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Abstract: Long-term global land surface fractional vegetation cover (FVC) products are essential
for various applications. Currently, several global FVC products have been generated from
medium spatial resolution remote sensing data. However, validation results indicate that there
are inconsistencies and spatial and temporal discontinuities in the current FVC products. Therefore,
the Global LAnd Surface Satellite (GLASS) FVC product algorithm using general regression neural
networks (GRNNs), which achieves an FVC estimation accuracy comparable to that of the GEOV1
FVC product with much improved spatial and temporal continuities, was developed. However,
the computational efficiency of the GRNNs method is low and unsatisfactory for generating the
long-term GLASS FVC product. Therefore, the objective of this study was to discover an alternative
algorithm for generating the GLASS FVC product that has both an accuracy comparable to that
of the GRNNs method and adequate computational efficiency. Four commonly used machine
learning methods, back-propagation neural networks (BPNNs), GRNNs, support vector regression
(SVR), and multivariate adaptive regression splines (MARS), were evaluated. After comparing its
performance of training accuracy and computational efficiency with the other three methods, the
MARS model was preliminarily selected as the most suitable algorithm for generating the GLASS
FVC product. Direct validation results indicated that the performance of the MARS model (R2 = 0.836,
RMSE = 0.1488) was comparable to that of the GRNNs method (R2 = 0.8353, RMSE = 0.1495), and the
global land surface FVC generated from the MARS model had good spatial and temporal consistency
with that generated from the GRNNs method. Furthermore, the computational efficiency of MARS
was much higher than that of the GRNNs method. Therefore, the MARS model is a suitable algorithm
for generating the GLASS FVC product from Moderate Resolution Imaging Spectroradiometer
(MODIS) data.

Keywords: fractional vegetation cover (FVC); GLASS FVC product; multivariate adaptive regression
splines (MARS); general regression neural networks (GRNNs); MODIS

1. Introduction

Fractional vegetation cover (FVC), generally defined as the fraction of green vegetation as seen
from the nadir, is an important variable for describing land surface vegetation [1–3]. FVC is also
a key biophysical parameter for studying the atmosphere, pedosphere, hydrosphere, and biosphere, as
well as their interactions [4], and is widely used in weather prediction, hydrological monitoring, and
related research fields [5–8]. Long-term and global-scale FVC datasets are highly important for land
surface process and climate change studies and also for their extensive applications in the monitoring
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of agriculture, forestry, disaster risk, and drought [5,8–10]. Estimation of FVC from remote sensing
data is the only effective way to generate FVC products, especially at the regional and global scale.

There are three main types of FVC estimation methods using remotely sensed data: empirical
methods, pixel un-mixing modeling, and physical model-based methods. The empirical methods
are based on the statistical relationships between FVC and spectral band reflectance or vegetation
indices [11,12]. Empirical methods are simple, computationally efficient, and widely used for
estimating FVC at the regional scale. However, empirical methods are limited temporally and spatially
because their statistical relationships are constructed using data acquired at specific times in distinct
regions. Thus, although they are typically applicable to specific research areas and vegetation types,
they may become invalid when they are expanded to larger areas. The pixel un-mixing model
assumes that each pixel is composed of several components, and considers the fraction of vegetation
compositions as the FVC of the pixel [13–15]. The dimidiate pixel model, which assumes that the
pixels are composed solely of vegetation and non-vegetation components, is the simplest and most
widely used pixel un-mixing model [5,14,16]. However, due to the complexity of land surfaces, it is
difficult to use the pixel un-mixing model to determine the number of endmembers and the spectral
responses of the endmembers over large areas for FVC estimation. The physical model-based methods
for FVC estimation are based on the inversion of canopy radiative transfer models that simulate
the physical relationships between vegetation canopy spectral reflectance and FVC. Such physical
models have clear physical significance and can be adapted to a wide range of scenarios [17]. However,
because of the complexity of the physical models, direct inversion is generally complex, and artificial
neural networks (ANNs) are usually used for indirect inversion of the physical model by training
with a pre-computed reflectance database from the physical models to simplify the inversion [8,18].
ANN methods have the advantages of computational efficiency and robustness to noisy data, and can
approximate multivariate non-linear relationships, which make them popular choices for large-area
FVC estimation from remote sensing data [1,19–21].

Furthermore, the current global FVC products were largely generated using medium spatial
resolution remotely sensed data. However, specific validation results indicate that there are
inconsistencies among the different FVC products as well as spatial and temporal discontinuities
within them [22–24]. For example, the Spinning Enhanced Visible and Infrared Imager (SEVIRI) and
MEdium-Resolution Imaging Spectrometer (MERIS) FVC products were found to have systematic bias,
such that the MERIS FVC presents lower values (by approximately 0.1–0.2) [24]. VEGETATION (VGT)
FVC was found to be generally higher than SEVIRI FVC by approximately 0.15, and Carbon cYcle and
Change in Land Observational Products from an Ensemble of Satellites (CYCLOPES) FVC values were
found to be underestimates [25,26]. With the underestimation problem corrected, the GEOV1 FVC
product is an improved version of the CYCLOPES FVC product. However, the GEOV1 FVC product
suffers from unsatisfactory temporal and spatial continuities [24]. Therefore, a long-term global FVC
product with both high accuracy and satisfactory spatial and temporal continuities is urgently needed.

Recently, Jia et al. [27] developed an operational algorithm for estimating FVC from Moderate
Resolution Imaging Spectroradiometer (MODIS) surface reflectance data using general regression
neural networks (GRNNs). Their method was used to generate the Global LAnd Surface Satellite
(GLASS) FVC product, which was supported by China’s National High Technology Research and
Development Program. Validation results demonstrated that the GRNNs-generated GLASS FVC
product had accuracy that was comparable to the accuracy of the GEOV1 FVC product, which was
considered to be the best global FVC product available at the time. Moreover, the spatial and temporal
continuities of the GLASS FVC were superior to those of the GEOV1 FVC [27]. Balancing the estimation
accuracy and the computational efficiency of the estimation algorithm is a key issue for generating
lengthy time series, and high- resolution and global-scale FVC products. However, the computational
efficiency of using the GRNNs method to generate the GLASS FVC product is currently unsatisfactory.
It takes more than one hour to generate one tile of data from MODIS data, which severely restricts the



Remote Sens. 2016, 8, 682 3 of 16

production of the GLASS FVC product. Therefore, a highly efficient method with accuracy comparable
to that of the GRNNs method is urgently needed for generating the GLASS FVC product.

Machine learning methods have been applied widely to land surface parameter product
generation using remotely sensed data due to their capability of nonlinear fitting and computational
efficiency. For example, Baret et al. used back-propagation neural networks (BPNNs) to produce
the GEOV1 leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FAPAR),
and fraction of vegetation cover (FCOVER) products [1,21,27]. Durbha et al. [28] used support vector
regression (SVR) to retrieve LAI from Multi-angle Imaging SpectroRadiometer (MISR) data with
satisfactory results. Jiang et al. [29] used multivariate adaptive regression splines (MARS) to generate
the long-term GLASS Daytime All-Wave Net Radiation Product. To generate the global FVC product,
a satisfactory balance between the accuracy and the computational efficiency of the FVC estimation
algorithm is needed. Therefore, the objective of this study was to find an alternative algorithm for
generating the GLASS FVC product having both accuracy comparable to that of the GRNNs method
and relatively high computational efficiency. In this study, four commonly used and effective machine
learning methods, BPNNs, GRNNs, SVR, and MARS, were evaluated to identify the most suitable
method for generating the GLASS FVC product.

2. Data and Methods

This study was designed to find a suitable GLASS FVC product algorithm having accuracy
comparable to that of the GRNNs method and also high computational efficiency (Figure 1). First,
four machine learning methods, GRNNs, BPNNs, SVR, and MARS, were trained on identical samples
of different sizes, and the performances of the four methods were evaluated. Then, the method
with both suitable accuracy and high computational efficiency was used to generate the GLASS
FVC product.
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2.1. Training Samples

The training samples used to develop the FVC estimation algorithm from MODIS surface
reflectance data with GRNNs were used in this study [27]. The sampling locations consisted of
the BEnchmark Land Multi-site Analysis and Intercomparison of Products (BELMANIP) sites, specific
sites in FLUXNET that were not overlaid nor particularly proximal to the BELMANIP sites, and
Validation of Land European Remote Sensing Instruments (VALERI) sites with ground measured FVC
data. In total, approximately 500 global sampling locations were selected for use in the present study.
The sample locations are located in relatively flat and homogeneous areas, are globally distributed,
and cover all types of vegetation. The red and NIR band reflectance in the reprocessed MODIS
data of the 25 pixels (5 � 5 = 25) surrounding the global sampling locations were extracted, and the
corresponding Landsat thematic mapper (TM)/Enhanced Thematic Mapper plus (ETM+) FVC pixels
for each extracted MODIS pixel were averaged as the sampling FVC of the MODIS pixel. The Landsat
TM/ETM+ FVC data were derived from a dimidiate pixel model based on the terrestrial ecoregions
and vegetation types [27]. To remove abnormal samples and guarantee the reliability and stability
of the training samples, the samples were refined further. The sampling FVC values were plotted
against the normalized difference vegetation index (NDVI) values, which were computed from the
MODIS reflectance in the red and NIR bands. Then, for each NDVI value class (20 classes over the
[0, 1] domain of variation), the cases with FVC values that were lower (higher) than the 5% percentile
(95% percentile) were removed from the sample datasets. After further optimization, 16,980 cases
with consistent MODIS surface reflectance (reflectance in the red and NIR bands) paired with refined
sampling FVC values were generated. The sampling dataset was split randomly into a training dataset
composed of 90% of the available data and an essentially independent validation dataset composed of
the remaining 10% of the sampling dataset, which was used to evaluate the theoretical performances
of the four models. Further details regarding the training samples can be found in the study of
Jia et al. [27].

2.2. Four Machine Learning Methods for FVC Estimation

� GRNNs model

GRNNs, the generalization of radial basis function networks and probabilistic neural networks,
were developed by Donald Specht [30,31]. Jia et al. [27] applied GRNNs to the estimation of FVC and
demonstrated that GRNNs were reliable for FVC estimation. GRNNs contain four layers, the input,
pattern, summation, and output layers. The input layer provides all of the measurement variables to
all of the neurons in the pattern layer; each neuron represents a training pattern, and the output of each
neuron is a measure of the distance of the input from the stored patterns. The summation layer consists
of two types of summation neurons: one type computes the summation of the weighted outputs of the
pattern layer, and the other type calculates the unweighted outputs of the pattern neurons. Finally,
the output layer performs a normalization step to compute the predicted value of the output variable.
In this study, the input variables to the GRNNs for retrieving FVC were the reprocessed MODIS
reflectance values in the red and NIR bands, and the output variable was the corresponding FVC.
In this study, a Gaussian function was used as the kernel function of the GRNNs, and the fundamental
formulation was expressed as follows:

Y0 (X) =
ån

i=1 Yiexp(� D2
i

2s2 )

ån
i=1 exp(� D2

i
2s2 )

, (1)

D2
i = (X� Xi)

T �
X� Xi

�
, (2)

where D2
i represents the squared Euclidean distance between the input vectors X and the i-th training

input vector Xi, Yi is the output vector corresponding to Xi, Y0 (X) is the estimation corresponding to
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X, n is the number of samples, and s is a smoothing parameter that controls the size of the receptive
region. Because the architecture and weights of GRNNs are determined by the input, the training of
GRNNs consists essentially of optimizing the smoothing parameter s [27]. The smoothing parameter
significantly affects the prediction accuracy of the GRNNs, and a suitable smoothing parameter was
found by using the holdout method. The holdout method for a particular s consisted of removing one
sample from the training data at a time and then constructing GRNNs based on all the other training
samples. The GRNNs were then used to estimate Y for the removed sample. By repeating this process
for each sample and storing each estimate, the mean squared error between the actual sample values
Yi and the estimates could be evaluated. The value of � giving the smallest error was used in the final
GRNNs [30,32]. The training process was completed when the minimum of the cost function of the
smoothing parameter was reached as follows:

f (s) =
1
n ån

i=1

�
Ŷi (Xi)�Yi

�2, (3)

where Ŷi (Xi) is the estimation corresponding to Xi using the GRNNs trained over all of the training
samples except the i-th sample. The widely used shuffled complex evolution method developed by the
University of Arizona was selected to obtain the optimal smoothing parameter of the GRNNs [33,34].
The GRNNs method was implemented with the Visual Studio 2012 platform (Microsoft Corporation,
Redmond, Washington, DC, USA).

� BPNNs

BPNNs, a popular type of neural networks, have proven to be an effective algorithm for
estimating land surface vegetation variables, such as LAI and FAPAR [1,35]. Therefore, BPNNs
were selected for the comparison of the performance among methods. The BPNNs training procedure
is divided into two parts, a forward propagation of information and a backward propagation of
error. The back-propagation algorithm network adjusts the weights in each successive layer to reduce
the errors at each level. In the linkage of the layers, the transmission of information procedure is
unidirectional transmission to the input layer, with treatment of the information in the input layer,
the hidden layer, and finally transmission to the output layer. The status of each layer can only
be affected by the next layer. If the anticipated outcome is not generated in the output layer, the
algorithm switches to back-propagation, and the error between the outcome and the expected value
is returned along the original path. In the present study, the BPNNs first learned from the training
dataset and built relationships between reflectance and FVC, then the trained BPNNs could produce
the optimal FVC estimates based on the actual reflectance of the remotely sensed data. The inputs
of the BPNNs included the reflectance of the red and NIR bands, and the output consisted of the
corresponding FVC. The number of nodes in the hidden layer was set to four. The BPNNs activation
function in the hidden layer was set to “tansig”, the transfer function for the output layer was set
to “purelin”, and the training function was set to “trainlm”, respectively. Because of its efficient
convergence capacity, the Levenberg–Marquardt minimization algorithm was used to calibrate the
synaptic coefficients [36]. The BPNNs modeling was implemented with the Matlab 2014a platform
(Matlab 2014a, The MathWorks, Natick, MA, USA).

� SVR model

SVR is a commonly used machine learning method for solving nonlinear regression estimation
problems [37]. Given a set of data points G = (xi, di)

n
i (xi is the input vector, di is the desired value and

n is the total number of data patterns), SVR approximates the function f(x) using the following equation:

f (x) = w� t (x) + b, (4)

where w is the weight vector, b is the bias, and t(x) is the kernel function, which is typically a non-linear
function for transforming non-linear inputs into a linear mode in a high-dimensional feature space.
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Unlike the traditional regression model, in which coefficients are estimated by minimizing the squared
loss, SVR applies the so-called #-insensitivity loss function (L#) to estimate its parameters:

L# =

(
j f (x)� yj � # i f j f (x)� yj � #

0 otherwise
, (5)

where y is the desired (target) output and # is defined as the region of #-insensitivity. When the
predicted value falls into the band area, the loss is zero. In contrast, if the predicted value falls outside
the band area, the loss is equal to the difference between the predicted value and the margin.

When empirical risk and structure risk are considered together, the SVR model can be constructed
to minimize the following quadratic programming problem:

min : 1
2 zTz + C å

i

�
xi + x�i

�
,

subject to

8><>:
yi � zTxi � b � # + xi
zTxi + b� yi � # + x�i ,

xi, x�i � 0

(6)

where i = 1, . . . ,n is the number of training data; (xi � x�i ) is the empirical risk; 1
2 zTz is the structure

risk preventing over-learning and the lack of applied universality; and C is referred to as the
regularized constant, which determines the trade-off between the empirical risk and regularization
terms. This study adopted the general form of the SVR-based regression function, defined as
follows [38]:

y (x) =
n

å
i=1

(ai � ai
�) K (x, xi) + b, (7)

where ai and ai
� are Lagrangian multipliers that satisfy ai � ai

� = 0, n is the number of support
vectors, and b is the bias. K is the kernel function, which in this study was the radial basis function
(RBF) kernel, one of the most widely used SVR kernel functions [37–39], which is defined as K (x, xi) =

exp(�g k xi � xj k2), where � denotes the width of the RBF.
Parameters C, #, and g must be determined for SVR training. To obtain the optimal SVR model,

the training dataset was randomly divided further into 90% and 10% proportions for model building
and testing, respectively, and the grid search method [40] was applied to determine the best parameter
set of C and g that could generate the minimum forecasting mean square error. In the searching
process, C and g are increasing exponentially with the base 2 and the exponent located in [�8, 8] with
the step of 0.8. Finally, # was determined based on the training data and set to 0.1. In this study, the
FVC estimation utilized the Library for Support Vector Machines (LIBSVM) and was implemented
with the Matlab 2014a platform.

� MARS model

MARS is a nonparametric and multivariate regression analysis model presented by Jerome H.
Friedman [39]. MARS essentially builds flexible models by fitting piecewise linear regressions; that is,
the non-linearity of a model is approximated through the use of separate linear regression slopes in
distinct intervals of the independent variable space. In addition to searching for variables sequentially,
MARS also searches for the interactions between variables, allowing any degree of interaction to be
considered as long as it provides a better fit to the data.

MARS builds models of the form [39]:

f (x) =
k

å
i=1

ciBi (x) , (8)
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where Bi (x) are piecewise linear basis functions, and each ci is a constant coefficient. Each piecewise
linear basis function takes the following form:

max (0, x� c) , x� c > 0 or max (0, c� x) , c� x > 0 (9)

where c is a constant called the knot.
The inputs of the MARS included the reflectance of the red and NIR bands, and the output was

the corresponding FVC. The optimal MARS model is determined by a two-stage process. First, MARS
constructs a very large number of basis functions to fit the data, where variables can interact with
each other to fit the data. Then, the basis functions are deleted in the order of least importance using
the generalized cross-validation (GCV) criterion [40]. The importance of a variable can be assessed
by observing the decrease in the calculated GCV when it is removed from the model. MARS is
capable of reliably tracking the extremely complex data structures hidden in high-dimensional data.
Additional details regarding the MARS model building process can be found in [40]. In this study, the
best number of basis functions was determined using the GCV method. MARS was implemented with
the Matlab2014a platform.

The four aforementioned methods were trained with identical training samples of varying sample
sizes, and their performances were evaluated based on independent validation. The R-square (R2)
and root mean square error (RMSE) were selected to evaluate the comparison results. Moreover,
reprocessed MODIS reflectance data for BELMANIP sites containing all kinds of vegetation types in
the year 2003 were entered into the four machine learning algorithms, and the outputs of BPNNs, SVR,
and MARS were compared with those of GRNNs, which have been proven to be very efficient for FVC
estimation. In this study, all of the four methods were implemented using the Microsoft Windows 7
operating system (Microsoft Corporation, Redmond, Washington, DC, USA) on a 3.20 GHz Intel Core
PC with 8 GB of memory.

2.3. Spatial-Temporal Comparison and Direct Validation

After training with the optimal training sample size, the four methods were used to generate the
global land surface FVC from reprocessed MODIS reflectance data. The MODIS land cover product
(MCD12Q1) was used as priori conditions: the FVC values in the vegetation regions, including eight
main biomes, were estimated from the reprocessed MODIS surface reflectance data using the proposed
method, and the FVC values in the non-vegetated regions were set to zero. Because the GRNNs
method has accuracy comparable to that of the GEOV1 FVC product and improved spatial and
temporal continuities [27], the accuracy and the spatial and temporal consistencies of the machine
learning methods were compared with those of the GRNNs method to determine a suitable alternative
to the GRNNs method for generating the GLASS FVC product.

Assessment and validation of moderate-resolution FVC products are generally difficult because
ground point measurements are not suitable for direct comparisons due to surface heterogeneity.
High spatial resolution remote sensing data can be used to scale the ground measurements up to
moderate spatial resolution pixels for comparison and evaluation. In this study, high-resolution FVC
maps from VALERI (accessed at http://w3.avignon.inra.fr/valeri) [41] were used to validate the four
machine learning methods and inter-compare with the GRNNs method. Following the guidelines
defined by the subgroup Land Product Validation (LPV) of Committee Earth Observing Satellites’
Working Group on Calibration and Validation (CEOS WGCV), an empirical transfer function between
the high-resolution reflectance data and the FVC ground measurements for a site was established
to derive a high-resolution FVC map that was then aggregated to the moderate-resolution products
for comparison [42]. Most of these sites are sized at 3 km � 3 km (some are larger), and multi-date
measurements are available at specific sites. In total, 44 high-resolution FVC maps over 27 VALERI
sites [27] were selected to validate the FVC estimates of the four machine learning methods assessed
in this study. Information about these locations, such as validation site positions, land cover types,
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dates of ground measurement, and mean FVC values from the validation site areas is given in Table 1.
The sites cover various land cover types, including grassland, cropland, shrubs, forest, etc. Therefore,
the validation results in this study are representative.

In this study, to obtain improved spatial matching of the FVC estimates from the MODIS data
and high-resolution remote sensing data of the VALERI sites, the FVC data estimated using MODIS
data were converted to the same projection as those of the corresponding high-resolution FVC maps.
Then, the averaged FVC estimates corresponding to the scope of the high-resolution maps were
extracted. Meanwhile, the extracted FVC values were linearly interpolated to the acquisition date
of the corresponding high-resolution FVC maps. Finally, the performances of the machine learning
methods were directly validated using these extracted FVC samples.

Table 1. Characteristics of the sites selected for accuracy assessment.

Site Name Lat (�) Lon (�) Land cover DOY Year FVC

Barrax 39.06 �2.10 Cropland 193 2003 0.236
Camerons �32.60 116.25 Broadleaf forest 63 2004 0.414
Chilbolton 51.16 �1.43 Crops and forest 166 2006 0.647
Counami 5.35 �53.24 Tropical forest 269 2001 0.838
Counami 5.35 �53.24 Tropical forest 286 2002 0.858
Demmin 53.89 13.21 Crops 164 2004 0.586
Donga 9.77 1.78 Grassland 172 2005 0.420

Fundulea 44.41 26.58 Crops 128 2001 0.341
Fundulea 44.41 26.58 Crops 144 2002 0.374
Fundulea 44.41 26.59 Crops 144 2003 0.319
Gilching 48.08 11.32 Crops and forest 199 2002 0.676

Gnangara �31.53 115.88 Grassland 61 2004 0.221
Gourma 15.32 �1.55 Grassland 244 2000 0.236
Gourma 15.32 �1.55 Grassland 275 2001 0.126
Haouz 31.66 �7.60 Cropland 71 2003 0.248

Hirsikangas 62.64 27.01 Forest 226 2003 0.644
Hirsikangas 62.64 27.01 Forest 190 2004 0.537
Hirsikangas 62.64 27.01 Forest 159 2005 0.442

Hombori 15.33 �1.48 Grassland 242 2002 0.200
Jarvselja 58.29 27.29 Boreal forest 188 2000 0.705
Jarvselja 58.30 27.26 Boreal forest 165 2001 0.783
Jarvselja 58.30 27.26 Boreal forest 178 2002 0.793
Jarvselja 58.30 27.26 Boreal forest 208 2003 0.803
Jarvselja 58.30 27.26 Boreal forest 180 2005 0.842
Jarvselja 58.30 27.26 Boreal forest 112 2007 0.535
Jarvselja 58.30 27.26 Boreal forest 199 2007 0.731
Laprida �36.99 �60.55 Grassland 311 2001 0.722
Laprida �36.99 �60.55 Grassland 292 2002 0.534
Larose 45.38 �75.22 Mixed forest 219 2003 0.847

Le Larzac 43.94 3.12 Grassland 183 2002 0.300
Les Alpilles 43.81 4.71 Crops 204 2002 0.349

Plan-de-Dieu 44.20 4.95 Crops 189 2004 0.172
Puechabon 43.72 3.65 Forest 164 2001 0.540
Rovaniemi 66.46 25.35 Crops 161 2004 0.423
Rovaniemi 66.46 25.35 Crops 166 2005 0.497

Sonian forest 50.77 4.41 Forest 174 2004 0.903
Concepcion �37.47 �73.47 Mixed forest 9 2003 0.455

Hyytiälä 61.85 24.31 Evergreen forest 188 2008 0.461
Sud_Ouest 43.51 1.24 Crops 189 2002 0.352

Turco �18.24 �68.18 Shrubs 208 2001 0.106
Turco �18.24 �68.19 Shrubs 240 2002 0.020
Turco �18.24 �68.19 Shrubs 105 2003 0.044

Wankama 13.64 2.64 Grassland 174 2005 0.036
Zhang Bei 41.28 114.69 Pastures 221 2002 0.353

* DOY: Day of Year; FVC: Fractional vegetation cover.
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3. Results and Discussion

3.1. Training Accuracy and Computational Efficiency

The performances of the four machine learning methods with different training sample sizes
were evaluated by R2 and RMSE, and the results are shown in Figure 2. The smoothing parameter
for the GRNNs method, the C and g parameters for the SVR method, and the maximum number of
model terms for the MARS method are determined in the training process. In this study, only the
parameters with training sample size of 15,282, which achieved the best training results, are presented.
The determined optimal smoothing parameter for FVC estimation from MODIS data for the GRNNs
method was 0.0042, the C and g for the SVR method were 27.8576 and 1.7411, respectively, and the best
number of the basis functions for the MARS method was 21. In addition, the independent validation
results from the 15,282 training samples are summarized in Table 2.
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Table 2. The statistical performances of the four machine learning methods with 15,282
training samples.

Model R2 RMSE Training Time Estimation Time (One Tile)

GRNNs 0.9625 0.0645 572.266 s 4772.493 s
BPNNs 0.9617 0.0666 8.691 s 5.629 s

SVR 0.9627 0.0663 34,576.585 s 271.621 s
MARS 0.9645 0.0645 123.173 s 7.479 s

* R2: Coefficient of determination; RMSE: Root mean squared error.

Figure 2 shows that R2 increases while RMSE decreases with sample size, with some fluctuations.
Generally, GRNNs performed slightly better than SVR and slightly worse than MARS and BPNNs. All
of the four methods had satisfactory performance (R2 > 0.96, RMSE < 0.07) given sufficient training
samples. The BPNNs and MARS had lower sensitivity than the GRNNs to training sample size
variations, and SVR was very sensitive to training sample size. All of the four methods began to have
stable performance when the training sample size was large enough. In addition, a turning point was
noted between the sample sizes of 304 and 456. Prior to the sample size of 304, the values of R2 and
RMSE changed quickly, and the four models were sensitive to sample size variation. Subsequent to the
training sample size of 456, the performances of the four methods, particularly the MARS method,
began to stabilize, and the R2 and RMSE values showed only slight improvement. With a training
sample size of 15,282, over-fitting was not observed, and all of the four methods, particularly the
MARS method, presented their best performance (R2 > 0.96, RMSE < 0.07). Therefore, 15,282 training
samples were used as the final training data set.

The computation time required for model training and estimation differed considerably among
the four methods (Table 2). The computational efficiency of the GRNNs and SVR methods was very
low when large datasets were used; therefore, these two methods were not suitable for generating
a long time series FVC product. Additionally, when the training sample size was reduced, their
estimation accuracy decreased. Although the four methods were implemented on different platforms,
the comparison of computation time was still reasonable for the assertion that the computational
efficiency of MARS and BPNNs was better than that of GRNNs and SVR.

One year of FVC estimates were also derived using the four methods at the BELMANIP sites
containing all kinds of vegetation types. Due to a lack of ground truth data and the fact that GRNNs
have proven to be very efficient for FVC estimation, the FVC estimates of the other three methods
were compared with those of the GRNNs method. Scatterplots between the GRNNs derived FVC and
the BPNNs, SVR and MARS derived FVCs are shown in Figure 3. The results show that the other
three methods performed well in estimating FVC and had good consistency with the GRNNs method
(R2 > 0.98, RMSE < 0.037). However, the BPNNs method had a small overestimation problem for FVC
values from 0.05 to 0.2. In contrast, the MARS method had better consistency with the GRNNs method
compared with the BPNNs and SVM methods.
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the general regression neural networks (GRNNs) with the three other methods: (a) back-propagation
neural networks (BPNNs); (b) support vector regression (SVR); (c) multivariate adaptive regression
splines (MARS).

Due to its high computational efficiency and estimation accuracy, the MARS method was
preliminarily selected for subsequent direct validation and spatial–temporal comparison with the
GRNNs method, and the BPNNs and SVR methods were not explored further.

3.2. Spatial-Temporal Comparison and Direct Validation

A direct validation of the MARS method was evaluated, and the spatial and temporal consistencies
between the global FVC maps derived from the MARS and the GRNNs methods were compared.
Figure 4a, b show the global FVC maps from the MARS and GRNNs methods on day 201 of 2003
(20 July 2003), respectively. A difference map between the two global FVC maps generated by the
MARS and GRNNs methods is also presented in Figure 4c for comparison. Figure 4 shows that there
was adequate spatial agreement between the MARS and GRNNs derived FVC from the MODIS data,
and no missing data were observed. Quantitatively, approximately 99.95% of the difference values
were located between �0.1 and 0.1. Furthermore, the distributions of the FVC values of both data sets
were consistent with the actual conditions of the land cover distributions. Therefore, the global FVC
map generated by the MARS model had sufficient spatial consistency and FVC values very similar to
those generated by the GRNNs method, as well as satisfactory spatial continuity.
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The FVC temporal profiles of the sampling sites in the year of 2003 were also generated to compare
the temporal consistency of the MARS derived and GRNNs derived FVC. Several representative
FVC temporal profiles for cropland, grassland, shrubland and forestland, are shown in Figure 5.
These representative FVC temporal profiles show good temporal consistency between the two data
sets. The two data sets also have similar magnitude and dynamic range, and no missing data are
observed. Moreover, the temporal profiles extracted from the MARS method-derived FVC are very
smooth, whereas those extracted from the GRNNs method show very slight fluctuations. Furthermore,
the two data sets exhibit similar seasonal variations, which could reflect actual vegetation growth
characteristics. These seasonal vegetation changes and the temporal consistency between the MARS
derived FVC and the GRNNs derived FVC indicated that the MARS method for FVC estimation is
reliable and capable of revealing actual earth surface variations. In summary, the results of this study
indicate that the MARS method-derived FVC were temporally continuous and had good temporal
consistency with the GRNNs derived FVC.
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sites for year 2003: (a) Evergreen needle forest; (b) Grassland; (c) Cropland; and (d) Open shrubland.

To evaluate the performance of the MARS method further, 44 ground measurement-based samples
from VALERI sites were used to directly validate the results from the MARS method and compare
them with those from the GRNNs method (Figure 6). There was a reliable agreement between the FVC
estimated from both the MARS and GRNNs methods and the ground measurements. The performance
of the MARS method (R2 = 0.836, RMSE = 0.1488) was similar to that of the GRNNs method (R2 = 0.8353,
RMSE = 0.1459), which indicated an acceptable level of consistency between their FVC estimates.
In addition, it also could be seen that there were small differences between the validation results of the
GRNNs method in this study and the results in [27]. The reason for the differences was that the FVC
in [27] was first aggregated to the same scale as that of the GEOV1 FVC product (spatial resolution of
1 km) to compare their performances. Therefore, the small differences are reasonable.
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The MARS method had both high computational efficiency and estimation accuracy comparable
to that of the GRNNs method. The global FVC maps generated from MARS were highly consistent
with those generated from GRNNs. Furthermore, the MARS temporal profiles of various types of
representative vegetation were smoother than those of GRNNs and capable of reflecting true growth
trends. Overall, the MARS model was determined to be the most suitable method for generating the
GLASS FVC product.

4. Conclusions

In this study, four commonly used machine learning methods were evaluated for their capability
to generate the GLASS FVC product. The four machine learning methods were trained with identical
sample data from global sampling locations, and the MARS model was preliminarily selected as the
most suitable method after comparing the fitting accuracies and computational efficiencies of the four
methods. Furthermore, a direct validation using ground FVC measurements and a comparison of
the spatial and temporal consistencies of MARS derived and GRNNs derived FVC indicated that the
accuracy of the MARS method was comparable to the accuracy of the GRNNs method for global FVC
estimates. In addition, the computational efficiency of the MARS method is superior to that of the
GRNNs method. Therefore, the MARS method is a suitable alternative to the GRNNs method for
generating the GLASS FVC product from MODIS data. Further work should focus on an extensive
assessment of the performance of the MARS method using additional ground measurement data.
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