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Abstract: Although deforestation affects hydrological and climatic variables over tropical 
regions, its actual contributions to changes in evapotranspiration (ET) over subarctic China 
remain unknown. To establish a quantitative relationship between deforestation and 
terrestrial ET variations, we estimated ET using a semi-empirical Penman (SEMI-PM) 
algorithm driven by meteorological and satellite data at both local and regional scales. The 
results indicate that the estimated ET can be used to analyse the observed inter-annual 
variations. There is a statistically significant positive relationship between local-scale 
forest cover changes (∆F) and annual ET variations (∆ET) of the following form:  
∆ET = 0.0377∆F – 2.11 (R2 = 0.43, p < 0.05). This relationship may be due to 
deforestation-induced increases in surface albedo and a reduction in the fractional 
vegetation cover (FVC). However, the El Niño/Southern Oscillation (ENSO), rather than 
deforestation, dominates the multi-decadal ET variability due to regional-scale wind  
speed changes, but the exact effects of deforestation and ENSO on ET are challenging  
to quantify. 
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1. Introduction 

Evapotranspiration (ET) is the flux of water transferred from the land surface to the atmosphere and 
is an important bio-geophysical parameter for determining variations in the global energy, hydrological 
and carbon cycles [1–7]. ET is primarily controlled by atmospheric evaporative demand, available 
energy, and vegetation and soil moisture supplies [8–12]. With the increase in global temperatures, 
atmospheric evaporative demand has been increasing in many regions of the world over the past 
several decades, which should result in increased ET [13,14]. However, the trend in ET may not be 
positive in some regions because land-use changes caused by anthropogenic activities are hypothesized 
to affect the available energy and moisture demands by altering biophysical processes that regulate  
ET [15–19]. Moreover, the effects of land-use changes, especially deforestation, on local and regional 
scale ET variations remain uncertain. 

Deforestation is a type of land-use change that is caused by human activities. Moreover, 
deforestation has been linked to near-surface air temperature, surface albedo, radiative forcing, water 
vapour and ET changes, resulting in a warmer climate [20,21]. Previous work has shown that tropical 
deforestation in the Indochina Peninsula is a main cause of decreasing precipitation in September [22]. 
Amazonian deforestation has been shown to induce large-scale circulation changes in middle and high 
latitudes [23]. Other studies have shown that the conversion of forests to grasslands in both South 
America and central Africa leads to local regional climate responses [18,24,25]. Like many Arctic and 
tropical climate regions, subarctic China is highly vulnerable to changes in the energy, hydrological 
and carbon budgets. A small land-cover change can have large local climate and hydrological  
changes [19,20]. Therefore, it is essential to analyse the effects of deforestation on climatic and 
hydrological changes in subarctic China at different spatial scales. 

Many scholars have examined the effects of de(re)forestation on climatic and hydrological variables 
in northern China using ground-based observation data and remote sensing products [16,20,26]. Gao 
and Liu [20] reported a critical deforestation threshold beyond which noticeable climate warming 
occurs at a scale of 5 km2. Zhang and Liang [16] estimated the instantaneous net radiative forcing 
caused by logging to be 2.23 ± 0.27 W/m2; moreover, they also found that the trajectories of  
CO2-driven, albedo-driven and net radiative forcings exhibit temporal differences. Peng et al. [26] 
documented that afforestation in China has decreased daytime land surface temperatures (LSTs) by 
approximately 1.1 K and increased night-time LSTs by approximately 0.2 K. However,  
Jackson et al. [27] found the opposite effects in high-latitude regions. In subarctic China, the Chinese 
government has protected forests and enhanced the fraction of vegetation cover since the 1980s; the 
actual extent of deforestation is severe because local farmers’ logging activities are intended to achieve 
economic objectives [20,28]. However, little information is known about the effects of deforestation 
on terrestrial ET in subarctic China due to limited data availability. Moreover, it is unclear how 
terrestrial ET in subarctic China responds to climate change at different regional scales over long  
time periods. 



Forests 2014, 5 2544 
 

 

In this study, we attempt to establish a quantitative relationship between deforestation/climate 
variability and terrestrial ET variations in subarctic China. Such a relationship will improve our 
understanding of human activity effects on local and regional scale surface hydrological changes. This 
study has three major objectives. First, we validate the estimated ET for two forest flux tower sites 
using a semi-empirical Penman ET algorithm. Second, we establish a quantitative relationship between 
deforestation/climate variability and local-scale terrestrial ET variations by analysing changes in 
important surface variables that are related to terrestrial ET. Finally, we explore the effects of 
deforestation/climate variability on regional-scale terrestrial ET and determine the primary factors that 
control long-term ET variations in subarctic China. 

2. Materials and Methods 

2.1. Study Area 

The study area is subarctic China, which is located in north-eastern China between 40.23° N and 
53.57° N and between 115.53° E and 135.10° E (Figure 1). The study area has a typical continental 
monsoon climate with cold, dry winters and warm, wet summers. The annual mean rainfall in this area 
is approximately 500–600 mm, while the annual air temperature varies from −4 °C–4 °C. The 
topography of the study is dominated by three mountains, i.e., Greater Khingan, Lesser Khingan and 
Baekdu Mountain; the average elevation is 1000 m above sea level, while the elevation of most other 
areas is approximately 500 m above sea level. Forests, croplands and grasslands constitute the main 
land-cover types in the study area. Since the 1980s, most deforested areas have been converted to 
shrublands due to the growth of the rural population; moreover, deforestation has led to flooding, soil 
erosion and land degradation [29]. 

Figure 1. Study area. LSH: Laoshan, CBS: Changbaishan. 

 

2.2. Data Sources and Data Pre-Processing 

Ground-measured daily air temperature (Ta), vapour pressure (e), relative humidity (RH), wind 
speed (WS), precipitation (P) and atmospheric pressure (Ps) during the period 1982–2010 are obtained 
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from the China Administration of Meteorology (CMA), which includes 28 stations. Ground-measured 
ET, sensible heat flux (H), ground heat flux (G), Ta, RH, WS, e, incident solar radiation (Rs) and net 
radiation (Rn) derived from 2 Chinaflux tower sites (Laoshan, LSH; Changbaishan, CBS) are also 
obtained in this study [30–33]. The data obtained from the LSH site represent May 1 to December 31, 
2002, while the data retrieved for the CBS site represent January 1 to December 31, 2003. The  
land-cover type at the LSH site is deciduous needleleaf forest (DNF), while the land-cover type at the 
CBS site is evergreen needleleaf and deciduous broadleaf mixed forest (MF). The turbulent flux data 
are measured according to the eddy covariance (ECOR) method. These flux datasets include  
half-hourly ground-measured data. When the number (N) of 30-minute measurements exceeds 40 per 
day, the daily average ET, Rs, RH, e, WS and Ta are the averages of the measurements [2]. Thus, the 
total daily ET can be calculated as follows: 

∑
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Where i is the ith 30-minute observation on each day. If N is less than 40, the daily measurements are 
set to a fill value. Because the ECOR method suffers from an energy imbalance problem, we use the 
method proposed by Twine et al. [34] to correct the ET values at the two sites. The corrected method is 
as follows: 

ECECECn ETHETGRET ×+−= )/()(  (2)  

Where ET is the corrected evapotranspiration. Moreover, ETEC and HEC are the original 
evapotranspiration and the sensible heat flux measured using the EC method, respectively. 

Landsat TM/ETM+ images obtained 1982 and 2000 are used to investigate the local effects of 
deforestation on terrestrial ET in subarctic China. These images were originally obtained during the 
summer (June-August), which is when forests typically have a maximum spectral disparity from other 
land-cover types [20]. Based on the annual forest investigation data and Statistical Yearbook data 
provided by the China Forestry Administration, the TM/ETM+ images are classified according to the 
apparent surface features into seven types, namely, forests, shrublands, croplands, grasslands, built-up 
areas, wetlands and water bodies. These types are delineated from the false colour composites of bands 
4, 3 and 2 using on-screen digitization in the ENVI image analysis system. Among these types, the 
forest areas have an accuracy of approximately 90% based on field investigations. Deforestation is 
detected by overlaying land-cover maps in the ArcGIS software package and by analysing the forest 
survey data. To detect local effects of deforestation on ET, a 10 km buffer is used to produce polygons 
around each of the 28 meteorological stations (Figure 1). The forest changes within each buffered 
circle are quantified between 1982 and 2000 using statistical analysis. Moreover, the forest cover 
change, ∆F, around each of the 28 meteorological stations can be calculated as follows: 

19822000 FFF −=∆  (3)  

Where 2000F  and 1982F  refer to the forest cover amounts in 2000 and 1982, respectively. Positive values 
of ∆F refer to reforestation, while negative values represent deforestation. Similarly, the change in 
other variables (i.e., ∆V, which can correspond to ∆ET, ∆albedo and ∆NDVI) can be calculated as: 

19822000 VVV −=∆  (4)  
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Where V2000 and V1982 refer to the given variable in 2000 and 1982, respectively. When estimating 
regional ET, gridded meteorological datasets from the Environmental and Ecological Science Data 
Centre for West China are used for daily Rs, Ta, e, RH, WS, P and Ps values [35–37]. These datasets 
cover the period 1982–2010 on a 0.1° × 0.1° grid. Modern Era Retrospective Analysis for Research 
and Applications (MERRA) reanalysis meteorological data is also used to drive the SEMI-PM 
algorithm to verify the ET. We also use the 8-day Global Land Surface Satellite (GLASS) albedo 
products [38] with a resolution of 1 km and the bimonthly NDVI products provided by the Global 
Inventory Modelling and Mapping Studies (GIMMS) group [39] with a spatial resolution of 8 km. To 
better correspond with the deforestation data, the GLASS albedo and GIMMS-NDVI data are 
converted to a resolution of 0.1° × 0.1° using bilinear interpolation. The daily albedo and NDVI values 
are temporally interpolated from the 8-day and bimonthly averages using linear interpolation. Since the 
Multivariate El Niño/Southern Oscillation (ENSO) Index (MEI) reflects the nature of the coupled  
ocean-atmosphere system instead of either individual component, we also use the monthly MEI products 
to detect a relationship between the MEI and regional ET variability on inter-annual time scales [40]. 

2.3. Semi-Empirical Penman ET Algorithm 

Because a semi-empirical Penman ET (SEMI-PM) algorithm proposed by [10,11] can be used for 
monitoring regional ET on decadal scales, this algorithm is used to estimate the effects of deforestation 
on ET variations in subarctic China. This algorithm considers the effects of wind speed (WS) on ET; 
the algorithm can be expressed as follows: 

2
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Where a1 = 0.819, a2 = 0.0017, a3 = 0.476, a4 = 0.284, a5 = −0.654, a6 = 0.264, a7 = 3.06, a8 = −3.86, 
a9 = 3.64, Δ is the slope of the saturated vapor pressure curve (K Pa/°C), γ is the psychrometric 
constant (K Pa/°C), VPD is the vapor pressure deficit (K Pa) and RHD is equivalent to 1 minus RH. In 
this study, we use the SEMI-PM algorithm driven by daily gridded meteorological datasets to estimate 
regional ET in subarctic China over the period 1982–2010. 

2.4. Evaluation Method and Spatio-Temporal Analysis 

The performance of the SEMI-PM ET algorithm is evaluated based on the bias and-root-mean 
square error (RMSE) as follows: 
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Where iE  and iM  are the estimated and measured variables, respectively, and M is the sample size. 

To analyse the uncertainty in the outputs of the SEMI-PM algorithm, the method of moments is used 
to determine the sensitivity of the SEMI-PM algorithm to variations in each of the input parameters [8]. 
Uncertainty in ET (SET) is represented by the propagation of the partial derivatives of the input 
parameters and their respective covariances: 
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Where x and y represent the five input variables (i.e., Rs, NDVI, RH, Ta and WS); xyr  is the correlation 

coefficient between x and y. A linear trend analysis is used to analyse the regional long-term trends in 
forest coverage, ET, and meteorological parameters. A simple linear regression equation is used to 
calculate the annual values and trends in the different variables: 

batv +=  (11)  

Where v is the annual value of the given variable, t is the year and a is the linear trend in the given 
variable. The confidence levels of the derived tendencies are calculated according to Student’s t-test 
distribution with n-2 degrees of freedom [41]:  
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Here, rtv is the correlation coefficient between the original time series and the linear-fitted time 
series; n is the number of observations.  

3. Results 

3.1. ET Validation 

The ground-based ET measurements from both the LSH and CBS flux tower sites are used to 
validate the estimated ET based on the SEMI-PM algorithm driven by daily gridded meteorological 
datasets for subarctic China. At the LSH site, there is good agreement between the daily estimated ET 
and the ground-measured ET (Figure 2). Figure 2 illustrates the root-mean-square errors (RMSEs), the 
biases and the square of the correlation coefficients (R2) for the comparison between the  
ground-measured and estimated daily ET at both the LSH and CBS sites. The RMSEs for the LSH and 
CBS sites are 19.7 W/m2 and 13.4 W/m2, respectively. The biases for the LSH and CBS sites are  
6.5 W/m2 and 0.1 W/m2, respectively. Moreover, the R2 for the two sites exceed 0.9. The positive bias 
may be partially due to the unresolved energy balance problem in the eddy covariance datasets and the 
limitations of the SEMI-PM algorithm. However, at the LSH site, the model underestimates ET when 
the measurements are 20–70 W/m2 and overestimates ET when the measurements exceed 100 W/m2. It 
is challenging to determine the cause of the large bias at the LSH site. Instrument calibration may be a 
factor; we are currently attempting to compare the ET products from other algorithms.  
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Figure 2. Independent validation of the estimated daily evapotranspiration (ET) using 
SEMI-PM algorithm for (a) Laoshan (LSH) site and (b) Changbaishan (CBS) site. 

  

a b 

The accuracy of the algorithm results depends largely on the accuracy of the input data. Figure 3 
shows the sensitivity of the estimated ET to Rs, NDVI, RH, Ta and WS based on the method of moments. 
The average ET varies at the two flux towers by up to ±18% using the SEMI-PM algorithm when Rs is 
changed by ±20%. In response to changes in NDVI by ±20%, the estimate ET varies by ±8% at the two 
flux towers. Moreover, the estimate ET varies by ±20% due to changes in RH by ±6%. Similarly, ET 
increases by 5% for a 20% increase in Ta. The estimated ET varies by ±4% for a ±20% change in WS. 
Jiang et al. [42] reported that a reasonable upper limit for the accuracy of estimating ET using satellite 
data is approximately 20%. The accuracy of our validation meets this requirement. 

Figure 3. Sensitivity analysis of the estimated ET with the corresponding input  
variables, respectively. 

 

To detect long-term ET variations, a multi-annual ET validation is required [4,5,10,11]. However, 
the time period of the ground-based eddy covariance measurements is less than two years, which 
prohibits the validation of long-term ET estimates. Fortunately, Wang et al. [10,11] verified that the 
SEMI-PM algorithm is satisfactory for reproducing inter-annual variability at sites with 5 years of 
global FLUXNET eddy covariance data [10,11]. 
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3.2. Local Effects of Deforestation on ET 

Forest cover changes are generally correlated with annual terrestrial ET variations between 1980 
and 2000. At small scales (i.e., 10 km), there is positive relationship between de(re)forestation (∆F) 
and annual ET variations (∆ET) at the 28 meteorological stations (Figure 4a). The relationship can be 
expressed as:  

11.20377.0 −∆=∆ FET  (R2 = 0.43, p<0.05) (13)  

In Equation (12), negative values of F∆  refer to deforestation, while positive values represent 
reforestation at a given station. F∆  can account for 43% of the decadal ET variations. Generally, ET 
decreases with increasing deforestation. F∆  directly alters the surface roughness, albedo, and the 
fractional vegetation cover, which determines the terrestrial ET. Deforestation regulates radiative 
forcing by increasing the surface albedo, which reduces the net shortwave radiation and the available 
energy. The albedo values in spring and winter are excluded due to the effects of snow cover. Figure 4b 
shows that there is a negative relationship between F∆  and albedo changes (∆albedo). Although this 
linear relationship is relatively weak (R2 = 0.27, p = 0.1), it can explain 27% of the decadal albedo 
variations. Based on Figure 4b, ∆F may contribute to albedo∆ . Moreover, F∆ -induced contributions 
to albedo∆  may regulate changes in the absorbed energy for heating the land surface, which can 
partially account for the changes in ET. ∆F also affects both fractional vegetation cover and ET 
changes [43–46]. Generally, the fractional vegetation cover can be characterized by NDVI. Figure 4c 
shows a good positive relationship between F∆  and NDVI changes (∆NDVI). ∆F can explain 33% of 
∆NDVI (p = 0.07) because deforestation reduces the fractional vegetation cover (or NDVI); therefore, 
there is a reduction in the vegetation available to transpire. Thus, deforestation leads to a local decrease 
in ET due to increased surface albedo and reduced vegetation cover. 

Figure 4. Relationship between the deforestation and the variations in (a) ET, (b) albedo 
and (c) NDVI during 1980–2000; for x axis, positive values refers to reforestation and 
negative values stands for deforestation; dots stand for 28 meteorological stations. 

 

 

a b 
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Figure 4. Cont. 

 

c 

3.3. Regional Effects of Deforestation and Climate Change on ET 

At the regional scale, dense forests decreased by approximately 9200 km2 and sparse forests 
expanded by more than 830 km2 from 1980–2000; there was a net loss of approximately  
8400 km2 [20,28]. According to the local effects of deforestation on ET, there should be a decreasing 
trend in ET. However, the estimated terrestrial ET results for subarctic China suggests that the 
terrestrial ET increased from 1982–2010 at a rate of 7.6 W/m2 per decade (p < 0.05) (Figure 5). 
Perhaps the effects of afforestation due to human activity and climate variability offset the effects of 
deforestation on ET at the regional scale over this time period. 

Figure 5. Relationship of forest cover and decadal ET during 1982–2000 in subarctic 
China (The bar graph shows the forest area. The solid and dashed lines show the annual ET 
and the linear trend of annual ET). 
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Figure 6 shows the average annual ET anomalies and the MEI for the period 1982–2010. The 
regional average ET for subarctic China is negatively correlated with the MEI (r = −0.74, p < 0.01). 
The four longest episodes (i.e., 1982/1983, 1991/1992, 2002/2003 and 2008/2009) of decreasing ET 
correspond to four prolonged transitional periods from La Niña to El Niño conditions. However, the 
obvious exception is the 1997/1998 episode, which consists of a very strong El Nino that corresponds 
to a positive ET anomaly. This result may be partially attributed to errors in the estimated ET due to 
the contamination of the NDVI composite products. This contamination is caused by the high cloud 
cover and heavy precipitation events that occurred in 1997 in subarctic China. Figure 7 provides an 
example of the spatial differences in the average annual regional terrestrial ET between the La Niña 
and El Niño years. The annual ET is higher during La Niña events and lower during El Niño 
conditions. These results suggest that regional oscillations captured by the MEI can affect the  
annual ET via climate variability, which indicates that climate variability is the main reason for the 
increase in ET, while deforestation plays a secondary role in regional-scale annual ET variations in 
subarctic China. 

Figure 6. Inter-annual variability of ET and MEI for 1982–2010. 

 

Figure 7. Spatial differences in average annual regional terrestrial ET between the El Niño 
and La Niña years. (a) the difference in annual ET between 1992 and 1991 for El Niño 
year, (b) the difference in annual ET between 2007 and 2006 for La Niña year. 

  

a b 

A significant positive correlation (r = 0.87, p < 0.1) is found between the ET anomalies of and Rs. 
Moreover, a significant positive correlation (r = 0.80, p < 0.1) is also found between the ET anomalies 
and WS in subarctic China. Generally, the terrestrial ET variations are primarily controlled by the 



Forests 2014, 5 2552 
 

 

available energy, moisture demand and atmospheric evaporative demand. Rs and WS are the two most 
important parameters that exhibit spatiotemporal variations in accordance with ET changes in boreal 
forest ecosystems; these parameters explain 87% of the variance in the monthly ET for most  
energy-limited regions [10,11]. In subarctic China, the spatial pattern of ET variations is strongly 
consistent with the spatial patterns of both Rs and WS during the period 1982–2010 (Figure 8). Other 
variables, such as Ta, VPD and NDVI, also affect ET variations; however, their contributions are less 
than those of Rs. In contrast, there is no correlation between ET variations and precipitation (P) 
because the study area is an energy-limited region. 

Figure 8. Spatial pattern of linear trends in annual (a) ET, (b) Rs, (c) WS, (d) P, (e) albedo 
and (f) NDVI between 1982 and 2010. 

  

  

  

To understand the interaction between climate variability and ET changes, the effects of the MEI on 
the annual ET are analysed in the context of climate variability effects. Previous studies have 
demonstrated that during El Niño events, limitations in the terrestrial moisture supply results in 

a) b) 

c) d) 

e) f) 
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vegetation water stress and reduced evaporation; the opposite situation occurs during La Niña  
events [47,48].Furthermore, oscillations effect net primary production (NPP) by regulating seasonal 
patterns of low temperatures and moisture constraints on vegetation photosynthesis, especially for the  
pan-Arctic region [49]. However, in subarctic China, water stress is not a primary factor contributing 
to long-term ET variations. A positive correlation between the annual MEI and WS (Figure 9) is found 
for most regions of subarctic China, which indicates the effects of ENSO on ET via changes in WS; 
this result is due to evaporated moisture moving from anticyclonic to cyclonic regions [47]. It is 
challenging to speculate about the details of the possible interaction between ENSO and regional-scale 
ET changes because incident solar radiation, air temperature, precipitation, vapour pressure deficit, and 
land cover all contribute to ET variations. Therefore, the relationship between ENSO and ET must be 
examined in the future. 

Figure 9. Maps of the correlation coefficients between annual MEI and WS. 

 

4. Discussion 

4.1. Errors in the ET Estimates 

Although the SEMI-PM algorithm is successfully used to estimate terrestrial ET in subarctic China, 
the method is still affected by input errors, the energy closure ratio of the ground-based eddy 
covariance measurements and the discrepancy between the gridded data and the ground-based 
measurements. Numerous datasets used as input for the SEMI-PM algorithm are biased compared with 
the ground-based measurements [2,35,50]. For example, the downward solar radiation (Rs) dataset 
plays an essential role in driving the SEMI-PM algorithm; however, Rs exhibits errors of 
approximately ±20 W/m2 [35]. The air temperature and wind speed assimilation datasets contain small 
errors when driven by reanalysis forcing data [36]. In this study, a 10% error in the mean of the five 
inputs (i.e., Rs, NDVI, RH, Ta and WS) propagates through the SEMI-PM algorithm for a mean error 
of 11.5%. For a 20% error in the mean of the five inputs, the SEMI-PM algorithm produces a final 
error of 22.1%. When MERRA data is used to drive the SEMI-PM algorithm, the resulting ET trends 
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are similar to those presented in Figure 4, indicating that the estimated ET results based on the  
SEMI-PM algorithm are robust given the uncertainty in this study. 

The EC method can be considered to produce the most accurate ET estimates [51]; however, error 
also exists when compared with other independent ET measurements methods, such as lysimeters [2,9]. 
Moreover, EC-based energy measurements are frequently unconstrained; this imbalance leads to an 
underestimation in ET [52]. Although we corrected this problem using the method proposed by  
Twine et al. [34], uncertainties remain in the ground-based ET data. The error propagation from 
satellite retrievals, threshold filtering and interpolation also reduce the accuracy of ET estimates. In 
addition, the gap filling technique that is used for daily ground-based ET measurements also leads to 
large errors in the ET estimates [2]. The spatial scale mismatch between the footprint and gridded 
datasets (including meteorological datasets and GIMMIS-NDVI dataset) also produces discrepancies 
in the results. The flux tower footprint only characterizes the turbulent fluxes over approximately a few 
hundred meters in the vertical and horizontal directions [53]. However, the gridded datasets have 
coarse spatial resolution (10 km). These pixels may not capture the flux information measured at the 
scale of the flux tower measurements; therefore, errors are likely to be introduced in the ET estimates. 

4.2. Impacts of Deforestation and Climate Change on ET 

Deforestation is conducive to local-scale decreases in ET because it acts to increase surface albedo 
and reduce fractional vegetation cover. Previous studies have shown that deforestation decreases the 
amount of absorbed solar radiation at the surface [7,26]. As a result, the surface warms and ET 
decreases due to heat convection in boreal lands. In this study, we also verified that substantial 
spatiotemporal variability is present in the albedo trend, which is nearly consistent with that of the 
actual ET (Figure 8). Although deforestation is not the sole reason for large-scale albedo changes, it 
strongly affects local-scale ET. 

Deforestation also reduces the fractional vegetation cover, which ultimately decreases vegetation 
transpiration. In this study, we also found a strong coherence between the 1982 and 2010 ET trends 
using the SEMI-PM algorithm and the NDVI trends in some regions. In contrast, regional-scale 
deforestation plays a minor role in regulating regional-scale ET variations. Moreover, there is a strong 
decrease in forest cover and a slight increasing trend in ET between 1982 and 2000. This change may 
be primarily caused by CO2 fertilization, afforestation and global climatic changes that have eased 
multiple climatic constraints on plant growth and increased net primary productivity (NPP) and 
terrestrial ET. 

Climate variability determines long-term ET variations in the northern mid-latitudes [45].  
Nemani et al. [12] reported that recent climatic changes have increased plant growth in the northern  
mid-latitudes and high latitudes. Subsequently McVicar et al. [54] mapped the global distribution of 
areas where ET is energy-limited or water-limited to conclude that energy drives ET in subarctic and 
southern China and that changes in WS exert a larger effect in energy-limited water-yielding 
catchments than water-limited areas. Previous studies have shown that WS is an aerodynamic 
controlling variable for atmospheric evaporative demand during the ET process and contributes to 
long-term ET variations [55–57]. Several studies have focused on the causes of evaporative dynamics 
without considering WS [58–61], whereas our study illustrated the contributions of WS to ET and the 
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effects of ENSO on ET via changes in WS. Therefore, assessing long-term variations in regional-scale 
terrestrial ET requires consideration of the relationship between ENSO and WS; large uncertainties 
may be produced when the effects ENSO on ET are neglected. 

5. Conclusions 

We use meteorological data and satellite data to analyse the relationship between 
deforestation/climate variability and terrestrial ET variations in subarctic China. The estimated ET 
using a SEMI-PM algorithm and ground-based eddy covariance measurements from two forest flux 
tower sites illustrate that the RMSEs for the two sites are less than 20 W/m2 and the R2 exceed 0.9. 
This method can be used to detect regional-scale ET variations. At the local scale, there is positive 
relationship between the forest cover changes (∆F) and annual ET variations (∆ET), namely  
∆ET = 0.0377∆F – 2.11 (R2 = 0.43, p<0.05). This relationship is caused by deforestation-induced 
increases in surface albedo and a reduction in vegetation cover. However, at the regional scale, the El 
Niño/Southern Oscillation (ENSO) rather than deforestation dominates the multi-decadal ET 
variability by changing the ambient wind speed; however, the reasons for this finding require  
future investigations. 
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