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Abstract: This paper presents a newly-designed optimal current algorithm for high-temperature
superconductor (HTS)-based multi-input wireless power transfer (WPT) systems. In this way, both
high controllability and lower AC losses can be achieved in the proposed systems, and they are
especially superior for long-range and long-time operations. Simplified AC loss modeling for HTS
windings is developed for the designed transmitter coils. The accordant optimal current vector is
derived and analyzed in order to achieve the highest output power and the lowest primary AC losses.
With the proper current control of multiple transmitters and the use of a designed HTS coupler, the
system controllability can be greatly improved compared with conventional WPT systems. Based on
the information on the impedance characteristics on the primary side, the magnetic field generated
by different transmitters can be maximized at the target position. Thus, the maximum output power
tracking can be realized with a relatively long transmission distance and a low coupling coefficient.
Both active and passive solutions are designed and presented to deal with the cross-coupling issue
in multi-input WPT systems. For numerical validation, a practical prototype of the HTS couplers is
fabricated. An experimental platform is established with a liquid nitrogen cooling system. The test
results further validate the feasibility and the high controllability of the proposed system.

Keywords: HTS; optimal current vector; multi-input; wireless power transfer

1. Introduction

Magnetic coupling resonance-based wireless power transfer (WPT) systems have
drawn considerable attention and research interest recently for their high embeddability
and great convenience [1–3]. Undoubtedly, WPT is gradually becoming one of the most
prominent technologies in future industrial applications [4,5]. With its rapid development,
modern industrial applications have placed more requirements on this technology for
higher convenience and flexibility in control [6,7]. However, for conventional one-to-one
WPT systems, the coupling strength between the transmitter and receiver coils will be
highly sensitive to their relative position relationships [8]. Even slight lateral or angular
misalignments will cause great output decay [9,10]. Stemming from this, a conventional
one-to-one system will only be suitable for static wireless power transfer [11], and the
transmission distance will also be highly limited [12]. On the other hand, the lack of control-
lability means that it may not be able to further satisfy some special working requirements.
For example, dynamic charging systems require an extraordinarily good fault-tolerance
ability [13–15]. Multi-output systems should be designed with consideration of output
power distribution on the secondary side [16–18]. Therefore, more controllable and flexible
systems with multiple input currents are gradually becoming a future development trend
of WPT technology.

1.1. Related Surveys

As mentioned before, multi-input WPT systems can be regarded as a viable solution
to effectively increase the system controllability as well as the output performance [19–21].
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By breaking the traditional single large coil into a small transmitter coil array or matrix, the
system gives us a greater degree of freedom in control, and thus its flexibility can be greatly
improved. With the proper current algorithm [22–24], the system can maximize the reso-
nant magnetic field at one or multiple target positions in order to achieve the best output
performance. As a result, both the transmission distance and fault tolerance ability of the
system can be effectively improved. However, in many previous works, the optimal current
vector usually required a complex algorithm, as well as impedance matching schemes,
which brings a heavy burden for optimization and the system design [25,26]. Another key
problem in most long-distance WPT lies in the fact that the heating loss consumed at the
primary side becomes comparable to the power transmitted. It has already been proven
by many previous research works that HTS-based coupler coils will be superior to tradi-
tional copper coils in transmission efficiency, especially for long-time operations [27–29].
However, very few of these studies focused on multi-coupling WPT systems and their
accordant current algorithm. By using HTS-based coupler coils, the traditional heating
loss calculation model that only considers the parasite resistance will no longer be suitable.
Under the superconducting condition, the resistance of the winding can be considered to
be zero, and AC losses will become the dominant components. Thus, the AC loss modeling
for HTS coils and the accordant optimal current algorithm for HTS-based multi-input WPT
systems still deserves further in-depth research.

1.2. Contributions of This Study

Based on the above-mentioned problems, this paper designs and analyzes the most
convenient optimal current vector according to simplified AC loss modeling for HTS
coils. As a result, the maximum output power tracking can be realized with multiple-
current control. Both a near-field high-power-level system and a far-field low-power-
level system are presented and analyzed in order to validate the effectiveness of the
proposed optimal current vector. To deal with the cross-coupling effect between the
multiple transmitters, two different solutions are presented and discussed in order to
realize muti-current synchronization. Both the simulation and experimental results validate
the supposition that the proposed current control can perfectly meet the requirements
of good output performance, high controllability, and a high fault-tolerant ability for
long-range wireless power transfer.

1.3. Organization of This Paper

Section 2 presents the system modeling, proposed optimal current algorithm, and
the system implementations. Simulations for the proposed system with different receiver
configurations and transmission ranges are conducted. The accordant results are presented
and analyzed in Section 3. In Section 4, multiple HTS transmitter coils are fabricated, and
the experimental platform is established with a liquid nitrogen cooling system. The system
performance is practically tested and analyzed. Finally, a conclusion is drawn in Section 5.

2. Design Scheme
2.1. AC Loss Modelling for the HTS Winding

The designed HTS winding configuration is depicted in Figure 1, where t and w denote
the thickness and width of the tape, respectively; tm is the thickness of the metal layer;
d is the inter-turn gap; and It is the transport current. Each turn of the winding can be
simplified and regarded as a stack of superconductive (SC) material with a ferromagnetic
substrate as the stabilizer or reinforcing layer [30,31]. When the operating frequency is low
enough and the transport current is much less than the critical current, which is denoted by
Ic, the hysteresis loss and eddy current loss per tape per length per cycle can be expressed
as [31]

Qhyst =
2µ0

π3 I2
c · F

(
d
w

,
It

Ic

)
(1)
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Qeddy =
2µ2

0
π3

tm

ρ
f I2

c · G
(

d
w

,
It

Ic

)
(2)

where ρ denotes the electrical resistivity, f denotes the operation frequency, and F and G
denote two different integration functions of (d/w) and (It/Ic), respectively. As can be
observed, the eddy current loss increases with the operating frequency. However, if the
operating frequency and transport current are all within the limit, the current conducting in
the SC layer will strongly shield the metal layer; thus, the hysteresis loss will dominate the
AC loss components, and the eddy current loss can be neglected for simplicity [32,33]. The
critical current of the SC material is determined by its inherent property, and the frequency
limit can be estimated by [30]

fc =
ρ

µ2
0tmw

(3)

Under the condition that the metal layer has the same width as the SC layer, F~I6
t for

It << Ic [31]. Assuming that the material is distributed homogeneously in each unit length
of the winding, the total averaged AC power loss of the designed transmitter coil can be
approximately obtained through

Ploss = Chyst I6
t (4)

where Chyst denotes the constant coefficient, the value of which is determined by the critical
current, winding material, and system configurations.
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Figure 1. Simplified HTS winding configuration. 
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2.2. Optimal Current Algorithm

Different compensation topologies can be applied in multi-input WPT systems. The
most simplified one is the series-to-series (SS) architecture, the equivalent circuit of which is
shown in Figure 2a. In the fully compensated situation, the reactive part of the impedance
for each circuit loop should equal zero. For a system with n transmitters, it should be
satisfied that

ω2 =
1

LtpCtp
=

1
LrCr

, p ∈ [1, n] (5)

where ω denotes the angular frequency of the system. Based on the previous analysis, the
system equations can be expressed as

Utp = jω
n
∑

i=1,i 6=p
Mtpi Iti + jωMrp Ir

0 = (jω
n
∑

i=1
Mri Iti) + IrZr

, p ∈ [1, n] (6)

where Itp and Utp denote the input current and input voltage of the pth transmitter, respec-
tively; Mtpi denotes the mutual inductance between the pth and ith transmitter coils; Mri is
the mutual inductance between the ith transmitter and receiver coils; and Ir and Zr denote
the receiver current and total impedance of the receiver circuit, respectively. The output
power is given by

Pout =

[
ω2(

n

∑
i=1

Mri Iti)
2

Rl

]
/Z2

r (7)

where Rl denotes the equivalent load resistance. In order to obtain the optimal vector of the
transmitter currents, the signal-noise-ratio (SNR) of the system, namely the ratio between
the power transmitted to the receiver and the power loss at the primary side, is given by
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γ =

ω2(
n
∑

i=1
Mri Iti)

2
Rl

Z2
r

n
∑

i=1
Chyst I6

ti

(8)

Apparently, Iti cannot all equal zero. Thus, (8) can be considered as a continuous
function involving multi-variables Iti. In order to reach the highest SNR, for the pth
transmitter current, it should be satisfied that

∂γ

∂(Itp)
= 0, p ∈ [1, n] (9)

which yields

I5
tp = Mrp ·

(
n

∑
i=1

I6
ti

/
3

n

∑
i=1

Mri Iti

)
, p ∈ [1, n] (10)

Assuming that the base current is denoted by Ibase, (10) can be further expressed as

Itp = M1/5
rp · Ibase, p ∈ [1, n] (11)

Hence, the output power of the system can be obtained through

Pout =

[
ω2(

n

∑
i=1

M6/5
ri )

2

I2
baseRl

]
/Z2

r (12)

In practical applications, it is not always easy to obtain data from the secondary side.
However, based on (11), the optimal vector of the multi-input currents can be acquired only
through the mutual inductance ratios, and their absolute values are not necessarily needed.
It can be derived from (6) that

Mrp =
1

jωIr
·
(

Utp − jω
n

∑
i=1,i 6=p

Mtpi Iti

)
, p ∈ [1, n] (13)

As depicted in (13), for the fixed system configuration, the mutual inductance ratio
between the receiver and each transmitter coil can be conveniently obtained and calculated
through the input currents and voltages of the primary side. Thus, the optimal current
vector can be calculated and scaled through (11). Therefore, no extra communication system
will be needed from the secondary side. Another critical issue is that the calculated input
currents should always be in-phase or opposite-phase for more efficient operation [34],
while in SS-type multi-input WPT systems, the mutual inductances between the transmitter
coils will cause the undesired phase shifting of the input currents. This problem can be
neglected when the mutual inductance between the transmitter coils is weak enough.
However, with a system configuration in which the transmitter coils are relatively strongly
coupled, a phase synchronization process will become necessary. An efficient method to
solve this problem is to delay a certain angle for each control signal, as given by

ϕtp = arctan
[=(Utp)

<(Utp)

]
, p ∈ [1, n] (14)

Another effective way to automatically realize current synchronization is to use indi-
vidual high-order compensations to create a constant current output for each transmitter, as
depicted in Figure 2b. As can be seen, the system design requires only passive electric com-
ponents, and the active phase correction process will no longer be needed anymore. Under
the fully-compensated condition given by (15), the LCC topology forms a double-resonant
circuit, and can thereby achieve a constant current output for each inverter, as shown
in (16) [35,36]. As a result, with the synchronized input signal, the multiple transmitter
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currents will be perfectly synchronized, with no error. However, a tradeoff exists in that the
extra inductors may bring more conduction losses. For a system with too many transmitter
coils, the design complexity will also be inevitably increased.

ω2 =
1

LspCpp
=

1
(Lsp − Ltp)Csp

, p ∈ [1, n] (15)

Itp =
Utp

jωLsp
, p ∈ [1, n] (16)
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Figure 2. Equivalent circuit of a multi-input WPT system. (a) SS topology; (b) LCC-S topology.

2.3. Coil Design

In this work, Bi-2223/Ag is adopted as the tape material for the prototype fabrication.
The critical current is 50 A and the estimated frequency limit is higher than 1 MHz. As
discussed in [32], with the inter-turn gap increases, the AC losses will converge to the
same value, as the winding is in the isolated single-turn condition, and this value will
be achieved approximately when the gap equals the tape width. Here, we chose 4.5 mm
as the gap distance for the tape width of 4 mm in order to minimize the AC losses as
much as possible. In order to satisfy the requirement that the coil winding should be
homogeneously fabricated with the equaled gap and radius for each transmitter, and to
protect the tape material from being overly bent or twisted, a coil former with equal-gapped
fixing slits along its axial directions was designed and printed. Its 3D model and the realized
fabrication of the HTS transmitters are shown in Figure 3. The practical configuration of the
transmitter coil is listed in Table 1. Several critical points are worth mentioning in the coil
designs. Firstly, the inner radius needs to be greater than the minimum allowed bending
radius (here, this threshold is 40 mm), in order to make sure that the insulation layer is
not damaged. Secondly, the intern gap should be large enough that every single turn of
the winding can be sufficiently cooled by the liquid nitrogen. What is more, an apparent
tradeoff exists in the coupling coefficient and the AC loss control. Under the condition
of the above-mentioned criteria, the larger coverage area of the coil means a longer tape
length will be needed; as a result, the transport losses will naturally be increased, especially
for a relatively high operation frequency. For the designed winding, the measured results



Energies 2022, 15, 4337 6 of 13

of the transport current losses versus the input current under the frequency of 100 kHz
are presented in Figure 4. As can be seen, every increased turn will bring an accordant
incremental quantity in primary AC losses [28]. This will have a considerable impact on
the system efficiency, especially for the low-power-level applications. Therefore, in practice,
different aspects should be considered in the transmitter coil design, including the rated
transport current, the operation frequency, the transmission distance, and the configuration
of the receiver coils, etc.
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Table 1. Parameters of the transmitter coils.

Items Value

Material (SC/metal) Bi-2223/Ag
Thickness × width (t × w) 0.5 × 4 mm

Number of turns 10
Inner radius 53 mm

Interturn gap (d) 4.5 mm
Outer radius 98 mm
Total length 4.2 m

Inductance (averaged) 20.4 µH

3. System Performance

The magnetic profiles of the system with two transmitters and one receiver were evalu-
ated using the finite element method (FEM), and the results are presented in Figures 5 and 6.
In order to adapt to different working scenarios, two Litz wire-fabricated receivers with
different coil sizes were designed, as described in Figures 5a and 6a, respectively. The
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turn numbers of the two receivers were 20 and 30, respectively. The receiver with the
bigger coil size (Rx 1) is designed to pick up a relatively higher output power while the
smaller receiver coil (Rx 2) was designed for long-range low-power-level applications such
as medical implants or undersea sensor networks. Because these appliances normally
have very low power consumption [37,38], for each charging cycle, the charging energy
will be enough for these devices to operate for a relatively long time. Thus, the system
functionality weighs much more than the efficiency. Therefore, the acceptable transmission
distance for these working scenarios can be relatively longer. FEM simulations for both
systems were conducted under the operation frequency of 100 kHz [39,40]. The equiv-
alent load resistances are 5 Ω and 50 Ω for Rx 1 and Rx 2, respectively. As depicted in
Figures 5 and 6, the proposed optimal current vector performs well for both receivers
with different configurations. Compared with the conventional one-to-one WPT system,
the use of multiple transmitters can effectively reduce the input voltage pressure for each
coil and strengthen the magnetic field at the target position in order to reach the desired
output power. Under the condition that the transmitter currents are synchronized to each
other, the output current induced on the secondary side lags the input current by 90◦.
The maximum point of the magnetic flux density generated at the Rx 1 coil is 46.4 mT,
which is stronger than that at the Rx 2 coil by over 300 times, and the ratio between the
received power for the two systems is about 35:1. The magnetic profile for the equaled
or unequaled coupling coefficient between Rx 2 and the two transmitters is compared in
Figures 6b and 6c, respectively. The comparison was conducted under the condition with
the same AC power losses consumed at the primary side. The input current ratio was
calculated by (10), and the output power ratio between the two cases was 1.2:1. Based
on the symmetric property of the system configuration, the proposed current control can
realize the maximum output power tracking for different position relationships between
the receiver and the transmitters with a relatively low fluctuation of output power.
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4. Experimental Validation

In order to further validate the practical performance of the proposed system, a
practical prototype was built, and the measurement platform was established as shown in
Figure 7. Two designed transmitters were placed in a Styrofoam container and cooled by a
liquid nitrogen bath. The measured system parameters are presented in Table 2. As with
the simulation model, the two receivers were fabricated with Litz wire, with 20 single-layer
turns (Rx 1) and 30 double-layer turns (Rx 2), respectively. The transmission distances for
the two receivers were 100 mm and 300 mm, respectively. The measured input and output
waveforms for the two receivers are presented as shown in Figures 8 and 9, respectively.
As depicted, the two transmitters are input with identical 1.5 A currents, and can always be
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synchronized to each other. Because of the strengthened magnetic field, the output power
was slightly increased when the transmitter coil was under superconducting conditions,
compared to room-temperature operation.
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Table 2. Measured system parameters.

Items Value

Inductance of Rx 1 208.5 µH
Compensated capacitor for Rx 1 12.1 nF

Resistance of Rx 1 0.3 Ω
Load resistor 1 5 Ω

Inductance of Rx 2 36.6 µH
Compensated capacitor for Rx 2 69.2 nF

Resistance of Rx 2 0.5 Ω
Load resistor 2 50 Ω

Energies 2022, 15, x FOR PEER REVIEW 10 of 13 
 

 

C1: Tx 1 current
C2: Tx 2 current

C3: Load 2 voltage

 
(a) 

C1: Tx 1 current
C2: Tx 2 current

C3: Load 2 voltage

 
(b) 

Figure 9. Measured waveforms for Rx 2. (a) Center-positioned; (b) off-center-positioned. 

For the long-distance working scenario, Rx 2 successfully picks up a certain amount 
of power with a distance over 12 times its radius. The output power can remain constant 
for different receiver positions with the proper current control. The system power distri-
bution for Rx 1 is analysed as presented in Figure 10. The transmitter prototype adopted 
in the experiments is relatively small, with only 10 turns. The critical current is also not 
big enough. However, in practical applications, the fabrication can be greatly improved 
for a higher transport current, larger transmitter coil sizes, and many more turns. Thus, 
there is the potential to utilize the proposed system for longer transmission distances, as 
well as higher output powers. 

  

Figure 9. Measured waveforms for Rx 2. (a) Center-positioned; (b) off-center-positioned.



Energies 2022, 15, 4337 11 of 13

For the long-distance working scenario, Rx 2 successfully picks up a certain amount of
power with a distance over 12 times its radius. The output power can remain constant for
different receiver positions with the proper current control. The system power distribution
for Rx 1 is analysed as presented in Figure 10. The transmitter prototype adopted in the
experiments is relatively small, with only 10 turns. The critical current is also not big
enough. However, in practical applications, the fabrication can be greatly improved for a
higher transport current, larger transmitter coil sizes, and many more turns. Thus, there is
the potential to utilize the proposed system for longer transmission distances, as well as
higher output powers.
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5. Conclusions

Based on the energy beam-forming technology, this paper presents an optimal current
vector for HTS multi-input WPT systems. Bi-2223/Ag HTS material is utilized in the coupler
coil design to improve the system performance. Firstly, tractable AC loss modeling for
the HTS material is established, based on which the accordant optimal current algorithm
for multiple transmitters is designed and proposed. By using the information on different
input impedance characteristics of the transmitters, the optimal current vector can be
obtained in order to realize the maximum output power tracking for different receiver
positions. All of the measurements can be conducted from the primary side, and there is
no need for extra information feedback from the receiver. The FEA results suggest that
the magnetic field generated by the multiple transmitter currents can be maximized at the
target positions. For implementation, two different solutions were presented in this paper
to solve the cross-coupling problem which will be commonly encountered in multi-input
WPT systems. Additionally, practical prototypes of the system were built for different
receiver configurations. The accordant experimental platform was established with a liquid
nitrogen cooling system for practical tests. The results further validate the effectiveness of
the proposed system, as well as its feasibility in practical applications.
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Abbreviations

Qhyst Hysteresis loss per cycle
Qeddy Eddy current loss per cycle
t Tape thickness
tm Metal layer thickness of the tape
w Tape width
d Innerturn gap
It Transport current
Ic Critical current
fc Critical frequency
Chyst Constant coefficient for hysteresis loss estimation
ω System angular frequency
Ut Input voltage
Mtpi Mutual inductance between the pth and ith transmitter coils
Mrp Mutual inductance between the receiver coil and the pth transmitter coil
Lt Transmitter inductance
Ct Compensated capacitor for a transmitter in series resonance
Ls Series-connected inductor in the LCC-S topology
Cp Parallel-connected capacitor in the LCC-S topology
Ct Series-connected capacitor in the LCC-S topology
Lr Receiver inductance
Cr Compensated capacitor for the receiver
Ir Compensated capacitor for the receiver
Zr Secondary impedance
Rl Equivalent load resistance
γ Signal noise ratio
Ibase Base current for the optimal current vector
ϕtp Phase correction angle for the pth input signal in the SS topology
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