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ABSTRACT
The polycystic ovary syndrome (PCOS) is a most common cause of infertility among women of reproductive
age. Unfortunately, the etiology of PCOS is poorly understood. Large-scale clinical trials for pregnancy in
polycystic ovary syndrome (PPCOS) were conducted to evaluate the effectiveness of treatments. Ovulation,
pregnancy, and live birth are three sequentially nested binary outcomes, typically analyzed separately.
However, the separate models may lose power in detecting the treatment effects and influential variables for
live birth, due to decreased sample sizes and unbalanced event counts. It has been a long-held hypothesis
among the clinicians that some of the important variables for early pregnancy outcomes may continue their
influence on live birth. To consider this possibility, we develop an �0-norm based regularization method
in favor of variables that have been identified from an earlier stage. Our approach explicitly bridges the
connections across nested outcomes through computationally easy algorithms and enjoys theoretical
guarantee of estimation and variable selection. By analyzing the PPCOS data, we successfully uncover
the hidden influence of risk factors on live birth, which confirm clinical experience. Moreover, we provide
novel infertility treatment recommendations (e.g., letrozole vs. clomiphene citrate) for women with PCOS
to improve their chances of live birth. Supplementary materials for this article are available online.
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1. Introduction

The polycystic ovary syndrome (PCOS), characterized by
metabolic abnormalities, is the most common cause of infertility
affecting up to 10% of reproductive-age women (Azziz et al.
2004). This gynecological condition leads to health conse-
quences such as anovulation and early pregnancy loss, with
other common manifestations including obesity and type 2
diabetes (Legro et al. 2007). Despite its high prevalence and
importance of public health, unfortunately, the etiology of
PCOS remains obscure, and both the diagnosis and treatment
of this disorder are surrounded by controversy. There are
many challenges in studying and treating PCOS; for example,
the following are two challenges that need to be addressed.
The first challenge stems from the lacking of evidence-based
recommendations for infertility treatment; hence, physicians
have always struggled to recommend first-line therapy to
restore ovulation due to the divergent conclusions reached
by studies (Legro et al. 2007). The second challenge is to
understand heterogeneity of PCOS and plan personalized
infertility treatment, which is still open to discussion since
women with PCOS are phenotypically diverse (Rausch et al.
2009).

Our investigation is motivated by and applied to the preg-
nancy in polycystic ovary syndrome (PPCOS) trials, which were
double-blinded, multi-center, randomized clinical trials (Legro

CONTACT Heping Zhang heping.zhang@yale.edu Yale University School of Medicine, New Haven, CT, 06520.
Xuan Bi, Long Feng and Cai Li contributed equally to this work.

Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

et al. 2007, 2014) completed by the Reproductive Medicine
Network. The goal was to evaluate and recommend the optimal
ovulation induction regimen. Live birth was the primary out-
come for both trials following a broad consensus of infertility
studies (Legro and Myers 2004; Harbin Consensus Conference
Workshop Group 2014). Secondary outcomes included ovu-
lation and clinical pregnancy that were milestones preceding
a possible live birth delivery. In the first trial, referred to as
PPCOS I, 626 infertile women, aged 18–39 years, were enrolled
between November 2002 and December 2004. The second trial,
called PPCOS II, enrolled 750 infertile women, aged 18–40
years, between February 2009 and January 2012. All the par-
ticipants were diagnosed with PCOS according to symptoms
such as anovulation, polycystic ovaries, and hyperandrogenism
(ESHRE, The Rotterdam and ASRM-Sponsored PCOS Consen-
sus Workshop Group 2004). Each participant of the study was
randomly assigned to one of the treatment arms. The PPCOS
I was the largest published study examining the efficacy of
clomiphene citrate, metformin and the combination of the two
among women with PCOS (Legro et al. 2007). The PPCOS II
compared letrozole to clomiphene citrate for infertility treat-
ment among women with PCOS (Legro et al. 2014).

To tackle the aforementioned challenges and further our
understanding of PCOS, in this study we aim to identify
treatments and easily obtainable baseline measures that may
improve ovulation, pregnancy, and ultimately live birth rates,
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Figure 1. Summary of outcomes in the PPCOS study, with total of 626 and 750 participants in the PPCOS I and PPCOS II, respectively. The ratios of failure and success are
presented over the bars.

Figure 2. P-values of the sequential logistic regression for the PPCOS data. The red lines indicate the nominal significance level 0.05 adjusted by the Bonferroni correction.

which would be beneficial in counseling patients regarding their
prognosis and therapy. Figure 1 visualizes the data structure of
the outcomes in the PPCOS I and II trials.

A distinct feature of the pregnancy outcomes is the sequen-
tially nested binary outcomes (SNBOs). The subsequent suc-
cess is conditional upon the preceding one. SNBOs are com-
mon in many biomedical research. A natural strategy to model
SNBOs is through the sequential logistic regression (Tutz 1991),
which is also referred to by a variety of other names including
sequential response model (Maddala 1986), model for nested
dichotomies (Fox 1997), and continuation ratio logit model
(Agresti 2002). In a sequential logistic regression, each of the
outcomes is modeled separately with the observations whose
preceding outcome is a “success.” For example, we may model
the outcome “pregnancy” by using the observations from the
women who ovulated, and likewise model the outcome “live
birth” by using the observations from the pregnant women
only. Therefore, a sequential logistic regression can be estimated
easily by considering one response at a time and estimating a
sequence of logistic regressions. Indeed, this strategy is widely
adopted by clinical practitioners, see, for example, Chen et al.
(2016) and Wu et al. (2017).

However, as the sequential logistic regression models each
outcome separately, it does not leverage all the potentially useful
information from precedent outcomes and can lose power to

detect the influential variables. This limitation becomes more
severe for the later stage outcomes due to the smaller sample
sizes and unbalanced event counts. For example, among the
133 women in the PPCOS I who achieved pregnancy, 118 of
them delivered live birth, while 15 of them did not, causing
the imbalance between the two event counts. In practice, clini-
cians usually perform a sequential logistic regression with the
covariates determined by clinical knowledge and/or variable
screening. Often, however, very few covariates are significantly
associated with live birth (Kuang et al. 2015; Hansen et al.
2016). Regardless of the significance, roles of some covariates
are often assumed a priori and these covariates are kept in
the final regression model anyway. This may not be able to
advance our understanding of PCOS and even provide mis-
leading information. As a proof of principle, we included the
treatments and four variables that were supposedly clinically
relevant in a sequential logistic regression for the PPCOS data,
none of the predictors were statistically significant for live birth
when the p-value was set at 0.05 and adjusted by the Bonferroni
correction; see Figure 2. This observation discourages further
and potentially useful investigation.

To leverage the unique structure of SNBOs, it is desirable to
develop approaches that analyze the outcomes jointly and allow
the model to borrow the information of variable selection from
precedent outcomes. Although the influential variables for each
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outcome may be different, it is reasonable to expect that the
identified variables for the early pregnancy outcomes are more
likely to influence the later pregnancy outcomes. Therefore, a
sensible strategy is to give preference to variables that have been
identified from an earlier stage. This is the key idea behind our
method that has never been investigated before.

Building from the sequential logistic regression models, we
develop an �0-norm based regularization method in favor of
variables that have been identified for the earlier stage outcomes.
Our approach explicitly bridges the connections across nested
outcomes through computationally easy algorithms and enjoys
oracle properties on estimation and variable selection under
usual regularity conditions. Numerical results demonstrate that
our proposed method clearly outperforms the existing methods
that model the outcomes separately. The proposed method is
beneficial regardless of whether the true influential variables for
multiple outcomes are overlapping and whether the number of
explanatory variables is smaller than the sample size. By apply-
ing our method to the PPCOS data, we are able to recommend
infertility treatment strategies for women with PCOS to improve
their chances of live birth.

The rest of this paper is organized as follows. In Section 2, we
introduce our method including likelihood function and reg-
ularization. Section 3 describes the computational algorithms.
We present the theoretical properties in Section 4. In Section
5, we conduct a comprehensive simulation study. The results
of analyzing the PPCOS data are presented in Section 6. We
conclude with some remarks in Section 7. Supplementary mate-
rials containing technical details and extra results for numerical
studies are available online.

2. Methods

2.1. Modeling Framework

Consider a dataset with n subjects, where each subject has M
SNBOs and p explanatory variables. For the ith subject (i =
1, . . ., n), let yi,· = (yi,1, . . ., yi,M)� ∈ {0, 1}M denote the M-
dimension binary outcome with nested structure. The binary
outcomes are nested in the sense that yi,m can be observed if
and only if the precedent outcome yi,m−1 = 1. That is to say,
yi,m−1 = 0 is an absorbing stage that no further outcome is
available. In the infertility study, M = 3 and the three outcomes
correspond to ovulation, pregnancy and live birth. Furthermore,
let Xi,· = (Xi,1, . . ., Xi,p) be a p-dimensional row vector of the
explanatory variables for subject i. We allow a high-dimensional
setting that the number of explanatory variables p is not nec-
essarily less than the sample size n. The aim is to develop a
statistical model to accommodate SNBOs and select influential
variables for M outcomes both individually and jointly.

Let yi,0 = 1 for i = 1, . . ., n, a natural way to formulate the
dataset is through a sequence of generalized linear models:

g
(
E(yi,m|yi,m−1 = 1, Xi,·)

) = Xi,·β·,m + αm, m = 1, . . ., M, (1)

where g(·) is certain link function, αm and β·,m = (β1,m, . . .,
βp,m)� are the unknown intercept and coefficients for outcome
m. As we are considering binary responses, commonly used link
functions g(·) include the logit link g(π) = log (π/(1 − π)) and
probit link g(π) = �−1(π). Although we can use either the logit

or probit link function in our method, we restrict our attention
to the logit link from now on. Model (1) is the typical setting of
a sequential logistic regression model. It may be viewed as the
most natural model for SNBOs in the sense that it only assumes
a conditional mean structure given the precedent outcome is
“success.”

We let β = (β·,1, . . ., β·,M) ∈ R
p×M be the coefficients

matrix. Let βj,· = (βj,1, . . ., βj,M) be the jth row of the coeffi-
cients matrix, so β = (β·,1, . . ., β·,M) = (β�

1,·, . . ., β�
p,·)�. Let α =

(α1, . . ., αM). Let y·,m = (y1,m, . . ., yn,m)� denote the m-th stage
response vector, so Y = (y·,1, . . ., y·,M) = (y�

1,·, . . ., y�
n,·)�. In

addition, let �1 = {1, . . ., n} and �m = {i ∈ 1, . . ., n, yi,m−1 =
1}, m = 2, . . ., M, denote the set of observations that yi,m is
available. Then we have �M ⊆ �M−1 ⊆ . . . ⊆ �1 =
{1, . . ., n}. We further let nm = |�m| be the number of available
observations for outcome y·,m. Furthermore, denote the design
matrix X = (X�

1,·, . . ., X�
n,·)� = (X·,1, . . ., X·,p). With a little

abuse of notation, let Xm = (X�
i,·, i ∈ �m)� denote the sub

matrix of X with the observation in �m and Xm,j denote jth
column of Xm. Finally, assume without loss of generality that
X is normalized such that ‖X·,j‖2

2 = n.

2.2. Likelihood Function

As variable selection is desired in our study, penalization meth-
ods are adopted. Let �(β) be the negative likelihood function of
the nested outcomes, Pen(β) be the penalty function. We aim to
minimize the penalized negative log-likelihood function

L(β) = �(β) + Pen(β).

We will specify the forms of �(β) and Pen(β) in this and next
subsections, respectively.

Given an observed response Y and covariates matrix X,
the conditional probability of Y given X under the sequential
logistic model (1) is

P(Y|X) =
M∏

m=1

∏
i∈�m

(πi,m)yi,m(1 − πi,m)1−yi,m , (2)

where πi,m = E(yi,m|yi,m−1 = 1, Xi,·) = h(X�
i,·β·,m + αm) and

h(x) = exp(x)/
(
1 + exp(x)

)
. The negative log-likelihood then

equals

�(β) = − 1
n

logP(Y|X) =
M∑

m=1
�m(β·,m), (3)

�m(β·,m) = − 1
n

∑
i∈�m

{
yi,m(X�

i,·β·,m + αm)

+ log(1 + exp(X�
i,·β·,m + αm))

}
. (4)

By (3), we see that the maximum likelihood estimator (MLE)
of �(·) is a matrix whose columns are the MLEs of �m(·). This
validates the statement that sequential logistic model can be
estimated easily by estimating a sequence of logistic models.
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2.3. Penalty Function

In this section, we develop a novel penalization method to
leverage the unique structure of SNBOs. The penalty function
Pen(β) is mixed with two parts as follows.

In the first part of Pen(β), we use an �1 penalization Lasso
(Tibshirani 1996) to account for a general sparse structure of
the regression coefficients for all the outcomes. As one of the
most popular penalty functions, Lasso is easy to compute and
naturally provides a sparse solution for variable selection. In our
analysis, we penalize the coefficients β·,m in each stage with the
absolute penalty and combine them together: λ1

∑M
m=1 ‖β·,m‖1.

Here λ1 ≥ 0 is the common penalty level for the coefficients in
each of the stages m = 1, . . ., M. Theoretically, the penalty levels
at different stages should be different, as an oracle penalty level
should depend on the sample size of different outcomes. But in
our analysis, a mixture of two penalty functions is applied. The
second part of the penalty would leverage the difference between
outcomes. Therefore, to reduce the computational burden of
tuning too many parameters, a common penalty level is adopted
in the above penalty.

The second part of Pen(β) aims to leverage the unique struc-
ture of SNBOs. As discussed in Section 1, it is a common
sense that important factors may have lasting influence: the
identified variables for the early pregnancy outcomes are more
likely to influence the later pregnancy outcomes. In other words,
we penalize the coefficients that are identified at stage m − 1
but dropped at stage m for m = 2, . . ., M. To illustrate this
idea further, Figure 3 displays all 8 scenarios for a variable
to be selected or not with respect to the three SNBOs of the
PPCOS data and which scenarios we wish to impose additional
penalties. Overall, we encourage the continuous influence of
covariates on live birth including early, mid, and late influence
as shown in Figure 3.

For a general M, if we write βj,0 = 0 for j = 1, . . ., p, we
employ the following penalty to carry out our intent

λ2

p∑
j=1

M∑
m=1

{
ρ(|βj,m−1| + a|βj,m|) − ρ(|βj,m|)} , (5)

where ρ(t) = I(t �= 0) is the �0 penalty, λ2 ≥ 0 is the penalty
level and a is a positive constant whose role shall be discussed
shortly.

For any a > 0, the penalty (5) is minimized if none of the
selected variables are dropped in a future stage, and is maxi-
mized if every selected variable is eventually dropped in a future
stage. For example, zero penalty is imposed on the four scenarios
in the first panel of Figure 3, but the penalty is equal to λ2 for
the four scenarios in the second panel. Therefore, the penalty
(5) encourages the model to sequentially incorporate influential
variables from ovulation to live birth, the endpoint of the study.
The parameter λ2 controls how “strong” the connection between
the stages is. When λ2 = 0, the proposed method reduces to
M separate generalized linear models with Lasso penalty. When
λ2 = ∞, it forces that supp(β·,1) ⊆ supp(β·,2) ⊆ · · · ⊆
supp(β·,M).

As the �0 penalty norm is difficult to optimize, we use the
seamless-L0 (SELO) penalty (Dicker, Huang, and Lin 2013; Li,
Wang, and Lin 2012) instead to mimic the properties of �0

penalty and yet is easier to compute. With a little abuse of
notation, the SELO is defined as

ρ(t) = ρ(t; τ) = 1
log(2)

log
( |t|

|t| + τ
+ 1

)
, (6)

with τ being a small positive constant. The derivatives of a SELO
penalty is

ρ̇(t; τ) = 1
log(2)

sgn(t)τ
(|t| + τ)(2t + τ)

.

The SELO is computationally easier and possesses the same
asymptotic properties as the �0 norm. Intuitively, concave penal-
ties, such as SCAD and MCP, can be alternatives to �0 penalty.
However, we choose SELO to substitute the �0-norm, as it
provides better approximations of �0 and addresses directly
on variable selection. On the other side, the concave penalties
emphasize the magnitudes of the coefficients for the covariates,
but in our setting, the magnitudes corresponding to different
covariates may not be comparable, as they are applied to dif-
ferent outcomes. We note that others also used SELO to mimic
the effects of �0 penalty on variable selection in different studies.
For example, Huang et al. (2017) used this strategy in integrative
analysis to encourage the similarities of sparsity patterns across
different datasets.

To use the SELO penalty, we require the tuning parameter
a in (5) to be slightly larger than 1. To explain the heuristics
behind this requirement, consider the case that βj,m−1 = 0 and
βj,m �= 0. In this case, ρ(|βj,m−1| + a|βj,m|) − ρ(|βj,m|) > 0
when a > 1. This imposes an additional term of penalization
which prevents the stage m from adding too many variables
from stage m−1. On the other hand, too large an a may prevent
the possibility of adding new variables. In other words, a may be
viewed as a parameter to control the magnitude or possibility of
adding new variables from precedent stages. See Section 3.2 for
details on tuning parameters a and τ .

Together, we propose to minimize the following penalized
log-likelihood function

L(β) = − 1
n

M∑
m=1

∑
i∈�m

{
yi,m(X�

i,·β·,m + αm)

+ log(1 + exp(X�
i,·β·,m + αm))

}
(7)

+ λ1

M∑
m=1

‖β·,m‖1 + λ2

p∑
j=1

M∑
m=1

{
ρ(|βj,m−1|

+ a|βj,m|; τ) − ρ(|βj,m|; τ)
}

. (8)

2.4. Connections With Integrative Analysis and
Hierarchical Variable Selection

Our approach for SNBOs shares some similarities with those
used in integrative analysis that pools together individual data
from multiple datasets and leverage a larger sample. The integra-
tive analysis is closely related to a much commonly used meta-
analysis that may use either individual data or summary infor-
mation from multiple datasets. For example, Huang et al. (2017)
proposed to leverage the datasets connections by promoting
the similarity in sparsity structure of coefficients in integrative
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Figure 3. Possible scenarios for a variable to be selected (colored cells) or not (blank cells) with respect to the three outcomes. The left-hand side presents the four scenarios
(no, late, mid, and early influence) when variables selected earlier are kept later. In this case, we do not wish to impose additional penalties on those selected variables.
The right hand side presents the other four scenarios (insertion, mid and early termination, interruption) when some variables are selected at some point and dropped at
another point later. This is the case that we impose additional penalties.

analysis. In addition, Shi et al. (2014) accommodated the across-
dataset structures by smoothing the magnitude of regression
coefficients of same covariates.

On the other hand, our approach for SNBOs differs signif-
icantly from integrative analysis in the following key aspects.
First, unlike the integrative analysis that pools information from
multiple independent datasets, SNBOs are dealing with a same
set covariates which has particular scientific or other impli-
cations that make it even more desirable to incorporate its
unique structures in the analysis. Second, integrative analysis
usually promotes the similarity of sparsity structures, which is
not appropriated in SNBOs which have a nested structure.

In addition, it is also noteworthy to mention the differ-
ences between our approach and some existing variable selec-
tion approaches for dataset with special structures. For exam-
ple, there are models that have a natural hierarchy, such as
polynomial models, where higher order or interaction terms
should only be included in the model after its corresponding
main effects. Moreover, there are also models that have a natural
grouping effect, where certain variables should be kept in or
removed from the model simultaneously. To address the hier-
archical or grouping structure, composite (Zhao, Rocha, and
Yu 2009) or group (Yuan and Lin 2006) penalization meth-
ods have been proposed in the literature. Differing from these
approaches, our method for SNBOs aims to address the con-
nections across different outcomes with the same variable/term,
while group/hierarchy structure is for the same outcome but dif-
ferent variable/term. Furthermore, our method is more flexible.
The identified variables for early pregnancy outcomes are more
likely, but not necessary, to have effects on the later pregnancy
outcomes, but the group based Lasso approach imposes strict
structures in that the variables in a group are either selected or
not selected altogether.

3. Computation

In this section, we discuss the optimization algorithm for
(7). This was achieved through a combination of iteratively
reweighted least squares (IRLS) and a block coordinate descent
(BCD) algorithm. The IRLS approximates the objective function
(7) in the outer loop and the BCD computes the approximated
objective function obtained by IRLS in the inner loop. Our
procedure is similar to that in Friedman, Hastie, and Tibshirani

(2010) for computing generalized linear model with Lasso
penalty.

3.1. Algorithm

We first present the outer loop of IRLS algorithm, which is a
Newton type algorithm broadly adopted for generalized linear
models.

Algorithm 1. Outer loop with IRLS

1. (Initialization) Set K = 0, α̂(K) = 0, β̂(K) = 0 and tuning
parameters λ1, λ2.

2. (Iteration) (a) For i = 1, . . ., n and m = 1, . . ., M, calculate

z(K)
i,m = X�

i,·β̂(K)·,m + α̂(K)
m + yi,m − π

(K)
i,m

π
(K)
i,m (1 − π

(K)
i,m )

w(K)
i,m = π

(K)
i,m (1 − π

(K)
i,m ),

where π
(K)
i,m = h(X�

i,·β̂
(K)·,m + α̂

(K)
m ). Let w(K), z(K) be p × M

matrices with (i, m)-th components being w(K)
i,m and z(K)

i,m ,
respectively. (b) Minimize LQ(β ; w(K), z(K)) with respect to
β and α:

(̂α(K+1), β̂(K+1)) = argmin
α,β

LQ(α, β ; w(K), z(K)), (9)

LQ(α, β ; w(K), z(K)) = 1
2n

M∑
m=1

∑
i∈�m

w(K)
i,m (z(K)

i,m

− X�
i,·β·,m − αm)2 +

M∑
m=1

λ1‖β·,m‖1

(10)

+ λ2

p∑
j=1

M∑
m=1

{
ρ(|βj,m−1| + a|βj,m|; τ)

− ρ(|βj,m|; τ)
}

. (11)

This can be achieved by using the inner loop iterations as
Algorithm 2.

3. (Stopping Criteria) Stop if max{‖α̂(K+1)−α̂(K)‖2
2 , ‖β̂(K+1) −

β̂(K)‖2
F} ≤ 10−3; Otherwise set K = K + 1 and go to Step 2.

Here ‖ · ‖F denotes the Frobenius norm.
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Next we outline the block coordinate descent algorithm to
minimize (9), which is the approximated objective function
generated by the IRLS. For a given w, z, the BCD treats βj,· =
(βj,1, . . ., βj,M) as a block and minimizes the following objective
function iteratively for j = 1, . . ., p:

β̃
(new)
j,· = argmin

βj,·
R(βj,·; w, z),

R(βj,·; w, z) = 1
2n

M∑
m=1

∑
i∈�m

wi,m
(
zi,m −

∑
j′<j

Xi,j′ β̃
(new)

j′,m

−
∑
j′>j

Xi,j′ β̃
(old)

j′,m − α̃(new)
m − Xi,jβj,m

)2

+
M∑

m=1
λ1|βj,m| + λ2

M∑
m=1

{
ρ(|βj,m−1| + a|βj,m|; τ)

− ρ(|βj,m|; τ)
}

.

We formally state the algorithm for minimizing (9) as follows.
Note that we let β̃j,0 = 0 for j = 1, . . ., p in the following
algorithm.

Algorithm 2. Inner loop with BCD

1. (Initialization) Set k = 0, β̃(k) = 0, α̃(k) = 0, given w, z ∈
R

p×M and λ1, λ2.
2. (Iteration) (a) For m = 1, . . ., M, update α̃

(k+1)
m as

α(k+1)
m =

∑
i∈�m wi,m(zi,m − ∑p

j=1 Xi,jβ̃
(k)
j,m)∑

i∈�m wi,m
.

(b) For j = 1, . . ., p, m = 1, . . ., M and i ∈ �m, calculate

ri,j,m = zi,m −
∑
j′<j

Xi,j′ β̃
(k+1)

j′ ,m − Xi,jβ
(k)
j,m −

∑
j′>j

Xi,j′ β̃
(k)
j′ ,m − α̃(k+1)

m ,

Tj,m =

⎧⎪⎨⎪⎩
aρ̇(|β̃(k)

j,m−1| + a|β̃(k)
j,m|)

+ρ̇(|β̃(k)
j,m| + a|β̃(k)

j,m+1|) − ρ̇(|β̃(k)
j,m|), 1 ≤ m ≤ M − 1,

aρ̇(|β̃(k)
j,m−1| + a|β̃(k)

j,m|) − ρ̇(|β̃(k)
j,m|), m = M.

Update β̃j,m as

β̃
(k+1)
j,m ←

S
(
(1/n)

∑
i∈�m wi,mri,j,mXi,j

+
(
(1/n)

∑
i∈�m wi,mX2

i,j

)
β̃

(k)
j,m , λ1 + λ2Tj,m

)
(1/n)

∑
i∈�m wi,mX2

i,j
,

where S(x, b) = sgn(x)(|x| − b)+ is the soft-thresholding
operator.

3. (Stopping Criteria) Stop if max{‖α̃(k+1) − α̃(k)‖2
2, ‖β̃(k+1) −

β̃(k)‖2
F} ≤ 10−3, otherwise set k = k + 1 and go to Step 2.

3.2. Tuning Parameters

In this section, we discuss the tuning parameters that are
involved in the proposed method. To select the tuning
parameter τ in the SELO penalty, we follow the suggestion of
Dicker, Huang, and Lin (2013) and fix τ = 0.005. For the value
of a, as we explained in Section 2 that it should be a constant
slightly larger than 1. Although cross-validation based methods
may be used to choose a, we find that all our simulation studies

are quite robust to the value of a within a reasonable range (e.g.,
from 1.05 to 1.5). Thus, we set a = 1.1 in all the simulation
studies and real data analysis.

The penalty level parameters (λ1, λ2) are chosen by minimiz-
ing the BIC criterion

BIC(λ1, λ2) = 2�
(
β̂(λ1, λ2)

) +
( M∑

m=1
‖β̂·,m(λ1, λ2)‖0

)
ln n

over a two-dimensional grid with ‖x‖0 denotes the number of
nonzero elements in x. As in Schwarz (1978), our use of BIC is
typical. The first term, �(β̂(λ1, λ2)), is the negative likelihood
function of the nested outcomes and

∑M
m=1 ‖β̂·,m(λ1, λ2)‖0 in

the second term is the number of parameters estimated by the
model for all M stages.

From Theorem 1 below, it can be seen that the effective
penalty level in (7) is in fact λ = λ1 + [

(a − 1)/{log(2)τ }] λ2
when the influential variables from earlier stages truly affect
later stage outcomes. This suggests that a SELO penalty level
on the order of λ2 = O ([τ/(a − 1)]λ1) would be comparable
with λ1. We use λ2 = [τ/(a − 1)]λ1 as a reference when we set
the two-dimensional grid and tuning λ1 and λ2 with BIC in the
simulation and the infertility treatment study.

4. Theoretical Properties

In this section, we derive the oracle properties of the proposed
estimator with or without the assumption that the influential
variables for earlier stage outcomes have effects on the subse-
quent outcomes. An estimator enjoys the oracle properties when
(i) it enjoys selection consistency and (ii) attains estimation
consistency under the �2 loss. All the proofs are included in
supplementary material.

Let α∗, β∗ be the true coefficients. As we aim to study the ora-
cle properties of β̂ , we let the intercept term α∗ = 0 for simplic-
ity throughout this section. For m = 1, . . ., M, denote the min-
imal signal strength at stage m as δm = minj∈Sm |β∗

j,m|. Denote
the true support set and its cardinality as Sm = supp(β∗·,m) and
sm = |Sm|, respectively. Further, let Xm,Sm = (Xi,j, i ∈ �m, j ∈
Sm) be the sub matrix of X with rows in �m and columns in Sm.
Moreover, for any θ = (θ1, . . ., θq)� ∈ R

q with length q, define

(θ) = diag
{

exp(θ1)

[1 + exp(θ1)]2 , . . .,
exp(θq)

[1 + exp(θn)]2

}
.

Under model (1), it is known that y·,m has the covariance matrix
(Xmβ∗·,m) given precedent response y·,m−1 = 1. Finally, let
λmin(·) and λmax(·) denote the smallest and largest eigenvalues
of a matrix, respectively.

When the influential variables for earlier stage outcomes
truly have effects on subsequent outcomes, it essentially assumes
that S1 ⊆ . . . ⊆ SM . So we develop the oracle properties of the
proposed estimator with or without the assumption S1 ⊆ . . . ⊆
SM . For either case, we impose the following conditions.

Condition 1. (Design matrix). Let Gm = {b ∈ R
|sm| : ‖b −

β∗
Sm,m‖∞ ≤ δm} for m = 1, . . ., M. Suppose that the design

matrix X satisfies:

(a). min
b∈Gm

λmin
[
{Xm,Sm}�(Xm,Sm b)Xm,Sm

]
≥ cmn, (12)
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(b). tr
[
{Xm,Sm}�(Xm,Smβ∗·,m)Xm,Sm

]
= O(smn), (13)

(c). max
b∈Gm

max
j∈Sm

1
2
λmax

[
{Xm,Sm}�

{
diag{|Xm,j|}

◦|(Xm,Sm b)|
}

Xm,Sm

]
= O(n), (14)

where cm is positive constant, ◦ denotes the Hadamard (compo-
nentwise) product and tr denotes the trace.

The regularity conditions on the design matrix are usu-
ally assumed in high-dimensional generalized linear models.
For example, Fan and Lv (2011) imposed similar conditions
to prove the oracle properties of a nonconcave penalized esti-
mation including the SCAD penalty (Fan and Li 2001), MCP
(Zhang 2010) and others.

Condition 2. (Penalty level). Let λ∗ = f (λ1, λ2) be a function
of λ1 and λ2 with the form of f (·, ·) to be specified later. For
m = 1, ..., M, suppose that λ∗ satisfies

(1/η)
∥∥{Xm/n}� (

y·,m − π∗·,m
) ∥∥∞ ≤ λ∗ � s−1/2

m δm, (15)

where 0 < η < 1 and π∗·,m = (π1,m, ..., πn,m)� with π∗
i,m =

h(X�
i,·β∗·,m).

Condition 2 is an unified condition on two regularization
parameters λ1 and λ2. When the coefficients do demonstrate a
nested structure, λ∗ = λ1 + [(a − 1)/{log(2)τ }]λ2 shall satisfy
the condition 2. Otherwise, condition 2 shall be satisfied by
λ∗ = λ1 − λ2/{log(2)}. Note that with or without the nested
structure, the sign of λ2 is reversed in the formulation of λ∗.
This is because the second regularization term is designed to
promote the nested structure. So the magnitude of λ2 should be
proportional to “how strong the nested structure is.” In practice,
we do not know exactly whether the nested structure exists or
not. Thus, it is suggested that choosing the λ1 and λ2 with BIC.

More specifically, the first inequality in Condition 2 requires
the penalty to be large enough to include the true coefficients.
To achieve this, a λ∗ on the order of

√
(1/n) log p would be

sufficient. The second inequality could be viewed as a condition
on the size of the minimum signal. The minimum signal δm is
allowed to vanish asymptotically, provided that it converges no
faster than λ∗s1/2

m . We shall also note that such regularization
condition is typically assumed in high-dimensional generalized
linear models for penalization levels.

Condition 3. Denote ψm as

ψm =
∥∥∥∥{Xm,Sc

m}�(θ∗
m)Xm,Sm

[
{Xm,Sm}�(θ∗

m)Xm,Sm

]−1
∥∥∥∥∞

,

(16)

where the �∞ norm of a matrix is the maximum of the �1 norm
of each row. Let η be in (15). Suppose

η + ψm + ηψm ≤ 1. (17)

Condition 3 can be viewed as a similar form of the irrepre-
sentable condition imposed by Zhao and Yu (2006) for Lasso. It
is nearly necessary for the Lasso-type estimators to achieve the
variable selection consistency.

Now we are ready to state the oracle properties of the pro-
posed estimator. We first assume S1 ⊆ S2 ⊆ · · · ⊆ Sm.

Theorem 1. Suppose that S1 ⊆ S2 ⊆ · · · ⊆ SM and Conditions
1–3 hold with λ∗ = λ1+

[
(a − 1)/{log(2)τ }] λ2. Suppose aτ 2 ≤

2(a − 1)δ2
m. If nλ2∗ → ∞ and smλ∗ → 0, then with probability

approaching to 1, there exists a local minimizer of (7) such that

β̂Sc
m = 0, ‖β̂Sm,m − β∗

Sm,m‖2 ≤ Cs1/2
m λ∗, m = 1, ..., M, (18)

where C is a constant.

Theorem 1 provides the oracle estimation and variable selec-
tion consistency properties of the proposed method under the
assumption S1 ⊆ S2 ⊆ .... ⊆ Sm. Given this assumption, the
effective penalty level is λ∗ = λ1 + [

(a − 1)/{log(2)τ }] λ2. As
the first inequality in (15) may be satisfied with high probability
with λ∗ on the order of

√
(1/n) log p, the �2 estimation error

in (18) is on the order of
√

(sm/n) log p. This matches the
estimation error rates of Lasso on generalized linear models.

Theorem 2. Suppose that Conditions 1–3 hold with λ∗ = λ1 −
λ2/{log(2)τ }. If nλ2∗ → ∞ and smλ∗ → 0, then with probability
approaching to 1, there exists a local minimizer of (7) such that
for m = 1, . . ., M,

β̂Sc
m = 0, ‖β̂Sm,m − β∗

Sm,m‖2 ≤ Cs1/2
m λ∗,

where C is a constant.

Theorem 2 establishes similar oracle properties of the pro-
posed method without assuming S1 ⊆ S2 ⊆ · · · ⊆ Sm. Here the
effective penalty level is λ∗ = λ1 − λ2/{log(2)τ }. So λ2 cannot
be too large in order to satisfy Condition 2. In other words, when
the influential variables in earlier stages do not necessarily have
effects on subsequent outcomes, a dominating λ1 is necessary
for the oracle properties.

5. Simulation Study

In this section, we provide a comprehensive simulation study to
demonstrate the variable selection and estimation performance
of the proposed method.

The simulations are run with M = 3 stages and number of
observations n = 500 to mimic the PPCOS data settings. The
number of explanatory variables is considered in three different
values: p = 100, 500, 1000. This covers the classical setting
where p ≤ n (potentially, as there are fewer observations for
later stage outcomes) and high-dimensional setting where p >

n. The design matrix X is generated randomly as X ∼ Np(0, I).
True coefficients β∗ in three stages are

β∗·,1 = (1, 1, 1, 0, . . ., 0)�, β∗·,2 = (a, a, a, 1, 1, 1, 0, ..., 0)�,
β∗·,3 = (b, b, b, a, a, a, 1, 1, 1, 0, . . ., 0)�.

with a and b are in five different combinations:

(1) a = b = 1, (2) a = b = 0.5, (3) a = 0.5, b = 0.1,
(4) a = 0.5, b = 0, 5) a = b = 0.

We can see that a and b control the magnitude of the overlap-
ping/nested coefficients. Our settings of the coefficients reflect
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the scenarios shown in Figure 3. For example, settings (1)–
(3) represent the scenarios of early, mid, and late influence, as
shown in Figure 3 that coefficients are nested, but with differ-
ent scales. In setting (4), three coefficients vector are partially
overlapped, that is, supp(β∗·,1) ⊆ supp(β∗·,2) �⊆ supp(β∗·,3),
which represents the scenarios of mid termination, mid, and late
influence shown in Figure 3. In setting (5), β∗·,1, β∗·,2 and β∗·,3 are
completely nonoverlapped, that is, supp(β∗·,1) �⊆ supp(β∗·,2) �⊆
supp(β∗·,3). This represents the scenarios of early termination,
insertion, and late influence shown in Figure 3 that influential
variables for precedent stage outcomes have no effects on the
subsequent stages, thus, totally against our assumption.

To generate the outcome Y, we first generate Ỹ through:

ỹi,m ∼ Bernoulli
(

h(X�
i,·β∗·,m)

)
, i = 1, . . ., n, and m = 1, 2, 3,

and let ỹi,0 = 1 for i = 1, . . ., n. Then we let yi,m = ỹi,m if
ỹi,m−1 = 1 to represent the truly observed outcome, and let
yi,m = ∗ if ỹi,m−1 = 0 to represent the unobserved outcomes.

To better understand the performance of the proposed
method, we use the Lasso as a benchmark estimator. The Lasso
for SNBOs essentially minimizes (7) with λ2 = 0. As mentioned
before, this is equivalent to separately estimating β̂·,1, β̂·,2 and
β̂·,3 with observations from �1, �2 and �3, respectively. Instead
of a fixed λ1 for all three outcomes, estimating β·,m separately
allow different penalty levels for different outcomes. We use a
well-recognized R package glmnet to implement the Lasso
with penalty levels chosen by 10-fold cross-validations.

Besides �1 penalty Lasso, we also apply other popular penal-
ization approaches: Adaptive Lasso (Zou 2006) and SCAD (Fan
and Li 2001) to estimate β̂·,1, β̂·,2, and β̂·,3 separately. The
adaptive Lasso and SCAD remove the strong irrepresentable
condition required by the Lasso to achieve variable selection
consistency. So they are expected to achieve a better perfor-
mance on variable selection. We note that the adaptive Lasso
requires a root-n-consistent estimator of true coefficients, such
as OLS or MLE. Thus, we only implement adaptive Lasso in the
setting that n > p (p = 100). In addition, when p = 100, we
could also use the MLE of (3), that is, the sequential logistic
regression with no penalization, for variable selection. That is to
say, we select variables with p-values ≤ 0.05. However, the results
are not reported here as the variable selection and estimation
performance are much worse than the Lasso.

We consider seven measures to comprehensively evaluate the
variable selection and estimation performance of the proposed
method. The variable selection performance is evaluated with
six measures. The first three measures are the false positives (FP,
the number of wrongly selected variables) in three stages. The
second three measures are the false negatives (FN, the number
of missed variables) in three stages. The estimation performance
is evaluated with total square errors (TSE)

∑3
m=1 ‖β̂·,m−β∗·,m‖2

2.
The simulation results are summarized from 100 indepen-

dent replicates. We report the medians of the false positives, false
negatives and TSEs in Table 1. We denote the proposed method
as PSNR (penalized sequentially nested regression).

From Table 1, it is clear that the proposed method outper-
forms Lasso, adaptive Lasso and SCAD in variable selection
across most of the settings. When the influential variables for
early stage outcomes truly have effects on subsequent outcomes,

that is, when a = b = 1, or a = b = 0.5, or a = 0.5, b = 0.1, the
proposed method dominates competing methods for both false
positives and false negatives from p = 100 to p = 1000. We
also note that the proposed method demonstrates advantages
for small overlapping signals, that is, b = 0.1. In this case, the
regular methods that estimate coefficients separately incline to
miss important variables, while the proposed method will not
due to extra penalization.

Moreover, the estimation performance shows a similar pat-
tern in this scenario. When p = 100, it is clear that the TSEs
of the proposed method are uniformly smaller than that of the
Lasso, adaptive Lasso and SCAD. When p = 500 and 1000, we
see that the proposed method shows advantage for larger signals,
that is, a = b = 1 or a = b = 0.5, while SCAD performs the
best when a = 0.5, b = 0.1.

When a = 0.5, b = 0 or a = b = 0, the coefficients are
not nested, the proposed method still demonstrates competitive
performance for variable selection. We see that the proposed
method performs best in terms of false positives from p = 100
to p = 1000, except the only scenario when a = b = 0 and
p = 100, where SCAD slightly outperforms. In terms of false
negatives, although nonzero false negatives appear in stage 2
when p = 1000 (median is 1), the proposed method is still
robust in this least favorite settings.

For coefficients estimation under non nested scenario, the
methods that separately estimate coefficients demonstrate a bet-
ter performance. This to some extent is expected. Recall that
the proposed method uses a fixed λ1 for all three outcomes,
while Lasso or SCAD cross-validate the minimum TSEs and is
allowed to choose different penalty levels for different outcomes.
Combining these choices with the fact that Lasso uses λ2 = 0,
which is the optimal choice in this case, we would expect a better
performance of the Lasso in estimation.

Another notable observation for the proposed method is its
performance on the first stage outcome. We see that from p =
100 to p = 1000, for all five different combinations of a and
b, the proposed method shows a “near-perfect” performance
in variable selection. One possible reason is that the proposed
method forces the first stage outcome to pay a higher penalty
on variables missed early compared with later stage outcomes.
Thus, even in the nonnested, our method still tends to include
the true influential variables with no mistake for the first stage
outcome.

When the covariates are correlated, our method still shows
competitive performance. See Table S1 in supplementary mate-
rial for additional simulation studies.

Overall, the proposed method is robust against different p
and different signal settings, especially for the variable selection.
For SNBOs, our method provides a sensible choice for practical
data analysis.

6. Analysis of Pregnancy Outcomes

We now apply the proposed method to the PPCOS data with
a total of 1376 women with PCOS, among which 1065 partic-
ipants ovulated, 331 participants were pregnant, and 291 par-
ticipants delivered live birth. We use three sequentially nested
binary outcomes to represent the three stages, with one indi-
cating success. For the covariates, we consider the treatment
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Table 1. Simulation results for variable selection and estimation.

Selection Estimation

Methods FP-1 FP-2 FP-3 FN-1 FN-2 FN-3 TSE

p = 100 a = b = 1 PSNR 0 0 1 0 0 0 1.23
Lasso 12.5 22 26 0 0 0 2.32

Adap Lasso 14 12 16 0 0 0 2.34
SCAD 4 6 8 0 0 0 3.18

a = b = 0.5 PSNR 0 0 0 0 0 0 0.92
Lasso 12.5 17 19 0 0 0 1.67

Adap Lasso 12.5 11 15 0 0 0 1.80
SCAD 3 7 9.5 0 0 0 1.99

a = 0.5, b = 0.1 PSNR 1 1 7 0 0 0 1.47
Lasso 13 16 19.5 0 0 1 1.59

Adap Lasso 13 11 14 0 0 1 1.84
SCAD 3 7.5 10 0 0 0 1.82

a = 0.5, b = 0 PSNR 0 1 13 0 0 0 2.11
Lasso 13 20 19 0 0 0 1.62

Adap Lasso 13 15.5 13 0 0 0 1.75
SCAD 3 8.5 11 0 0 0 1.64

a = b = 0 PSNR 1 3 8 0 0 0 2.18
Lasso 13 16.5 15 0 0 0 1.41

Adap Lasso 13 14.5 13 0 0 0 1.44
SCAD 4 9 12 0 0 0 0.99

p = 500 a = b = 1 PSNR 0 0 1 0 0 0 1.72
Lasso 18 36.5 51 0 0 0 3.65
SCAD 9 20 24 0 0 0 3.49

a = b = 0.5 PSNR 0 0 1 0 0 0 1.27
Lasso 20 31.5 44 0 0 0 2.62
SCAD 13.5 19 25 0 0 0 2.39

a = 0.5, b = 0.1 PSNR 0 0 6 0 0 0 2.54
Lasso 20 34 36 0 0 2 2.27
SCAD 9 19 21 0 0 1 1.65

a = 0.5, b = 0 PSNR 0 0.5 9 0 0 0 3.04
Lasso 19.5 33 33 0 0 0 2.42
SCAD 8 19 24 0 0 0 1.74

a = b = 0 PSNR 0 2 5 0 0 0 3.71
Lasso 20 21 24 0 0 0 1.95
SCAD 9 16 23 0 0 0 1.23

p = 1000 a = b = 1 PSNR 0 0 1.5 0 0 0 2.02
Lasso 22 49 58 0 0 0 4.13
SCAD 12.5 25 26 0 0 0 3.44

a = b = 0.5 PSNR 0 0 2 0 0 0 1.52
Lasso 27 38 51.5 0 0 0 2.91
SCAD 15 27.5 32 0 0 0 2.46

a = 0.5, b = 0.1 PSNR 0 0 4 0 0 1 3.19
Lasso 21.5 39 40.5 0 0 2 2.68
SCAD 14 31 31 0 0 1 2.01

a = 0.5, b = 0 PSNR 0 1 9 0 0 0 3.50
Lasso 22.5 46 40 0 0 0 2.49
SCAD 12 32 32 0 0 0 1.99

a = b = 0 PSNR 0 2 5 0 1 0 4.21
Lasso 23 28 25 0 0 0 2.26
SCAD 12.5 24 29.5 0 0 0 1.60

NOTE: Median false positives, false negatives and TSEs are reported. Simulations are based on 100 independent replicates. Best performance on False positives and TSEs
are in bold. Nonzero False negatives are in italic.

options and 28 explanatory variables, including baseline demo-
graphic and clinical variables, as well as laboratory biomarkers.
The covariates are normalized. We are particularly interested
in determining which variables enter or drop at which stage
and how they influence the pregnancy outcomes. Importantly,
the use of the two independently collected datasets (PPCOS I
and II) as discovery and validation sets, respectively, provides
us an opportunity of verifying the significance and robustness
of our findings. With the novel modeling framework, our aims
are 2-fold: first, to provide timely evidence for treatment rec-

ommendation based on the PPCOS trials; second, to further
our understanding of infertility and its treatment. In addition
to the proposed method PSNR, we also apply the sequential
logistic regression (MLE), Lasso, adaptive Lasso, and SCAD as
in the simulation study for comparison purpose. All the tuning
parameters are selected as described before.

Table 2 summarizes the clinical covariates and baseline
biomarkers considered in the study. There are no significant
differences in covariates between the two treatment arms in the
PPCOS II data; the same is true for the PPCOS I data (Legro



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 611

Table 2. Baseline characteristics used as covariates in the regression model.

Variable PPCOS I PPCOS II P-values

Cycle of earliest ovulation 2.36 ± 1.85 1.68 ± 0.99 <0.001
Age (years) 28.11 ± 4.02 28.86 ± 4.26 0.001
Height (cm) 163.42 ± 7.09 164.07 ± 6.46 0.080
Weight (kg) 94.33 ± 24.66 94.84 ± 26.29 0.713
BMI (kg/m2) 35.23 ± 8.66 35.14 ± 9.25 0.848
Hirsutism score 14.44 ± 7.88 16.99 ± 8.54 <0.001
Waist circumference (cm) 102.54 ± 19.55 105.93 ± 20.43 0.002
Hispanic 164/626 (0.26) 128/750 (0.17) <0.001
American Indian (ref:White) 72/626 (0.12) 7/750 (0.01) <0.001
Asian (ref:White) 17/626 (0.03) 24/750 (0.03) 0.610
Black (ref:White) 109/626 (0.17) 100/750 (0.13) 0.033
Attempting conception (months) 40.36 ± 35.83 41.71 ± 37.77 0.501
Prior pregnancy 210/626 (0.34) 273/750 (0.36) 0.269
Prior live birth 113/626 (0.18) 148/750 (0.20) 0.428
Prior loss of pregnancy 138/626 (0.22) 174/750 (0.23) 0.610
History of hypertension 39/626 (0.06) 42/750 (0.06) 0.621
History of psychiatric disorder 110/626 (0.18) 194/750 (0.26) <0.001
Current smoker 107/626 (0.17) 111/750 (0.15) 0.246
Current alcohol user 226/626 (0.36) 472/750 (0.63) <0.001
Left ovarian volume (cm3) 11.11 ± 6.40 11.55 ± 6.30 0.199
Right ovarian volume (cm3) 12.05 ± 7.03 12.56 ± 7.42 0.196
Total testosterone (ng/dl) 62.03 ± 28.63 55.03 ± 28.80 <0.001
Glucose (mg/dl) 88.96 ± 17.38 86.04 ± 12.62 0.001
Insulin (μU/ml) 23.00 ± 26.63 19.27 ± 27.05 0.011
Proinsulin (pmol/l) 24.91 ± 25.84 17.98 ± 14.43 <0.001
SHBG (nmol/l) 29.66 ± 18.07 33.88 ± 23.08 <0.001
HOMA 5.47 ± 8.38 4.38 ± 9.14 0.023
FAI 9.62 ± 6.79 7.84 ± 5.99 <0.001

NOTE: Data are presented as mean ± standard deviation or number of partici-
pants/total number of participants (percentage in parentheses). BMI: Body-mass
index; hirsutism score: Ferriman-Gallwey scale for hirsutism; SHBG: Sex hormone–
binding globulin; HOMA: Homeostasis model assessment; FAI: Free androgen
index.

et al. 2007, 2014). This is expected because randomization
was designed to remove the treatment effects on the baseline
characterstics and to allow an unbiased comparison of the
treatment effect on live birth rates. Hence, in Table 2, we
compare the baseline characteristics between the participants
of the PPCOS I and PPCOS II trials without stratifying by
the treatment arms. There exist some significant differences
between the PPCOS I and PPCOS II samples, such as age and
hirsutism score. Nevertheless, these two datasets provide the
best available option for mutual verification as in Kuang et al.
(2015).

Figures 4 and 5 present the covariates associated with the
three outcomes. Treatment effects are consistently identified
across all stages, as we shall see later. First, the competing meth-
ods can hardly detect any signals at the stage of live birth, but
benefiting from the modeling framework, the proposed method
is able to uncover lasting influence at later stages. Second, influ-
ential covariates discovered by applying PSNR to the PPCOS I
and PPCOS II datasets show strong consensus, but this is not the
case for the other methods. The patterns are clearly illustrated
in Figure 6. The number of covariates identified by the other
methods remarkably drops to almost zero for live birth, whereas
PSNR maintains its performance across the stages.

The following patterns of the selected variables are common
to the PPCOS I and PPCOS II data. From Figure 5, we see
that cycle of the earliest ovulation, age, BMI, hirsutism score,
and number of months of attempting conception are negatively
associated with pregnancy and live birth; as compared with
whites, blacks have lower rates of pregnancy; prior loss of preg-

nancy is only associated with lower rates of ovulation; history
of psychiatric disorder and current alcohol consumption are
two factors associated with lower rates of pregnancy; current
smoking reduces the likelihood of pregnancy and live birth.
For the laboratory obtainable biomarkers, glucose and FAI are
negatively associated with pregnancy and live birth; insulin and
proinsulin are negatively associated with live birth, with proin-
sulin further decreasing the likelihood of ovulation; SHBG is
positively associated with ovulation and pregnancy; and HOMA
increases the odds of pregnancy and live birth.

There are discrepancies between the patterns of the two
datasets, which may be caused by differences in covariates as
shown in Table 2. This difference does not necessarily suggest
inconsistencies in our findings, but rather reflects the complex
relationship among the covariates and outcomes. In addition
to the mutual verified patterns, the PPCOS I data provide the
following add-ons: prior live birth increases the likelihood of
pregnancy and live birth; left ovarian volume and insulin are
negatively associated with the three outcomes; SHBG is nega-
tively associated with live birth. The PPCOS II data show that
prior pregnancy increases the likelihood of ovulation and live
birth, whereas total testosterone decreases the odds of preg-
nancy and live birth.

The observation regarding the role of the cycle of the ear-
liest ovulation, blacks, previous pregnancy history, history of
psychiatric disorder, current alcohol user/smoker, and left ovar-
ian volume is novel from these data, but expected. Hillman
et al. (2014) reported that blacks with PCOS have increased
risk for metabolic syndrome and cardiovascular disease com-
pared with whites, which may be related to the lower rates of
pregnancy among black women of the PPCOS. Magnus et al.
(2019) reported that the risk of miscarriage is increased after
some adverse pregnancy outcomes, suggesting that previous
successful pregnancy history may have positive effects on sub-
sequent pregnancy. Psychological interventions were found to
improve pregnancy rates (Hämmerli, Znoj, and Barth 2009),
which appear to explain our observation regarding history of
psychiatric disorder. It is well established that adverse effects of
alcohol consumption on fetal health are synergistic with smok-
ing (Wright et al. 1983), our results provide timely evidence
and additional motivation to encourage smoking cessation and
reducing alcohol consumption before pregnancy.

Beyond discovering associations between risk factors and
the three pregnancy outcomes, it is important to develop a
prognostic model to predict outcomes. This is difficult as both of
the PPCOS I and PPCOS II samples have drastically decreased
sample sizes and unbalanced event counts for the later out-
comes. Figure 7 compares two receiver operating characteristic
(ROC) curves. The red curve is derived from a prediction model
built from the PPCOS I data by our proposed PSNR method
and applied to the PPCOS II data for the estimation of speci-
ficity and sensitivity. See Table S2 in supplementary material for
the model. The black curve is from a commonly used clinical
model (denoted by CM). CM is a sequential logistic regression
containing the clinically evident factors as given in Figure 2.
We also evaluated a model only containing age and FAI as
recommended by practitioners (Kuang et al. 2015), its perfor-
mance is slightly inferior to CM and is not shown here. Figure 7
reveals that PSNR clearly outperforms CM for ovulation and live
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Figure 4. Covariates identified by various methods. The red, green, and white blocks represent negative, positive, and no effects on the three binary outcomes, respectively.

birth, and is still marginally better than CM for the outcome
pregnancy.

As the last step, from the perspective of precision medicine,
we explore whether the treatment effect varies by potential
subgroups determined by the predictors in the prognostic model
as in Figure 7. To this end, we investigate interactive effects

between the treatment and the predictors. We carry out a post
hoc analysis by including the interaction terms and conduct
variable selection through the proposed PSNR. The following
interactions are identified for live birth: treatment and age, left
ovarian volume, FAI, respectively, from the PPCOS I; treat-
ment and age from the PPCOS II. Figure 8 visualizes various
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Figure 5. Covariates identified by various methods (cont.). The red, green, and white blocks represent negative, positive, and no effects on the three binary outcomes,
respectively.

Figure 6. The barplots show the number of covariates identified by various methods across the three stages. The Venn diagram shows the consensus between the results
of the PPCOS I and PPCOS II using the proposed method.

treatment effects on live birth as represented by odds ratio
(OR). Figures S1 and S2 in supplementary material present
treatment effects on ovulation and pregnancy, respectively. No
interaction terms are found for metformin and it is inferior to
other treatments in achieving live birth and other pregnancy
outcomes.

We note that the treatment effects on live birth cannot be
detected by any competing separate models (MLE, Lasso, adap-
tive Lasso, and SCAD), whereas our PSNR recognizes lasting

influence on live birth despite the fact that the sample size
decreased and event counts were extremely unbalanced. The
detection power of the four separate models is limited as they
are only able to identify the treatment effects at several early
stages of pregnancy. See Figure S3 in supplementary material
for details.

Second, the main effects of the treatment detected by PSNR
are in agreement with the conclusions of the PPCOS trials
(Legro et al. 2007, 2014).
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Figure 7. Receiver operating characteristic (ROC) curves show the predictive performance of the regression models trained on the PPCOS I dataset and applied to the
PPCOS II dataset. CM: Clinical model using treatment, age, BMI, hirsutism score, and number of months of attempting conception as covariates.

Figure 8. Odds ratio (OR) of treatment and subgroup effects identified by PSNR. Based on the variables that are identified to interact with the treatment, we dichotomize
the patients into subgroups with low and high values of those variables. Treatment recommendations are given according to the ORs. From the PPCOS I, in terms of live
birth rate, the main effects of clomiphene and combination therapy are quite close; clomiphene is more effective for older women; combination therapy is more effective
for the patients with a larger left ovarian volume or FAI. From the PPCOS II, letrozole is more effective in terms of live birth rate, whereas clomiphene is more effective for
older women.

Last but not the least, we can formulate treatment recom-
mendations to improve live birth according to the ORs shown
in Figure 8. From the PPCOS I, the main effects of clomiphene
and the combination therapy are quite close; clomiphene is more
effective for older women; and the combination therapy is more
effective for the patients with a larger left ovarian volume or
FAI. From the PPCOS II, letrozole is more effective, whereas
clomiphene is more effective for older women. Interestingly,
Zhang et al. (2010) suggested that left ovarian volume appears to
be of great value in recommending effective treatment options.
They constructed a decision tree for ovulation rate and recom-
mended the combination therapy for those patients with larger
left ovarian volumes in the PPCOS I. Our results validate their
findings from a different perspective.

7. Discussion

We have developed a framework to perform joint variable selec-
tion and coefficients estimation of SNBOs. The unique struc-
ture of SNBOs leads to decreased sample sizes and possibly
unbalanced event counts at later stages, which makes it difficult
to detect variables that are potentially influential to later stage
outcomes. Joint model that incorporates information from mul-
tiple outcomes are more powerful than modeling each outcome

separately to detect associations at later stages. By borrowing the
variable selection information from precedent stage outcomes,
our joint estimation approach gives increased power to detect
influence of covariates relative to separate models for each out-
come. It is noteworthy that our method is not restricted by the
ratio of sample size or the number of covariates, which allows us
to consider genetic markers in future studies. One future direc-
tion is to carry the information in the early stage outcomes onto
the subsequent ones in statistical inference. Another direction
is variable selection taking account of SNBOs and hierarchical
structures of interactions simultaneously, for example, by using
decision trees seem to be natural solutions (Zhang et al. 2010).
It warrants further research and development.

When applied to the PPCOS I and II data, on the one hand,
our method successfully validates various important findings in
the literature such as the effects of age, BMI, hirsutism score,
the number of months of attempting conception, and some
laboratory biomarkers. On the other hand, it discovers insightful
associations and lasting influence of basic characteristics on the
pregnancy outcomes which have not been revealed.

We demonstrate that the clinical covariates and laboratory
biomarkers that overlap with those reported in the literature
can be used to develop a prognostic model to predict a woman’s
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chance of having live birth. Our findings also provide evidence
for patient tailored infertility treatment options.

Supplementary Material

Supplement: Supplement containing technical details and additional
results for simulation studies and data application.

Code: Code implementing the proposed method.
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