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Abstract
Forests provide important climate forcing through biogeochemical and biogeophysical
processes. In this study, we investigated the climatic effects of forest disturbances due to
changes in forest biomass and surface albedo in terms of radiative forcing over northeastern
China. Four types of forest disturbances were considered: fires, insect damage, logging, and
afforestation and reforestation. The mechanisms of the influence of forest disturbances on
climate were different. ‘Instantaneous’ net radiative forcings caused by fires, insect damage,
logging, and afforestation and reforestation were estimated at 0.53± 0.08 W m−2,
1.09± 0.14 W m−2, 2.23± 0.27 W m−2, and 0.14± 0.04 W m−2, respectively. Trajectories
of CO2-driven radiative forcing, albedo-driven radiative forcing, and net forcing were different
with time for each type of disturbance. Over a decade, the estimated net forcings were
2.24± 0.11 W m−2, 0.20± 0.31 W m−2, 1.06± 0.41 W m−2, and −0.47± 0.07 W m−2,
respectively. These estimated radiative forcings from satellite observations provided evidence
for the mechanisms of the influences of forest disturbances on climate.

Keywords: forest disturbances, radiative forcing, surface albedo, forest biomass, northeastern
China

1. Introduction

Forests influence climate through hydrological, biogeochem-
ical, and ecosystem processes (Bonan 2008). These complex
forest–atmosphere interactions can dampen or amplify climate
change. Forests play an important role in mitigating climate
change, because they can exert negative radiative forcing
through carbon sequestration (Dixon et al 1993, Lal 2004,
Streck and Scholz 2006). However, climatic impacts of forests
are not limited to greenhouse gas reduction alone, and the
overall climatic impacts of forests also depend on other effects,
such as the warming effect due to lower albedo of forests and
the evapotranspiration effect (Charney et al 1977, Schaeffer
et al 2006, Thompson et al 2009).

Content from this work may be used under the terms of
the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

Betts (2000) compared the carbon cycle and albedo effects
of forestation in terms of radiative forcing and found that high-
latitude forestation may intensify climate change instead of
mitigating it, as intended. Bala et al (2007) simulated the
climatic effects of global large-scale deforestation and found
that warming effects of the carbon cycle are neutralized by the
net cooling associated with changes in albedo and evapotran-
spiration. Gibbard et al (2005), Betts et al (2007) suggested
that extratropical forestation could be less effective than ex-
pected or even counterproductive. If mitigating climate change
is the sole objective, plantations should not be established in
high-latitude regions (Jackson et al 2008, van Minnen et al
2008).

Climate change mitigation through forestry activities
also carries the risk of carbon returning to the atmosphere
because of disturbances to the forests (Canadell and Raupach
2008). Major forest disturbances, including forest fires, insect
damage, disease outbreaks, droughts, and tropical storms,
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are expected to increase in frequency or intensity under
changing climatic conditions (Dale et al 2001, Haughian
et al 2012). Disturbance regimes range from succession after
stand-replacing disturbances to gap dynamics related to the
loss of individual trees (Angelstam and Kuuluvainen 2004).
Such events make the situation complex. Little is known
about the magnitude of these impacts on carbon stocks and
surface albedo, and it is unclear whether these disturbances
will generate either negative or positive radiative forcing.

Several studies have attempted to quantify the impacts
of forest disturbances using observed data sets. Jin and Roy
(2005) estimated an instantaneous regional surface radiative
forcing of 0.52 W m−2 in northern Australia due to fire-
induced albedo change. Randerson et al (2006) reported a
negative radiative forcing of −5± 2 W m−2 due to changes
in surface albedo during the first year after boreal forest
fires, and provided evidence that spring and summer albedo
remained elevated for approximately three decades after a
fire. O’Halloran et al (2012) found a cooling effect (negative
radiative forcing) after fires and beetle attacks in boreal
forests with winter snow, and a local heating effect in a
hurricane-damaged mangrove forest where both albedo and
CO2 forcing were positive. In this study, we aim to quantify
surface radiative forcing associated with both biomass change
and albedo change to investigate the climatic impacts of
four types of forest disturbances (forest fires, insect damage,
logging, and afforestation and reforestation) over northeastern
China.

2. Data and methods

2.1. Study area

Northeastern China consists of Heilongjiang, Jilin, and Liaon-
ing provinces, as well as the eastern part of the Inner Mongolia
Autonomous Region. It stretches about 15◦ from south to
north and 20◦ from west to east (figure 1). The region is
characterized by a continental monsoon climate, including
warm temperate, temperate, and cold temperate zones from
south to north and humid, semihumid, and semiarid zones
from east to west. The annual mean temperature is 5.2 ◦C,
and the annual precipitation reaches 400–1000 mm, 80% of
which falls between May and September (Chen et al 2011).
This region is completely dominated by seasonal snow cover,
and snow cover disappears in the summer (Che et al 2008).

The forests in the region are cold-temperate conifer mixed
forests, temperate conifer and broadleaf mixed forests, and
warm-temperate deciduous broadleaf mixed forests. Forests
of these types account for about 30% of forest land in China.
Northeastern China is important to the nation as a key source
for timber, a broad habitat and a potential carbon sequestration
region.

2.2. Mapping forest disturbances

Many algorithms have been proposed to detect forest dis-
turbances from remote sensing data (Mildrexler et al 2009,
Hansen et al 2010, Verbesselt et al 2010, Masek et al 2011).
In this study, we considered four types of forest disturbances,

Figure 1. Study area. The background information is the mean value
of forest biomass between 2001 and 2010.

including forest fires, insect damage, forest logging, and af-
forestation and reforestation, which were detected from Mod-
erate Resolution Imaging Spectroradiometer (MODIS) data.
The MODIS global disturbance index (MGDI) algorithm was
used to detect the locations of forest disturbances. It was based
on annual maximum MODIS Land Surface Temperature (LST)
data and annual maximum MODIS Enhanced Vegetation Index
(EVI) data (Mildrexler et al 2007, 2009). The underlying
principle was that LST decreased with an increase in vegetation
density through latent heat transfer. MGDIs from 2001 to 2010
were calculated using maximum composite LSTs and EVIs
from 2000 to 2010.

Because different kinds of forest disturbances influence
forest ecosystems in different ways, we need to distinguish
them. MODIS fire products were used to separate fire distur-
bances and non-fire disturbances. Both the MODIS active fire
product and the MODIS burned area product were used. The
former detected active fires and other thermal anomalies, and
the latter gave the extent of burn scars over a specified time
period (Justice et al 2002). Fire pixels, which were categorized
as high confidence or nominal confidence in the active fire
product and labeled as burned in the MODIS burned area
product, were used to locate fire disturbances in this study.
Non-fire disturbances were separated using MODIS Vegeta-
tion Continuous Field (VCF) data (Hansen et al 2003). VCF
data contain a percentage of vegetation types for each pixel.
Compared to traditional discrete classification data, this data
set is more appropriate for describing changes in forest cover.
In contrast to large-scale logging, insect infestations represent
a type of non-instantaneous disturbance event that does not
cause an immediate reduction in forest cover (Mildrexler et al
2009). Based on these properties, pixels with a large decrease
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Table 1. Summary of disturbance information and associated radiative forcing for logging, afforestation and reforestation, fire, and insect
damage.

Disturbance type Logging
Afforestation and
reforestation Fire

Insect
damage

Annual area disturbed (million
hectare)

0.15 2.89 1.26 0.57

Instantaneous albedo-driven
radiative forcing (W m−2)

−0.22± 0.19 0.62± 0.03 −0.92± 0.06 0.65± 0.12

Instantaneous CO2-driven
radiative forcing (W m−2)

2.45± 0.08 −0.48± 0.01 1.44± 0.02 0.43± 0.03

Decadal albedo-driven
radiative forcing (W m−2)

−1.48± 0.33 0.56± 0.04 −0.52± 0.08 −0.56± 0.28

Decadal CO2-driven radiative
forcing (W m−2)

2.53± 0.08 −1.03± 0.03 2.76± 0.08 0.76± 0.03

in forest cover were used to identify where deforestation or
large-scale logging occurred, and pixels with MGDI values
larger than a certain threshold were used to identify areas
affected by insects and diseases. We used both absolute and
relative changes in VCF to quantify the loss of forest cover.

The key to separating disturbances caused by insects
and diseases from those caused by large-scale logging was
to determine the threshold value for the MGDI data and the
threshold value for changes in MODIS VCF data, respectively.
The kappa coefficient was a good way to quantify the level
of agreement, and thus used to determine the thresholds in
this study (Congalton 1991, Kennedy et al 2007). Kappa
coefficients were highest when threshold for the MGDI and
for changes in VCF were−15 and−85%. So these thresholds
were used to detect large-scale logging and insect damage.
Unlike logging and insect damage, afforestation and refor-
estation can contribute to an increase in forest cover. After
masking out those pixels of recovery from other disturbances,
pixels with a sharp increase in forest cover were considered to
be afforestation and reforestation regions.

2.3. Calculation of surface radiative forcing

Radiative forcing is often used to assess the climatic impacts of
disturbances per-unit area and compare the anthropogenic and
natural drivers of climate change (Forster et al 2007). Here, we
use surface forcing to quantify the instantaneous perturbation
of the surface radiative balance by a forcing agent. For each
type of forest disturbance, two types of surface radiative
forcing were considered: CO2-driven radiative forcing related
to the loss of forest biomass carbon to the atmosphere, and
albedo-driven radiative forcing related to changes in land cover
properties. Net forcing was defined as the sum of albedo-driven
radiative forcing and CO2-driven radiative forcing.

Pixel-by-pixel albedo and biomass values before distur-
bance were extracted as reference values. Changes in albedo
and biomass caused by forest disturbances were evaluated
by comparing albedo and biomass values before disturbance
(reference value) and after disturbance.

2.3.1. Albedo-driven radiative forcing. Global LAnd Surface
Satellite (GLASS) albedo data were chosen to characterize
surface albedo (Liang et al 2013). It covers the years 1981–
2010 at horizontal resolutions between 1 km and 5 km
and 8-day (spatial and temporal) resolutions. Preliminary
validation results indicate high accuracy and robustness of
the data set (Liu et al 2013). We used GLASS albedo data
from 2000–2010 at 1-km resolution. The 8-day GLASS albedo
values were averaged to produce monthly mean values. Surface
radiative forcing (RF) from changes in monthly albedo was
calculated using

RF= Rs× (α1−α2), (1)

where Rs is surface incoming solar radiation, α1 is monthly
surface albedo before disturbances, and α2 is monthly surface
albedo after disturbances. Global Energy and Water Exchanges
(GEWEX) Surface Radiation Budget (SRB) Release-3.0 data
sets provided monthly mean surface incoming solar radiation
at 1◦ by 1◦ grid cells from July 1983 to December 2007.
We calculated GEWEX-SRB multiyear monthly means from
1983 onward to derive climatology of incoming solar radiation.
After the calculation of monthly radiative forcing on the basis
of monthly albedo and monthly incoming solar radiation,
seasonal changes in radiative forcing were average values of
the corresponding months.

2.3.2. CO2-driven radiative forcing. In this study, we mapped
forest biomass during 2000–2010 (figure 1) using the random
forests (RF) model. The model was developed with field data,
geoscience laser altimeter system (GLAS) data, and MODIS
surface reflectance data. Further details can be found in one
of our previous publications (Zhang et al 2013). Changes in
forest biomass caused by forest disturbance can lead to the
absorption or emission of CO2. CO2-driven radiative forcing
due to changes in forest biomass was calculated as follows
(Myhre et al 1998):

RF= 5.35 ln(1+1C/C0), (2)

1C = Ma×1CO2/(MC×ma), (3)
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Figure 2. Instantaneous monthly albedo change and associated radiative forcing at the surface.

where 1C is the atmospheric enrichment in CO2 after tree
combustion, C0 is the reference CO2 concentration, Ma is the
molecular mass of dry air, Mc is the molecular mass of carbon,
ma is the mass of the atmosphere, and 1CO2 is the change in
CO2 (in grams) resulting from biomass change.

2.3.3. Uncertainty analysis. Products derived from MODIS
were the main data source used to detect and distinguish
forest disturbances, so some minor changes cannot be reflected
at the coarse scale. Besides, the threshold we chose might
cause some uncertainty, although we adopted some methods to
reduce the uncertainty. To evaluate the uncertainty of changes
in albedo and biomass, as well as the associated radiative
forcing, caused by the uncertainty of forest disturbances, we
used the bootstrapping method (Efron and Tibshirani 1986).
Uncertainties of estimates are standard deviations of bootstrap
samples.

3. Results and discussions

During the period 2000–2010, about 1.26 million ha of
forests were disturbed by fires, according to the MODIS
fire product (table 1). They accounted for 1.92% of the
forests of northeastern China. Fire disturbance resulted in
a decrease in forest biomass (14.12± 0.24 Mg ha−1) and
a resultant positive radiative forcing (1.44± 0.02 W m−2).
Insects damaged 0.87% of forests in this region, and 0.24%
of forests underwent large-scale logging. Insects and logging
caused decreases in forest biomass of 6.01± 0.27 Mg ha−1

and 26.85± 0.86 Mg ha−1, and associated radiative forcings
of 0.43± 0.03 W m−2 and 2.45± 0.08 W m−2, respectively
(table 1). On the other hand, afforestation and reforestation
caused a biomass increase of 1.71± 0.05 Mg ha−1 and a
negative forcing of 0.48± 0.01 W m−2 (table 1). Among the
four types of forest disturbances, the impact of logging was
the largest in terms of CO2-driven radiative forcing, followed
by fires, insect damage, and afforestation and reforestation.

Changes in surface albedo due to forest disturbances
and the associated radiative forcing were different in each
month (figure 2). Forest disturbances had a minor effect on

summer albedo. The changes were steady and relatively small
for each type of forest disturbance. However, the effects on
winter albedo and early spring albedo were large, probably
because of snow cover (figures 2 and 3). Albedo increased in
March after insect damage and increased in December after
logging. Albedo in both March and December increased after
fire disturbances (figure 2). Autumn albedo decreased after
fires, insect damage, and afforestation and reforestation, but
increased after logging disturbances (figure 2).

Changes in albedo fluctuations were observed along the
time since disturbances (figure 3). During the first decade
after forest disturbances, autumn albedo increased for forest
logging. For insect damaged forests, autumn albedo increased
after five years since disturbance. Whereas for fire disturbance,
autumn albedo decreased after several years because of forest
recovery. In afforestation and reforestation regions, changes
in autumn albedo were mostly below zero. We calculated a
significant positive trend of change in summer albedo after
logging and insect damage. The trend of change in summer
albedo caused by afforestation and reforestation increased. The
trend of summer albedo increased for seven years following
fire disturbance but then decreased. Changes in spring albedo
were just above zero for logging, insect damage, and fire
disturbance, but below zero in afforestation and reforestation
regions, except at some turning points. Because of the large
influence of forest disturbances on spring albedo and winter
albedo, changes in annual albedo tended to respond similarly
with them, but with a smaller magnitude (figure 3).

Changes in annual surface albedo and the associated
radiative forcing were compared with CO2-driven radiative
forcing (figure 4). Results showed that the radiative forcings
from albedo change and CO2 release had the same order of
magnitude, and CO2-driven radiative forcing was relatively
stable for each type of disturbance, whereas albedo-driven
radiative forcing fluctuated widely. Therefore, overall trends
of net forcing mostly followed those of albedo-driven radiative
forcing. For the case of fire, biomass decreased after fire,
and radiative forcing due to biomass change was positive.
This development could result in warming of the regional
climate. Albedo was elevated in all seasons except autumn,
and this difference was further enhanced with time. This
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Figure 3. Changes in albedo during forest recovery since forest disturbances. (a) Logging, (b) afforestation and reforestation, (c) fire, and
(d) insect damage.

outcome resulted in an annual negative radiative forcing of
−0.92± 0.06 W m−2 (table 1). Combined changes in annual
albedo and forest biomass contributed to an instantaneous
net warming effect (0.53± 0.08 W m−2), and this warming
effect continued because of the lasting loss of biomass in
the following years. More CO2 was absorbed and stored
as biomass by afforestation and reforestation, which caused
a negative CO2-driven radiative forcing. The net forcing
fluctuated around zero during the first six years after tree
planting. However, we observed a sharp decrease in net
radiative forcing, and thus a net cooling effect, in the seven
years after tree planting. For insect damage, the net forcing
was positive during the first five years after disturbance and
negative after the first five years. For forest logging, the
associated radiative forcing revealed a warming climate effect
caused by the decrease in forest biomass.

Compared with albedo-driven forcing, CO2-driven forc-
ing was relatively stable, because changes in forest biomass
were not evident as changes in surface albedo (figure 4).
Turning points of changes in albedo in spring and winter
(figure 3) and the associated radiative forcing (figure 4) were
observed around 5–6 years after disturbances. The mecha-
nisms were complicated. Several reasons might account for
the phenomenon. Snow cover was an important factor. This is
because if forest biomass or forest cover did not change, but

snow cover changed annually, then albedo in spring or winter
would increase substantially. The variation in snow cover can
explain the results of forest logging in figures 3 and 4. But
for afforestation and reforestation, mechanisms were different.
The turning point partly suggested the relative role of changes
in surface albedo and forest biomass. As we mentioned in
the introduction, previous studies indicated the albedo effect
overwhelmed biomass effect in boreal and temperate forests.
But as time goes by the biomass effect seems to dominate
instead of albedo effect (figures 3 and 4). If this is the case,
then we should not doubt the warming climate effects of
large-scale afforestation in high latitude regions. However, we
only focused on the northeastern China, and did not investigate
the situation in other regions. Moreover, a decade was not long
enough for us to make such a firm conclusion.

4. Conclusions

In this study, we estimated the climatic effects of forest
disturbances, including fires, insect damage, logging, and
afforestation and reforestation, caused by changes in forest
biomass and surface albedo in terms of radiative forcing.
Results indicated that radiative forcings resulting from change
in albedo and CO2 release were of the same order of magni-
tude. The ‘instantaneous’ net forcings of albedo-driven radia-
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Figure 4. Radiative forcing associated with albedo change and biomass change caused by logging (a), afforestation and reforestation (b),
fires (c) and insect damage (d).

tive forcing and CO2-driven radiative forcing were 0.53±
0.08 W m−2, 1.09 ± 0.14 W m−2, 2.23 ± 0.27 W m−2,
and 0.14± 0.04 W m−2 for fires, insect damage, logging,
and afforestation and reforestation, respectively. During the
first four or five years after disturbances, net forcings were
positive for fires, insect damage, and logging, but negative
for afforestation and reforestation. Trajectories of net forcings
were different with time for these disturbances. Mechanisms
were also different for each type of disturbance.

The forcings we estimated in this study were pixel based.
When extended to a regional forcing or global forcing, the
ratio of disturbed area to the area of this region or the surface
area of the Earth should be multiplied.

We only considered the climatic effects due to changes in
forest biomass and surface albedo in this study. We assumed
that loss of forest biomass affected the atmosphere instanta-
neously. However, the situation is far more complicated than
this case. This finding should be further investigated in future
studies. Also, some possible forcing agents, such as aerosols
and evapotranspiration, were neglected. More agents and more
complicated scenarios must be included in further studies.
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