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Abstract: Accurate estimation of latent heat flux (LE) is critical in characterizing semiarid
ecosystems. Many LE algorithms have been developed during the past few decades. However,
the algorithms have not been directly compared, particularly over global semiarid ecosystems.
In this paper, we evaluated the performance of five LE models over semiarid ecosystems such
as grassland, shrub, and savanna using the Fluxnet dataset of 68 eddy covariance (EC) sites
during the period 2000–2009. We also used a modern-era retrospective analysis for research
and applications (MERRA) dataset, the Normalized Difference Vegetation Index (NDVI) and
Fractional Photosynthetically Active Radiation (FPAR) from the moderate resolution imaging
spectroradiometer (MODIS) products; the leaf area index (LAI) from the global land surface
satellite (GLASS) products; and the digital elevation model (DEM) from shuttle radar topography
mission (SRTM30) dataset to generate LE at region scale during the period 2003–2006. The models
were the moderate resolution imaging spectroradiometer LE (MOD16) algorithm, revised remote
sensing based Penman–Monteith LE algorithm (RRS), the Priestley–Taylor LE algorithm of the
Jet Propulsion Laboratory (PT-JPL), the modified satellite-based Priestley–Taylor LE algorithm
(MS-PT), and the semi-empirical Penman LE algorithm (UMD). Direct comparison with ground
measured LE showed the PT-JPL and MS-PT algorithms had relative high performance over
semiarid ecosystems with the coefficient of determination (R2) ranging from 0.6 to 0.8 and root mean
squared error (RMSE) of approximately 20 W/m2. Empirical parameters in the structure algorithms
of MOD16 and RRS, and calibrated coefficients of the UMD algorithm may be the cause of the
reduced performance of these LE algorithms with R2 ranging from 0.5 to 0.7 and RMSE ranging
from 20 to 35 W/m2 for MOD16, RRS and UMD. Sensitivity analysis showed that radiation and
vegetation terms were the dominating variables affecting LE Fluxes in global semiarid ecosystem.
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1. Introduction

Latent heat flux (LE) is an important component of water and energy exchange in terrestrial
ecosystems, and is especially critical for semiarid ecosystems [1–3]. However, current research
showed that changes in land use and global climate had a direct impact on the hydrological cycle
in water-limited regions [4–8]. Peichl et al. [4] found that the choice of grassland management
regime was the dominating factor on grassland ecosystem carbon, water, and energy exchanges in the
maritime grassland. Brunsell et al. [5] assessed the impact of land cover change in North American
mesic grassland on carbon and water cycling. Sun et al. [6,7] found that precipitation and LAI were the
dominating factors on LE fluxes in semiarid ecosystem. A number of studies [9–15] showed semiarid
ecosystems such as grassland, shrub, and savanna were extremely susceptible to the consequences
of climate change. Considering the vital role of semiarid ecosystems LE in energy, water, and carbon
cycle exchanges, accurately estimating LE over semiarid ecosystems is crucial to understanding and
modeling ecosystem production, water balance, atmospheric circulation, droughts, and irrigation.

Many models to estimate LE on regional or global scales exist. These LE models fall into three
categories: (1) Statistical and empirical models [16–19]. Wang et al. [17] developed an empirical
model based on a regression method. (2) Physical mechanistic processes based models [20–29].
Norman et al. [20] built a two layer model with directional brightness temperature and its angle of
view, vegetation index, net radiation, air temperature and wind speed. MODIS LE product algorithm
was also a typical processes based model [25]. (3) Data assimilation models [30–32]. Pipunic et al. [30]
showed that the extended Kalman assimilation filter had the potential to improve LE predictions.
However, previous studies have shown that model input errors, spatial scale mismatch among
different data sources, and limitations of the algorithms themselves all affect LE accuracy [33–36].
Ground measured variable uncertainties also had a great impact on LE estimation [37–39]; similarly,
the uncertainty in satellite-derived LAI retrieval and NDVI translate into errors in the estimation of
constraint factors, which often led to reduced performances of these LE algorithms. The unclosed
energy problem of the EC method [40,41] and spatial scale mismatch between flux tower sites and
satellite derived NDVI and LAI also influenced the accuracy of LE estimation. Finally, empirical
parameters in the LE algorithm structure may lead to large uncertainties. Besides the uncertainties,
there was the diversity in model structures, inherent assumptions, driving data and parameter values
for different models. Therefore, it is difficult to select an appropriate LE algorithm for a certain biome.

Researchers have focused on comparisons between a limited numbers of models. Zhu et al. [42]
compared the Katerji and Perrier (KP), Todorovic (TD) and the Priestley–Taylor (PT) models for an
alpine grassland site during the growing seasons, and found the KP model performed well after a
simple calibration. Nichols et al. [43] compared six traditional LE models over at the North Tower
on the Bosque site. Jiménez et al. [44] compared 12 global monthly mean land surface LE products
and found larger LE differences for rain forest land surfaces. Comparison of actual LE algorithms
mainly focused on small regions near few EC sites [19,44,45], and large scale studies of different LE
algorithms over global semiarid ecosystems were rare. Previous studies indicated that the model
performances varied with different land surfaces such as irrigated grass, crops, natural prairies, and
forests [33,46–49], and different conclusions about the performances have been obtained for different
land surfaces [49]. Thus, comparisons incorporating in a wide range of vegetated surface (especially
grassland and shrub land) under various climatic conditions were still required.

Global network of EC data across semiarid ecosystems provided a plausible base to
validate performances of different LE algorithms. Moreover, satellite-based observations of land
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surface properties provided a useful technology for monitoring LE at large spatial scales [50].
Therefore, it had great advantages to compare different LE algorithms based on EC data and satellite
data. In this study, we compared five satellite based LE algorithms, including MODIS algorithm
(MOD16), revised remote sensing-based Penman–Monteith LE algorithm (RRS), Priestley–Taylor LE
algorithm of Jet Propulsion Laboratory (PT-JPL), Modified satellite-based Priestley–Taylor algorithm
(MS-PT) and Semi-empirical algorithm of the University of Maryland (UMD) across a variety of
semiarid ecosystems types. The objectives of this study were to: (1) evaluate LE algorithms
performance over grassland, shrub land, and savanna ecosystems based on 68 flux tower sites
provided by EC towers network; and (2) assess the performances over time and space of three major
semiarid biomes such as grassland, shrub land, and savanna.

2. Data

2.1. Data at EC Sites

Field data from a total of 68 EC towers of the FLUXNET, Aisaflux, Ameriflux and Africa [51] were
used to validate the five satellite based LE algorithms. The EC towers provided a continuous half hour
to yearly measurement of heat flux with a range of hundreds meters. And it has been considered
to be the best way to directly measure LE [52,53]. These towers were equipped for half-hourly
or hourly measurements at 2 m height of incident solar radiation (Rs, W/m2), relative humidity
(RH), air temperature (Ta, K), diurnal air temperature range (∆T, K), wind speed (Ws, m/s), vapor
pressure (e, Pa), sensible heat flux (H, W/m2), surface net radiation (Rn, W/m2), and ground heat flux
(G, W/m2), were used as inputs for the algorithms. Ground measured LE provided the validation.
When available, data sets were gap-filled by site principal investigators, daily data were aggregated
from half-hourly or hourly data without additional quality control. The tower sites covered three
major global land surface semiarid biomes: grassland (GRA; 42 sites), savanna (SAW; 9 sites) and
shrub land (SHR; 17 sites) (Figure 1). The in situ LE measurements from the towers were aggregated
into daily measured data, filtered for a series of quality control constraints, Gap-filling techniques
were employed to ensure high quality data sets. The data were selected to cover the period 2000–2009
with at least one year of reliable data (Table 1).

Table 1. Characteristics of validation data at the EC sites. Sites name, Latitude (Lat), longitude (Lon)
and available years are shown here.

Site Name Country Biome Lat Lon Available Years

AT-Neu Austria GRA 47.12 11.32 2002–2015
CA-Let Canada GRA 49.71 ´112.94 1998–2015
CH-Oe1 Switzerland GRA 47.29 7.73 2002–2008
CN-Du2 China GRA 42.05 116.28 2005–2015
CZ-BK2 China GRA 49.49 18.54 2004–2012
DE-Gri Germany GRA 50.95 13.51 2004–2013

DE-Meh Germany GRA 51.28 10.66 2003–2006
DK-Lva Denmark GRA 55.68 12.08 2004–2008

DS China GRA 44.09 113.57
ES-VDA Spain GRA 42.15 1.45 2002–2008

FI-Sii Finland GRA 61.83 24.19 2004–2012
FK China GRA 44.28 87.92

FR-Lq1 France GRA 45.64 2.74 2002–2015
FR-Lq2 France GRA 45.64 2.74 2002–2015
HU-Bug Hungary GRA 46.69 19.60 2002–2008
HU-Mat Hungary GRA 47.85 19.73 2004–2008
IE-Dri Ireland GRA 51.99 ´8.75 2002–2013
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Table 1. Cont.

Site Name Country Biome Lat Lon Available Years

IT-Amp Italy GRA 41.90 13.61 2002–2008
IT-Be2 Italy GRA 46.00 13.03 2006–2012

IT-MBo Italy GRA 46.01 11.05 2002–2015
IT-Mal Italy GRA 46.11 11.70 2002–2007
KBU Mongolia GRA 47.21 108.74

NL-Ca1 Netherlands GRA 51.97 4.93 2000–2015
NM China GRA 42.93 120.70

PT-Mi2 Portugal GRA 38.48 ´8.02 2004–2008
RU-Ha1 Russia GRA 54.73 90.00 2002–2004
RU-Ha2 Russia GRA 54.77 89.96 2002–2003
RU-Ha3 Russia GRA 54.70 89.08 2004–2004

UK-EBu United
Kingdom GRA 55.87 ´3.21 2004–2012

UK-Tad United
Kingdom GRA 51.21 ´2.83 2000–2001

US-ARb United States GRA 35.55 ´98.04 2005–2006
US-ARc United States GRA 35.55 ´98.04 2005–2006
US-Aud United States GRA 31.59 ´110.51 2002–2015
US-Dk1 United States GRA 35.97 ´79.09 2001–2015
US-FPe United States GRA 48.31 ´105.10 1999–2015
US-Fwf United States GRA 35.45 ´111.77 2005–2015
US-Goo United States GRA 34.25 ´89.87 2002–2007
US-Var United States GRA 38.41 ´120.95 2000–2015

US-Wkg United States GRA 31.74 ´109.94 2003–2015
Xfs China GRA 44.13 116.33 2004–2006
Xi2 China GRA 43.55 116.67 2006–2006
YZ China GRA 35.95 104.13 2008–2009
ZY China GRA 39.09 100.30

AU-How Australia SAW ´12.50 131.15 2001–2015
BW-Ghm Botswana SAW ´21.20 21.75 2003–2012
BW-Ma1 Botswana SAW ´19.92 23.56 1999–2001
ES-LMa Spain SAW 39.94 ´5.77 2004–2012

PR SAW 38.09 ´122.96
US-FR2 United States SAW 29.95 ´98.00 2004–2015
US-SRM United States SAW 31.82 ´110.87 2004–2015
US-Ton United States SAW 38.43 ´120.97 2001–2015
ZA-Kru South Africa SAW ´25.02 31.50 2000–2013
CA-NS6 Canada SHR 55.92 ´98.96 2000–2006
CA-NS7 Canada SHR 56.64 ´99.95 1999–2006
CA-SF3 Canada SHR 54.09 ´106.01 2002–2006
CG-Tch Kinshasa SHR ´4.29 11.66 2006–2009
CN-Ku2 China SHR 40.38 108.55 2005–2015
ES-LJu Spain SHR 36.93 ´2.75 2004–2013
IT-Pia Italy SHR 42.58 10.08 2002–2006

NI Niger SHR 13.48 2.18
RU-Cok Russia SHR 70.62 147.88 2003–2013

SP China SHR 37.53 105.80
US-Bn3 United States SHR 63.92 ´145.74 2003–2015
US-Los United States SHR 46.08 ´89.98 2000–2015
US-SO2 United States SHR 33.37 ´116.62 1993–2015
US-SO3 United States SHR 33.38 ´116.62 1993–2015
US-SO4 United States SHR 33.38 ´116.64 2004–2015
US-Wi6 United States SHR 46.62 ´91.30 2002–2003
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Figure 1. The 68 eddy covariance (EC) flux tower sites used in this study. GRA: grassland; SAW: savanna; SHR: shrubland. The base map is Ecoregion map 
provided by The Nature Conservancy [54]. 

 

Figure 1. The 68 eddy covariance (EC) flux tower sites used in this study. GRA: grassland; SAW:
savanna; SHR: shrubland. The base map is Ecoregion map provided by The Nature Conservancy [54].

Although the EC technique was regarded as a good measurement for heat flux, the sum of
H and LE, as measured by the EC method, was generally less than the available energy [55].
Dolman et al. [53] found that the energy closure ratio was about 0.8 averaged from more than 50
sites in Europe and North America. Previous studies [56–58] showed that energy budget correction
substantially increased LE estimates and improved the energy closure ratio. Twine et al. [41] found
EC sites appeared to underestimate LE and H fluxes systematically by 10%~30% based on the
Southern Great Plains 1997 Hydrology Experiment and the closure issue became more significant
upon consideration of the long-term water balance. Twine et al. [41] provided a correcting method
which was used original LE flux divided by the energy closure ratio. And the ratio was calculated by
original LE, sensible heat flux, net radiation and ground heat flux. Therefore, we used the method of
Twine et al. [41] to correct the LE from the EC towers due to the unclosed energy problem [41,53].

LE “
pRn ´ Gq

pLEori ` Horiq
ˆ LEori (1)

where LE is the corrected latent heat flux, Hori and LEori are the uncorrected sensible heat flux and
latent heat flux, respectively.

NDVI and FPAR for the EC sites were determined from the MODIS products [59]. Leaf area
index (LAI) was determined from the GLASS product [60]. The 8-day GLASS LAI (GLASS01A01),
8-day MODIS FPAR (MOD15A2) and 16-day MODIS NDVI (MOD13A2) data at 1 ˆ 1 km spatial
resolution were used for models verification at the EC sites. We used an average of surrounding
pixels around the tower to get the NDVI and LAI values. The MODIS data were downloaded by the
ftp link [61]. The GLASS data can be found at web site [62].

2.2. Data at Regional Scale

We employed five LE algorithms including one statistical and empirical model (UMD) and
four physical mechanistic processes based models (MOD16, RRS, MS-PT and PT-JPL) to estimate
regional LE based on satellite forcing data. We used the MODIS products with 0.05 degree spatial
resolution including monthly NDVI (MOD13C2) [63], monthly FPAR (MOD15C2) and annual land
cover type (MCD12C1). We also used monthly LAI product (GLASS01B01) with 0.05 degree spatial
resolution from GLASS datasets. The digital elevation model (DEM) product was obtained from
SRTM30 dataset. The DEM data can be found at web site [64].

Daily radiation and meteorological data including Rs, RH, Ta, ∆T, Ws and Rn were collected
from MERRA datasets [65] for 2000–2009. Previous studies [66,67] showed that MERRA provided
comparable results for the global and energy cycle research. MERRA data were collected from
Goddard Earth Science Data and Information Services Center web site [68]. Considering the temporal
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and spatial resolution (1/2 degree latitude ˆ 2/3 degree longitude) of the MERRA data, we averaged
the daily MERRA data to monthly data sets, and we used spatial linear interpolation to match the
spatial resolutions of the MODIS data. After that all the variables required in LE algorithms had
consistent temporal and spatial resolutions.

3. Methods

3.1. LE Algorithms

3.1.1. MODIS Algorithm (MOD16)

Mu et al. (2011) [25] improved the MOD16 algorithm from Cleugh et al. [69] using the
Penman–Monteith model by: (1) simplifying the calculation of the vegetation cover fraction with
FPAR; (2) calculating LE as the sum of daytime and nighttime components; (3) improving calculations
of aerodynamic, boundary-layer, and canopy resistance; (4) estimating the soil heat flux using
available energy and simplified NDVI; (5) dividing the canopy into wet and dry components; and
(6) separating moist from saturated wet soil surfaces. Their validation using 46 AmeriFlux showed
that MOD16 enhanced the LE estimation [11]. The MOD16 algorithm has been successfully extended
to generate a MODIS global terrestrial LE product driven by MODIS land cover, albedo, LAI/FPAR,
and a GMAO daily meteorological reanalysis data set.

3.1.2. Revised Remote Sensing-Based Penman–Monteith LE Algorithm (RRS)

Considering advances in the physical structure of the PM equation, Mu et al. [34] developed the
MOD16 algorithm with constraint parameters of air temperature and vapor pressure deficit (VPD) for
different biomes. To reduce the effects of misclassification, Yuan et al. [70] applied consistent model
parameters across different vegetation types to develop the RRS by revising the algorithm parameters,
modifying the air temperature constraint for vegetation conductance, and improving calculation of
the vegetation cover fraction using EVI (enhanced vegetation index). Chen et al. [35] found that the
RRS algorithm showed improved performance compared to the MOD16 algorithm, validating on 23
EC flux tower sites in China.

3.1.3. Priestley–Taylor Algorithm (PT-JPL)

Priestley and Taylor [24] developed a simple LE algorithm by reducing the atmospheric
control term in the PM equation and adding an empirical factor to avoid the complexity
of parameterizations of both aerodynamic and surface resistance. Based on this algorithm,
Fisher et al. [26] proposed a PT based LE algorithm (the Priestley–Taylor LE algorithm of Jet
Propulsion Laboratory, Caltech (PT-JPL)) with atmospheric (RH and VPD) and eco-physiological
(FPAR and LAI) to downscale potential Evaportranspiration (ET) to actual ET (ET, equivalent to LE).
The total ET is calculated as the sum of ETc (canopy transpiration), ETs (soil evaporation) and ETi
(interception evaporation). Each component is calculated using the Priestley–Taylor equation and the
corresponding eco-physiological condition.

3.1.4. Modified Satellite-Based Priestley–Taylor Algorithm (MS-PT)

Yao et al. [28] developed the MS-PT, modifying the PT-JPL algorithm by parameterizing of
vegetation transpiration, introducing soil moisture constraints calculated from the apparent thermal
inertia (ATI), derived from diurnal temperature range (DT) and the revised linear two-source model
(N95) [20,22,28]. Their model needed few inputs variables including Rn, Ta, DT, and NDVI to
calculate saturated wet soil evaporation, unsaturated wet soil evaporation, vegetation transpiration,
and interception of evaporation from vegetation. MS-PT performance was verified using 16 EC flux
tower sites across China with good validation.
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3.1.5. Semi-Empirical Algorithm of the University of Maryland (UMD)

Wang et al. [29] used the Penman equation [71] to develop a semi-empirical LE algorithm
which was used to analyze long term variation of global LE because of a lack of long term satellite
and ground measured data [29,32]. The input variables include the incident solar radiation, air
temperature, VPD, RH, vegetation indices, and wind speed. Unlike other LE methods, wind speed
was used to linearly parameterize aerodynamics conductance [72,73]. Validating the UMD model
for 16 day average daily LE at 64 globally distributed flux tower sites, they found an average R2

of 0.94 and average RMSE 17 W/m2.

3.2. Data Analysis

To compare the five LE models at site scale and large spatial scale, there were several
preprocessing steps required. For site scale comparison, we calculated the daily LE by collecting the
meteorological variables from EC sites and NDVI and LAI from satellite data (MOD13A2, MOD15A2
and GLASS01A01). We used an average of surrounding pixels to get the vegetation index to
match the EC site footprint. The five models were also compared based on MERRA meteorological
data. Considering the coarse resolution of MERRA data, we used the values simulated in the
pixels which the towers are placed. We calculated the coefficient of determination (R2), RMSE,
Nash–Sutcliffe efficiency coefficient (NSE), and average bias for estimated LE to evaluate model
performances [17,74]. Six EC sites were randomly selected to show the seasonal trend of LE by five
LE models for each biome. Based on the daily LE results, we filtered the time series by averaging the
daily results to 8-days results.

The LE models have different algorithm structures and input variables. Therefore, when
comparing the LE models, it was crucial to examine the sensitivity of input variables for different
models. Therefore we conducted a sensitivity analyses to assess the sensitivity of input variables for
the five LE models [17,74]:

SC “
BLE
BIpxq

(2)

where SC is the sensitivity coefficient, I(X) is the input variable (e.g., Rn, RH, Ta, and NDVI).
The sensitivity coefficient provided a significance of correlation between relative error in input
variables and relative error in LE. Hence, we firstly drew scatter plots of relative error between input
variables and LE. Then we calculated sensitivity coefficient for each input variable to get the main
factors of each LE model.

For large spatial scale comparison, we used MERRA daily data, monthly (FPAR)/LAI
with 0.05 degree spatial resolution, monthly MODIS NDVI product with 0.05 degree spatial
resolution; monthly global land surface satellite (GLASS) LAI product with 0.05 degree spatial
resolution, annual land cover type (MCD12C1) product with 0.05 degree spatial resolution and
DEM product. Before comparison, the spatial and temporal resolution of input variables should
be identical. Thus, MERRA data were spatially interpolated to attain the spatial resolution matching
MODIS data. We averaged the daily MERRA data to monthly data. After the data preprocessing,
we calculated the five models LE over grassland, shrubland and savanna biomes based on four
years data. And we also computed the bias which was calculated by LE values based on one model
minus others.

4. Results

4.1. Validation

At the site scale, the model performance differed among the five models during the
period 2000–2009. Generally, the LE models explained 60%~75% of LE variability over all
measurements (Figure 2). The MS-PT and PT-JPL models showed good overall performance for
all three biomes with relatively high R2 values and low bias and RMSE values across grassland,
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shrub, and savanna ecosystems (Figure 3), which may be due to the simple characterization of LE
variation limiting the uncertainties. Other model performances varied over the biomes. The median
LE simulations of MOD16, RRS, MS-PT, PT-JPL and UMD varied across different ecosystems, which
implied the inconsistent model performance over the study sites (Figure 3). According to NSE, the
performance of MS-PT and PT-JPL were better (Figure 3).

We analyzed the daily LE results cover the period 2000–2009. The comparative results for GRA
indicated that PT-JPL had good performance with the highest R2 (0.76), lowest RMSE (19.16 W/m2)
and highest NSEavg (0.6). The next best model was MS-PT with R2 = 0.73, RMSE = 20.29 W/m2, and
NSE = 0.59 followed by MOD16, RRS and UMD. As expected, MOD16 and RRS had almost similar
R2 (0.68 and 0.62) and RMSE (25.61 and 24.34 W/m2). However, both models had low NSE (0.40 and
0.35). UMD showed reduced performance with R2 = 0.58, RMSE = 27.02 W/m2 and NSE = 0.39. RRS
and MS-PT had negative bias (´8.07 and ´5.53 W/m2, respectively) compared with MOD16, PT-JPL
and UMD (8.14, 19.16 and 5.79 W/m2).
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Figure 2. Comparison of statistical indicators including latent heat flux (LE) values, Nash–Sutcliffe efficiency coefficient (NSE), the coefficient of determination (R2) 
and root mean squared error (RMSE) by daily LE observations and simulations of five LE algorithms at 68 EC sites for GRA (grassland), SAW (savanna), SHR 
(shrubland) during the period 2000–2009. 
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Figure 2. Comparison of statistical indicators including latent heat flux (LE) values, Nash–Sutcliffe efficiency coefficient (NSE), the coefficient of determination (R2)
and root mean squared error (RMSE) by daily LE observations and simulations of five LE algorithms at 68 EC sites for GRA (grassland), SAW (savanna), SHR
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Figure 3. LE observed at the EC sites and predicted by the MOD16, RRS, PT, MS-PT and UMD 
algorithms during the period 2000–2009. 
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all models showed low NSE except RRS, and overestimate LE ranging from 7 to 12 W/m2. RRS
had negative bias (´12.64 W/m2) which may be due to the model parameterization of surface
resistance [34].

For SHR, MS-PT have highest R2 (0.61) and lowest RMSE (20.98 W/m2). UMD was second with
R2 = 0.6 and RMSE = 21.28 W/m2. Similar to the SAW biome, all models showed low NSE and almost
overestimate LE ranging from 3 to 13 W/m2.

The five MERRA driven models explained 50%~60% of LE variability over all measurements
(Figure 4). The R2 of all five models were close with a range from 0.45 to 0.59. Compared with in situ
data, the MERRA driven LE models showed low performance over all biomes sites, which was likely
a consequence of the uncertainty introduced by MERRA data.
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period 2000–2009.

Seasonal variations in LE by five models could be found at several sites. In general, the measured
and predicted seasonal curves were in good agreement (Figure 5). All models showed high LE in
summer and low LE in winter. This was due to the seasonal variation of Rn and vegetation index
terms. Compared with other models, the estimated LE by PT-JPL is more close to the ground observed
LE for all sites.

We calculated the sensitivity coefficient of the input variables for each model [17]. We drew a
scatter plot of relative error between input variable and LE (Figure 6). The calculation of sensitivity
coefficients demonstrated that Rn, Rs, LAI and NDVI had bigger impact on LE than the other
input variables. Consequently, models energy (Rn or Rs) and vegetation (NDVI or LAI) terms were
demonstrated high correlations with LE, accounting for 50%~85% of LE variation for all five models.
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Figure 5. Measured and estimated time series for the 8 day LE average during the period 2000–2007. The GRA sites include US-FPe and US-Goo. The SAW sites 
include US-Ton and AU-How. The SHR sites include CA-NS6 and CA-NS7. Locations include FPe*—(Fort Peck); Goo*—Goodwin Creek; Ton*—Tonzi Ranch;  
How*—Howard Springs; NS6*—UCI 1989; NS7*—UCI 1998. US*—United States; CA*—Canada; AU*—Australia. 
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Figure 6. Sensitivity analysis for estimated LE by the (a) MOD16; (b) MS-PT; (c) PT-JPL; (d) RRS and 
(e) UMD algorithms with corresponding input variables. The black line is 1:1 line. 
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Figure 6. Sensitivity analysis for estimated LE by the (a) MOD16; (b) MS-PT; (c) PT-JPL; (d) RRS and
(e) UMD algorithms with corresponding input variables. The black line is 1:1 line.

4.2. Spatial Distribution of LE

We analyzed daily EC sites data over the period 2000~2009 and found all algorithms had
high correlation coefficients (0.60~0.96) at sites located in Europe and North America, and lower
correlations at sites located in central Asia (Figure 7). PT-JPL and MS-PT had low RMSE
(32~10 W/m2) compared to the other algorithms. LE bias, estimated by PT-JPL, was slightly positive
in North America and central Asia, and slightly negative in Europe. LE bias for RRS was consistently
negative at most sites. For MOD16, the bias tended to be positive for North America and Europe sites
and negative for central Asia. PT-JPL and MS-PT showed high performance over most sites with high
R2, low RMSE and low bias.
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The LE algorithms were also applied to estimate global semiarid ecosystems for 2003–2006 at
spatial resolution of 0.05˝ using GMAO-MERRA meteorological data and MODIS products. Thus
we produced annual average global terrestrial LE for GRA, SHR and SAW, respectively (Figure 8).
The estimated LE by UMD model was generally higher than the other models in all regions. For
GRA, average annual LE from MOD16 was 18.37 W/m2, higher than MS-PT (13.62 W/m2) and RRS
(18.30 W/m2), and lower than PT-JPL (27.95 W/m2) and UMD (41.91 W/m2). Despite differences in
spatial LE distributions among different models, all of the models predicted high annual LE over
temperate grassland in Argentina pampas, South of central North America prairie, and tropical
grassland in Kenya, whereas arid and desert regions in Eurasian grassland and central North America
prairie have low annual LE due to moisture limitations. For SAW, all models showed higher annual
average LE than GRA. The UMD model yielded the highest annual average LE for SAW from (68.07
W/m2), followed by PT-JPL (52.57 W/m2), MOD16 (46.00 W/m2), RRS (41.71 W/m2), and MS-PT
(39.20 W/m2). All of the models yielded high annual average LE over the Cerrado in southern
Brazil and low annual average LE over tropical savannah in the Serengeti of northern Tanzania and
southern Kenya. For SHR, MS-PT average annual LE was 6.24 W/m2, which was the lowest among
the five methods. UMD showed the highest average annual LE (26.57 W/m2) followed by PT-JPL.
The MOD16 and RRS showed similar average annual LE (10.46 and 10.29 W/m2).
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Figure 8. Estimated annual global terrestrial LE for grassland, savanna and shrubland averaged for 
2003–2006 at spatial resolution of 0.05° from algorithms driven by GMAO-GERRA meteorology. 
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and England grassland. RRS and MOD16 showed a similar spatial pattern for grassland with 
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Figure 8. Estimated annual global terrestrial LE for grassland, savanna and shrubland averaged
for 2003–2006 at spatial resolution of 0.05˝ from algorithms driven by GMAO-GERRA meteorology.

Our comparisons of five LE models demonstrated that distinct differences of five LE models
occurred for different climate regions and land covers (Figure 9). For grassland, MOD16 predicted
higher LE than MS-PT in Asia (about 2~11 W/m2, 8%~164%), America (about 2~16 W/m2,
20%~73%), and Europe (about 4~18 W/m2, 4%~105%), and lower in central Africa (about ´1~´12
W/m2, ´5%~´80%). PT-JPL simulated the higher LE than MS-PT model in Asia (about 6~28 W/m2,
44%~135%), America (about 11~35 W/m2, 82%~264%) and Europe (about 11~23 W/m2, 40%~222%),
and lower in central Africa (about ´7~´3 W/m2, ´6%~´80%). MOD16 showed mostly lower LE
than PT-JPL over nearly all regions (about ´1~´30 W/m2, ´10%~´96%) except south Brazil, West
Eurasian and England grassland. RRS and MOD16 showed a similar spatial pattern for grassland
with difference´10 to 10 W/m2. RRS showed lower estimated LE than PT-JPL (about´4~´57 W/m2,
´11%~´98%). UMD estimated higher LE than MOD16 (about 8~45 W/m2, 64%~336%), MS-PT
(about 7~41 W/m2, 10%~305%), and RRS (about 8~45 W/m2, 42%~288%) in all regions. MS-PT had
lower estimated LE than PT-JPL (about ´3~´30 W/m2, ´60%~´210%) and slightly lower estimated
LE than RRS (´3~´12 W/m2, ´26%~´112%), except for central Africa.
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Figure 9. Estimated annual global terrestrial LE biases for three biomes (grassland, savanna, and shrubland) averaged for 2003–2006 at spatial resolution of 0.05° 
from the algorithms driven by GMAO-GERRA meteorology. Bias was computed as the difference of the models. 
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For shrubland (Figure 9), MOD16 had higher values of LE than MS-PT (about 2~11 W/m2,
4%~96%) almost in all regions except the Red Sea, and was larger than RRS at low latitudes (about
1~4 W/m2, 4%~50%), but smaller at high latitudes (about ´1 W/m2, ´4%~´7%), which was related
to the air temperature constraint for vegetation conductance in the RRS algorithm. MOD16 was
generally lower than PT-JPL in most regions (about ´2~´47 W/m2, ´17%~´85%), although higher
in central Australia (about 3~5 W/m2, 20%~44%) and South Africa (about 2~11 W/m2, 12%~102%).
MS-PT was also larger than RRS at low latitudes (about 5~22 W/m2, 25%~291%), but smaller at high
latitudes (about´5~´11 W/m2,´33%~´77%). MS-PT showed lower LE than PT-JPL in most regions
(´1~´30 W/m2, ´13%~´63%) except central Australia. PT-JPL was generally larger than RRS
(about 1~41 W/m2, 10%~240%). Overall, UMD model showed the highest estimated LE.

For savanna (Figure 9), MOD16 showed larger estimated LE than MS-PT (about 4~28 W/m2,
3%~41%) and RRS (about 5~18 W/m2, 10%~28%) in all regions, and PT-JPL (about 3~9 W/m2,
4%~28%) in south Brazil, South Zambia and South Chad. MS-PT was lower than PT-JPL (about
´1~´18 W/m2, ´2%~´39%) except in South Zambia and South Chad, and MS-PT and RRS almost
had only a slight difference ´10 to 10 W/m2. RRS was lower than PT-JPL (about ´1~´22 W/m2,
´6%~´20%). Generally, UMD model had the highest estimated LE.

5. Discussion

5.1. Performance of the LE Algorithms

PT-JPL and MS-PT exhibited good performance over GRA, SAW and SHR sites, which could
be mainly attributed to these models not requiring aerodynamic and surface resistances to reduce
the uncertainties in forcing data. Net radiation and air temperature were the main driving forces
for the PT-JPL and MS-PT models, and they generally had lower observation uncertainty [28,75].
This good overall performance of PT-JPL and MS-PT models was reported previously [26,36,76].
Vinukollu et al. [36] evaluated the PT-JPL algorithm for 12 EC tower sites and found that PT-JPL
demonstrated the most consistent performance for most sites. Yao et al. [76] also found that simulated
latent heat fluxes by MS-PT algorithm showed improved agreement with 40 EC sites compared to the
PT-JPL algorithm.

Compared with PT-JPL and MS-PT, MOD16 and RRS models show reduced performances over
GRA, SAW and SHR sites. These two models are both based on the Penman and Penman–Monteith
equations, which require accurate estimation of canopy resistance [25,70]. In semiarid ecosystems,
canopy resistance was sensitive to soil moisture [77]. The calculation of canopy resistance of MOD16
and RRS was driven by VPD, near-surface air temperature and soil moisture. However, relative
humidity was used as a proxy for soil moisture in MOD16 and RRS models. Hence the complicated
calculation of canopy resistance introduced larger uncertainty in LE estimation [36,78].

The UMD algorithm provided a simple yet robust method to build functional relationships
between LE and predictor variables [29,79]. Despite the fact that it ignored explicit biophysical
mechanisms, we found that UMD produced acceptable results in most grassland sites. Similarly,
Wang et al. [29,79] found that the 16 day average daily LE can be reasonably predicted with an
average correlation coefficient of 0.94 and average RMSE of 17 W/m2 using 64 FLUXNET sites.
However, large uncertainties might be introduced due to the representativeness of the limited training
dataset [18,29,79]. Chen et al. [35] reported that the parameters of the UMD algorithm may have
different combination due to the independent environmental factors of ET.

5.2. Spatial Differences of Five LE Algorithms

Although these LE models were developed by mechanistic processes, LE models showed large
inter-model differences from ´30 to 30 W/m2 based on MERRA data for 2003–2006. MS-PT and
PT-JPL performed well overall, which may be due to the simple parameterization of bio-physiological
process between vegetation and the atmosphere.
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MOD16 and RRS models were both developed based on the PM equation, but showed
significantly different performances. This difference might attribute to the calculation of surface
resistance. Mu et al. (2011) [25] used look-up table to determine the inputs variables for each
biome. The stomatal conductance limited by minimum air temperatures, close VPD and open VPD.
These variables were different in these two models. For MOD16, the open VPD is all equal to 650 Pa,
close VPD varied within the range of 4400~3600 Pa and open minimum air temperatures is ranging
from 12.2~8.61 ˝C. However, these variables in RRS were set to constant for all biomes with open
VPD = 930 Pa, close VPD = 2500 Pa and open minimum air temperatures = 8.31 ˝C [70].
These differences caused the different calculations of constraint parameters in surface resistance
estimation. Hence the difference would be more obvious in extreme environment where the values
of temperature and VPD near the breakpoints in piecewise function during the calculation of
surface resistance.

The UMD model showed the highest estimated LE in all biomes. The empirical parameters in the
functional relationships between the LE and input variables could be a factor in the overestimation.
For grassland, the largest difference between UMD and the other models occurred in North America,
whereas for savanna, the largest difference in LE estimates between UMD and other models occurred
in north Brazil and east Tanzania, and for shrubland in South America, West Australia and Somalia
in Africa.

5.3. Limitations of LE Estimation Based on Five LE Algorithms

Our results of sensitivity analysis showed that radiation and vegetation indices were the vital
meteorological variables related with LE across semiarid ecosystems (Figure 6). Thus, bias or
uncertainty in these variables might introduce substantial uncertainty for the LE algorithms. In this
study, MERRA reanalysis data were used as meteorological forcing data for LE estimation. However,
algorithms performances based on MERRA data were lower than when based on ground measured
inputs. One reason for this poor performance was attributed to bias in the MERRA radiation
variables For example, Zhao et al. (2013) [80] found that MERRA surface solar radiation has an
average bias error of +20.2 W/m2 on monthly and annual scales from American FLUXNET sites,
Zib et al. (2012) [81] reported an annual mean bias of 3.9 W/m2 at two baseline surface radiation
network (BSRN) sites for surface solar radiation, and Wang and Zeng [82] found an overestimation of
up to 40 W/m2 for surface solar radiation.

NDVI and LAI were often used to describe the vegetation photosynthesis and canopy
conductance which was closely related to transpiration [28,83–85]. In many previous studies, NDVI or
LAI were used as a proxy for vegetation moisture and RH for soil moisture to develop satellite-based
LE algorithms [25,26,29,70,79]. However NDVI or LAI might fail to capture the vegetation dynamics
of certain biomes and uncertainties in NDVI or LAI estimation translate to errors in the constraint
factors or canopy conductance.

Bias might lead to LE estimate errors from scale mismatch between the input data resolution
and the field measurement footprint. Kustas et al. [86] analyzed different pixel resolution of remote
sensing inputs, and showed that variation in ET flux between corn and soybean fields cannot be
effectively distinguished when the input is of the order of 1000 m. Zhang et al. (2010) [87] found
that coarse NCEP-NCAR reanalysis (NNR) meteorology data (National Centers for Environmental
Prediction and the National Center for Atmospheric Research) could introduce bias to match the
local tower footprint in some regions. The empirical parameters in the algorithms can also introduce
considerable uncertainty in calculating LE estimates.

6. Conclusions

We evaluated five satellite based LE algorithms: MOD16, RRS, PT-JPL, MS-PT and UMD over
semiarid ecosystems based on 68 EC flux tower sites from the FLUXNET project. We compared the LE
model performances with in situ and MERRA meteorological forcing data. The sensitivity of input
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variables for these LE algorithms was analyzed. Results of the sensitivity analysis indicated that
overall radiation (Rn or Rs) and NDVI (LAI) were the major factors, and accounted for 50%–85% of
the variation in LE estimates.

All the LE models produced acceptable results for most grassland, savanna, and shrubland
sites. PT-JPL and MS-PT performed better than the other algorithms with lower bias and higher
R2, lower RMSE over semiarid ecosystems. UMD algorithm showed the highest LE estimates in
all biomes compared with other models. All algorithms have high correlation coefficients ranging
from 0.60 to 0.96 in Europe and North America, whereas have low correlation in central Asia.
The results of evaluation among these algorithms showed that the five satellite-based LE models
produced acceptable results in most grassland, savanna and shrubland sites. The uncertainties from
the radiation and vegetation terms have great impact on final LE estimation by these algorithms.
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