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Abstract: Forest biomass quantification is essential to the global carbon cycle and climate studies.
Many studies have estimated forest biomass from a variety of data sources, and consequently
generated some regional and global maps. However, these forest biomass maps are not well known
and evaluated. In this paper, we reviewed an extensive list of currently available forest biomass
maps. For each map, we briefly introduced the data sources, the algorithms used, and the associated
uncertainties. Large-scale biomass datasets were compared across Europe, the conterminous United
States, Southeast Asia, tropical Africa and South America. Results showed that these forest biomass
datasets were almost entirely inconsistent, particularly in woody savannas and savannas across these
regions. The uncertainties in biomass maps could be from a variety of sources including the chosen
allometric equations used to calculate field data, the choice and quality of remotely sensed data, as
well as the algorithms to map forest biomass or extrapolation techniques, but these uncertainties have
not been fully quantified. We suggested the future directions for generating more accurate large-scale
forest biomass maps should concentrate on the compilation of field biomass data, novel approaches of
forest biomass mapping, and comprehensively addressing the accuracy of generated biomass maps.

Keywords: forest biomass maps; large-scale mapping; field biomass; remotely sensed data;
uncertainty analysis

1. Introduction

Forests cover about 30 percent of the Earth’s land surface, providing renewable materials and
energy for humans, maintaining biodiversity, preventing soil erosion, and playing a major role in the
global carbon cycle and climate system [1,2]. As forests grow, they absorb carbon dioxide from the
atmosphere via photosynthesis, storing carbon within living biomass and soil, and to a lesser extent,
in dead wood and litter. When forests are disturbed (e.g., by fire or deforestation), their stored carbon
is released into the atmosphere, therefore an accurate estimation of forest carbon stocks is essential to
addressing carbon exchange between terrestrial ecosystems and the atmosphere.

To attain detailed and accurate forest carbon stocks, numerous studies have mapped the spatial
distribution of forest biomass using various algorithms assuming that carbon content in plant biomass
is constant (approximately 50%). According to the Intergovernmental Panel on Climate Change (IPCC)
Guidelines for National Greenhouse Gas Inventories, terrestrial ecosystem carbon pools included
above-ground biomass (AGB), below-ground biomass (BGB), necromass and litter. Among these
carbon pools, AGB is the most dynamic, visible and important, comprising 15%–30% of the total
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terrestrial ecosystem carbon pool [3]. Therefore, previous studies on biomass estimation mainly focus
on AGB, while BGB is generally determined from AGB using root-to-shoot ratios [4]. In this paper,
forest biomass refers to AGB, which is expressed as dry weight per unit area and defined as all living
aboveground biomass, including stems, branches, bark, seeds and foliage.

According to dataset sources used to derive forest AGB, estimation methods can be categorized
into field measurements, remote sensing-based approaches, and ecological model simulations. Field
measurements are valuable resources for biomass estimation as they can provide the most accurate
biomass estimates through the use of allometric equations, but are limited in spatial coverage [5,6].
Countries with existing national forest inventory (NFI) data typically use field measurements together
with biomass factors and biomass equations to estimate regional means of forest biomass and biomass
change for the national forest resources report [7,8]. However, these cannot provide spatially explicit
forest biomass information either.

Due to the above limitations of traditional field measurements to estimate biomass on a regional
scale, remote sensing has been widely used for estimation during the past decades due to its wide-area
coverage capability. In remote sensing-based biomass estimation, field measurements remain important,
especially because they are indispensable to both the calibration of remotely sensed data and the
validation of estimated biomass results. Importantly, adequate field data is critical to forest biomass
mapping from remotely sensed data, no matter which methods are chosen [9]. To estimate forest AGB
accurately on a regional scale, much effort is currently being made to integrate field data with remotely
sensed data including optical, synthetic aperture radar (SAR) and light detection and ranging (LiDAR)
data using advanced methods [10–12]. In addition to field measurements and remote-sensing-based
methods, ecological process models are promising tools for regional assessment of carbon fluxes and
biomass dynamics [13]. However, these models require site specific calibration as well as a large
number of input parameters for which appropriate values may be difficult to obtain [14,15]. Therefore,
remotely sensed data remain the dominant data sources for AGB mapping. All forest AGB maps
selected for inclusion in this paper were retrieved with remotely sensed data in combination with
other datasets.

Among the three types of remotely sensed datasets, LiDAR is recognized as the most accurate
and promising approach for AGB estimation, but cannot provide wall-to-wall biomass results [16].
In contrast, optical and SAR data can provide gridded AGB estimates over large areas, but are affected
by well-known saturation problems that greatly affect the accuracy of estimated biomass. No single
sensor on any satellite mission, whether optical, radar or LiDAR, can provide consistently infallible
estimates of biomass, so a combination of these measurements is often used to overcome individual
limitations [17]. Therefore, many scholars have integrated field measurements, LiDAR, optical and/or
SAR data using advanced methods to generate maps of the spatial distribution of forest AGB on a
regional scale [18,19]. Currently, many regional and global AGB maps are available, and some of them
have been even used for further analysis in the fields of climate change and ecology [20–23]. However,
published papers mainly review biomass estimation methodologies, focusing on the datasets used,
modelling algorithms, uncertainties and other related issues [9,24–26], and a systematic review of
forest AGB maps is still lacking. While in this paper, we collected currently available regional and
global forest biomass maps, and described their retrieval and limitations, to address recent progress
and practical challenges of large-area biomass mapping. Forest biomass estimation or mapping is a
complex procedure involving many factors, so we focused only on the major aspects of estimating
forest AGB.

The paper is organized as follows: Section 2 introduces the principles for using remote-sensing-
derived parameters for AGB estimation; Section 3 describes the currently available regional and global
forest biomass maps; Section 4 compares the available forest biomass maps over several regions;
Section 5 includes the limitations of current forest AGB maps and possible directions to improve their
accuracy; and Section 6 is a brief summary.
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2. Principles for Estimating AGB from Remotely Sensed Data

Generally, remote sensing techniques do not derive forest biomass directly, but use parameters
that are related to forest biomass such as forest height, leaf area index, or net primary production.
Because of established relationships with AGB, these parameters or variables are widely incorporated
into the mapping of forest AGB.

Forest height is often used as a surrogate for biomass. At the plot scale, AGB estimates are usually
made using allometric equations that are based on hand-measured tree diameters and/or tree height,
sometimes with wood density to improve accuracy [27]. The relationship between AGB and tree height
generally follows a power law function. Published studies have indicated that the close relationship
between forest biomass and height developed at the tree and plot scale still hold at a broad scale [28].
Since height can be directly obtained from Interferometry SAR (InSAR) and LiDAR data over large
areas [29,30], forest AGB can be estimated from these remotely sensed data. It should be noted that
height sometimes refers to canopy height (e.g., InSAR height), which depends not only on tree height,
but also on the shape of each tree crown and on stand density. Some studies indicate that tree crown or
basal area might be a better indicator of biomass than tree height, and thus basal area weighted height
(or Lorey’s height) was proposed as the best proxy for biomass and widely used in LiDAR remote
sensing [12,19,31].

Previous studies have found LAI is also a valuable AGB predictor, and have developed
methodologies to estimate AGB from LAI [32]. LAI is mainly related to leaf biomass, and therefore
foliage or leaf biomass can be quantified through a function of LAI and specific leaf area (SLA) which is
the ratio of leaf surface area to carbon mass [33]. At the plot scale, total AGB is generally computed as
the sum of wood and foliage biomass [34], but at larger scales, there have been two general approaches
to establish a relationship between LAI and forest biomass. One estimates the components of AGB
separately, which follow similar equations and can be derived in the same way as foliage biomass, and
then calculates the sum of these biomass components. The other approach is to develop relationships
between foliage biomass (or LAI) and AGB directly, in terms of the allocation of forest biomass carbon
into different parts including leaves. Using either method, the proportion of foliage biomass in AGB
varies with forest type, stand age, and environmental factors [35].

Similar to that of LAI, the relationship between tree productivity and biomass has been explored
in previous studies that often use the demonstrated relationship to estimate AGB directly, either linear
or nonlinear, assuming that productivity is the source of biomass [36]. Another approach to estimate
AGB comes from the metabolic theory of ecology which describes the rates of production and biomass
by a power function [37]. Also, the relationship between AGB and productivity varies with certain
biotic and abiotic factors [38].

As a measure of chlorophyll abundance and energy absorption, the normalized difference
vegetation index (NDVI) has been widely used as a proxy for vegetation productivity and foliage
biomass [39,40]. It is sensitive to the green components of biomass but insensitive to woody components
where the majority of forest carbon is stored. One limitation of applying NDVI to estimate biomass
is the saturation effect due to strong absorption in the red wavelength. With an increase in green
vegetation, the sensitivity of NDVI and furthermore, the accuracy of estimated biomass is reduced.
To improve sensitivity across the regions with high biomass, several vegetation indices were proposed
such as the renormalized difference vegetation index and the modified simple ratio [41,42]. Moreover,
the vegetation optical depth (VOD), derived from satellite passive microwave observations, is mainly
sensitive to the water content and captures variations in foliage biomass better than NDVI in drylands,
and thus can provide complementary information for estimating green biomass in dryland areas [39,43].
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Forest cover is another important AGB predictor, especially where forest cover is less than 60%.
For uniform forests, forest biomass of a pixel is directly proportional to forest cover [44]. Currently,
several forest cover products are available on a global scale, facilitating the estimation of forest
biomass [45]. However, the proportional tree or forest cover could reach its maximum before forest
biomass, which limits the performances of biomass estimation to some degree.

Further to the above ecological process parameters, topographic and biotic factors (e.g., species
diversity) are known to affect forest biomass. From the data perspective, the relationships between
the abovementioned parameters and AGB vary with topographic and biotic factors. Topographic
characteristics such as elevation and aspect are known to drive patterns of tree species distribution,
as well as soil resources, both of which influence AGB. From another perspective, these factors regulate
carbon storage in forest ecosystems [46]. Finally, since AGB in a forest integrates establishment, growth
and mortality processes, as well as succession, disturbance, and ecosystem processes, the inclusion of
these data could improve the accuracy of AGB estimates [47,48].

3. Current Gridded Forest Biomass Maps

Current gridded forest biomass maps are generated mainly through empirical modeling of various
datasets (Table 1). We grouped these regional and global AGB maps into the following five classes
according to the combinations of data sources used in the estimation. Forest biomass maps of the
first class were mainly obtained through Geographic Information System (GIS) based modelling of
statistical datasets. Sixteen AGB maps were generated by integrating field biomass data directly with
optical and/or radar data. Five datasets were retrieved from field biomass data together with LiDAR
data, and thus had high spatial resolution. Fourteen AGB maps were generated from a combination of
field data, LiDAR data, and optical and/or radar data. Also, there were some AGB maps that were
generated or regenerated from existing biomass datasets.

3.1. Forest AGB Maps Generated Using GIS-Based Methods

3.1.1. New IPCC Tier-1 Global Biomass Carbon Map for the Year 2000

Ruesch and Gibbs [49] compiled a total of 124 carbon zones or regions with unique carbon
stock values using the IPCC (International Panel on Climate Change) Tier-1 method [50]. Then,
they incorporated these values with spatial datasets including land cover maps, ecoregions zones,
continental regions, and frontier forest location maps, to generate a global biomass carbon map with a
spatial resolution of 1 km. This dataset is the first globally consistent and spatially explicit estimate
of vegetation biomass and carbon stocks, circa 2000. It has important implications for climate and
environmental change studies, however, the methods employed in the generation of the dataset were
not directly related to field measurements or validated with field data, and little is known about
uncertainties in the map.

3.1.2. A Map of Living Forest Biomass and Carbon Stock in Europe

Using a similar approach to Ruesch and Gibbs [49], Barredo et al. [51] provided a forest biomass
dataset for Europe at 1 km spatial resolution for the year 2010. They first estimated forest biomass from
the CORINE Land Cover 2006 map, then the average biomass value of each ecological region from the
Food and Agriculture Organization (FAO) Global Ecological Zone (GEZ) map, and then post-adjusted
the estimates at pixel level for each country by applying adjustment ratios to match the national values
reported in the FRA 2010 [52]. The generated map corresponded with biomass and carbon reported
in FRA at the country level and therefore at a continental level. However, due to a lack of field data,
the map was not validated at the pixel level.
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3.1.3. Global One-Degree Maps of Forest Area, Carbon Stocks, and Biomass, 1950–2010

Based on a compilation of forest area and growing stock data reported in international assessments
performed by the FAO, MCPFE (now Forest Europe) and the United Nations Economic Commission
for Europe, Hengeveld et al. [53] provide global forest biomass at 1◦ spatial resolution with five-year
intervals from 1950 to 2010. They initially used a ratio between forest area (from a forest raster map) and
the interpolated forest area value (calculated from the international assessments performed by FAO,
MCPFE, and UNECE) to scale the raster values in the forest map. Then, the growing stock gridded
map was derived from interpolated forest growing stock data divided by the adjusted forest area, and
multiplied with calculated forest area maps. Finally, forest growing stock were converted to biomass
and carbon using the IPCC default biomass conversion and expansion factors [50]. Uncertainty in this
dataset was subjectively defined as the sum of basic data uncertainty, methodological developments
over time, and interpolation and mismatch between the forest map and statistical data, but it was not
formally evaluated.

3.1.4. IIASA’s Global Forest Database

Kindermann et al. [54] produced a global forest biomass database at 0.5◦ resolution for the year
2005 by downscaling the aggregated country-level FRA biomass, on the basis of the relationships
between net primary productivity (NPP) and biomass, and between human impact and biomass.
The uncertainty of estimated AGB depends heavily on the quality of the FRA, and NPP and human
activity data, as well as the simple assumption of linearity in the relationship between NPP and human
activity, and biomass.

3.1.5. Tropical Africa and Southeast Asia 1980 and 2000 Forest Biomass Maps

The above maps were derived as a function of degradation ratio (DR) and potential biomass
density obtained from climate, soil, topographic, and land-use information using rule-based GIS
models [55–58]. Potential biomass was calculated based on land cover data, while the DR was closely
correlated with population density. Forest biomass maps for 2000 with a spatial resolution of 0.045
decimal degrees produced by Gibbs and Brown [57,58] were updated from those for 1980, by including
land cover data from GLC2000 and population data in 2000. For both the 1980 and 2000 biomass
datasets, the same equations were used to calculate DR, which was estimated by comparing the
potential biomass density in 1980 with the corresponding biomass densities obtained from forest
inventories. The parameters varied for different forests (open or closed, woodland or savanna), but
followed the same patterns.

DR = a − b ln(PD) (1)

where PD is a population density in people per km2. Different forest types had different parameter
values of a and b, but they were the same for 1980 and 2000 for the same forest type. Because PD in
1980 and 2000 was different, their corresponding DRs were different. Uncertainties of both biomass
datasets were not reported, and additional field data are needed to assess the accuracy of this dataset.

3.2. Forest AGB Maps from Field Inventory Data and Optical and/or Radar Remotely Sensed Data

3.2.1. National Biomass and Carbon Dataset for the Year 2000

The Woods Hole Research Center generated a high-resolution (30 m) “National Biomass and
Carbon Dataset for the Year 2000” (referred to as NBCD) for the conterminous United States [59].
The dataset was based on an empirical modelling approach that combined FIA data with optical remote
sensing data acquired from the Landsat ETM+ sensor, high-resolution InSAR data acquired from the
Shuttle Radar Topography Mission (SRTM), products from the USGS NLCD 2001 (National Land
Cover Dataset 2001, land cover and canopy density) and LANDFIRE (the Landscape Fire and Resource
Management Planning Tools Project, existing vegetation type) projects, and topographic information



Remote Sens. 2019, 11, 2744 6 of 37

from the USGS National Elevation Dataset (NED). The NBCD provided two biomass maps based on
different allometric equations to calculate tree-level biomass. The version of the NBCD map based
on FIADB Tree Table to calculate tree biomass, which was also the source of the 240 m mosaic for the
conterminous U.S, has often been adopted in published studies. NBCD provided the accuracy for
each mapping ecoregion through validation against observed data from USDA Forest Service Forest
Inventory and Analysis (FIA). Because of the good verification accuracy with FIA data, NBCD2000 is
often used in forest research, however, it significantly overestimated biomass in urban areas [60,61].

3.2.2. Forest Biomass across the Lower 48 States and Alaska

Blackard et al. [44] produced a forest AGB map at a spatial resolution of 250 m for the conterminous
United States, Alaska, and Puerto Rico by interpolating the FIA plot data collected from 1990 to
2003 with geospatial predictors using the classification and regression tree modelling approach.
The predictors included the Moderate Resolution Imaging Spectroradiometer (MODIS) data acquired
during 2001, land cover proportions, topographic variables, monthly and annual climate information,
and other ancillary variables. The accuracy of the AGB map was reported as correlation coefficients
ranging from a low of 0.31 in the southern region of the United States to a high of 0.92 in Puerto Rico,
and relative errors ranged from 0.92 in the southern region of the United States down to 0.51 in Puerto
Rico. Due to the saturation phenomenon caused by optical remote sensing data and the problem of
scale conversion between the FIA data and pixel scale, the low biomass density of this datasets was
overestimated, and high biomass density was underestimated [62]. AGB uncertainty was assessed by
the relative error of modelled predictions and an error propagation approach, which allowed for the
incorporation of pixel-level uncertainties when other sources were lacking.

3.2.3. Forest Carbon Stocks of the Contiguous United States (2000–2009)

Wilson et al. [63] mapped the contiguous United States forest carbon stocks between 2000 and
2009 at a 250 m resolution from FIA data, MODIS satellite imagery, and ancillary geospatial datasets
using the Phenological Gradient Nearest Neighbor approach. The published datasets also contained
total carbon stocks, live tree aboveground forest carbon, live tree belowground forest carbon, down
dead wood carbon, forest litter carbon, forest standing dead carbon, forest soil organic carbon, and
forest understory carbon. Uncertainty maps were not provided with the carbon maps.

3.2.4. Aboveground Biomass in Interior Alaska (Yukon River Basin), 30 m, 2009–2010

Ji et al. [64] combined a field biomass dataset with Landsat-derived spectral variables and land
surface temperature (LST) using a regression model, and produced a biomass map at 30 m resolution
for the Yukon Flats ecoregion of interior Alaska. The geographic feature metrics included land cover
type sourced from the NLCD 2001, burned areas from the Monitoring Trends in Burn Severity (MTBS)
data and the Alaska Historical Wildland Fire Perimeters data, and topographic futures extracted from
National Elevation Dataset (NED) data. Additionally, before building the regression model, principal
component analysis (PCA) was used to prevent variable multicollinearity. A high-spatial resolution
biomass map was generated using the principal components and field data through a regression
method. This map appears relatively accurate as evidenced by a threefold cross-validation that showed
a mean absolute error of 21.8 Mg/ha and a mean bias error of only 5.2 Mg/ha.

3.2.5. The First Detailed Map of Aboveground Forest Carbon Stocks in Mexico (30 m)

Cartus et al. [65] generated a spatially explicit map of aboveground carbon stored in Mexico’s
forests at 30 m spatial resolution through Random Forest modelling on the inventory data from
Mexico’s National Forest Inventory (INFyS) and space borne optical and radar data including the
Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar
(PALSAR) backscatter data, Landsat-based estimates of canopy density, MODIS vegetation index
product, and topographic data from SRTM. Validation results with independent field data showed that
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the overall R2 was 0.5 and the root mean square error (RMSE) was 14 t C/ha in flat areas, with low
predicted precision on steep slopes.

3.2.6. Mexico Forest Biomass Map (250 m)

Rodríguez-Veiga et al. [66] generated a forest biomass map for Mexico at 250 m spatial resolution
by combining remotely sensed predictors with forest inventory plots using a maximum entropy
(MaxEnt) algorithm. The predictors were extracted from MODIS vegetation index products, ALOS
PALSAR backscatter coefficient images, and the SRTM digital elevation model. The generated forest
biomass map was validated with independent inventory plot data at the 50 m pixel level, municipality
level, and state level. The validation results showed that the accuracy was improved along with the
spatial scale from pixel level to municipality and state level, with the RMSE of 17.3 t C/ha, ±4.4 t C/ha,
and ±2.1 t C/ha, and R2 of 0.31, 0.75 and 0.94, respectively. At the pixel level, map uncertainty was
quantified through an error propagation model which accounted for measurement, allometry, sampling,
and remote sensing prediction errors, assuming that these source errors were random and independent.
Although this study provided accurate spatial maps for national or regional REDD+ applications
and MRV systems, uncertainties still cannot fully meet the requirements anticipated for the planned
BIOMASS mission [67].

3.2.7. Maps of Canada’s Forest Attributes for 2001 and 2011

Beaudoin et al. [68] produced forest biomass maps for Canada at 250 m resolution for 2001
using k-nearest neighbours (kNN) method. The predictors included MODIS reflectance data, climatic
variables, topographic variables and land cover information. Validation of estimated forest biomass
with the independent field data at the pixel level showed that the R2 was 0.69 and the relative RMSE
was 69.2%, but that accuracy could be improved if the pixels were spatially aggregated to 1 km
resolution. A biomass map for 2011 was similarly generated. To infer biomass dynamics from the
sequential biomass maps, Beaudoin et al. [69] updated the 2001 and 2011 forest biomass estimates [68].
The new forest biomass datasets were generated using an improved reference dataset sourced from
Canada’s National Forest Inventory (NFI) and a refined kNN method. Evaluation results were in better
agreement than that of Beaudoin, Bernier, Guindon, Villemaire, Guo, Stinson, Bergeron, Magnussen
and Hall [68], and showed that changes in aboveground biomass matched expectations between 2001
and 2011 where fire, harvest, or post-disturbance regrowth occurred.

3.2.8. EU-Wide Growing Stock and Biomass Maps

Gallaun et al. [70] linked field inventory plot data directly to remotely sensed data using an
automatic upscaling approach, and mapped the growing stock and above-ground woody biomass for
the entire European Union for the year 2000 with a spatial resolution of 500 m. They initially mapped
the fractional cover for broadleaved and conifer forest using MODIS reflectance, meteorological data,
CORINE Land Cover 2000, and MODIS VCF (Vegetation Continuous Fields), and then calculated forest
growing stock by weighting the class mean values with fractional cover maps and the NFI data. Forest
AGB was obtained by converting the growing stock results using biomass conversion and expansion
factors (BCEFs). Validation of growing stock with field-based estimates at the regional level showed a
correlation coefficient of 0.97, and a mean absolute error of 25 m3/ha. Despite the high correlations,
accuracy assessment showed a slight underestimation of growing stock in regions with high growing
stock volume due to saturation.



Remote Sens. 2019, 11, 2744 8 of 37

3.2.9. Russian Forest Biomass Map

Houghton et al. [71] combined field data with MODIS reflectance data using the Random Forest
model, and mapped the spatial distribution of living forest biomass in Russia at 500 m spatial resolution
for the year 2000. The model underestimated regions with high biomass and overestimated regions
with low biomass, with an overall biomass data error of circa 40%.

3.2.10. China AGB Maps from 2001 to 2013

Yin et al. [72] integrated field measured biomass with MODIS reflectance data and a forest type
map using the Model Tree Ensembles approach, and produced an aboveground biomass map of
China at a spatial resolution of 1 km from 2001 to 2013. The R2 and RMSE between the predicted
forest biomass data and independent field data in the validation dataset were 0.46 and 22.7 Mg C/ha,
respectively. Compared with other previous studies, estimated biomass in this study was higher,
probably because Yin et al. [72] used a new AGB measurement dataset rather than previous provincial
forest inventory plot data. Uncertainty was ascribed to the mismatch of field plot size and remote
sensing pixel data, as well as forest type map quality and MODIS data used.

3.2.11. China Forest Biomass Map for 2004–2008

Du et al. [73] used the seventh national forest inventory data collected from 2004 to 2008 and
the conversion factor continuous function method to estimate forest biomass statistics. Also, they
calibrated forest area from MODIS data products with field inventory statistics, then downscaled
the estimated biomass statistics using the calibrated MODIS land cover data, and finally generated
the spatially explicit forest biomass map at 0.05-degree resolution. Leave-one-out validation results
showed the R2 between the estimated forest biomass and forest inventory data was 0.76; however,
there was no evaluation of the accuracy of estimated biomass at the pixel level.

3.2.12. Aboveground Live Biomass Map in the Amazon Basin

Based on forest plot data and remote-sensing-derived metrics collected from 1990 to 2000, Saatchi
et al. [5] mapped biomass spatial distribution in the Amazon basin over this period at 1 km resolution
using the decision tree approach and a regression model, with an uncertainty greater than 70%.

3.2.13. Forest Structure, Biomass and Productivity in Amazonia at 5 km Spatial Resolution

Saatchi et al. [74] combined field data from 226 RAINFOR network plots and satellite observations
of leaf area index, tree cover, soil type, climate and topography, and derived Amazonia biomass data at
5 km spatial resolution using the MaxEnt method. This dataset was not validated with independent
plot data, and nor was it filtered, which could affect the estimated results. The uneven distribution of
the measured data could also introduce some uncertainties.

3.2.14. PALSAR-Derived AGB Map of Cambodia

Based on field biomass and PALSAR data, Avtar et al. [75] generated Cambodia’s AGB using a
multilinear regression model. Data uncertainties were mainly from the field data, allometric equations
and the saturation of the PALSAR data. The R2 and RMSE between the field-based biomass data and
the predicted biomass map were 0.61 and 63 Mg/ha, respectively.

3.2.15. Colombia AGB Maps

Anaya et al. [76] derived aboveground live biomass with a pixel size of 500 m in Colombia by
developing empirical models with field, enhanced vegetation index (EVI) and VCF data. The empirical
models were fitted independently for primary forest, secondary forest and savannas. The biomass
model performed better in low biomass regions and there was an underestimation tendency when
vegetation cover increased in secondary forests.
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3.2.16. Global Forest AGB Map at the 0.01◦ Spatial Resolution

Zhang et al. [77] integrated reference biomass datasets compiled from extensive field plot datasets
and high-resolution biomass maps, with multiple satellite high-level products including leaf area index,
forest height, forest cover, topographic and climatic variables using the random forest ensemble tree
regression algorithm, and estimated global forest AGB at 0.01◦ spatial resolution for the 2000s. Results
of cross-validation and inter-comparison with nine other published datasets showed that the generated
global forest AGB was more accurate than the published studies, with a coefficient of determination of
0.70 and RMSE of 46.91 Mg/ha, respectively.

3.3. High-Resolution AGB Maps from Field Measurements and LiDAR Data

3.3.1. LiDAR-Derived Estimates of Aboveground Biomass at Four Forested Sites, USA

Cook et al. [78] generated high-resolution biomass maps at four forest sites in the US (Garcia River
Tract in California, Anne Arundel and Howard Counties in Maryland, Parker Tract in North Carolina,
and Hubbard Brook Experimental Forest in New Hampshire) at 20–50 m resolution for the nominal
year 2011, by combining in situ, airborne and satellite observations with various statistical models.
Among these forest biomass maps, only the Maryland map was accompanied with an uncertainty
map. The error bounds (5% and 95% quantiles), as well as high biomass values were predicted using
the quantile random forest approach.

3.3.2. Aboveground Biomass for Penobscot Experimental Forest, Maine, 2012

Babcock et al. [79] combined field inventory data from the Penobscot Experimental Forest in Maine
and airborne LiDAR data acquired from a Hyperspectral & Thermal Imager using a space-varying
coefficients model, and provided biomass for the Forest in 2012, with a spatial resolution of 13 m.
The modelling approach accommodated temporal misalignment between field measurements and
remotely sensed data by including multiple time-indexed measurements at plot locations to estimate
changes in AGB [80].

3.3.3. LiDAR-Derived Aboveground Biomass, Canopy Height and Cover for Maryland, 2011

Dubayah et al. [81] generated a Maryland forest biomass map at 30 m spatial resolution in 2011 by
relating field measured biomass to LiDAR metrics using Random Forest regression models. The results
of the comparison with the 848 independent field data showed that the R2 was 0.49 and the RMSE was
89.3 Mg/ha. Overestimation of biomass occurred, particularly for low biomass estimations.

3.3.4. LiDAR-Derived Biomass, Canopy Height and Cover, Sonoma County, California, 2013

Using the same methods as Dubayah et al. [81], Dubayah et al. [82] generated a biomass map at
30 m spatial resolution for Sonoma County in California for the nominal year 2013. Validation results
with FIA data at the plot level showed estimated accuracy with the R2 of 0.67 and RMSE of 97.9 Mg/ha.

3.3.5. LiDAR-Derived Aboveground Biomass and Uncertainty for Californian Forests, 2005–2014

Xu et al. [83] produced an aboveground biomass map of Californian forests between 2005 and
2014 using FIA and airborne LiDAR data to explore the uncertainty of LiDAR remote-sensing-based
biomass estimation by performing error propagation analysis at both tree and plot level. This study
is among the first examples of AGB estimation and uncertainty analysis based on an individual tree
detection method [84]. The average uncertainty of estimated biomass was 153% at the tree level and
214% at the plot level. Errors originating from the generalized allometric equation contributed most to
total AGB uncertainty.
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3.4. AGB Maps Derived from a Combination of Field Biomass, LiDAR Data and Optical and/or Radar Data

3.4.1. LiDAR-Based Biomass Estimates, Boreal Forest Biome, Eurasia, 2005–2006

Neigh et al. [85] derived forest biomass for western Eurasia (roughly 50–70 N) from a series of
models with a spatial resolution of 500 m. Ground-based measured biomass was initially related to
Portable Airborne Laser System LiDAR metrics, then established biomass from this initial step was
related to Geoscience Laser Altimeter System (GLAS) data, and finally, extrapolated GLAS biomass
estimates were related to ancillary variables including land cover type data, ecoregion data, and
topographic data. Since field biomass and optical data do not match well in spatial resolution, some
forest biomass mapping studies use the above three-phase modelling method to combine field biomass,
LiDAR data and optical and/or radar data.

For eastern Eurasia forests, a two-phase sampling strategy was employed to derive biomass. Field
measurements were directly related with GLAS data without the airborne data intermediary phase.
Uncertainty of AGB datasets sourced from the sampling error and airborne–spaceborne model error
were quantified by a model-based and two-phase estimator used in previous studies [86,87].

3.4.2. NACP LiDAR-Based Biomass Estimates, Boreal Forest Biome, North America, 2005–2006

Using the same method as Neigh et al. [85], Margolis et al. [88] mapped the boreal forest AGB at a
500 m spatial resolution for North America with field measured biomass, airborne LiDAR and GLAS
data. Sampling and model uncertainties of generated biomass were also quantified using the method
of Neigh et al. [85].

3.4.3. The First AGB Map of Tropical Africa’s Forest

Baccini et al. [89] provided the first map of tropical Africa’s forest AGB on the basis of extensive
field measurements, 2003 GLAS data, and 2000–2003 MODIS observations using regression tree models.
Cross-validation results showed that the model explained 82% of the variance in AGB, with a root
mean square error of 50.5 Mg/ha. Mitchard et al. [90] suggested that this map tended to underestimate
in woodlands and overestimate in grasslands and savannas due to the usage of inappropriate field
data or an inappropriate model.

3.4.4. Benchmark Map of Forest Carbon Stocks in Tropical Regions across Three Continents

Saatchi et al. [19] generated an AGB map at a 1 km spatial resolution across tropical regions for the
early 2000s based on in situ AGB measurements and GLAS data plus optical and microwave imagery
to extrapolate over the landscape. They also calculated the BGB as a function of AGB (BGB = 0.489
AGB0.89). Total carbon stocks were 50% of total biomass (AGB + BGB). The uncertainty was calculated
by a Monte Carlo error propagation and reported to range from ±6% to ±53% at the pixel scale, and
was presented in an uncertainty map of carbon values.

3.4.5. Pantropical Map of Aboveground Live Woody Biomass Density

Baccini et al. [18] provided the first pantropical map of aboveground carbon at a 500 m resolution.
The map was generated by combining field data collected from 2008 to 2010, and GLAS data and
MODIS 500 m imagery during the period 2007–2008, with a Random Forest machine-learning algorithm.
The accuracy of the carbon density estimates was based on a 10% independent sample of GLAS-based
biomass estimates reserved for each continent, with RMSE of 25, 19 and 24 Mg C/ha for tropical
America, Africa, and Asia, respectively.
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3.4.6. Estimated Deforested Area Biomass in Tropical America, Africa, and Asia, 2000

Baccini et al. [91] provided predeforestation aboveground biomass estimates at 30 m resolution
for the year 2000 for the pantropical forests where deforestation occurred between 2000 and 2012.
The biomass map was a subset of the continental biomass maps in deforestation areas suggested
by Hansen et al. [45] and the additional national tree cover loss/deforestation data. The continental
biomass maps at 30 m spatial resolution were obtained by expanding methodology in Baccini et al. [18].
The statistical relationship established with field measured biomass and GLAS LiDAR metrics, as
described by Baccini et al. [18], was applied to estimate biomass at GLAS footprints. Then a random
forests model was trained by estimated GLAS biomass as well as geospatial datasets including Landsat
7 Enhanced Thematic Mapper Plus (ETM+) top-of-atmosphere reflectance and tree canopy cover from
the Global Forest Change dataset [45], elevation and climate data, to obtain an overall biomass map.

3.4.7. Republic of Panama Aboveground Carbon Density Map

Asner et al. [92] developed a high-resolution nationwide map of aboveground carbon density at
1-ha resolution for the Republic of Panama for the year 2012 using field plot and remote sensing data.
They initially performed a maximum likelihood analysis to fit a power-law model using field plot
data and GLAS-based tree canopy height, then used the Random Forest and stratification methods,
respectively, to generate two national aboveground carbon density maps, and finally compared the
maps. Results revealed the accuracy of carbon density estimated by the Random Forest method was
more accurate, corresponding to a bias < 15.3 Mg C ha−1. The average uncertainty of estimated carbon
density from field and LiDAR data by the Random Forest model was 20.5 Mg C ha−1 at the pixel level.

3.4.8. Peru Forest Aboveground Carbon Density Map

Asner, et al. [93] combined field plot and GLAS data, as well as vegetation indices, cover data,
and topographic and climate data using the Random Forest model and generated a Peru forest carbon
density map at 1-ha resolution. Validation of estimated results with field plot data showed a R2 of 0.74.

3.4.9. French Guiana AGB Map

Fayad et al. [94] produced a French Guiana AGB map at 1 km resolution using a calibrated
regression model and a combination of field data, spaceborne LiDAR, optical and radar data, as well
as environmental data. AGB precision estimates of 50.2 Mg/ha and a R2 of 0.66 was achieved at the
1000 m resolution, while RMSEs of the biomass map with a spatial resolution of 500 m and 2 km were
72.8 Mg/ha and 43.2 Mg/ha, respectively.

3.4.10. Madagascar AGB Maps

Vieillendent et al. [95] provided an AGB map of Madagascar forests for 2010, with a spatial
resolution of 250 m. Vieillendent’s map was derived by relating field biomass to MODIS EVI and VCF,
topography, and climate data through the use of Random Forest regression technique. Hajj et al. [96]
added forest inventory data collected from 1995–2013 and GLAS data acquired from 2003–2009 to this
dataset and then estimated biomass at GLAS footprints. They then calculated correction factors and
interpolated to produce a correction factor map using a kriging interpolation method, which was used
to update Vieillendent’s map. Validation of the updated biomass map with field data showed the R2

was 0.71, higher than the original aboveground biomass map (R2 = 0.62), and RMSE was 74.1 t/ha,
lower than the 2016 map with a RMSE of 81 t/ha.
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3.4.11. Northeast China AGB Map

Zhang et al. [97] produced this map at 500 m resolution for the year 2005 by combining field
biomass data, GLAS data and MODIS data using the Random Forest model. Both bootstrap resampling
and cross-validation techniques were used to quantify the uncertainties of estimated biomass sourced
from sampling and modelling. An uncertainty map was also provided along with the AGB map.

3.4.12. China Forest AGB Map

Su et al. [98] derived a China forest biomass map at a spatial resolution of 1 km from more
than 8000 field data points collected from published literature, GLAS data, optical imagery, climate
surfaces, and topographical data using a Random Forest model. Evaluation with an independent
dataset showed good map accuracy, with an R2 of 0.75 and RMSE of 42.39 Mg/ha.

3.4.13. Global Forest AGB Maps from Spaceborne LiDAR, Optical Imagery, and Forest Inventory Data

Hu et al. [99] provided a global forest biomass map at a spatial resolution of 1 km for 2004 by
integrating field data collected from published literature, optical imagery, GLAS data, climate surfaces,
and topographic data using the Random Forest model. Comparing the entire biomass map with field
data, an R2 of 0.56 and RMSE of 87.53 Mg/ha was achieved.

3.4.14. A Global Forest AGB Map at 1 km Spatial Resolution

Yang et al. [100] presented a global forest AGB map at 1 km spatial resolution for 2005 by combining
a referenced biomass dataset generated from field data and LiDAR-derived biomass product, satellite
LAI, gross primary production data, forest cover data, land cover type data, and auxiliary datasets
using the Gradient Boosting Regression Tree method. Validation results from a 20% independent
sample showed the accuracy of the estimated global forest AGB map had an R2 of 0.90 and RMSE of
35.87 Mg/ha.

3.5. AGB Maps from Other Data Sources

3.5.1. Northern Hemisphere Forest Carbon Density Map

Santoro et al. [101] presented a forest growing stock volume (GSV) map of boreal temperate
forest at a spatial resolution of 0.01 degree for 2010. The GSV data was estimated from Envisat
Advanced Synthetic Aperture Radar (ASAR) using the BIOMASAR algorithm, which was independent
of forest field inventory measurements. Uncertainty of the estimated GSV was lowest in boreal and
temperate forest and highest in subtropical forest, while at the administrative unit level, aggregated
GSV estimates were mostly in agreement with corresponding values from NFI. Based on GSV, as
well as wood density and biomass compartment data, Thurner et al. [102] provided forest carbon
density and a corresponding uncertainty map at 0.01◦ resolution in Northern Hemisphere boreal
and temperate regions (30◦–80◦N) for 2010. The accompanying uncertainty map could overestimate
dependent variable errors and thus should represent an upper bound of the uncertainty of the carbon
density estimates. Additionally, validation of the biomass map with independent datasets (Russian
forest enterprise data, the NBCD2000 and European national statistics) showed that R2 ranged from 0.7
to 0.9 at the regional scale.

3.5.2. Pan-Tropical Forest Biomass Map at 1 km Resolution for the 2000 s

Saatchi et al. [19] and Baccini et al. [18] produced pan-tropical AGB maps using similar methods
that integrated field data, GLAS data, and optical imagery. Avitabile et al. [103] combined both tropical
forest biomass maps with a pan-tropical AGB map at 1 km resolution using the bias removal and
weighted linear averaging method. They initially derived a high-quality biomass reference dataset
from abundant field observations and high spatial resolution reference maps, and then estimated forest
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biomass on the basis of reference data and additional covariates. This fusion approach was applied in
areas (strata) with homogenous input error patterns (Saatchi and Baccini) maps. The fused map was
validated by independent reference data, and results showed that the RMSE was 15%–21% lower than
that of the input maps.

3.5.3. A New High-Resolution Nation-Wide Aboveground Carbon Map for Brazil

Based on existing biomass maps and an up-to-date Land Use and Land Cover (LULC) map,
Englund et al. [104] presented a new high resolution (50 m) nation-wide aboveground carbon map for
Brazil. They evaluated this map with an independent reference dataset from Avitabile et al. [103], and
found high consistency between the two datasets with a corresponding R2 of 0.59.

3.5.4. GEOCARBON Global Forest Biomass Map

The GEOCARBON global forest biomass map at 0.01-degree resolution was derived by integrating
the pan-tropical biomass map [103] with the boreal forest biomass component [101]. It only included
areas defined as forests according to the GLC2000 map.

3.5.5. Global Forest Biomass Carbon Map from 1993 to 2012

Liu et al. [105] derived global forest biomass carbon estimates from 1993 to 2012 with a spatial
resolution of 0.25 degrees, from the empirical relationship between the AGB tropical regions map from
Saatchi et al. [19] and the VOD data estimated from a series of passive microwave data including Special
Sensor Microwave Imager (SSM/I), Advanced Microwave Scanning Radiometer for Earth Observation
System (AMSR-E), FengYun-3B Microwave Radiometer Imager (MWRI) and Windsat. The Saatchi
et al. [19] biomass map uncertainties added error to the final estimated results. The accuracy of the
biomass map in this study was difficult to assess due to its coarse spatial resolution.

3.5.6. Amazon Forest AGB Map at 1 km Spatial Resolution

Rödig et al. [106] derived the biomass distribution of the Amazon rain forest at a 1 km spatial
resolution by combining a canopy height map and an individual-based forest gap model. Comparison
of biomass with field data showed a slight underestimation by 15%. Their study approach provides a
foundation for large-scale analyses of heterogeneous forest structure, even in tropical regions.

3.5.7. Pan-European Map of Forest Biomass Increment

This pan-European biomass increment dataset at 1 km resolution was generated using MODIS
GPP data which was corrected by the GPP data derived from the Model Tree Ensemble (MTE) method
with FLUXNET observations [107]. This map was highly consistent with observed data from National
Forest Inventories.
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Table 1. Summary of regional and global forest AGB maps.

Region Base Year Pixel Size Forest Mask Methodology Accuracy/Uncertainty Provider

Global 2000 1 km GLC2000
Stratify and multiply (IPCC

defaults, GLC2000,
ecoregion zones)

Not reported Ruesch and Gibbs [49]

Global 1950–2010,
every 5 years 1◦ A compilation of land

use maps
Interpolation (FAO, MCPFE,

and UNECE) Not evaluated formally Hengeveld et al. [53]

Global 2005 0.5◦ GLC2000 Downscaling (FRA biomass,
NPP, human activity data) Not reported Kindermann et al. [54]

Global 1993–2012 0.25◦ MODIS IGBP land
cover products

Regression (VOD data,
Saatchi et al. map) Not reported Liu et al. [105]

Global 2004 1 km MODIS Land Cover
Type (MCD12Q1)

Random forest model (field data,
GLAS data, optical imagery,

climate data, and
topographic data)

R2 = 0.56;
RMSE = 87.53 Mg/ha

Hu et al. [99]

Global 2005 1 km MODIS land cover
products

Gradient Boosting Regression
Tree method (field data, MODIS,

GLASS products, SRTM,
climate data)

R2 = 0.90;
RMSE = 35.87 Mg/ha (Independent

validation data were compiled
from field data and

LiDAR-derived gridded data)

Yang et al. [100]

Global 2000 s 0.01
Hansen et al. 2013

forest cover map (10%
tree cover)

Random Forest algorithm
(reference AGB data, GLASS
data products, climate and

topographic data)

R2 = 0.70;
RMSE = 46.91 Mg/ha

Zhang and Liang [77]

Northern
Hemisphere 2010 0.01◦ GLC2000 BIOMASAR algorithm (ASAR,

field inventory data) R2 = 0.70~0.90 at regional scales Thurner et al. [102]

Pan-European 2000–2010 1 km
Land Cover UMD

classification
MOD12Q1

Model Tree Ensemble method
(GPP, FLUXNET observations) R2 = 0.92 at regional level Busetto et al. [107]

Europe 2010 1 km CORINE Land Cover
2006 map

IPCC Tier 1 method (FRA data,
CORINE Land Cover data) Not validated at the pixel level Barredo et al. [51]
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Table 1. Cont.

Region Base Year Pixel Size Forest Mask Methodology Accuracy/Uncertainty Provider

Europe 2000 500 m/10 km CORINE Land Cover
2000 map

Downscaling method (NFI data,
MODIS data, meteorological

data, and land cover data)

R = 0.97;
Mean absolute error = 25 m3/ha

(for growing stock)
Gallaun et al. [70]

Russia 2000 500 m GLC2000 and
MOD12Q1

Random Forest model (field data
and MODIS reflectance data) R2 = 0.61 (variance explained) Houghton et al. [71]

Eurasia 2005–2006 500 m MOD12Q1

Two and three-phase modelling
(field data, GLAS data, land

cover, ecoregion, and
topographic data)

R2 = 0.60;
RMSE = 58.47 Mg/ha

Neigh et al. [85]

China 2001–2013 1 km Vegetation map of
China

Model tree ensembles approach
(field data, MODIS reflectance
data, climate data and forest

type map)

R2 = 0.46;
RMSE = 22.7 Mg/ha

Yin et al. [72]

China 2004–2008 5.5 km
MODIS Land Cover

Type product
MCD12C1

Downscaling approach (field
inventory statistics and

MODIS data)
R2 = 0.761 Du et al. [73]

China 2000 1 km Chinese land use map

Random forest model (field data,
GLAS data, optical imagery,

climate data, and topographic
data)

R2 = 0.75;
RMSE = 42.39 Mg/ha

Su et al. [98]

Northeast China 2005 500 m MODIS VCF (10%
tree cover)

Random Forests model (field
biomass data, GLAS data, and

MODIS data)

R2 = 0.82;
RMSE = 32.69 Mg/ha;

Bootstrap uncertainty =
25.80 Mg/ha

Zhang et al. [97]

North America 2005–2006 500 m EOSD2000 and
NLCD2001

Three-phase modelling (field
data, airborne LiDAR, GLAS

data, and MODIS data)
Relative error = 1.9% Margolis et al. [88]

Canada 2001 and 2011 250 m EOSD land cover data
kNN (NFI data, MODIS data,
climate and topographic data,
and land cover information)

R2 = 0.62;
Relative root mean-squared

deviation = 69.2;
Relative mean deviation = 1.47

Beaudoin et al. [68]
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Table 1. Cont.

Region Base Year Pixel Size Forest Mask Methodology Accuracy/Uncertainty Provider

United States 2000 30 m NLCD 2001
Regression tree modelling (FIA

data, Landsat, NLCD land cover,
and SRTM)

R = 0.7;
RMSE = 139 Mg/hm2 Kellndorfer et al. [59]

United States 2001 250 m NLCD92

Classification and regression tree
modelling (FIA data, MODIS

data, land cover data, and
ancillary information)

R = 0.31~0.92;
Relative Error = 0.51~0.92 Blackard et al. [44]

Conterminous
U.S. 2000–2009 250 m NLCD tree canopy

cover

Phenological Gradient Nearest
Neighbor (FIA data, MODIS data,

and ancillary geospatial data)

Described by agreement coefficient,
Kolmorogov-Smirnov statistic, and
the slope of the reduced major axis

regression line

Wilson et al. [63]

Alaska 2009–2010 30 m NLCD 2001 regression analysis (field AGB
data and Landsat data)

Mean absolute error = 21.8 Mg/ha;
Mean bias error = 5.2 Mg/ha Ji et al. [64]

Garcia River
Tract, Anne

Arundel and
Howard

Counties, Parker
Tract, and

Hubbard Brook
Experimental

Forest

2011 20–50 m – Several statistical models (field
data and LiDAR data)

Represented by the 95%
confidence interval Cook et al. [78]

Maine 2012 13 m –
Space-varying coefficients model
(field inventory data, and LiDAR

data)
RMSE = 17.52 Mg/ha (prediction) Babcock et al. [79]

Maryland 2011 30 m – Random Forest regression model
(field data, and LiDAR data)

Represented by the 95%
confidence interval Dubayah et al. [81]

Sonoma County 2013 30 m CALVEG land
cover product

Random Forest regression model
(field data, and LiDAR data)

Represented by the lower 10th

percentile and upper 90th

percentiles of confidence interval
Dubayah et al. [82]
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Table 1. Cont.

Region Base Year Pixel Size Forest Mask Methodology Accuracy/Uncertainty Provider

Mexico 2004–2007 30 m INEGI land use map

Random Forest modelling (field
inventory data, Landsat data,

MODIS data, PALSAR data, and
SRTM data)

R2 = 0.5;
RMSE = 14 t C/ha (in the case of

flat terrain)

Cartus, Kellndorfer,
Walker, Franco, Bishop,
Santos and Fuentes [65]

Mexico 2008 250 m INEGI land use map
MaxEnt (field inventory data,

MODIS data, PALSAR data, and
SRTM data)

R2 = 0.31;
RMSE = 17.3 t C/ha

Rodríguez-Veiga et al.
[66]

Tropical Africa
and southeast

Asia

1980 and
2000 0.045◦ GLC2000

Rule-based GIS models (climate
data, soil, topographic data, and

land-use information, and
population data)

Not reported Gibbs and Brown
[57,58]

Tropical regions early 2000s 1 km MODIS VCF (10%
tree cover)

MaxEnt (field measurements,
GLAS data, optical and

microwave imagery)
Uncertainty from±6% to ±53% Saatchi et al. [19]

Pan-tropical
regions

Circa
2007–2008 500 m MODIS IGBP land

cover type
Random Forest algorithm (field
data, GLAS and MODIS data)

RMSE = 25 Mg C/ha for tropical
America, 14 Mg C/ha for Africa,

and 24 Mg C/ha for Asia
Baccini et al. [18]

Pan-tropical
regions 2000 30 m

Hansen et al. 2013
data and national tree

cover
loss/deforestation

data

Random Forest model (field data,
Landsat, GLAS, SRTM, and

climate data)
Not reported Baccini et al. [91]

Pan-tropical
regions 2000–2008 1 km GLC2000

Weighted linear averaging
method (biomass reference
datasets, Saatchi et al. 2011

biomass map and Baccini et al.
2012 biomass map)

RMSE = 87~98 Mg/ha;
Mean error: almost null in most

cases
Avitabile et al. [103]

Africa 2000 1 km GLC2000 Regression tree model (field data,
GLAS, and MODIS data)

R2 = 0.82;
RMSE = 50.5 Mg/ha

Baccini et al. [89]

Amazon 2005 40 m and 1 km –
Combination (canopy height

map and individual-based forest
gap model)

R2 = 0.41;
RMSE = 73 Mg/ha

Rödig et al. [106]
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Table 1. Cont.

Region Base Year Pixel Size Forest Mask Methodology Accuracy/Uncertainty Provider

Amazon basin 2000–2004 1 km

Vegetation map of the
Amazon basin

derived from remote
sensing data

Decision tree approach (field
data, MODIS, QSCAT, SRTM,

JERS-1 and climate data)
More than 80% accuracy Saatchi et al. [5]

Amazon basin 2000–2004 5 km –
MaxEnt (field data, MODIS,

QSCAT, SRTM, climate data, and
soil data)

Not reported Saatchi et al. [74]

Brazil Not for a
specific period 50 m Up-to-date

LULC map
Combination (exiting biomass

maps, and LULC map) R = 0.59 Englund et al. [104]

Cambodia 2009–2010 50 m
Land use/land cover

map based on ASTER
2005 data

Multiple linear regression (field
plots, PALSAR, and SRTM) R2 = 0.61; RMSE = 21 Mg/ha Avtar et al. [75]

Colombia 2001–2006 500 m IGAC forest map Regression method (field data
and MODIS data) Not reported Anaya et al. [76]

Panama 2008–2012 1 ha –
Random Forest algorithm (field
plot data, GLAS, MODIS, SRTM

data, and climate data)

Average pixel-level uncertainty =
20.5 Mg C/ha Asner et al. [92]

Peru 2012–2013 1 ha –
Random Forest algorithm (field
data, airborne LiDAR, MODIS,

SRTM, and climate data)

R2 = 0.82;
RMSE = 27.4 Mg C/ha (modelled

relationship between
top-of-canopy height and

aboveground carbon density)

Asner et al. [93]

French Guiana 2003–2012 1 km Forest landscape
type map

Regression Kriging technique
(field data, GLAS, MODIS,

PALSAR, geological map, forest
landscape data, and climate data)

R2 = 0.48;
RMSE ~= 51 Mg/ha

Fayad et al. [94]

Madagascar 2010 250 m

The cloud-free year
2000 forest map
obtained from

Harper’s map and
Hansen tree
cover map

Random Forest regression (field
biomass, MODIS, topography,

and climate data)

R2 = 0.70;
RMSE = 40 Mg/ha

Vieillendent et al. [95]
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4. Comparison of Forest AGB Maps over Large Regions

For a specific region, several forest AGB maps might be available, but they may exhibit
discrepancies in both magnitude and spatial distribution. Their agreements and discrepancies were
assessed by metrics including the difference maps, the Fuzzy Numerical (FN) index, and variograms
used in previous studies, for example, the comparison of available Uganda forest AGB maps in
Avitabile et al. [108], for the conterminous USA by Neeti and Kennedy [109], and for pan-tropical maps
in Mitchard et al. [110]. In this section, the comparison of AGB regional and global forest maps over
Europe, the conterminous U.S.A., Southeast Asia, tropical Africa and South America are presented.

In addition to the spatial distribution of forest AGB maps, we counted the percentage of pixels
with AGB values of 10 Mg/ha bins in each dataset, and compared their similarities and differences
in frequency distributions across Europe, the conterminous U.S.A., Southeast Asia, tropical Africa
and South America. Different definitions of forests were adopted in the generation of these AGB
datasets to separate forest and nonforest, which could cause significant discrepancies in the frequency
statistics, particularly in regions with lower AGB that were mainly surrounded by woody savannas
and savannas. Therefore, the global land cover climatology dataset derived from MODIS Land Cover
Type from 2000 to 2010 was used to distinguish the main forest types [111]. Furthermore, the spatial
agreements and disagreements in dominant types of forests in these AGB datasets were assessed
with the FN index separately. The FN index in this paper was the average of pixel-level numerical
similarities, and thus measured the overall similarity of spatial patterns between two forest AGB
maps. Details about the calculation of pixel-level numerical similarity could be found in previous
studies [108]. The FN index ranged from 0 to 1, which represented the two datasets were fully distinct
and fully identical, respectively.

4.1. Europe

Among the eight forest AGB maps covering Europe, AGB in Hu et al. [99] was greater than
the other seven datasets in Western Europe, while Zhang and Liang [77] showed almost the highest
AGB in most parts of Europe, especially in Russia (Figure 1). The frequency distributions of
these AGB maps with 10 Mg/ha bins showed that in Neigh et al. [85] biomass was in the range
of 30~50 Mg/ha, and half of the pixels had AGB ranging from 40 Mg/ha to 50 Mg/ha (Figure 2).
The frequency distributions were similar in three global forest AGB datasets including that of
Hu et al. [99], Yang et al. [100] and Kindermann et al. [54]. The majority of the pixels in the datasets
of Yang et al. [100] and Kindermann et al. [54] had AGB ranging from 70 Mg/ha to 80 Mg/ha, and for
Hu et al. [99], it shifted to 120 ~ 130 Mg/ha. Distributions in both Thurner et al. [102] and Zhang and
Liang [77] approximated a bell shape, but the frequency peak was offset to higher AGB for the Zhang
and Liang [77] dataset compared to Thurner et al. [102].

According to the global land cover climatology dataset, regions shown in Figure 1 were mainly
evergreen needleleaf forest, mixed forest, and woody savannas. The FN index showed that most
forest AGB maps were consistent with each other in the evergreen needleleaf forests and mixed
forests over Europe. However, there was spatial disagreement in AGB between Neigh et al. [85]
and Zhang and Liang [77], between Neigh et al. [85] and Hu et al. [99], and between Yang et al. [100]
and Zhang and Liang [77] in evergreen needleleaf forest. Furthermore, there was also spatial
disagreement in AGB between Neigh et al. [85] and Zhang and Liang [77], and between Neigh et al. [85]
and Barredo et al. [51] in mixed forest (Figure 3). However, the eight AGB datasets were almost
entirely inconsistent in woody savannas, suggesting large discrepancies in woody savanna estimates
over Europe.
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Figure 2. Frequency distribution of AGB with 10 Mg/ha bins in eight maps covering Europe.
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Figure 3. The average value of the fuzzy numerical index in eight forest biomass maps of evergreen
needleleaf forest, mixed forest, and woody savannas in Europe.

4.2. Conterminous United States

Among the eight forest maps for the Conterminous United States, Wilson et al. [63] had the
lowest AGB probably due to serious underestimation, suggested by one of our studies [77] (Figure 4).
Statistical analysis of the Wilson et al. [63] dataset showed the majority of pixels had AGB less than
80 Mg/ha (Figure 5). In the Liu et al. [105] dataset, most forest pixels also had low AGB, most of which
were located in the eastern regions of the U.S.A. (Figures 4 and 5). Similar to the frequency distributions
of AGB over Europe, the Hu et al. [99], Yang et al. [100] and Kindermann et al. [54] datasets were
similar, but different, to the other datasets. The percentage of pixels with AGB about 150 Mg/ha were
highest in the three global AGB datasets. The Kellndorfer et al. [59] and Blackard et al. [44] datasets
were basically similar, both in magnitude and spatial distribution. Although these two datasets were
specially developed for the U.S.A., there remains much room for improvement in the accuracy of AGB
estimates since the reported correlation coefficients were only from 0.31 to 0.73. Compared to AGB
estimates in Kellndorfer et al. [59] and Blackard et al. [44], AGB frequency distributions in Zhang and
Liang [77] were dispersed, and generally larger.

Different definitions of forests were adopted in AGB mapping, which may have caused significant
discrepancies in the spatial distribution of forest AGB maps across the Conterminous United States
(Figure 4). A comparison of AGB datasets for dominant forest types showed that the Wilson et al. [63]
data were quite different from others in the evergreen needleleaf forest, the deciduous broadleaf forest,
the mixed forest and the woody savannas, and the spatial differences with Zhang and Liang [77] were
the most obvious of the four forest types (Figure 6).
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4.3. Southeast Asia

Saatchi et al. [19], Baccini et al. [18], Avitabile et al. [103] and Zhang and Liang [77] provided
similar forest AGB spatial distributions across Southeast Asia, while Hu et al. [99] and Yang et al. [100]
provided similar results especially in the tropical regions, where AGB was considerably higher than
the other datasets (Figure 7). In southern China, AGB was less than 60 Mg/ha, the lowest among the
eight forest datasets (Kindermann et al. [54]; Figure 7). Across southeast Asia, the majority of AGB
estimates in Kindermann et al. [54] ranged from 30 to 120 Mg/ha, which was far from realistic (Figure 8).
Additionally, there were substantial discrepancies in the spatial and frequency distribution between
AGB from this dataset and from other datasets (Figures 7 and 8). Similarly, differences between the
Liu et al. [105] dataset and the others were also quite significant.

Figure 8 showed that among the eight forest AGB maps over Southeast Asia, the
Avitabile et al. [103] and Zhang and Liang [77] datasets were quite similar, with the majority of
AGB estimates from about 50 to 230 Mg/ha. The Avitabile et al. [103] dataset was generated by the
fusion of the Saatchi et al. [19] and Baccini et al. [18] datasets using the bias removal and weighted
linear averaging method, and should represent a more precise AGB map across the pan-tropical regions.
The use of a similar method, also suggests more precise AGB estimates from the Zhang and Liang [77]
dataset for Southeast Asia. The percentage curves of Hu et al. [99] and Baccini et al. [18] showed two
peaks corresponding to AGB of about 150 Mg/ha and 300 Mg/ha, respectively. For the Yang et al. [100]
dataset, most pixels had AGB of around 250 Mg/ha, and compared with other datasets, more pixels
had AGB higher than 350 Mg/ha.
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For evergreen broadleaf forests, AGB maps were spatially in agreement expect for the
Kindermann et al. [54] and Yang et al. [100] datasets (Figure 9). However, in the mixed forest and
especially in woody savannas, spatial differences in these AGB maps were evident. AGB for mixed
forest in Baccini et al. [18] was quite different from other mixed forest maps, and there were large
discrepancies between the Yang et al. [100] map and other datasets for woody savannas.
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Figure 8. Frequency distribution of AGB with 10 Mg/ha bins in eight maps covering Southeast Asia.
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Figure 9. The average value of the fuzzy numerical index in eight forest biomass maps of evergreen
broadleaf forest, the mixed forest, and woody savannas over Southeast Asia.

4.4. Tropical Africa

The Hu et al. [99] and Yang et al. [100] datasets had higher AGB than the other seven datasets shown
in Figure 10 over tropical African forests, which was in agreement with comparable results in Southeast
Asia. The majority of pixels had AGB > 280 Mg/ha, and few pixels had AGB < 180 Mg/ha, probably
because both datasets used the MODIS land cover types to separate forest and non-forest, and the regions
covered with woody savannas and savannas were masked (Figures 10 and 11). The Liu et al. [105]
dataset differed from others in AGB spatial and frequency distributions over tropical Africa. In the
regions with higher AGB, the Baccini et al. [89] and Liu et al. [105] datasets had lower AGB compared
to the other datasets (Figure 10). The Saatchi et al. [19] and Baccini et al. [18] datasets were both
spatially and statistically similar, while the Zhang and Liang [77] dataset, although somewhat similar,
had higher AGB in the high AGB regions. In accordance with Zhang and Liang [77], Hu et al. [99], and
Yang et al. [100], the Avitabile et al. [103] dataset had higher AGB in the evergreen broadleaf forests
(Figures 10 and 12). However, as most of the tropical regions were covered with woody savannas and
savannas and not evergreen broadleaf forests, the percentage curve (Figure 11) in Avitabile et al. [103]
showed that most pixels had AGB < 50 Mg/ha due to lower AGB estimates for regions covered with
woody savannas and savannas.
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Figure 11. Frequency distribution of AGB with 10 Mg/ha bins in nine maps covering tropical Africa.

Statistical analysis of the spatial similarities and differences of these AGB datasets in different
forest types showed that the nine AGB datasets in Figure 10 were spatially similar in evergreen
broadleaf forests, but somewhat dissimilar in regions covered with woody savannas and savannas
(Figure 12). In particular, the Hu et al. [99] and Yang et al. [100] datasets were quite different to other
datasets in the woody savannas and savannas.
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4.5. South America

Among the seven forest AGB datasets shown in Figure 13, the Kindermann et al. [54] dataset had
the lowest AGB, while the Hu et al. [99] and Yang et al. [100] datasets had higher AGB than other
datasets over almost all of South America. The higher AGB in Kindermann et al. [54] was mainly from
150 to 200 Mg/ha. The majority of pixels in the Yang et al. [100] and Hu et al. [99] maps had AGB of c.
290 and 320 Mg/ha, respectively. The Saatchi et al. [19], Avitabile et al. [103], and Zhang and Liang [77]
datasets were somewhat consistent with one another, while the percentage curves revealed that only
when AGB was > 200 Mg/ha, did they follow similar distributions (Figure 14). However, in regions
where AGB was lower, most pixels in Zhang and Liang [77] ranged from 60 to 150 Mg/ha, higher than
the corresponding 10~60 Mg/ha of Saatchi et al. [19] and 0~40 Mg/ha of Avitabile et al. [103], but much
lower than the Kindermann et al. [54], Liu et al. [105], Hu et al. [99], and Yang et al. [100] datasets.
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As was shown in the comparisons across Southeast Asia and tropical Africa, forest AGB datasets
were spatially similar in evergreen broadleaf forest, but substantially different in the savannas across
South America (Figure 15). The AGB in the Kindermann et al. [54] dataset was different from others,
especially from Yang et al. [100] in evergreen broadleaf forest. While in the savannas, the Hu et al. [99]
and Yang et al. [100] datasets were similar, but quite different from the others.
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5. Limitations of Current AGB Maps and Future Improvements

5.1. Compilation of Field Biomass Data

The above efforts to generate accurate forest AGB maps mainly focus on the application of
multiple datasets and advanced algorithms, while few efforts have been made to ensure the accuracy
of field biomass data. Furthermore, the allometric equations used to calculate field biomass and the
representativeness of field biomass are major sources of uncertainties of estimated AGB on a regional
scale [112–115]. Additionally, most AGB maps are not validated due to lack of field biomass data.
Therefore, the acquisition and compilation of abundant and highly accurate field biomass data, which
would ensure the accuracy of biomass mapping, is of utmost importance.
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Currently, researchers of several international networks such as RAINFOR (the Amazon Forest
Inventory Network, http://www.rainfor.org/), AfriTRON (African Tropical Rainforest Observation
Network, www.afritron.org), and ForestGEO (Global Earth Observatory, https://forestgeo.si.edu/)
network, have engaged in utilizing long-term permanent sample plots to monitor forest biomass
and dynamics [116]. The Forest Observation System (FOS, https://forest-observation-system.net/)
which includes, but is not limited to data records from these networks, is tasked to coordinate in situ
activities in relation to the BIOMASS mission [117]. The biomass plot data will be in unified format,
and processed with standardized procedures. With the development of these international networks,
sufficient field plots with acceptable accuracy will be available which would improve the calibration
and validation of remotely sensed data-based biomass estimation on a large scale.

Previous studies indicate the possible limitations of using field plots for “truthing” due to the
existence of plot biases and errors, particularly for heterogeneous landscapes [118]. Therefore, future
forest biomass studies could use LiDAR as the sampling technique to complement to field-plot sampling.

5.2. Data Sources for Forest AGB Mapping

Although relationships between retrieved forest parameters and biomass have been demonstrated,
their correlations vary in regions and are sometimes poor [119]. A full exploration of the relationships
between forest biomass and its related parameters at different spatial resolutions as well as the
associated factors influencing these relationships should be performed. The detailed relationships
could be further utilized to improve the accuracy of AGB mapping.

Another limitation is that current AGB maps are retrieved mainly from optical data acquired
by TM/ETM+ and MODIS sensors, which are known to saturate even at lower biomass and thus
unable to acceptably capture high biomass values. The use of SAR and LiDAR data could help
improve this problem to some degree, but currently, less than 1/3 of AGB maps are generated with
a combination of field biomass, LiDAR data, optical and/or SAR data. The inclusion of SAR and
LiDAR data should be fully considered for the future generation of biomass maps on a large scale [120].
Moreover, hyperspectral data look promising for improving the accuracy of biomass estimates, due
to their capabilities of providing information on vegetation health and species composition [121,122].
The use of hyperspectral data in combination of other sensors in future studies should be considered
to improve biomass mapping on a large scale.

5.3. Novel Approaches to Forest AGB Mapping

Current AGB maps retrieved from remotely sensed datasets mainly use GIS-based modelling
methods based on some assumptions or empirical algorithms. Along with the development of machine
learning algorithms, in particular deep learning algorithms, more advanced data-driven algorithms or
a hybrid modelling that couples physical process models with data-driven machine learning could be
considered in large-scale forest biomass mapping [123].

5.4. Accuracy Assessment

Uncertainties in AGB maps arise from uncertainties in sampling methods, modelling algorithms,
datasets used, the choice of allometric equations, and the mismatch of field data and remotely sensed
data [9]. Most AGB mapping studies have not fully quantified these uncertainties. The methods used
for quantifying mapping uncertainties include the Monte Carlo error propagation approach [66,83,124],
bootstrap techniques [97], confidence intervals [78,125], and model-based estimators [86,87]. However,
these published studies have only partially quantified uncertainties in the estimation, more effective and
efficient methods to express and quantify uncertainty in all its forms are needed [126,127]. Moreover,
the uncertainty caused by temporal mismatches in datasets has often been ignored. Since studies use
field data to calibrate remotely sensed datasets, temporal mismatches between measured field data
and predictors could lead to uncertainties in estimated biomass. Comprehensively addressing more
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sources of uncertainty would help to better understand the accuracy of generated biomass maps and
further promote the application of biomass maps in related fields.

5.5. Forest Biomass Dynamics

Although many algorithms have been developed to detect trends or monitor forests, few can
be directly used to estimate biomass changes or dynamics [128,129]. Quantifying forest biomass
dynamics remains a challenging task. One reason is that current biomass maps have inherently large
uncertainties, and the discrepancies in biomass estimates could be even larger than the actual changes in
the forest AGB [110]. A further reason is that forest biomass is changing due to intervening disturbance
and growth [23,130–132]. Much efforts have been made on the detection of disturbances, but little is
known about the biomass losses and gains due to these disturbances and the following recovery from
disturbances. From a dataset perspective focused on the study of forest biomass dynamics, long-term
permanent plot data cannot be applied to large areas due to adequate sampling constraints, while
remotely sensed data can detect forest area changes but remain less capable of detecting forest carbon
density, especially where the changes is subtle [118,133,134]. To infer forest AGB dynamics accurately
in the future, we should on one hand continue to improve accuracy of biomass estimates, and on
the other hand, broaden our knowledge of biomass losses and gains due to all kinds of disturbance
and recovery.

6. Conclusions

In this paper, we reviewed the existing regional and global forest AGB maps, including five
maps obtained through GIS-based modelling; sixteen maps produced by integrating field biomass
data directly with optical and/or radar data; five high-resolution maps retrieved from field biomass
data and LiDAR data; fourteen maps generated from a combination of field data, LiDAR data, and
optical and/or radar data; and seven maps generated or regenerated using existing biomass datasets.
In spite of numerous efforts to map the spatial distribution of forest AGB with a variety of datasets
and advanced methods, current AGB maps still contain large uncertainties. Comparison of biomass
datasets across Europe, the conterminous United States, Southeast Asia, tropical Africa and South
America, suggested that they were almost entirely inconsistent, particularly in woody savannas and
savannas. The uncertainties in AGB maps could be from the allometric equations used to calculate field
data, the choice and quality of remotely sensed data, as well as the algorithms to map forest biomass
or extrapolation techniques, but have not been fully quantified. We suggest the future directions for
generating more accurate large-scale forest biomass maps should concentrate on the compilation of
field biomass data, novel approaches of forest biomass mapping, and comprehensively addressing the
accuracy of generated biomass maps.
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