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A New Method for Generating a Global Forest
Aboveground Biomass Map From Multiple
High-Level Satellite Products and
Ancillary Information

Lu Yang*, Shunlin Liang

Abstract—Global forest aboveground biomass (AGB) is very im-
portant in quantifying carbon stock, and, therefore, it is necessary
to estimate forest AGB accurately. Many studies have obtained re-
liable AGB estimates by using light detection and ranging (LiDAR)
data. However, it is difficult to obtain LiDAR data continuously at
regional or global scale. Although many studies have integrated
multisource data to estimate biomass to compensate for these
deficiencies, few methods can be applied to produce global time
series of high-resolution AGB due to the complexity of the method,
data source limitations, and large uncertainty. This study developed
a new method to produce a global forest AGB map using multiple
data sources—including LiDAR-derived biomass products, a suite
of high-level satellite products, forest inventory data, and other
auxiliary datasets—to train estimated models for five different
forest types. We explored three machine learning methods [artifi-
cial neural network, multivariate adaptive regression splines, and
gradient boosting regression tree (GBRT)] to build the estimated
models. The GBRT method was the optimal algorithm for gener-
ating a global forest AGB map at a spatial resolution of 1 km. The
independent validation result showed good accuracy with an R?
value of 0.90 and a root mean square error value of 35.87 Mg/ha.
Moreover, we compared the generated global forest AGB map with
several other forest AGB maps and found the results to be highly
consistent. An important feature of this new method is its ability
to produce time series of high-resolution global forest AGB maps
because it heavily relies on high-level satellite products.

Index Terms—Biomass, global, machine learning, multiple
satellite products.

I. INTRODUCTION

HE largest ecosystem on the earth is the forest, which is
the main carbon sink [1]. Changes in forests can lead to a
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series of environmental and climate changes [2]-[4]. Therefore,
effective long-term monitoring of forest biomass in space is
necessary. For forest biomass, because of the difficulty mea-
suring belowground biomass (BGB), most studies focus on
aboveground biomass (AGB) [5], which accounts for a large
proportion of total forest biomass. The BGB was usually calcu-
lated based on AGB by the conversion ratio. Therefore, in this
article, we only focus on forest AGB estimating.

Presently, the methods of estimating forest biomass can be
divided into three categories: the measured-based methods, the
model-based simulation methods, and the remote sensing-based
methods [6]-[10]. Since remote sensing technology can obtain
a wide range of data quickly, lots of studies have used different
remote sensing data and field data to estimate forest AGB by us-
ing different algorithms at a regional scale [11]-[14]. Although
lots of studies can get reliable estimates of the forest AGB,
few methods can generate a time-series global forest AGB data.
Hence, the development of a method to generate a time-series
global forest AGB data is important.

Trees absorb carbon dioxide (CO3) from the atmosphere and
use photosynthetically active radiation to convert the COs into
organic matter through photosynthesis. In the process of trees
accumulation biomass, many structural parameters are closely
related to biomass. Leaf area index (LAI) is an important param-
eter for quantitative analysis of trees growth and photosynthesis
processes, and is also the primary parameter in many ecosystem
models [15], [16] and forest AGB estimation [17], [18]. In
addition, the net primary productivity (NPP) reflects the forest
over time accumulated huge amounts of carbon, which is the
amount of organic carbon stocked by photosynthesis. Numerous
studies have confirmed that NPP has a certain correlation with
forest AGB [19], [20]. Directly using gross primary productivity
(GPP) instead of using NPP may avoid the propagation error,
because the NPP cannot directly be obtained by remote sens-
ing. Additionally, the canopy height can describe the vertical
information of the forest, which is a key parameter used to
estimate forest AGB and can reduce the uncertainty of the
prediction [21], especially for areas with high biomass density
[22], [23]. Different tree species have different structures and are
distributed in different physiognomy and climate regions that
have a certain impact on the growth environment of the plants
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TABLE I
REFERENCE DATA USED IN THIS STUDY
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TABLE II
LiDAR-DERIVED FOREST AGB DATASETS

Region Numbers of plots Reference
Africa 260 [29]
South America 481 [30,31]
Asia 18 [31]
Eurasia 1345 [32]
Global 100 [20]
Global 898 [33]
Canada 96 [34]
Global 371 [10]

and affect the estimation of the forest AGB [24]. Moreover,
the geographic conditions, which have an impact on the soil and
climate [24], [25], indirectly affect the growth of forest. Whether
the structural parameters of the tree or the environmental and
topographic parameters, they can be obtained by remote sensing
technology, and lots of them are high-level time-series remote
sensing data. Using this rich information to develop the esti-
mate models of forest AGB, the accuracy could be improved.
Additionally, this method mainly relied on high-level remote
sensing data; therefore, it has the ability to produce time series
of high-resolution global forest AGB maps.

The objective of this study was to improve the estimation of
global forest AGB by integrating reference data [light detection
and ranging (LiDAR)-derived biomass datasets and field mea-
surements], high-level products from remote sensing data (LA,
GPP, VCF, and land cover type), canopy height, climate vari-
ables, and topographic data using machine learning technique.
To achieve this goal, we built machine learning models for five
separate types of forest: Evergreen Needleleaf Forest (ENF),
Evergreen Broadleaf Forest (EBF), Deciduous Needleleaf For-
est (DNF), Deciduous Broadleaved Forest (DBF), and Mixed
Forests (MF). We explored three machine learning methods,
including artificial neural network (ANN), multivariate adaptive
regression splines (MARS), and gradient boosting regression
tree (GBRT). After comparing the performances of these mod-
els, we selected the GBRT algorithm to produce the global forest
AGB map in 2005. We validated the results using a reference
biomass dataset and also compared these results with other AGB
maps in numerical and spatial distribution. Additionally, we
analyzed the relative importance of covariables at regional and
global scales.

II. DATA AND METHODOLOGY
A. Data

1) Reference Dataset: In this study, we collected field data
and some LiDAR-based biomass data as reference data. The field
data were collected from published papers, as shown in Table I.
The LiDAR-based biomass data (see Table II) were mainly from
the Oak Ridge National Laboratory Distributed Active Archive
Center (ORNL DAAC) [26], [27], which produces many LiDAR
biomass datasets with good accuracy and can be download

Region Spatial Reference Metadata Reference
resolution year
North 500 m 2005-2006  GLAS, SRTM, [26]
America WWF Ecozone,
NLCD
Eurasia 500 m 2005-2006  ALTM, WWE, [27]
GLAS, NLCD
Tropical ~ 1km 2000 Reference maps, [28]

reference field
data

Note: GLAS: Geoscience Laser Altimeter System; SRTM: Shuttle Radar Topography
Mission; WWEF: World Wildlife Fund; NLCD: National Land Cover Database.

from'. LIDAR-based biomass data in tropical forest areas were
collected from [28].

To reduce the uncertainty, these reference datasets should be
screened by some criteria. Field data should be finely georefer-
enced; the area of the plot should be larger than 0.05 ha [28], [35];
the average diameter at breast height used to screen the seedling
should be larger than 5 c¢m, and if it has very high biomass
value in low VCF value or low biomass value in high VCF
value, it should be defined as an outlier. Data should represent
the five types of surface cover mentioned earlier. If the field
data did not meet these requirements, we removed them. For
matching other variables, the field data should be aggregated to
a spatial resolution of 1 km by calculating the mean value of the
corresponding field data in pixels of 1-km spatial resolution.

In this study, as shown in Table IT, we used the LiDAR-derived
forest AGB maps over North America and Eurasia from the
ORNL DAAC. These LiDAR-derived forest biomass maps were
generated by fusing field data, LiDAR data, and other remote
sensing data. For tropical forest areas, the forest AGB data
presented in [28] was used as the reference data. This dataset
integrated two tropical forest AGB maps to generate a more ac-
curate tropical forest AGB dataset with 1-km spatial resolution,
as shown in Table II.

Additionally, as Avitabile and Camia [36] suggested, the
extremely high value of AGB was abnormal over 1 km?: hence,
for the biomass data (the field data and LiDAR-derived biomass
dataset) used in this study, we removed the extreme value, which
was higher than the highest datum and lower than the lowest
datum.

2) High-Level Satellite Products From Optical Sensors: We
selected the Global LAnd Surface Satellite (GLASS) as the
source for the LAI and GPP data. GLASS products have been
generated from multiple satellite data for long-term environ-
mental change studies [37], [38], and the number of products
has increased from the original 5 to 12. The GLASS LAI
product [39] has better accuracy and quality compared with
other satellite LAI products [40], [41], and its GPP product
is based on the light-use efficiency model developed earlier
[42]. The GLASS data have a long time series, and its high-
precision, global surface, remote sensing products are based
on multisource remote sensing data, and ground measured data
[38]. These products provide a reliable basis for studying global

1Online. [Available]: https://daac.ornl.gov/about/
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environmental change and can be widely used in global, inter-
continental, and regional dynamic monitoring of atmospheric
change and vegetation cover [43]-[45]. Therefore, the satellite
products [e.g., GLASS LAI and GPP and Moderate Resolution
Imaging Spectroradiometer (MODIS) data], which represent the
physical variables of land surfaces and were derived from the
low-level products (satellite observed radiance or reflectance),
are called high-level satellite products. These products are
available on the National Earth System Science Data Sharing
Infrastructure” and through the University of Maryland Global
Land Cover Facility?.

We collected the VCF and Land Cover Type datasets from the
MODIS. The MODIS VCF dataset has 500-m spatial resolution,
with annual temporal resolution. In this study, the land cover data
product, which was classified based on the IGBP classification
standard, can be obtained from the MODIS website*. In this
study, we built five land-cover-type models, including ENF, EBF,
DNF, DBF, and MF models.

3) Topographic Data: The topographic data, a digital eleva-
tion model (DEM), is collected from the NASA/NGA SRTM
[46]. The DEM data had two different spatial resolutions: one
that was 30 m and another that was 90 m. For consistency, we
aggregated the DEM with 90-m spatial resolution to a 1-km
resolution by resampling. The DEM data can be obtained from®.

4) Climate Data: In this study, monthly mean temperature
and total precipitation data were used as variables to estimate
forest AGB [47]. Daily precipitation data were collected from
CRU®, ata spatial resolution of 0.5°, which extended coverage
from 90 S to 90 N [48]. We summed this daily information to pro-
duce monthly precipitation. The temperature dataset from CRU,
with a spatial resolution of 0.5° [48], and the daily temperature
were aggregated into monthly mean temperature.

5) Canopy Height: Canopy height has a strong relationship
to forest AGB and can provide the vertical information of forest
structure. In this study, global canopy height data had 1-km
spatial resolution in 2005. The data were from the GLAS aboard
Ice, Cloud, and land Elevation Satellite [49]. The canopy height
map showed a reasonable correspondence with field data, and
the validation results had an R? value of 0.49. This canopy height
dataset can be obtained from’.

B. Methodology

Estimating global forest AGB using multisource remote sens-
ing data and auxiliary data consisted of the following three steps,
as shown in Fig. 1.

The first step was data preprocessing. Because of the different
sources of data used in this study, we had to unify the spatial
resolution and geographic projection to reduce the uncertainty
caused by geographic location. We unified the datasets used in
this study by projecting data into the same geographic projection

2Online. [Available]: http://www.geodata.cn
3Online. [Available]: http:/glcf.umd.edu/

4Online. [Available]: https:/modis.gsfc.nasa.gov
3Online. [Available]: http:/www.cgiar-csi.org/data/
%Online. [Available]: https://crudata.uea.ac.uk/cru
7Online. [Available]: http:/lidarradar.jpl.nasa.gov/
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Fig. 1.

(WGS-84) and then aggregating data to the same spatial resolu-
tion (1 km) using the nearest neighbor method. In addition, only
the cells with low uncertainty (<10%) were selected from the
LiDAR-derived biomass maps as the reference dataset. Because
the uncertainty maps were not provided, we used the pixels that
corresponded to the training field data as reference data. If the
training data and uncertainty map were not provided, the cells
were randomly selected from the LiDAR-derived biomass to be
the reference data. Furthermore, the LiDAR-derived biomass
maps were not directly measured. Therefore, we reduced the
difference between the measured data and the LiDAR data by
averaging the corresponding measured data within 1 km pixels.
Accurate calibration of raw LiDAR data should be done at field
plot resolution. But field data was only a small portion of a pixel
in this study, we could not do this calibration. Therefore, we just
reduced the difference between the measured data and LiDAR
data and not calibrated it.

The second step was building the model. In this study, we
modeled the five types of land cover (i.e., ENF, EBF, DNF,
DBF, and MF) using the same steps. Monthly values for LAI,
GPP, precipitation, and temperature and yearly values for VCF,
DEM, and canopy height were used as the explanatory variables.
To increase computational efficiency and to remove redundant
information, we used principal component analysis to reduce
the dimensions of the monthly explanatory variables [50] (e.g.,
LAI GPP, precipitation, and temperature). After generating the
dataset, we randomly selected 80% of its data, as a training
dataset, to build models based on the ANN, MARS, and GBRT
algorithms. ANN provides a powerful approach for analyzing
complicated relationships among variables. MARS is a non-
parametric and multivariate regression analysis method, with
powerful generalization ability, especially applicable to situa-
tions using high-dimensional data [51]. They are widely used in
forest AGB estimating [52]. The GBRT method, suggested by
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TABLE III
BASIC INFORMATION OF OTHER FOREST AGB MAPS USED FOR CONTRASTING

AGB Map  Region Year Resolution Reference

H map Global 2004 1 km [57]

Z map Global 2005 1km [55]

T map Northern 2005-2006 1 km [58]
Hemisphere

S map Pan-tropic 2000 1 km [59]

B map Pan-tropic 2007-2008 500 m [60]

Friedman [53], is an iterative decision tree that uses the additive
model and the forward distribution algorithm to combine several
weak classifiers into a strong classifier by different proportions
[54]. The GRBT method has not widely used in forest AGB
estimating. In this study, we used the three machine learning
methods to build forest AGB estimation models. In addition,
the testing dataset, which was a randomly selected 20% of the
generated dataset, was used to validate these models.

The third step was mapping. Based on the training and testing
results for the ANN, MARS, and GBRT algorithms, we deter-
mined the optimal models of the five different types of land
cover by comparing their respective R? and root mean square
error (RMSE) values. We used the identified optimal model and
explanatory variables to generate the global forest AGB map.

C. Accuracy Assessment

In this study, we not only used the R* and RMSE to assess our
estimated accuracy but also used a difference map and fuzzy
numerical (FN) map to assess the predicted results. We used
other regional and global forest AGB maps (see Table III) to
do the comparison with our map. The global forest AGB map
produced by Zhang and Liang [55] (subsequently called the Z
map) was not yet published and was obtained through contact
with the author. We calculated the difference maps from the pixel
value of our forest AGB estimated map minus the corresponding
pixel value of the other forest AGB maps. We derived the FN
value, which represented the spatial distribution similarity of
two raster maps—that is, the higher the FN value, the greater
the spatial similarity of the two maps [56]. Calculating the FN
value, we should choose the calculated window [56], and in
order to directly compare the spatial similarity between the two
maps, the window in this article was 1 x 1.

D. Uncertainty Analysis

In addition to the global forest AGB map, we calculated the
uncertainty caused by the sample distribution uncertainty. We
refer to uncertainty in terms of the standard deviation (SD) of the
biomass value of the bootstrap resampling, which is often used
to quantize the uncertainty of biomass estimates [35], [59], [61].
The main idea of bootstrap resampling is to have a replacement
sample in the original sample to obtain new samples. Using
machine learning methods to retrieve forest AGB, the training
dataset would influence the results of prediction. Therefore,
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TABLE IV
APPLICATION RESULTS OF THREE MACHINE LEARNING ALGORITHMS ON
EACH LAND COVER TYPE ON TRAINING DATASET

Land Cover Type  Methods RMSE (Mg/ha)  R?
GBRT 16.72 0.82
ENF ANN 18.17 0.79
MARS 21.01 0.72
GBRT 57.11 0.71
EBF ANN 64.50 0.63
MARS 75.45 0.50
GBRT 13.11 0.88
DNF ANN 17.42 0.78
MARS 24.27 0.59
GBRT 27.28 0.86
DBF ANN 29.61 0.83
MARS 35.50 0.76
GBRT 36.95 0.77
MF ANN 39.67 0.75
MARS 47.56 0.62

we should use bootstrap resampling to estimate the uncertainty
caused by the spatial distribution of the training sample. In this
study, we used ten bootstraps to set up biomass models, as
this was considered the computation efficiency. The predicted
biomass values were the average value of the ten bootstrap
estimates, and the uncertainties were the SD values of the ten
bootstrap estimates.

III. RESULTS ANALYSIS
A. Performance of Different Machine Learning Methods

The training results for the three machine learning methods
(i.e., ANN, MARS, and GBRT) across the five different types
of land cover (i.e., ENF, EBF, DNF, DBF, and MF) are given
in Table IV. We compared two of the statistics indexes: R?
and RMSE. Based on a comparison of results, across the five
different types of land cover in the training dataset, we found
that the predictive abilities of the GBRT model were better than
the other models in this study. The R? values, based on the GBRT
model, were 0.82,0.71, 0.88, 0.86, and 0.77 for ENF, EBF, DNF,
DBEF, and MF, respectively, which were higher than those for the
other two models. For the five types of land cover, the RMSEs
achieved by the GBRT model were also lower than the other
two models for the five different types of land cover, as shown
in Table IV.

The performance results for the testing dataset for ENF,
EBF, DNF, DBF, and MF, based on the three machine learning
methods, are presented in Table V. As for the testing dataset,
the R? values based on the GBRT model were higher than those
achieved for either the ANN model or the MARS model across
the five different types of land cover at 0.79, 0.69, 0.83, 0.84,
and 0.75, respectively. The RMSE values for the GBRT model
also were lower than those achieved for either the ANN or the
MARS models for the five different types of land cover.

A model’s evaluation should consider not only its precision
but also its efficiency. The computational times for the models
are shown in Table VI. In this study, all the models were built
on a computer with Microsoft Windows 7 system, a 3.40-GHz
Intel Core and 20 GB memory. As shown in Table VI, in general,
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TABLE V
APPLICATION RESULTS OF THREE MACHINE LEARNING ALGORITHMS ON
EACH LAND COVER TYPE ON TESTING DATASET

Land cover type Methods RMSE (Mg/ha)  R?
GBRT 17.86 0.79

ENF ANN 18.20 0.78
MARS 20.76 0.71
GBRT 58.90 0.69

EBF ANN 63.24 0.62
MARS 75.41 0.49
GBRT 15.63 0.83

DNF ANN 18.81 0.76
MARS 24.89 0.57
GBRT 28.71 0.84

DBF ANN 29.98 0.82
MARS 35.35 0.75
GBRT 38.66 0.75

MF ANN 39.87 0.73
MARS 47.52 0.62

TABLE VI

MEAN ELAPSED TIME (IN SECONDS) FOR DEVELOPING A MODEL USING THE
MACHINE LEARNING METHOD FOR FIVE DIFFERENT TYPES OF LAND COVER

Land cover type = Methods Training time Number
GBRT 7s

ENF MARS 34s 654334
ANN 2448 s
GBRT 65s

EBF MARS 3s 6177765
ANN 291141 s
GBRT 4s

DNF MARS 4s 68017
ANN 267 s
GBRT 12s

DBF MARS 7s 311741
ANN 485 s
GBRT 189 s

MF MARS 120's 38163620
ANN 145793 s

the GBRT model was more efficient than the ANN and MARS
models, in particular, for the large training dataset. For example,
the speeds of the GBRT model were within 4 min of each
other, whereas the speeds of the ANN model were more than
40 min for EBF and DBF. The computational efficiencies of the
GBRT models and MARS models had similar running speeds
when training models with large datasets, which were better than
those of the ANN models. Considering both estimation accuracy
and operating efficiency, we determined the GBRT model to be
relatively suitable for estimating global forest AGB in this study.

B. Global Forest AGB Mapping

After a review of the comparative results achieved by the
three machine learning methods on the five different types of
land cover, the final map of the global forest AGB estimation
was derived from the GBRT model. To compare this map with
the other forest AGB maps listed in Table III, we produced
a global forest AGB map using input variables applicable to
the year 2005. Fig. 2(a) shows the spatial distribution of the
global forest AGB estimated map with a mean biomass density
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Fig. 3. Predicted biomass against referenced biomass data.

of 174.33 Mg/ha. As shown in Fig. 2(a), the maximum value
for forest AGB appeared in the pan-tropical forest area, whereas
a relatively low forest AGB value was achieved by the boreal
forest area, which is situated primarily in North America and
Eurasia.

We assessed the uncertainty of the AGB estimation, caused by
the training sample distribution uncertainty, using the SD from
the ten bootstrap samples and gave the value of 11.95 Mg/ha.
As shown in Fig. 2(b), the value of the overall uncertainty was
not large, but it was still relatively high in some regions. For
example, in southern China and parts of the tropical forest area
where the biomass density was high, the value of the uncertainty
was larger than 20 Mg/ha.

In this study, we randomly selected 20% of the reference data
for validation, as shown in Fig. 3. The predicted forest AGB
map was fitted relatively well with the reference data that the
R? value between the estimated and reference AGB was 0.90
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and the RMSE was 35.87 Mg/ha. Compared with numerous
studies using LIDAR wavelength data and field data to establish
an estimated model, the accuracy of this study was comparable.
Additionally, the data processing aspect of this study was easier
than direct use of LiDAR data, and it can improve the efficiency
of estimation. Additionally, this method mainly relied on high-
level remote sensing data. Therefore, it has the ability to produce
time series of high-resolution global forest AGB maps.

C. Comparison With Other Regional Forest AGB

To further evaluate our results, we compared our estimated
forest AGB map with other AGB maps covering various areas.
We used the FN value to analyze the spatial differences between
our AGB map and others based on diverse forest types and used
difference maps to evaluate these comparisons.

1) North America: For North America, we used forest AGB
maps derived by Thurner et al. [58] (the T map), Hu et al.
[57] (the H map), and Zhang and Liang [55] (the Z map) for
comparison with our forest AGB map.

The FN value between our AGB and H and that between
our map and Z map was high [see Fig. 4(b) and (c)], whereas
the FN value between our AGB and T map was relatively low
[see Fig. 4(a)], which means the spatial distribution between
our AGB map and T map has large difference. As shown in
Fig. 5(a), our map gave higher values than the T map, which
may have been caused by the growing stock volume (GSV) data
they used, which were derived from SAR [13]. They used the
GSV data to derive biomass reached saturation with high GSV
values (>300 m3/ha), which resulted in lower AGB estimates
than others.

Compared with H and Z maps, as shown in Fig. 4(b) and
(c), the FN value of DNF type was lower than other forest
types (ENF, EBF, DBF, and MF). In North America, DNF was
mainly distributed at high altitudes with low biomass density,
whereas the DNF estimation model in this study did not fit well
on low biomass density. However, the main forest types in North
America were ENF and MF. The FN value of ENF type between
our AGB and H map was mainly ranged from 66.90 to 86.55,
and that between our AGB and Z map was ranged from 43.13
to 65.22. The FN value of MF type between our AGB map and
these two maps, H and Z maps, were relatively high, as shown
in Fig. 4(b) and (c). This indicated that these two forest AGB
maps, the H and Z maps, were similar to our forest AGB map on
spatial distribution. However, the absolute value of our AGB map
exhibited slightly lower values than these two maps [see Fig. 5(b)
and (c)], and the average differences between our map and the
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H map and the Z map were —50.03 Mg/ha and —70.22 Mg/ha,
respectively.

2) Eurasia: Due to the underestimation of T map, in Eurasia,
the spatial distribution of our AGB was less similar to that of T
map [see Fig. 6(a)], the mean difference between our map and
the T map was 51.91 Mg/ha, and the relative error was 41.59%
[see Fig. 7(a)].

In Eurasia, the main forest types were MF and DNF. On
these two forest types, the spatial distribution of our AGB was
relatively similar to that of the H map, because the FN value of
MEF and DNF types was ranged from 69.35 to 91.01 and 62.43 to
88.09, respectively, as shown in Fig. 6(b). However, there were
still some distinctions between our map and H map. In southern
Russia, the value of our estimated AGB was higher than that of
H map. Whereas as a whole, the mean difference value between
our predicted value and the H map was —21.56 Mg/ha, and the
relative error was 15.63% [see Fig. 7(b)]. Hu et al. [S7] used field
data, auxiliary data, and extrapolated GLAS waveform data to
establish a random forest model to estimate the forest AGB.
The field data they used, however, were unevenly distributed
in the Eurasian region [62]. The use of extrapolated GLAS
waveform data also could lead to certain errors. Therefore, the
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estimated results in some parts of Eurasia in the H map had a
lot of uncertainty. In the Tin Holt Mountains region of Russia,
our estimated AGB map and the Z map have some significant
differences [see Fig. 7(c)], and the forest AGB estimated in this
study in the western part of Russia was smaller than the Z map. In
the Eurasian region, the mean difference between our estimation
AGB map and the Z map was —74.45 Mg/ha, which may be
caused by using different reference data.

3) Pan-Tropical Forests: In pan-tropical forest areas, the
main forest type was EBF, followed by DBF, whereas other
forest types were less. As shown in Fig. 8, for EBF type, the FN
value between our AGB map and the AGB estimated from [59]
(S map) and [60] (B map), H map, and Z map was relatively
high, and the main ranges of FN value were 71.34-90.23,
64.39-92.04, 84.28-95.53, 74.15-91.08, respectively. For other
forest types, there were some differences in spatial distribution
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Fig. 9. Difference maps comparing our estimated map for pan-tropical forest
areas and (a) S map (our map minus S map), (b) B map (our map minus B map),
(c) H map (our map minus H map), and (d) Z map (our map minus Z map).

between our AGB map and S, B, H, Z maps. For DBF type, the
FN value between our estimated AGB and that from H map and
Z map was relatively low. It indicated that the spatial distribution
similarity between them was small. In the pan-tropical region,
DBF was mainly distributed in southeastern Bolivia, western
Paraguay, northern Argentina, and near the Peruvian Andes. Due
to the limitation available field or plot data, the complexity of the
geographical environment in these regions, and the different data
sources of varied products, there were significant distinctions
between different products in these regions, as shown in Fig. 9.

As shown in Fig. 9(a) and (b), results from our predicted
map were slightly higher than that of the S and B maps. The
main difference between our estimated AGB map and the S
map appeared in northwest Brazil and the northeastern part of
the Congo [see Fig. 9(a)]. Overall, the mean difference value
between our AGB map and S map was 52.91Mg/ha. In addition,
our AGB density was higher than that of the B map, and the large
difference values mainly situated in Paraguay and the Gabonese
region of central and western Africa, as shown in Fig. 9(b). In
general, the averaged difference between our estimated AGB
map and the B map was 75.07 Mg/ha, which was similar to
the results shown in Mitchard, et al. [63]. Mitchard, er al.
[63] assessed B map by using lots of field data and indicated
the B map was underestimated. In addition, the value of our
estimated forest AGB map was slightly lower than the Z map
[see Fig. 9(d)], especially in the Congo Basin. The average
difference value between the Z map and our estimated map
was —70.30 Mg/ha. This may be caused by using different data.
However, compared with other products, the difference between
our estimated AGB map and the H map was relatively small at
—21.87 Mg/ha [see Fig. 9(c)].
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IV. DiscussIiON
A. Relative Importance of Variables

In estimating global forest AGB, we discussed the relative
importance of variables, and this showed how valuable each
variable was in the construction of the boosted decision trees
within the model. After we built the GBRT models, it was
relatively simple to obtain importance scores for each predicted
variables, because a trained GBRT model can automatically
calculate the importance of variables. Technical information on
how variables’ importance can be calculated in boosted decision
trees can be found in [64].

In this study, the variables used in the estimation of global
forest AGB included monthly total precipitation, monthly mean
temperature, tree height, DEM, annual maximum LAI, monthly
total GPP, and annual mean VCFE. As shown in Fig. 10, generally,
canopy height was the most important variable in estimating
global forest AGB, followed by precipitation and temperature.
The other variables contributed less in estimating forest AGB in
this study. This conclusion was similar to most research results
that showed canopy height has a strong correlation with forest
AGB, and itis an important parameter for estimating forest AGB
[21], [49], especially for areas with high biomass density [22],
[23], such as pan-tropical forest areas, where ENF was mainly
distributed.

Precipitation and temperature can be summarized as meteo-
rological factors. For forest AGB, meteorological factors would
affect plant growth and carbon sequestration capacity [15], [65].
In other words, precipitation can provide water and energy
for plants growth, and temperature can affect the sequestration
capacity of plants by affecting photosynthesis [19]. In addition,
the temperature would also affect the respiration rate of plants
and, thus, affecting the energy consumption of plants. Therefore,
precipitation and temperature were important variables used to
estimate forest AGB. As shown in Fig. 10, for DNF type, me-
teorological factors were the most important estimation factors,
as DNF was mainly distributed at high latitudes, with relatively
flat terrain and low biomass density.

Other variables used in this study, such as GPP, LAI, and
VCEF, described the horizontal structural information of forests,
which may correlate with precipitation and temperature. Hence,

these variables had a smaller contribution in estimating forest
AGB. The best estimation results were obtained only by using
all variables.

We also analyzed the relative importance of variables for the
AGB-estimated GBRT model at a regional scale. As shown in
Fig. 11, precipitation was the most important variable for the
AGB-estimated GBRT model built from the training dataset
in North America. Additionally, precipitation and temperature
provided the main information for the estimated GBRT model
in Eurasia. This indicated that the climate factors were the most
important variables for the AGB-estimated GBRT model in the
Northern Hemisphere. The forest in the Northern Hemisphere
was the primary mature forest, and the climate was the pri-
mary controlling factor for AGB [33]. In China, most forests
were relatively young [66], which were still in the growing
stage; therefore, as shown in Fig. 11(c), canopy height was
the most important estimation factor. Additionally, in Brazil,
high regional forest biomass density and vertical information
of forest structure (canopy height) gave more information than
other variables for estimating AGB, as shown in Fig. 11(d). On
the whole, the relative importance of variables is different in
different regions.

B. Limitations of the Current Study

In this study, the global forest AGB map retrieved by the
GBRT model showed good precision compared with indepen-
dent reference data and other forest AGB maps; however, room
for improvement still remains.

Currently, we used several LiDAR-generated biomass maps
(see Table IT), which were retrieved by establishing the relation-
ship between LiDAR waveform data and field data to estimate
forest AGB. Although we chose the pixels that had relatively
low uncertainty (<10%) as the reference data, there was still a
certain degree of error.

In addition, since the field data collection year did not ex-
actly match the year of LiDAR-generated biomass data, the
calibration process, using the field data to establish a regression
relationship with LiDAR-generated biomass data to correct the
LiDAR-generated biomass data, produced some errors because
the growth of the AGB during this time was not considered.
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In this study, the average value of field data with the same
geographic location but with different collected times was taken
as the true value of the corresponding forest AGB. This may
reduce the error associated with forest AGB growth, but it would
be smaller if more field data could be collected.

Furthermore, in the process of establishing a relationship
between the reference data and other variables (e.g., LAI, GPP,
VCE, and precipitation), we may have produced geographical
matching errors, which could have affected the accuracy of the
final biomass map. Additionally, in the current study, uncertain-
ties may have been introduced by other variables (e.g., LAI,
GPP, and VCF). These potential sources of error need to be con-
sidered in future forest AGB estimation studies. Additionally,
if high-quality LiDAR-derived biomass data can be collected to
estimate global forest AGB, accuracy may be improved.

V. CONCLUSION

In this study, we developed a method to estimate global forest
AGB by integrating the LiDAR-derived forest AGB datasets,
field measurements, high-level products from optical satellite
data, and other ancillary data. We selected the optimal algo-
rithm, GBRT, after comparing AGB estimation and the compu-
tational efficiencies from three machine learning methods. We
generated the 2005 global forest AGB map using the optimal
algorithm. The mean value of the global forest AGB in 2005
was 174.33 Mg/ha. The mean uncertainty caused by training
sample distribution uncertainty was 11.95 Mg/ha. The R? of
validation with independent reference data was 0.90 and that
of RMSE was 35.87 Mg/ha. The contrast results between our

forest AGB map and other maps showed good consistency in
spatial distribution. Furthermore, the variables used in this study
were almost time continuous, making it possible to produce
continuous forest AGB maps, which may contribute to global
carbon and environmental research. In this study, we produced a
2005 global forest AGB map. Our method may be easily applied
to generate time-series maps. Further research should explore
temporal changes in global forest AGB.
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