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Abstract: Northern China is one of the most sensitive and vulnerable regions in the country. To combat
environmental degradation in northern China, a series of vegetation protection programs, such as the
Three-North Shelter Forest Program (TNFSP), have been implemented. Whether the implementation
of these programs in northern China has improved the vegetation conditions has merited global
attention. Therefore, quantifying vegetation changes in northern China is essential for meteorological,
hydrological, ecological, and societal implications. Fractional vegetation cover (FVC) is a crucial
biophysical parameter which describes land surface vegetation conditions. In this study, four FVC
data sets derived from remote sensing data over northern China are employed for a spatio-temporal
analysis to determine the uncertainty of fractional vegetation cover change from 2001 to 2012.
Trend analysis of these data sets (including an annually varying estimate of error) reveals that
FVC has increased at the rate of 0.26 ± 0.13%, 0.30 ± 0.25%, 0.12 ± 0.03%, 0.49 ± 0.21% per year in
northern China, Northeast China, Northwest China, and North China during the period 2001–2012,
respectively. In all of northern China, only 33.03% of pixels showed a significant increase in vegetation
cover whereas approximately 16.81% of pixels showed a significant decrease and 50.16% remained
relatively stable.

Keywords: fractional vegetation cover (FVC); multi-data set; northern China; spatio-temporal;
inter-annual variation; uncertainty; standard error of the mean

1. Introduction

Northern China has typical characteristics of fragile ecological situations and is one of the most
sensitive and vulnerable regions in China. For historical reasons, farming practices, grazing and
other reasons, northern China is suffering long-term land degeneration, a lack of fresh water, drought,
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and other extreme weather, etc. [1–4]. Therefore, northern China is a key area deserving of scholarly
attention. Faced with these problems, the Chinese government has realized the seriousness of the
situations and has implemented a series of policy measures to ease the environmental crisis.

Vegetation, which is bonded soil, climatic, hydrologic, and other elements in the whole ecosystem,
is a sensitive indicator of climate change and human activities and thus influences climate by affecting
the energy, water, and carbon cycle [5–7]. Vegetation is also a positive factor in the prevention of soil
and water loss as well as in the control of sandstorms; it also is an important factor for soil erosion
prediction. Vegetation absorbs CO2 through photosynthesis from the atmosphere to mitigate global
warming. Meanwhile, vegetation can increase precipitation, runoff regulation, reduce flood and
drought, reduce pollution, and improve the ecological environment. Vegetation change can also affect
the energy balance as well as biochemical and biophysical processes [8].

Therefore, many ecological engineering programs have been implemented in northern China
to improve the regional ecological environment [5,9] such as the Three-North Shelterbelt Forest
Program (TNSFP), the Green to Grain Program (GTGP), and the Natural Forest Conservation Program
(NFCP) [10–13]. In these ecological programs, TNFSP is the oldest, invested in the most, and
affected the widest range. The TNSFP was officially launched in 1979 and involves 13 provinces,
autonomous regions, and municipalities in the Three-North region with a total planned area of more
than 4 million km2, i.e., nearly 42% of the total area of China. To date, a total of 30.6 million ha of
afforestation has been carried out at a total cost of ¥4 billion [1,6]. Because of its huge geographic
extent and complexity, the project will extend to 2050 and will provide important information through
the monitoring of its long-term progress [14]. The main purpose of such projects is to prevent land
desertification, control sandstorms, and improve both local water resources and the natural environment.
Whether the implementation of these programs throughout northern China has improved the vegetation
conditions has merited global attention.

Therefore, quantifying vegetation changes in northern China is essential. Fractional Vegetation
Cover (FVC), which is an important variable describing land surface vegetation, is generally defined
as the fraction of green vegetation as seen from the nadir of the statistical area. FVC is also a crucial
biophysical parameter for studying the atmosphere, pedosphere, hydrosphere, and biosphere as
well as their interactions [15–18]. Reliable information on FVC change over northern China is
needed for environment and ecological monitoring, environmental assessment, and the evaluation
of vegetation change feedbacks in climate. For example, Su et al. [19] used MODIS data to detect
vegetation changes in the agricultural-pastoral areas of northern China from 2001 to 2013. Liu et al. [20]
used SPOT-VGT data from 1998 to 2007 to detect vegetation change throughout northern China.
Zhang et al. [21] analyzed the spatio-temporal vegetation changes of northern China from 2000 to
2012. Li et al. [22] analyzed the spatial-temporal pattern and change of FVC in northern China during
2001–2012. Li et al. [23] conducted a comparison of multiple forest cover data sets to monitor forest
cover changes across China.

However, most of the studies used a single data set in which may exist large uncertainties.
The accuracy of the FVC data set is unclear in northern China resulting from a lack of ground
measurements. As a result, its attributions and any response to climate change generated from a single
source may lead to large uncertainties. A multi-data set approach to analyze the vegetation change is a
logical response to the challenges mentioned above as it fuses the strengths of the various platforms
and methodologies as well as provides an estimate of the uncertainty. Therefore, the main object of this
study is to develop a multi-data set estimate of FVC change throughout northern China for the period
of 2001–2012. It is also expected to provide reliable and accurate information for regional sustainable
development, ecological restoration project planning, and ecological environmental protection.
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2. Data and Methods

2.1. Study Area

The study area (Figure 1), based on provincial boundaries, contains 13 provinces, cities,
autonomous regions, and municipalities in northern China. Reflecting on the diversity of the natural
environment, northern China has been further subdivided into northeastern China, northwestern
China, and northern China when conducting statistical analysis at a regional scale.

Northeast China contains Heilongjiang, Liaoning, Jilin province as well as the eastern part of the
Inner Mongolia Autonomous Region. Northeast China is characterized by temperate monsoon climate
with a low mean annual temperature (5.2 ◦C) and annual precipitation reaching 300~1000 mm. Northeast
China contains almost all major forest types in northern Eastern Asia which include cold-temperate
conifer mixed forests, temperate conifer forests, broadleaf mixed forests, and warm-temperate deciduous
broadleaf mixed forests and covers the largest area of natural forest in China [24].

North China contains Beijing, Tianjin, Hebei, Shandong, Shanxi, Shaanxi as well as the middle part
of the Inner Mongolia Autonomous Region. North China is defined by plains and a warm sub-humid
continental climate and has a large annual range of temperature; the annual precipitation reaches
400–800 mm, mainly in the summer.

Northwest China contains the western part of the Inner Mongolia Autonomous Region,
the Xinjiang Uygur autonomous region, the Ningxia Hui autonomous region, along with Gansu
province. The climate of Northwest China varies and includes a temperate continental monsoon
climate, arid and semi-arid climates, and a warm temperate continental arid climate. It is distinguished
by a low annual mean temperature, a large annual range of temperature, and low precipitation
(50–200 mm/year). It has the biggest desert in China, the Taklimakan desert, and the main vegetation
type is grassland, shrubland, etc.

Figure 1. Location of the research area (The green area represents northeast China, the pink area for
North China, the blue area for Northwest China, respectively).

2.2. Data Sets

Four FVC data sets were used to estimate vegetation change over northern China in this study,
including the Global LAnd Surface Satellite (GLASS) FVC product, GEOV1 FVC product, TRAGL FVC
product, and Li product, which are summarized in Table 1.
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Table 1. The summary of fractional vegetation cover (FVC) data sets used in the analysis.

Product Name Sensor Available Time Temporal
Resolution

Spatial
Coverage

Spatial
Resolution Reference

GLASS-MODIS MODIS 2001–now 8 days Global 500 m [16]
GEOV1 SPOT VGT 2001–now 10 days Global 1 km [25]
TRAGL MOIDS 2001–2012 8 days Global 1 km [26]

Li MODIS 2001–2012 8 days Northern China 0.011◦ [16]

2.2.1. GLASS MODIS-FVC Product

The GLASS FVC product [16] is one of the new products in the GLASS product suite, which is
supported by China’s National High Technology Research and Development Program to generate
long-term global land surface parameters. The GLASS MODIS-FVC product is generated using the
generalized regression neural networks (GRNNs) with training data derived from MODIS Version 5
surface reflectance data (MOD09A1) and FVC values obtained from Landsat data using the dimidiate
pixel model. The temporal and spatial resolution of GLASS MODIS-FVC are 8-day and 0.5 km with a
sinusoidal grid projection, respectively. Jia et al. compared the GLASS FVC with GEOV1 FVC which
was the best global FVC product and results indicated GLASS FVC presented a much better spatial
and temporal continuity and marginally better accuracy with over 44 validation of land European
remote sensing instruments (VALERI) validation sites.

2.2.2. GEOV1 FVC Product

The GEOV1 FVC product (http://land.copernicus.eu/global/products/FCover) that derived
from SPOT/VEGETATION data from 1999 to the present is an improvement of CYCLOPES FVC
product [25]. The product is provided in a Plate Carrée projection at 1/112◦ spatial resolution and
a 10-day frequency. The GEOV1 FCover product was derived from SPOT/VEGETATION sensor
data using back-propagation neural networks. The CYCLOPES FCover product was scaled to train
the back-propagation neural networks with the SPOT/VEGETATION top-of-canopy directionally
normalized reflectance values over the BELMANIP (Benchmark Land Multisite Analysis and
Intercomparison of Products) network of sites [25]. The GEOV1 FVC product corrects the underestimate
problem of CYCLOPES FVC product and is closer to the real value [27].

2.2.3. TRAGL FVC Product

The TRAGL FVC product was retrieved from GLASS LAI product using physical relations
between FVC and LAI [26]. The GLASS LAI product was retrieved using general regression neural
networks (GRNNs) from MODIS Version 5 surface reflectance data (MOD09A1)/AVHRR reflectance
data [28]. Unlike existing neural network methods that use remote sensing data acquired only at a
specific time to retrieve LAI, the GRNNs were trained using fused time series LAI values from MODIS
and CYCLOPES LAI products and reprocessed time series MODIS. The temporal and spatial resolution
is 8-day and 1 km with geographic projection. The TRAGL FVC product is spatially and temporally
complete. A comparison with GEOV1 FVC product showed that both FVC products were generally
consistent in their spatial patterns.

2.2.4. Li FVC Product

Li et al. [22] estimated the FVC of northern China from MODIS Version 5 surface reflectance data
(MOD09A1) using the dimidiate pixel model, which is one of the most widely used FVC estimation
methods [29,30]. It assumed that a pixel consisted of only vegetation and non-vegetation components
and its value was a linear combination of these two components. If normalized differential vegetation
index (NDVI) was used to represent the spectral response, the mathematical expression of the mixed
pixel model would be

NDVI = f ∗ NDVIv + (1− f ) ∗ NDVIs (1)

http://land.copernicus.eu/global/products/FCover
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then,

f =
NDVI − NDVIs

NDVIv − NDVIs
(2)

where f was the proportion of vegetation area in the mixed pixel (FVC), NDVI was the NDVI of
the mixed pixel, and NDVIv and NDVIs were the NDVI of the fully vegetated and bare soil pixel,
respectively. The value of NDVIv and NDVIs was 0.848 and 0.0133, respectively. The result showed a
good performance in the change trend of both inter-annual and within the year. The temporal and
spatial resolution is 8-day and 0.011◦ with geographic projection. In the following sections, this data
source is called Li FVC.

Because of the inconsistent spatial resolution and projection between the four data sets, the data
sets were processed to be spatially matched with geographic projection and the spatial resolution was
converted to 0.01◦. Then, annual maximum FVC images of four data sets on a pixel-by-pixel basis
from 2001 to 2012 were calculated, respectively. In the following sectors, FVC data sets refer to the
maximum FVC images of four data sets.

2.3. Methodology

2.3.1. Inter-Annual Change Trend of FVC

(1) Mann–Kendall Methods

The Mann–Kendall test [31,32] is a nonparametric method for testing the significance of time
series data in hydrological processes and other related physical variables [33–35]. The advantage
of this method is that the data does not need to conform to any particular distribution and it has
a low sensitivity to abrupt breaks due to the inhomogeneous time series [36]. For a time series,
X = {x1, x2, · · · , x3}, the Mann–Kendall test statistic is given as follows:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn(xj − xi) (3)

where n is the number of data points, xi and xj are the data values in time series i and j (j > i),
respectively, and sgn(xj − xi) is the sign function as follows:

sgn(xj − xi) =


1 xj − xi > 0

0 xj − xi = 0

−1 xj − xi < 0

(4)

In cases where the sample size is more than 10, the standard normal test statistic, Z, is computed by:

Z =


S−1√
Var(S)

S > 0

0 S = 0
S+1√
Var(S)

S < 0

(5)

The variance is computed by:

Var(S) =
n(n + 1)(2n + 5)−

m
∑

i=1
ti(ti − 1)(2ti + 5)

18
(6)

where m is the number of tied groups and ti denotes the number of ties of extent i. A tied group is a set
of sample data with the same value.
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Positive values of Z indicate increasing trends while negative Z values show decreasing trends [36].
The trend’s significance is assessed by comparing the Z value with the standard normal variance at
the pre-specified level of statistical significance [37]. The null hypothesis is rejected and a significant
time series trend exists when |Z| > Z1−α/2|. Z1−α/2 is obtained from the standard normal distribution
table. In this study, significance levels α = 0.05 was used which correspond to Z1−α/2 values of 1.960.

(2) Sen’s Slope Estimator

True slope can be estimated by using a non-parametric method developed by Sen [37] if a linear
trend is presented by the Mann–Kendall method. Sen’s slope estimator can be computed efficiently
and is insensitive to outliers. The slope estimator of N pairs of data are first computed by:

β = Median(
xj − xi

j− i
)i = 1, 2, · · ·N (7)

where N = n(n− 1)/2 when there is only one datum in each time period, while N < n(n− 1)/2
when there are multiple observations in one or more time periods; where n is the total number of
observations [38]. If β is positive that indicates an increase in X; if negative, then the X decreases or
0 remains constant.

In this study, the temporal change trends of FVC based on the four FVC products during 2001–2012
were calculated using the Mann–Kendall Method and Sen’s slope estimator. The time series X was
FVCi which denotes the annual maximum FVC value of the ith year. n is the number of years (equal to
12 in this study) and i represents the year number (i = 1, 2, 3, . . . ,12).

2.3.2. Multi-Data FVC Retrieval and Uncertainty Analysis

A multi-data approach [39] was employed to develop an integrated FVC and reduce the
uncertainty from individual data sets. The consistency of each data set was evaluated by computing
the correlation and the root-mean-square error (RMSE) of the multi-data set mean, excluding the data
set being verified. This method was applied at pixel level to help remove the individual FVC data set
with poor data quality from the final averaged FVC. An estimate of the uncertainty in FVC in each
year is obtained from the standard error of the mean (SEM):

SEM = s/
√

n (8)

which depends on the standard deviation s of the n data sets. First, the uncertainty analysis was carried
out at the pixel scale. Then, the uncertainty analysis was calculated using the annual mean maximum
FVC of the four data sets.

3. Results

3.1. Results of Single FVC Data Sets

3.1.1. Spatial Patterns of Each Single FVC Data Set

Figure 2 shows the spatial patterns of mean annual maximum FVC over the period 2001–2012 in
northern China derived from each four data sets respectively. The individual source of FVC values
differed in mean amplitude and spatial distribution and the disparity was mainly distributed in
Northeast China and North China. Although all the four data sets had the biggest FVC values in
Northeast China, the FVC values derived from TRAGL FVC was lower than those of other three data
sets by about 0.15 and Li FVC sometimes existed in a saturation phenomenon. Meanwhile, GLASS
FVC and TRAGL FVC was almost zero in the southern part of the Xinjiang Uygur autonomous region,
the western part of the Inner Mongolia Autonomous Region, and the northwestern part of Ningxia Hui
autonomous region; however, FVC values of GEOV1 FVC and Li FVC in those regions were greater
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than zero. This was mainly because Li FVC utilized the dimidiate pixel model in which the choice of
NDVIv and NDVIs led to higher values. The GEOV1 FVC product demonstrated that the FVC values
were higher than those from SEVIRI in the Validation Report of Land Surface Analysis Vegetation
Products (2008). Mu et al. noted that GEOV1 FVC product was generally overestimated for crops by
up to 0.20 in the Heihe Basin. GLASS FVC and TRAGL FVC considered the terrestrial ecoregion and
land cover type when produced, which made the estimation results more accurate [16].

Figure 2. The spatial patterns of maximum FVC over the period 2001–2012 in northern China.
(a) GLASS FVC; (b) TRAGL FVC; (c) GEOV1 FVC; (d) Li FVC.

3.1.2. Variation Trends of Each FVC Data Set

To evaluate the spatial heterogeneity of FVC change trends, overall linear trends and the linear
trends that passed significance level (p < 0.05) were calculated at pixel scale shown in Figure 3,
respectively. The spatial distribution difference of linear trends was small between the data sets and
most of the area had increased in FVC but not significantly. One significant difference among the
four data sets was detected in North China, the south part of Xinjiang Uygur autonomous region,
the western part of Inner Mongolia Autonomous Region, as well as the northwestern part of Ningxia
Hui autonomous region. Of these regions, North China had a significant increase in the four data sets
whereas FVC values of the south part of Xinjiang Uygur autonomous region, the western part of Inner
Mongolia Autonomous Region, as well as the northwest part of Ningxia Hui autonomous region did
not change. Those of GEOV1 FVC showed a significant decrease and those of Li FVC presented a
significant increase in some areas of these regions.

Figure 4 shows the inter-annual variations of annual maximum FVC of four data sets in northern
China during the period 2001–2012. The mean amplitude, mean variations, and mean variation trend
of the four FVC data sets varied among the individual sources. In terms of mean amplitude, the annual
mean values of Li FVC were the highest, significantly higher than the other three data sets. This was
largely because Li FVC utilizes the dimidiate pixel model in which the choice of NDVIv and NDVIs

may lead to overestimates or even saturation. In contrast, those of TRAGL FVC were the lowest and
GLASS FVC and GEOV1 FVC were closer to the mean values generated from the four data sets in the
study area. As for mean variations and mean variation trends, GEOV1 was significantly higher than
the mean values and GLASS FVC was closer to the mean values. Summaries of mean variation trends
of FVC estimates over northern China, Northeast China, Northwest China, and North China from
the four data sets are shown in Table 2. FVC increased at the rate of 0.26%, 0.30%, 0.12%, and 0.49%
per year in northern China, North China, Northeast China and Northwest China during the period
2001–2012, respectively. By contrast, GLASS FVC and GEOV1 FVC was closer to the mean values of
the four data sets, while the performance of GEOV1 FVC was not better than that of GLASS FVC in
terms of mean variations and mean variation trends.
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Table 2. Mean variation trend values of annual average maximum FVC seen by four data sets
for 2001–2012.

Region GLASS FVC GEOV1 FVC TRAGL FVC Li FVC Average

Northern china 0.0020 0.0048 0.0016 0.0019 0.0026
Northeast china 0.0017 0.0072 0.0021 0.0010 0.0030
Northwest china 0.0012 0.0016 0.0008 0.0013 0.0012

North China 0.0040 0.0084 0.0029 0.0041 0.0049

Figure 3. The temporal trends of annual maximum FVC in northern China during the periods
2001–2012. Left column is the temporal trends of (a) GLASS FVC, (b) TRAGL FVC, (c) GEOV1 FVC,
(d) Li FVC. Right column is the temporal trends of annual maximum FVC that passed the significant
test in northern China during the periods 2001–2012. (e) GLASS FVC; (f) TRAGL FVC; (g) GEOV1 FVC;
(h) Li FVC.
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Figure 4. The averages of annual mean maximum FVC of four data sets over the period 2001–2012.
(a) northern China; (b) Northeast China; (c) Northwest China; (d) North China.

3.2. Analysis of Multi-Source FVC Data Set

3.2.1. Data Set Evaluation

The consistency of each data set was evaluated by computing the correlation of coefficient and
root mean square error (RMSE) between each data set and averaged FVC from the three other FVC data
sets. The evaluation was intended to remove the poorer performing data sets from the average FVC
series [39]. This approach was also applied at pixel scale to remove the poorer performing individual
FVC data set from the final average data set in each pixel. The correlation and RMSE of each FVC
data set and averaged FVC from the three other FVC data sets above the 95% confidence interval over
northern China from 2001 to 2012 are displayed in Figure 5.

The evaluation had been intended to remove the poorer performing data sets from the average
FVC series [39]. However, multiple regression analysis revealed that all of the data sets were statistically
significant (0.05 level) variables in explaining the variance in the multi-data set series. Accordingly,
there was no reason to eliminate any of the four data sets. The stratification of the evaluation results
revealed that the GLASS FVC had the highest correlation and lowest RMSE compared to the multi-data
set average. In contrast, the TRAGL FVC showed higher agreement with other data sets with correlation
of a greater coefficient.
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Figure 5. Correlation and root mean square error (RMSE) of each FVC data set with the averaged FVC
from the three other FVC data sets used in this study. Left column is the correlation of (a) GLASS FVC,
(b) TRAGL FVC, (c) GEOV1 FVC, (d) Li FVC with the average from the other FVC data sets. Right
column is the corresponding RMSE value of (e) GLASS FVC, (f) TRAGL FVC, (g) GEOV1 FVC, (h) Li
FVC with the average from the other FVC data sets.

3.2.2. Change Trends of Multi-Source FVC Data Sets

Figure 6a shows the slope values calculated from the regression analysis, Figure 6b shows the
linear trends that passed significance level (p < 0.05) by Mann–Kendall test, and Table 3 shows the
percentage of significant levels over three parts of northern China. The slope estimate results show that
the FVC increased over most areas. Increased regions were mainly distributed in Northeast China and
North China. In contrast, the northwestern part of the Xinjiang Uygur Autonomous Region (including
Toli, Tacheng, Ili, and Yining counties) and the southern part of the Xinjiang Uygur Autonomous
Region, Hulunbeir Plateau, as well as most part of Shandong Province showed various degrees of
vegetation decline.
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Figure 6. (a) The temporal trends of annual averaged FVC of four data sets in northern China during
the period 2001–2012. (b) The temporal trends of annual averaged FVC of four data sets that passed
the significant test in northern China during the period 2001–2012.

Table 3. Statistics for the percentage of significant level of FVC change during the period 2001–2012.

Regions Significantly Increased No Significant Change Significantly Decreased

Northern china 33.03% 50.16% 16.81%
Northeast china 44.88% 50.12% 5.00%
Northwest china 23.34% 51.86% 24.80%

North China 56.05% 35.59% 8.36%

In Northeast China, 44.88% of pixels showed significant increased fractional vegetation cover.
5.00% of Northeast China showed significant decrease and 50.12% remained stable. Significant increases
were concentrated in the Northeast Plain and the decreased regions were scattered amongst the Daxing’
anling Mountains, the Xiaoxing’ anling Mountains, and the Changbai Mountains.

In North China, 50.05% of pixels showed significant increased fractional vegetation cover. 8.36% of
the North China showed a significant decrease in FVC. The areas where vegetation cover declined were
mainly distributed in Shandong, Hebei, Tianjin, and Beijing. In 35.59% of the pixels, the vegetation
cover remained stable and had no significant change.

In Northwest China, 23.34% showed significant increased fractional vegetation cover.
Approximately 24.80% of pixels showed a significant decrease and 51.76% remained stable.
The increases were mainly distributed in the southern Tianshan Mountains and in northern and
southern oasis areas. The unchanged regions were mainly distributed in the northwestern part of
Xinjiang Uygur Autonomous Region, the extremely arid desert and Gobi Desert regions, as well as
areas that are difficult to use and develop. By contrast, an insignificant decrease occurred in the middle
parts of the Kunlun Mountains where the climate is very dry.

3.2.3. Results of Multi-Data FVC and Uncertainty Analysis

Figure 7a,b shows the spatial distribution of multi-data FVC and uncertainty results generated
from the four data sets over northern China during the period 2001–2012, respectively. From the
spatial distribution, the FVC values were high over Northeast China while those from Northwest
China were almost 0 and those of North China fell in between the two. The uncertainty results of
much of Northwest China were almost 0 which indicated low uncertainties. The uncertainty results of
North China were around 0.15 while that of Northeast China was about 0.25. In general, in contrast to
the low FVC area, the high FVC area of northern China had a high degree of uncertainty.
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Figure 7. Spatial pattern of mean maximum FVC (a) and standard error (b) of multi-data sets over the
northern China during the period 2001–2012.

Annual-averaged maximum FVC from 2001 to 2012 with error bars (standard error) generated
from multi-data sets over northern China, Northeast China, Northwest China, and North China during
the period 2001–2012, is shown in Figure 8, respectively. The multi-data set shows a significant increase
in FVC over northern China from 2001 to 2012 and the estimates show a more linear increase in FVC
than the previous single data set. Low FVC can be seen in 2001 and 2009, especially in Northeast China.
2001 was a year of extreme drought and the precipitation was lower than normal in most regions of
northern China [40]. Different degrees of drought occurred in all seasons. In 2009, low temperatures,
snowfall in winter, as well as drought in spring and autumn [41] inhibited vegetation growth in this
region, causing the annual mean FVC to decrease.

Figure 8. The averages of annual mean maximum FVC and trend in FVC with the error bars showing
the standard error of multi-data set average. (a) northern China; (b) Northeast China; (c) Northwest
China; (d) North China.
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From the regional scale, the FVC over Northeast China significantly increased at a rate of
0.3%/year from 2001 to 2012 (R2 = 0.3632, p-value = 0.0381). Similarly, Northwest China had a
significant increase at the rate of 0.12%/year in FVC from 2001 to 2012 (R2 = 0.4001, p-value = 0.0273).
In general, the growth trend was relatively flat. The FVC over North China significantly increased at a
rate of 0.49%/year during the period 2001–2012. Similarly, North China underwent an intense and
prolonged drought episode in 2009.

Comparing the three parts, North China had a more obvious increasing trend, while that of
Northeast and Northwest China was not so significant. In all of northern China, 33.03% of pixels
showed significant increase fractional vegetation cover, approximately 16.81% of pixels showed
significant decrease, and 50.16% remained stable. In general, vegetation in northern China has
increased during the period 2001–2012.

4. Discussions

The FVC dynamics from 2001–2012 in northern China has been analyzed from four satellite data
products in this study. We found a more linear increase in FVC than did previous studies using a
single data set. The four data sets show a consistent agreement. The spatial patterns of temporal trends
of annual mean are similar among the data sets; however, the GEOV1 FVC product shows relatively
bigger variations in trend. From the points of temporal trends and inter-annual variability of annual
mean FVC, the GLASS FVC is closer to the mean values of the four data sets.

To date, analysis of vegetation cover change over northern China has relied on single sources
of information that can be affected by both estimation methods and satellite sensors. The multi-data
set approach taken in this study can reduce the impact of inconsistencies and provide a more reliable
estimate of the uncertainty of FVC in each year. Trend analysis of the multi-data set (including
an annually varying estimate of error) reveals that FVC has increased at a rate of 0.26 ± 0.13%,
0.30 ± 0.25%, 0.12 ± 0.03%, 0.49 ± 0.21% per year in northern China, Northeast China, Northwest
China, and North China during the period 2001–2012, respectively. Most areas of northern China have
increased in vegetation, especially in the Northeast Plain, the central part of North China, and the
Hulunbuir prairie. In all of northern China, 33.03% of pixels showed significantly increased fractional
vegetation cover, approximately 16.81% of pixels showed significant decrease, and 50.16% remained
stable. Meanwhile, North China had a more obvious increasing trend while that of Northeast and
Northwest China was not so significant.

In this study, the multi-data FVC was retrieved from four FVC data set from 2000 to 2012. However,
the ecological programs were implemented in the 1980s. Therefore, the method which considered
different FVC data sets can be used to provide a long-term multi-data set analysis. For example,
the GEOV1 FVC can be obtained from 1982 to the present while the GLASS FVC, which provided the
FVC estimates from 1982 to 2016, is going to be released in the near future. In addition, other land
surface products, such as tree cover products and land use products, can also be used to provide
evidence about the condition of vegetation change in northern China.

5. Conclusions

This study conducted a spatio-temporal analysis of fractional vegetation cover change in northern
China during 2001–2012 based on multiple data sets. Results indicated that fractional vegetation
cover increased in northern China from 2000 to 2012 but not significantly. In addition, this study
also provides an estimate of uncertainty in FVC at pixel and regional scale. However, this study,
which covered the period from 2000 to 2012, is limited in its ability to provide direct evidence for the
effects of ecological programs on vegetation change of northern China since the ecological programs
were implemented in the 1980s. Although the methodology used in this study was not inherently
complex, it is very effective and has been used in many related studies and can be used for large areas
or even globally. Further work will focus on the evaluation of vegetation changes by using more land
surface products, such as land cover type data and/or tree cover data.
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