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Abstract: Many remote sensing metrics have been applied in large-scale animal species monitoring and
conservation. However, the capabilities of these metrics have not been well compared and assessed.
In this study, we investigated the correlation of 21 remote sensing metrics in three categories with the
global species richness of three different animal classes using several statistical methods. As a result,
we developed a new index by integrating several highly correlated metrics. Of the 21 remote sensing
metrics analyzed, evapotranspiration (ET) had the greatest impact on species richness on a global scale
(explained variance: 52%). The metrics with a high explained variance on the global scale were mainly in the
energy/productivity category. The metrics in the texture category exhibited higher correlation with species
richness at regional scales. We found that radiance and temperature had a larger impact on the distribution
of bird richness, compared to their impacts on the distributions of both amphibians and mammals.
Three machine learning models (i.e., support vector machine, random forests, and neural networks) were
evaluated for metric integration, and the random forest model showed the best performance. Our newly
developed index exhibited a 0.7 explained variance for the three animal classes’ species richness on a global
scale, with an explained variance that was 20% higher than any of the univariate metrics.
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1. Introduction

Changes and losses in global biodiversity have been rapidly accelerating in recent years [1–6].
Understanding of both current patterns and change tendency is a key concern for scientists, ecologists,
and policy-makers. Biodiversity has a multitude of facets that can be quantified, and the most
commonly considered one is species richness [7,8]. Species richness is the number of species in a site,
habitat, or clade [1,9]. Much research has focused on the distribution of animal species richness [10–15].
In addition, a growing amount of data infrastructure has been constructed for continental-to-global
scale species monitoring and analysis [16,17]. The Global Biodiversity Information Facility (GBIF)
and the International Union for Conservation of Nature (IUCN) provides access to millions of current
global digitized species records [18–20]. However, the scale limitation of in situ data has hindered
large-scale species monitoring. The collection of in situ data is too costly to be applied in long
time-series species monitoring.

Remote sensing is a powerful tool in global biodiversity assessment because it enables consistent
observations of species across time and space, as well as the tracking of climatic change and other drivers
of species change [4]. Based on remote sensing technology, two common methods are used for the
observation of species richness: direct species monitoring and indirect species monitoring. In direct
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species monitoring, the high spatial and spectral resolution of remote sensing data enables individual
species to be distinguished from nearby pixels, and the associations of single species can be evaluated
based on the individual species [21,22]. However, this method requires extremely high spatial and spectral
resolution remote sensing data, which are generally not available to the general public. Considering the
distribution differences between different species or classes, a comprehensive biodiversity assessment
on a global scale is too costly to achieve by using direct species monitoring [10,11,23,24]. To increase
the monitoring scale and evaluate more species or classes, indirect species monitoring mainly maps
the key environmental factors which relate to species distribution using remote sensing data [25,26].
Compared with direct species monitoring, indirect species monitoring shows less requirement for high
spatial and spectral resolution of remote sensing data, and can thus facilitate continuous large-scale
species monitoring.

Previous studies have found that a variety of factors impact the distribution of animal species,
mainly in four categories: energy/productivity [27–29]; climate [11,30–32]; ecosystem texture [33,34];
and evolutionary history [24]. Energy/productivity, climate, and ecosystem texture can be continuously
monitored using remote sensing data. The species-energy hypothesis predicts that more species and
higher abundances of individual species will occur where more energy in the form of food is consistently
available [35–38]. Climate change can lead to systematic changes of species distribution [39,40]. Ecosystem
texture determines the physical structure of the environment, and therefore, has a considerable influence
on the distributions and interactions of animal species [41–43]. Based on these theories and hypotheses,
recent studies have developed several frameworks, such as Essential Biodiversity Variables (EBVs) and
Remote Sensing Essential Biodiversity Variables (RS-EBVs), which have been used to construct a global
species-observing system [2,44]. Meanwhile, many new remote sensing metrics have been developed
to monitor species on a global scale [25,26,45–48]. The most outstanding feature of these metrics is that
they can be generated on a global scale. Assessment of different remote sensing metrics on a global scale
and the development of a multivariate integration index is essential for global biodiversity assessment,
but such efforts are missing from the literature. Available larger-scale species richness datasets offer
a valuable database for the assessment of these remote sensing metrics. Instituto de Pesquisas Ecológicas
(Brasil) offers a suite of large-scale species richness data [49], which has been validated in previous studies
and exhibits high accuracy [50,51].

Machine learning provides a great opportunity for the study of species richness, while construction
of mechanistic models between species richness and remote sensing metrics is still challenging [52,53].
Compared with traditional mechanistic approaches, machine learning avoids the over-simplification
during modelling. Machine learning models are as complex as real ecosystems, therefore, in most
cases the results that come from machine learning are more valid for drawing any conclusions for
real situations [54,55]. Moreover, machine learning has been widely used for species assessment and
prediction [56–58].

In this study, to assess remote sensing metrics on a global scale, we selected in situ species richness
data on three animal classes (mammals, birds, and amphibians) and 21 remote sensing metrics that all
had global coverage and long-term availability (Table 1). We analyzed the correlations between animal
species richness and remote sensing metrics, and developed a multivariate integration index based on
a machine learning model. This study aimed to address the following questions:

(1) What are the differences between the distributions of various animal classes (mammals, birds,
and amphibians) on a global scale?

(2) What are the correlations between remote sensing metrics and species richness distributions on
a global scale?

(3) Given the major driving metrics, can we develop a multivariate integration index to map the
global species richness continuously?
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Table 1. Remote sensing metrics.

Category Metrics Spatial
Resolution

Temporal
Resolution

Temporal
Coverage

Dynamic habitat index (DHI)-cum 1/12◦ yearly 2000–2011
Dynamic habitat index (DHI)-min 1/12◦ yearly 2000–2011

Energy/productivity Dynamic habitat index (DHI)-sea 1/12◦ yearly 2000–2011
Gross primary production (GPP) 0.05◦ monthly 2001–2015

Potential Evapotranspiration (PET) 0.05◦ monthly 2001–2014
Land surface temperature (LST) 0.05◦ monthly 2000–2011

Climate Evapotranspiration (ET) 0.05◦ monthly 2000–2014
Coefficient of variation (CV) 1 Km 5-year 2001–2005

Evenness 1 Km 5-year 2001–2005
Contrast (CON) 1 Km 5-year 2001–2005

Dissimilarity (DIS) 1 Km 5-year 2001–2005
Texture Entropy (ENT) 1 Km 5-year 2001–2005

Homogeneity (HOM) 1 Km 5-year 2001–2005
Range 1 Km 5-year 2001–2005

Shannon 1 Km 5-year 2001–2005
Simpson 1 Km 5-year 2001–2005

Standard deviation (SD) 1 Km 5-year 2001–2005
Correlation (COR) 1 Km 5-year 2001–2005
Maximum (MAX) 1 Km 5-year 2001–2005
Uniformity (UNI) 1 Km 5-year 2001–2005

Variance (VAR) 1 Km 5-year 2001–2005

2. Data and Methods

2.1. Data

2.1.1. Species Richness Data

Considering coverage and taxonomy, we chose to use the species richness dataset from the
Instituto de Pesquisas Ecológicas (Brasil) in this study. This dataset (grid format) consists of global
total mammal richness, global total bird richness, and global total amphibian richness. In this dataset,
the primary species range map data used to create the species richness maps are from the IUCN for
mammal and amphibian species, and jointly from BirdLife International and NatureServe for bird
species. During the data process, extinct species were removed, as were non-native distributions of
extant species. For each grid cell, any species that overlapped any part of the cell were counted as
a presence of that species. All species richness data exhibited a spatial resolution of 10 km and used
the equal-area projection [3,49,50,59].

2.1.2. Remote Sensing Data

Considering the availability of datasets, three categories of remote sensing metrics were collected:
energy/productivity metrics, climate metrics, and ecosystem texture metrics. Because the species
richness data was recorded and updated for decades, we selected the remote sensing data as long-term
as possible. In addition, all remote sensing data had global coverage.

For the energy/productivity category, we selected gross primary production (GPP), dynamic
habitat index (DHI), and potential evapotranspiration (PET). The GPP product was obtained from the
global monthly MOD17A2 GPP product [60]. The DHI, including Cumulative Annual Productivity
(DHI-cum), Minimum Annual Apparent Cover (DHI-min), and Seasonal Variation of Greenness
(DHI-sea), is a composite vector deduced from the Fraction of Absorbed Photosynthetically Active
Radiation (FAPAR) time-series, representing the vegetation dynamics. The monthly maximum
FAPAR-value is the basic input dataset to compute the three relevant annual indices for the subsequent
habitat analysis [51,61]. DHI-cum provides an indication of overall site vegetation productivity.
DHI-min represents the lowest (minimum value) level of vegetative productivity in a year. DHI-sea
refers to the variation of the vegetative productivity. Further details of the DHI can be found in previous
publications [51,61–63]. In this study, DHI was calculated from the Global Inventory Modelling and
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Mapping Studies (GIMMS) AVHRR-FAPAR 3g dataset. The PET product was obtained from the
MOD16A2 product. In our study, PET was taken as an energy/productivity metric, because it
characterizes the features of the surface temperature and radiance.

For the climate category, we selected evapotranspiration (ET) and land surface temperature (LST).
The ET product was obtained from the global monthly MOD16A2 ET product [64–68]. The LST product
used in this study was obtained from the global monthly MOD11C3 LST product, which belonged to
the temperature/surface emissivity global data sets (C5) [69].

For the texture category, we selected a suite of global terrestrial habitat heterogeneity data,
which was developed by Haralick et al. and computed by Tuanmu and Jetz using the Moderate
Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) product [25,70].
Heterogeneity is an important indicator of ecosystem texture, which has long been recognized as a key
landscape characteristic with strong relevance for biodiversity [71,72]. These heterogeneity metrics
consist of the coefficient of variation (CV), evenness, contrast (CON), dissimilarity (DIS), entropy (ENT),
homogeneity (HOM), range, Shannon, Simpson, standard deviation (SD), correlation (COR), maximum
(MAX), uniformity (UNI), and variance (VAR).

2.1.3. Biome Data

Biome data acquired from World Wildlife Fund (WWF) were used for this study. This data
depicted the 14 terrestrial biomes of the globe, which include eight forest biomes, four grassland biomes,
one tundra biome, and one desert biome [73]. Biomes are relatively large units of land containing
distinct assemblages of natural communities and species, with boundaries that approximate the original
extent of natural communities prior to major land-use change [74]. This comprehensive, global data
provide a useful tool for identifying areas of outstanding biodiversity and conservation priority.

2.2. Methods

The overall procedure for the proposed method is briefly illustrated in Figure 1. Comparison of
the remote sensing metrics and development of the multivariate integration index were achieved
through four tasks.

2.2.1. Data Integration and Standardization

In data integration, to enable all data to have the same resolution, long time-series LST, ET,
GPP, PET, DHI-cum, DHI-min, and DHI-sea data were averaged on time-scales. Mammal richness,
bird richness, and amphibian richness were added together to generate a variate “Allclasses” as the
surrogate for all three animal classes.

In data standardization, remote sensing metrics were normalized (0–1) using the feature scaling
method, because absolute values had large differences in magnitude. All species richness data and
remote sensing metrics were summed to a 0.1◦ spatial resolution separately using the nearest-neighbor
interpolation method, because the lowest spatial resolution of the datasets was 10 km (species richness
data). In order to remove the impact of non-value area, we excluded the areas which had non-value
pixels of species richness data or remote sensing metrics.
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Figure 1. Flowchart of the comparison of the remote sensing metrics and development of a multivariate
integration index.

2.2.2. Regression Analysis

Before the regression, we used the function randomu in Interface Description Language (IDL)
to extract 10,000 pixels randomly from the global terrestrial areas of species richness data and each
remote sensing metric. The univariate linear regression model was used to evaluate the correlation
of these metrics with animal species richness. Since the relationships between species richness and
some metrics were nonlinear, we used locally weighted regression (LOESS) to determine the pattern of
relationships [75,76]. We took a logarithmic transform for COR, CV, and DHI-sea, and used polynomial
regression for evenness, CON, DIS, ENT, HOM, range, Shannon, Simpson, SD, MAX, UNI, VAR, LST,
ET, GPP, and PET.
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2.2.3. The Akaike Information Criterion

The Akaike information criterion (AIC) was used to evaluate the model quality. The AIC is a measure
of the quality of each model, relative to each of the other models for a given set of data [77–79], and the
AIC value of the model can be expressed as:

AIC = − ln L + 2c (1)

where L is the maximum value of the likelihood function for the model, and c is the number of free
parameters in the model. The model with the smallest AIC is the best performance. Thus, the good
performance of different models in this study was normally based on the low AIC values.

2.2.4. Three Machine Learning Methods for Metrics Integration

After determining the relationships between each remote sensing metric and species richness,
we selected the high-explained-variance metrics to develop a multivariate integration index using
machine learning models. In this study, we compared the capability of support vector machine (SVM),
random forests (RF), and neural networks (NN) to integrate various metrics. Species richness was
trained on 50% of the randomly extracted pixels and cross-validated on the remaining 50%. The same
number of pixels was used for training and predicting in order to avoid under- or over-fitting due to
an unbalanced dataset [80].

Support vector machine (SVM) is a supervised machine learning model with associated learning
algorithms that analyze data used for classification and regression analysis [81]. SVM uses kernel
functions implicitly to map training data into a higher-dimensional feature space. The maximum
separation hyperplane is defined by a set of support vectors, which are a function of the training data
that lie on/the closest to the separating margin [82]. In this study, the e1071 library of the R statistical
package was utilized to optimize the SVM parameters [83].

Random forests (RF) is a regression model that grows an ensemble of trees [84,85]. Each tree
casts a unit vote for the most popular class according to the input variables. The growing process of
RF is by bootstrap aggregating (or bagging), where a tree is randomly grown from the dataset, and
this process can provide substantial gains in the accuracy of predicting models [86,87], and it requires
no pruning. In this study, we used the RF algorithm implemented in the randomForest R package,
with the parameter values for the algorithm, (i.e., number of trees to grow (ntree)) equaled to 500,
and the number of descriptors randomly sampled at each split (mtry) equaled to the total number of
descriptors in the dataset divided by three.

Neural networks (NN) is a non-linear statistical data modelling tool used for prediction and
regression. We selected the multilayer feed-forward neural network, which is one of the most popular
approaches to neural networks (NNs) [88–90]. The multilayer feed-forward NN is a backpropagation
network that trains the data using a backpropagation algorithm [84,91]. This network comprises three
layers: an input layer, one or more hidden layers, and an output layer. Neurons from one layer are in one
direction linked to all neurons in the subsequent layers [92]. This study used the nnet library provided by
the R package in order to develop the model [36]. The nnet package is the library for establishing multiple
feed-forward NNs with more than one hidden layer [93]. This study constructed the model by carrying
out the learning for a total of 30 times with the maximum number of iterations at 100.

3. Results

3.1. Richness Distribution of Three Animal Classes

The distribution of mammal, bird, and amphibian species richness (normalized) was mapped on
a global scale. Mammals, birds, and amphibians showed similar distribution patterns at low latitudes
(Figure 2). In the Amazon, the species richness patterns of mammals, birds, and amphibians were
almost equal. Distribution differences between mammals, birds, and amphibians were observed at
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mid–high latitudes. The species richness of birds and mammals was slightly higher than that of
amphibians in both Central Africa and Southeast Asia. Overall, the distribution patterns of species
richness for these three animal classes were not the same.Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 20 
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Figure 2. Geographic distribution of three animal classes. (a) bird richness, (b) amphibian richness,
(c) mammal richness, and (d) combined species richness where we assigned mammal richness to the
red band, bird richness to the green band, and amphibian richness to the blue band of the image.
All other colors show transition zones of mixtures of the different animal classes.

3.2. Characterization of Various Remote Sensing Metrics

The scatter plots of various metrics versus species richness showed that most metrics exhibited
nonlinear relationships with species richness, and one metric possessed the same type of relationship
with various animal classes (Figure S1). DHI-cum and DHI-min showed clear linear positive
correlations with species richness. Among the metrics which exhibited nonlinear relationships with
species richness, COR, CV, and DHI-sea followed power laws, while the other metrics showed mildly
or strongly unimodal relationships (Figure S2).

DHI-min, DHI-cum, ET, and GPP exhibited more than 40% explained variance with the
distribution of the sum richness of three animal classes on a global scale (Figure 3). These metrics with
high explained variance were mainly in the energy/productivity category and the climate category,
while the texture category showed weak explanatory power with the distribution of sum richness on
a global scale. Among the metrics in the energy/productivity category, DHI-min explained 50% of the
sum richness distribution, GPP explained 48%, and DHI-cum explained 46%. DHI-sea exhibited lower
than 10% explained variance of DHI-min. The low explained variance of DHI-sea in the southern
hemisphere drew down its explained variance on a global scale (Figure 4). For DHI, we detected
three dramatic declines of explained variance in 40◦N zones, 10◦S zones, and 40◦S zones (Figure 5).
In climate category, ET explained 51% of the sum richness of the three animal classes global distribution,
and LST explained 16%. We further observed a large data gap between PET and ET, and PET exhibited
lower than 40% explained variance of ET, which indicated that vegetation played an important role
in the distribution of animal species richness. The vegetation contributed less to the PET calculation
compared to the ET calculation, which might be the primary cause of the difference between PET
and ET in the explanation of species richness. Compared with the metrics in the energy/productivity
and the climate categories, almost all texture metrics showed low explained variance. Among the
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texture category, CV exhibited the highest explained variance (22%), while COR and evenness showed
negligible explained variance.Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 20 
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Figure 3. The explained variance of remote sensing metrics on species richness. Percentages of variance
explained by the regression model was built with different remote sensing metrics. For DHI-min and
DHI-cum, univariate linear regression was used to calculate the explained variance. For COR, CV,
and DHI-sea, linearization was achieved by taking the log of the data before using univariate linear
regression to calculate the explained variance. For the other metrics, polynomial regression was used to
calculate the explained variance. Allclasses is the sum of mammal richness, bird richness, and amphibian
richness, which was normalized. The measured values were obtained for 10,000 0.1-degree pixels randomly
selected from global terrestrial areas. The full names of abbreviations can be found in the Table 1.
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Figure 4. The explained variance of DHI metrics on mammal richness at latitudinal zones (360◦ × 10◦).
For DHI-min and DHI-cum, univariate linear regression was used to calculate the explained variance.
For DHI-sea, linearization was achieved by taking the log of the data before using univariate linear
regression to calculate the explained variance. The measured values were obtained for 10,000 0.1-degree
pixels randomly selected from global terrestrial areas.
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(b) Argentina and Chile, (c) Amazon.

Some differences were observed when we examined the relationship between remote sensing metrics
and individual animal class (Figure 3). Compared with mammals and amphibians, birds exhibited
higher explained variance with PET, and exhibited lower explained variance with ET. Birds showed lower
sensitivity than amphibians and mammals to the energy/productivity category metrics (e.g., GPP, DHI-sea,
DHI-min, and DHI-cum). Mammals were more sensitive to ET, with an explained variance that was
6% higher than that of birds and amphibians. For ENT and HOM, the explained variance of amphibians
was lower than that of mammals and birds.

3.3. Integration of Various Remote Sensing Metrics

Based on the characterization of various metrics and AIC values, DHI-min, DHI-cum, DHI-sea,
GPP, CV, ET, and LST were selected as the major metrics for the development of an integrated
biodiversity index. For the AIC values, the RF model gave the lowest AIC for species richness of
the three animal classes when compared to SVM and NN (Figure 6). The species richness data
of each animal class predicted by the same machine learning model were quite similar, and RF
exhibited a higher r-square value than SVM and NN in species richness of all three animal classes
(Figure 7). The r-square values of mammals, birds, and amphibians were 0.76, 0.76, 0.77, respectively,
according to the RF model; 0.7, 0.71, and 0.66, respectively, according to the SVM model; and 0.67, 0.67,
and 0.67, respectively, according to the NN model. In terms of the root mean squared error (RMSE),
the prediction of the RF model exhibited a lower RMSE than the other two models for all three animal
classes. Overall, the RF model outperformed the other two models for species richness prediction.
We used the RF model to integrate the seven metrics and develop a multivariate integration index.

The multivariate integration index exhibited a higher explained variance than the univariate
metrics, and exhibited more than 76% explained variance for the species richness of the three animal
classes on a global scale. For a single animal class, the gap between the multivariate integration
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index and the univariate metrics was more than 30% (Figures 3 and 7). On the whole, the simulated
species richness showed a consistent spatial pattern with in situ richness (Figure 8). At regional
scales, the simulated species richness was in good agreement with in situ species richness in most
regions. However, the differences between simulated species richness and in situ species richness
were observed. For mammals, simulated species richness was higher than in situ species richness in
40◦–60◦S zones and 120◦–140◦E, and simulated species richness was lower than in situ species richness
in 0◦–10◦N and 30◦–60◦W. For amphibians, simulated species richness was lower than in situ species
richness in 30◦–60◦W. Although disagreements between simulated species richness and in situ species
richness were found in some regions, the differences were relatively small in magnitude.
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4. Discussion

4.1. Differences in Distribution of the Three Animal Classes

Previous studies have found large mismatches between the priorities of biodiversity protection
and protected lands in the United States, even though many biodiversity protected areas have been
established since biodiversity loss was identified [6,50,94,95]. Beside the lack of biodiversity in situ
datasets, this mismatch has likely arisen from differences in the distribution of various animal classes.
Protected areas are generally established for the protection of specific species, while biodiversity
includes many different taxa. In the United States, mammal richness was found to be very high in
the west, and bird richness was high in coastal regions [49,50]. A similar result was also found in our
comparison, in which we examined the distribution of mammals, birds, and amphibians, based on
the latest global in situ data. In addition, the differences in the distribution of mammals, birds,
and amphibians were mainly observed at mid–high latitudes. This is probably because the limitation
of water or energy/productivity at mid–high latitudes leads the difference in species richness among
the three animal classes [96]. In this study, biodiversity metrics did not exhibit a large gap in explained
variance between various animal classes, although the global distribution of various animal classes
were different. This may be due to the offset of regional differences, which led to a similar statistical
result on a global scale.

4.2. Attribution of Differences between Remote Sensing Metrics

For energy/productivity category, a large number of studies have attempted to discover
the relationship between energy/productivity and species richness in past decades [29,97,98].
The species-energy theory proposes that the supply of useable energy in the environment is very
important to species richness [96,99]. Although this theory is based on studies which are mainly
focused on the richness of plant species, for animals, there is a less dramatic shift in the relationship
between productivity and species richness [100]. Animal richness is limited primarily by the production
of plants at the base of the global food web [35,99]. That is probably the reason that the high explained
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variance metrics were mainly found in the energy/productivity category among the remote sensing
metrics in this study. The relationship between energy/productivity metrics and the richness of animal
species exhibits several patterns, namely linear pattern, unimodal pattern, exponential pattern, or no
pattern at all [100–102]. Past researchers also found this relationship differs in different scales [100].
Our study showed, on a global scale, that DHI-min and DHI-cum exhibited a linear relationship
with richness of the three animal classes; DHI-sea exhibited an exponential relationship with richness
of the three animal classes; and GPP exhibited an unimodal relationship with richness of the three
animal classes. In our study, DHI-sea exhibited a low explained variance of 38.9%, which was
different to DHI-min and DHI-cum. Species richness may be reduced through a decrease in either
cumulative annual productivity or minimum annual productivity. However, the impact of DHI-sea on
species richness can be different to the impacts of DHI-min and DHI-cum. The influence of annual
variation on productivity will be limited when the cumulative annual productivity or minimum annual
productivity is constant. Since the impact of short-term low productivity can be offset by subsequent
high productivity, it has a less immediate impact than DHI-min and DHI-cum. That is probably why
we observed a smaller impact of DHI-sea. Overall, DHI-min, DHI-cum, and GPP should be selected as
main factors for predicting animal species richness on a global scale.

For climate category, past investigations showed that global patterns of species richness were
widely correlated with climate [24,103]. Climate change can influence the animal distribution directly
by itself, and also affects animal species richness through changing vegetation productivity. In this
study, we evaluated the impacts of LST and ET on animal species richness. ET exhibited the highest
explained variance among all remote sensing metrics, which indicated the great impact of the water
component on species distribution. Moreover, the difference of explained variance between ET and PET
indicated that vegetation productivity played an important role in the distribution of animal species
richness, because vegetation contributed less to the PET calculation compared to the ET calculation.
The explained variance of LST was lower than ET, DHI-min, DHI-cum, and GPP. This may be due to
the time-lag effects in the response of species richness to climate change. Previous studies showed
that the change in animal diversity lagged behind climate change [39]. Some research has revealed
that a warmer winter will lead animal diversity to change by causing the long-distance migration of
animals [40]. Moreover, climate can alter species richness distribution through changing the vegetation
productivity [104], and many studies have found a time-lag in the global vegetation response to climate
change [105–108]. Because the influence of climate factors on animal diversity varies with different
regions which leads to an offset on global-scale analysis, we expect that explained variance of LST are
higher in regional analysis.

For the ecosystem texture category, texture metrics have been proved to be important drivers of
animal species richness [11,25,48,71,72,109], but the relationship pattern of texture metrics with animal
species richness is still controversial. Various studies have found that species richness exhibited positive
relationships with environmental heterogeneity, while negative relationships between environmental
heterogeneity and species richness have also been reported [27,43,110–113]. Tuanmu and Jetz [25] validated
the performance of 14 heterogeneity metrics, using North American bird richness. They showed that the
texture metrics combined with net primary productivity (NPP) can explain up to 35.8% of the variance.
In addition, homogeneity could still explain about 8% of the variance by itself. In the ecosystem texture
category, our results showed that the CV was the strongest metric on a global scale, with an explained
variance of 22%. Compared with metrics in energy/productivity and climate category, this study showed
that texture metrics exhibited low explained variance on a global scale, while high correlations were
observed at smaller scales. In fact, the pattern of the relationship between animal species richness and
habitat heterogeneity was impacted by many factors. Previous studies have showed that the possible
effects of heterogeneity may also vary relative to the structural variable measured, and the effect of
habitat heterogeneity for one species group may differ in relation to the spatial scale [43,71]. In this study,
the high-correlation areas were mainly covered shrub lands, grasslands, and savannas, while the explained
variance of texture metrics were relatively low in forests (Table S1). This is probably because the texture
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dataset we used mainly focused on the horizontal structure of an ecosystem, while forest biome has
more complex vertical structures than shrub lands, grasslands, and savannas. Moreover, different regions
showed various major driving texture metrics. For example, DIS, ENT, and HOM exhibited high explained
variance in grasslands and savannas. Moreover, previous studies found that the predictive performance of
texture metrics would vary across different spatial scales [114]. Overall, texture metrics should be primarily
considered when determining the species distribution at regional scales.

For different animal classes, we found a gap in the explained variance between bird species
richness and the species richness of the other two animal classes, among the climate metrics.
The explained variance of PET on bird richness was much higher than that of both amphibian and
mammal richness, which indicated that radiance and temperature played a more important role in
bird richness distribution than in the other two animal classes.

4.3. Integration of Various Remote Sensing Metrics

The effect mechanism of different environmental variables on species distribution is
debatable [115], which limits the application of certain metrics to model the species distribution
quantitatively. We applied three commonly used machine learning models in the integration of
the remote sensing metrics. There were differences in the results generated from the three models;
RF generally outperformed SVM and NN in our case study. In this study, SVM and NN exhibited high
uncertainty in species richness modeling, with the estimated datasets showing higher r-square and
lower RMSE than the training datasets. In consideration of the AIC values, the RF model provided
a better representation of the metrics integration of remote sensing metrics in this study than the
other two models. Previous studies have suggested that differences in the results of various machine
learning models may be due to the sample size, or the ratio between the size of the training sample
and the estimated sample. [116,117]. However, there was no improvement in the performance of SVM
and NN in species richness modeling, when we increased the proportion of the training sample and
decreased the proportion of the estimated sample (Figure S3). RF has broader scope than SVM and
NN, because it has no limitation on the distribution pattern of the training data. The complexity of
the parameter setting may limit the performance of SVM and NN for model training [118]. Although,
SVM has the advantage on solving non-linear problems, a major downside of SVM is that it can be
painfully inefficient to train [119,120]. Another main advantage of RF is that it handles very well with
a large number of training examples, and it is not recommended to use SVM to handle large training
examples, which might lead to a better performance of the RF. In the training process, we observed
a large gap between RF, SVM, and NN. In addition, the computation time required for modelling
differed considerably among the three machine learning models (Table 2). The computational efficiency
of the SVM and NN models were much higher than that of the RF model.

Table 2. The time statistics of the three machine learning models with 5000 training samples and 5000
prediction samples.

Species SVM RF NN

Mammal 4.514s 13.635s 2.639s
Bird 4.465s 14.252s 2.651s

Amphibian 3.497s 14.173s 2.421s

In this study, the multivariate integration index based on the RF model exhibited 20% more
explained variance than the univariate metrics. Many species richness monitoring and modelling
studies have been carried out in previous decades [3,4]. Our result, using three categories of remote
sensing metrics, exhibited twice the explained variance of previous studies, which used texture
metrics and net primary productivity (NPP) [25]. Previous studies showed DHI components explained
between 47% and 75% of total bird species richness (BBS) in Ontario (North America), and we extended
the spatial scale from regional to global [61]. Although these studies selected different species richness
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datasets, a comparison of the correlations was still reasonable, and we asserted that the multivariate
integration index had a better correlation with species distribution than univariate metrics on a global
scale. Since the evolution of a species is a very slow process, the link between these remote sensing
metrics and species characteristics is stable for decades [121]. Thus, the multivariate integration index
we developed can be used for mapping the global species richness annually, which would provide
great support for global biodiversity trend detection.

At latitudinal and longitudinal zones, some differences between simulated species richness and
in situ species richness were observed (Figure 8). There were two possible reasons that led to this
disagreement. Firstly, these zones (e.g., 40◦–60◦S zones) where gaps of species richness were found
mostly had large areas of water or deserts, which led to a small sample size for model training.
This small sample size brought large uncertainty in simulated species richness. Secondly, in some
regions (0◦–10◦N zones), the limited in situ data constrained much detail of species richness, while the
remote sensing metrics we used exhibited high spatial resolution. This difference limited the explained
variance of some remote sensing metrics (e.g., DHI-min, DHI-cum, and DHI-sea) (Figures 3 and 7).
Overall, the impact of these differences on the multivariate integration index was limited, since these
differences were relatively small in magnitude.

4.4. Limitation and Recommendation for Future Research

Although the multivariate integration index showed a consistent pattern with in situ richness
data, it faced two known limitations. Firstly, the limited availability of in situ richness data constrained
the comparison and integration of remote sensing metrics. Three dramatic declines of DHI’s explained
variance in 40◦N zones, 10◦S zones, and 40◦S zones were found. It appeared that the in situ data of
mammal richness were insufficient, because of the detail loss in these regions (Figure 5). Once higher
resolution species richness data are available, the multivariate integration index should exhibit higher
accuracy. Secondly, relationship patterns between energy/productivity, climate and ecosystem texture
metrics, and animal diversity were limited by many other factors, namely scale, resolution, latitude,
and so on.

Future research will consider both scale and resolution when comparing remote sensing metrics.
Because the focus is taking full advantage of long time-series remote sensing data for species
monitoring, some important metrics (e.g., precipitation and air temperature) which are not available
from remote sensing data globally, were excluded in this study. To make biodiversity monitoring
and assessment more globally accurate, future research will consider more datasets from both remote
sensing data and model simulation data in integration index development. In addition, with the
collection of more species information of both plants and animals, future research will develop the
integration index for predicting plant species richness, as well as animal species richness.

5. Conclusions

In this study, 21 remote sensing metrics were assessed to determine their relationships with the
richness distribution of three animal classes. The correlation between the species richness of the three
animal classes and 21 biodiversity metrics was evaluated based on regression models, and ET exhibited
the strongest correlation with the global distribution of the three animal classes. The metrics with high
explained variance were mainly in the energy/productivity category. The ecosystem texture category
exhibited a higher correlation with species richness at regional scales. For a single class, we found
radiance and temperature had a larger impact on the distribution of birds than the other two animal
classes. Three commonly used machine learning models were evaluated to determine their capabilities
in developing a multivariate integration index, and the RF model was selected as the optimal model
for multivariate index integration. Having taken DHI-min, DHI-cum, DHI-sea, GPP, CV, ET, and LST
as the major metrics, the multivariate integration index exhibited a 20% higher explained variance of
the global distributions of mammal, bird, and amphibian richness, compared to the univariate metrics.
However, the in situ biodiversity data were still insufficient. With improvements in the availability
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of these datasets, further studies can consider more factors and offer higher-accuracy metrics for the
assessment of global biodiversity.

Supplementary Materials: Supplementary materials are available online at http://www.mdpi.com/s1. Figure S1:
Correlations of all remote sensing metrics; Figure S2: Scatterplots between species richness and power-law metrics;
Figure S3: Correlation between predicted species richness and in situ species richness; Table S1: The explained
variance of remote sensing metrics in different biomes.
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