ecological redline policy has an effect on sur-
face runoff across a large urbanmegaregion in China,
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Table 8. Normalized average annual runoff depths (NAARD) for the different cities.

Baseline scenario Trend prediction scenario Ecological protection scenario

Cities NAARD/mm NAARD/mm NAARD change/mm NAARD/mm NAARD change/mm

Beijing 75.95 86.77 10.82 81.99 6.04
Tianjin 85.90 103.61 17.71 101.86 15.96
Tangshan 61.13 66.30 5.17 66.78 5.64
Qinhuangdao 67.53 71.66 4.13 72.34 4.81
Chengde 35.50 35.99 0.49 36.17 0.66
Zhangjiakou 51.25 51.27 0.02 51.82 0.57
Baoding 115.35 118.42 3.06 118.98 3.62
Shijiazhuang 123.88 128.50 4.61 128.90 5.02
Langfang 57.92 67.98 10.07 68.50 10.58
Cangzhou 49.01 52.38 3.38 52.47 3.46
Hengshui 48.32 50.38 2.06 50.36 2.04
Xingtai 91.18 92.78 1.60 93.54 2.36
Handan 91.74 97.83 6.09 99.55 7.80

Figure 4. Average annual surface runoff under the different scenarios in the BTHmegaregion. (a). Regular trend scenario for 2030.
(b). Ecological protection trend scenario for 2030(c). Surface runoff change under the EPT scenario compared to the RT scenario.
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and through scenario analysis, we found megaregion
expansion under the EPT scenario can result in a
lower surface runoff increase relative to the RT scen-
ario. This finding revealed that altering urban expan-
sion under the ERP scenario can protect the spe-
cific priority areas that have important ecological ser-
vices, and reduce overall surface runoff generation by
the megaregion. Although the surface runoff reduc-
tion (0.78 hundred million m3) under the EPT scen-
ario relative to RT scenario was limited, this study
shows the potential value of the policy-making altern-
atives when attempting to promote the development
of large-scale megaregions. Our findings also con-
firmed the results of previous studies that investigated
these effects at individual city scales. For example, Bai
et al (2012) reported that the inclusion of the ERP
in urban land use planning in metropolitan Shang-
hai, China, increased terrestrial habitat protection by
174% and maintained flood mitigation.

Our results also showed the different runoff
changes inside and outside the ERAs under the EPT
andRT scenarios. They showed that the impacts of the
ERP on different sub-regions of the BTHmegaregion
were distinct. Although the surface runoff generated
inside the ERAs under the EPT scenariowasmuch less
than that under the RT scenario, the greater surface
runoff generation outside the ERAs under the EPT
scenario may offset some of the surface runoff reduc-
tion within the ERAs relative to the RT scenario. This
is because the inclusion of the ERP into the megare-
gion expansion plans prohibited the growth of imper-
vious land within the ERAs, and thus, promoted an
increase in impervious land outside the areas in order
to maintain the same expansion rate for the entire
region under the EPT scenario as would occur under
the RT scenario. This leads to more potential surface
runoff generation outside the ERAs under the EPT
scenario than under the RT scenario. Therefore, these
results emphasize that the implementation of the ERP
alone into the spatial land use planning for megare-
gion expansion may be insufficient to reduce the sur-
face runoff in all sub-regions within the megaregion.
In the case of the BTH megaregion, cities, such as
Handan and Baoding, which are not included in the
ecological redline areas, need to have more urban
expansion to compensate for the urban growth con-
straints in ERAs. Therefore, sub-regional solutions
need to be created for these cities in order to reg-
ulate urban surface runoff. There are already some
effective city-level solutions thatmitigate surface run-
off, such as low-impact developmentmeasures (Wang
et al 2020). Therefore, if joint regional-level ERP and
sub-regional solutions are integrated into the spatial
planning policies for megaregions, then surface run-
off would be efficiently minimized in both regions
and sub-regions.

Our study also had some limitations. For
example, there is no standardized approach for

identifying ERAs due to the diversity and complexit-
ies of ecosystem services. Furthermore, it was difficult
to acquire high-quality data, and parameterize and
interpret models etc. These limitations could lead
to difficulties when attempting to identify potential
ERAs. Therefore, there is a need to standardize pro-
cedures for these issues so that the identification of
ERAs can become more effective. Additionally, the
quality of the driving factors data used for the urban
expansion simulation may have affected modeling
accuracy. Furthermore, during model calibration (L-
THIA model), the lack of available data might have
affected the modeling reliability. We also did not con-
sider the impacts of future climate change on surface
runoff, which will play an important role in runoff
generation. In further studies, alternative models and
higher-quality data could be used to simulate urban
expansion patterns and hydrological processes.

5. Conclusions

This study proposes a new way to examine the effect-
iveness of including the ERP in large-scale urban
megaregions by analyzing how the ERP can alter
urban expansion and effect the alteration on sur-
face runoff. Through scenario analysis, the inclusion
of the ERP into BTH megaregion expansion plans
could reduce the annual surface runoff in the entire
region while maintaining a similar growth rate for
urban expansion envisaged under the RT scenario.
We showed that the ERP effectively promoted urban
expansion and regulated surface runoff in megare-
gions. These findings will significantly affect sustain-
able development, and urban flood control and man-
agement. However, the impacts of the ERP on sur-
face runoff were distinct within and beyond the ERAs.
The increase in surface runoff outside the ERAs may
offset some of the surface runoff reduction when the
EPT scenario is compared to the RT scenario. This
implies that the ERP alonemay not be able tomitigate
surface runoff in all cities within megaregions. Integ-
rating regional ERPs with beyond-ERA solutions can
help minimize the effects of urban expansion on sur-
face runoff at the sub-regional scale Our study has the
potential to be scaled up to find modes of sustainable
growth in urban megaregions throughout and bey-
ond China.
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