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Abstract: Many advanced satellite estimation methods have been developed, but global forest
aboveground biomass (AGB) products remain largely uncertain. In this study, we explored data
fusion techniques to generate a global forest AGB map for the 2000s at 0.01-degree resolution with
improved accuracy by integrating ten existing local or global maps. The error removal and simple
averaging algorithm, which is efficient and makes no assumption about the data and associated
errors, was proposed to integrate these ten forest AGB maps. We first compiled the global reference
AGB from in situ measurements and high-resolution AGB data that were originally derived from
field data and airborne lidar data and determined the errors of each forest AGB map at the pixels
with corresponding reference AGB values. Based on the errors determined from reference AGB data,
the pixel-by-pixel errors associated with each of the ten AGB datasets were estimated from multiple
predictors (e.g., leaf area index, forest canopy height, forest cover, land surface elevation, slope,
temperature, and precipitation) using the random forest algorithm. The estimated pixel-by-pixel
errors were then removed from the corresponding forest AGB datasets, and finally, global forest AGB
maps were generated by combining the calibrated existing forest AGB datasets using the simple
averaging algorithm. Cross-validation using reference AGB data showed that the accuracy of the
fused global forest AGB map had an R-squared of 0.61 and a root mean square error (RMSE) of
53.68 Mg/ha, which is better than the reported accuracies (R-squared of 0.56 and RMSE larger than
80 Mg/ha) in the literature. Intercomparison with previous studies also suggested that the fused AGB
estimates were much closer to the reference AGB values. This study attempted to integrate existing
forest AGB datasets for generating a global forest AGB map with better accuracy and moved one
step forward for our understanding of the global terrestrial carbon cycle by providing improved
benchmarks of global forest carbon stocks.
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1. Introduction

Forest aboveground biomass (AGB) is considered an essential climate variable and plays an
important role in the climate system and the global carbon cycle [1]. Accurate estimation of forest AGB
and its dynamics have been gaining widespread attention from the research community. Many scholars
have attempted to map the spatial distribution of forest AGB across large regions from satellite
observations using various algorithms, and a great number of AGB maps have thus been generated
from local to global scales, with a spatial resolution mainly ranging from 250 m to 1 km [2–4]. For some
specific regions, high-resolution AGB maps (e.g., 30 m) are also available [5,6].
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On the global scale, Ruesch and Gibbs [7] provided the first spatially explicit estimate of vegetation
biomass and carbon stocks at a 1-km resolution for the year 2000. They compiled a total of 124
carbon zones or regions with unique carbon stock values using the IPCC (International Panel on
Climate Change) Tier-1 method and then mapped these unique carbon zones with spatial datasets,
including land cover maps, ecoregions zones, and forest age, to generate the gridded carbon stock
dataset. However, field data were not used in the generation or validation of the biomass dataset,
and little is known about the uncertainties of the global carbon stock dataset. Following this study,
Hengeveld et al. [8] provided global forest biomass at 1◦ spatial resolution with five-year intervals from
1950 to 2010 with forest area and growing stock data. Kindermann et al. [9] produced a global forest
biomass dataset at 0.5◦ spatial resolution for the year 2005 based on the forest resources assessment
(FRA) biomass and the assumed linear relationships between net primary production and biomass and
between human activity and biomass. Liu et al. [10] derived global forest biomass carbon estimates at
0.25◦ spatial resolution from 1993 to 2012 from the empirical relationship between the Saatchi et al. [11]
AGB map and the vegetation optical depth data that were estimated from passive microwave data.
However, due to the lack of field data in these studies and the coarse spatial resolution of generated
biomass maps, it is difficult to evaluate the accuracies of these global biomass datasets. Recently,
some studies have adopted more advanced approaches for generating global forest AGB maps by
integrating field data with multiple satellite datasets and ancillary data using machine learning
algorithms. For example, Hu et al. [12] mapped the global forest AGB at 1 km resolution for the
year 2004 through the integration of field inventory data, the Geoscience Laser Altimeter System
(GLAS) data, optical imagery, climate surfaces, and topographic data using random forests (RF) model.
Validation results with field data showed that the AGB map achieved accuracy with R2 of 0.56 and
RMSE of 87.53 Mg/ha. Yang et al. [13] presented a global forest AGB map at a 1 km resolution for 2005
by combining field data with multiple satellite products, including leaf area index (LAI), gross primary
production, canopy height map, vegetation continuous fields using the gradient boosting regression
tree algorithm. Validation results from 20% independent samples, which were compiled from field
data and regional biomass maps, showed the accuracy of generated forest AGB map had an R2 of
0.90 and RMSE of 35.87 Mg/ha. Despite these efforts to map forest AGB, substantial inconsistencies
and uncertainties remain in existing forest AGB maps [14]. Different studies have produced quite
diverse biomass maps in terms of both the magnitude and spatial distributions due to the uncertainties
in the allometric equations used to calculate field biomass and the usage of different satellite data
and mapping algorithms to estimate regional biomass [15,16]. To improve the situation, some recent
studies have proposed reducing relevant uncertainties by comprehensively compiling field reference
datasets [17], developing more advanced machine learning algorithms [18], and using novel remote
sensing techniques (e.g., the European Space Agency P-band radar data and the Global Ecosystem
Dynamics Investigation Lidar data) [19,20]. An alternative and promising method for improving the
accuracy of AGB mapping is postprocessing the existing AGB maps using data integration or fusion
techniques. Currently, a large number of forest AGB maps have been generated from multisource data
using diverse algorithms [14], which offers the possibility of improving the accuracy of AGB mapping
by combining this complementary information and advantages of each individual AGB map using
data integration algorithms.

Data integration or data fusion is not novel in remote sensing fields. Previous studies have
integrated multiple high-level satellite data products to estimate parameters with higher accuracy
in geoscience [21,22]. For example, Chatterjee et al. [23] applied a simple geostatistical data fusion
approach to merge multiple aerosol optical thickness (AOT) datasets and obtained an optimal fused
AOT dataset. To solve the computational bottleneck that occurs when geostatistical data fusion methods
are used for massive remote sensing datasets, Nguyen et al. [24] employed the spatial statistical data
fusion approach in which the spatial covariance term was expressed by spatial basis functions and
Gaussian random variables to integrate multiple AOT datasets. Wang and Liang [25] used the empirical
orthogonal function (EOF)-based data integration method to estimate the leaf area index (LAI) from
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multiple high-level satellite data products and achieved significantly improved results compared with
each of the original products. Compared with geostatistical approaches, the EOF-based algorithm is
easy to implement and does not require a precalculated covariance model and estimation error matrix.
In addition, studies on integrating satellite-derived products have included the multiresolution tree
(MRT) method to fuse multiple land surface broadband albedo products, land surface emissivity, and the
fraction of absorbed photosynthetically active radiation by green vegetation [26–28], the Bayesian
maximum entropy method to fuse multiple-satellite AOD products and sea surface temperature
products [29,30], and the geographically weighted regression model to integrate different global land
cover maps and forest cover products [31,32].

However, in the field of forest AGB mapping, integrating available forest AGB maps to generate
more accurate results has been largely ignored. Currently, few studies have attempted to combine
existing forest AGB maps for a more accurate estimation of forest AGB. Ge et al. [33] first combined
three source biomass maps covering East Africa with reference datasets using the weighted averaging
approach and obtained more accurate biomass maps than each of the individual source biomass
maps. Following this study, Avitabile et al. [34] fused pantropical forest biomass maps produced by
Saatchi et al. [11] and Baccini et al. [4] using bias removal and the weighted linear averaging method
and improved the estimation of forest AGB across pantropical regions. Here, we aimed to make the
best use of existing AGB maps from local to global scales to generate a global forest biomass map with
greater accuracy than existing AGB maps.

As noted, many algorithms have been proposed to integrate satellite data products. However,
most of them are based on the assumption that satellite products have white noise that follows a
normal distribution [21], which is rarely satisfied by regional and global forest AGB data. Additionally,
the complex structures of these fusion algorithms affect the computational efficiency for calculating
the weightings of individual datasets, which limits their application on a large scale [35]. Instead of
only considering the effectiveness of the fused results, linear combination methods can achieve good
results in effectiveness and efficiency and thus have received much attention in information retrieval,
especially in the big data environment [36]. The linear combination method can be very flexible since
different weights can be easily assigned to different data products. According to the weights used
in the combination, diverse linear combination methods have been developed, but which weighting
schema is good remains an open question [37]. In this study, to reduce the complexity of the fusion
algorithm that was used to generate a more accurate global forest AGB map, we proposed a linear
combination algorithm that first removes the corresponding errors from gridded forest AGB datasets
and then simply averages the calibrated forest AGB data for the fusion of multiple forest AGB datasets.
The objectives of this study were thus to (1) improve the accuracy of biomass estimates by integrating
multiple forest AGB maps with the proposed error removal and simple averaging algorithm and (2)
generate an accurate forest AGB map at a global scale.

2. Materials and Methods

2.1. Regional and Global Source AGB Maps

We collected existing regional and global forest AGB maps that were derived from satellite
observations. If more than one version of a gridded AGB map was available, the improved version
with higher accuracy was used for the fusion algorithm in this study. Ten forest AGB maps were finally
selected and served as input layers for global forest AGB mapping (hereafter referred to as source AGB
maps). The 10 source AGB maps should represent state-of-the-art AGB estimates covering different
regions. To facilitate description, they were named producers plus biomass (e.g., Avitabile biomass) if
they did not have a specified name. The spatial and temporal coverage, spatial resolutions, and mapping
algorithms of 10 source AGB maps are listed in Table 1, and more details about these datasets can be
found in the corresponding references.
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Table 1. A summary of the ten regional and global forest biomass datasets used in this study.

Spatial Coverage Spatial
Resolution Base Year Forest Mask Mapping Algorithms

(Spatial Predictors) Reference

Pan-Tropical 1 km 2000s GLC2000 Weighted linear averaging
(two existing datasets) Avitabile et al. [34]

Northern
Hemisphere 0.01◦ 2010 GLC2000 BIOMASAR algorithm (ASAR,

field inventory data) Thurner et al. [3]

Eurasia 500 m 2005–2006 MODIS land
cover type

Two and three-phase
modeling (field data, GLAS
data, land cover, ecoregion,

and topographic data)

Neigh et al. [38]

United States 250 m 2003 In house

Classification and regression
tree modeling (MODIS,

NLCD92, climate data, and
topographic variables)

Blackard et al. [2]

Conterminous U.S. 250 m 2000–2009 No forest mask

Phenological gradient nearest
neighbor (MODIS, climate

variables, topography,
level III ecoregions)

Wilson et al. [39]

North America
Boreal Forest

(Canada And Alaska)
500 m 2005–2006

EOSD2000 for
Canada, and
NLCD2001
for Alaska

Three-phase modeling (field,
PALS, GLAS data, and

MODIS data)
Margolis et al. [40]

Europe 1 km 2010 CORINE land
cover 2006 map

IPCC Tier 1 methodology and
adjusted with data from FRA

(forest type, GEZ)
Barredo et al. [41]

China 1 km 2004 1 km land-use
map of China

RF (forest inventory data,
GLAS, MODIS NDVI, SRTM

DEM, climate surface,
auxiliary data)

Su et al. [42]

Global 1 km 2004 MODIS land
cover type

RF (ground inventory data,
NDVI, GLAS, climatic and

topographic data)
Hu et al. [12]

United States 30 m 2000 NLCD 2001

Regression tree modeling
(C-band InSAR, Landsat,

NLCD canopy density
structure, SRTM)

Kellndorfer et al. [5]

GLC2000, Global Land Cover 2000; MODIS, Moderate Resolution Imaging Spectroradiometer;
EOSD, Earth Observation for Sustainable Development of Forests; ASAR, Advanced Synthetic
Aperture Radar; NLCD, National Land Cover Dataset; PALS, Portable Airborne Laser System;
GEZ, Global Ecological Zones; NDVI, Normalized Difference Vegetation Index; SRTM, Shuttle Radar
Topographic Mission; DEM, Digital Elevation Model; InSAR, Interferometric Synthetic Aperture Radar.

The pantropical Avitabile biomass map was derived from existing AGB datasets published by
Saatchi et al. [11] and Baccini et al. [4] and had higher accuracy [34]. Due to the incorporation of
Avitabile biomass map, Saatchi biomass and Baccini biomass were not considered as source AGB
maps in this study. The Avitabile biomass map was provided in a geographic projection (WGS-84) at
0.00833 degrees (approximately 1 km) resolution and resampled to 0.01◦.

Thurner et al. [3] provided forest carbon density at 0.01◦ resolution in Northern Hemisphere
boreal and temperate regions (30◦–80◦N) based on a growing stock volume product retrieved from
synthetic aperture radar, wood density, and biomass compartment data. They used a carbon fraction
of 0.488 for broadleaf tree species and 0.508 for needleleaf tree species to calculate carbon density.
We adopted a common factor of 2.0 to convert the carbon density (Mg C/ha) to AGB (Mg/ha) since
forest types might be a mixture of several forest types at the pixel level, and it is difficult to separate
them. Similar to Thurner et al. [3], the maps generated by Wilson et al. [39] provided aboveground
carbon density (Mg·C/ha), and a carbon concentration of 0.5 gC·g−1 was used to convert carbon density
to AGB (Mg/ha).

Neigh biomass and Margolis biomass were generated using similar methods that tied ground
plot AGB to airborne profiling lidar metrics as well as GLAS data and had a spatial resolution of
500 m [38,43]. The preprocessing of both datasets included reprojection to the WGS84 coordinate
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system and aggregation to the 0.01◦ resolution by computing the mean value of the pixels whose center
was located within each 0.01◦ cell.

Additionally, Blackard biomass, Wilson biomass, NBCD2000, and Su biomass were not expressed
in the geographical coordinate system and were first reprojected from their original projection type
to the geographical coordinate system with WGS84 datum using the nearest-neighbor resampling
method. Source AGB maps with spatial resolutions finer than 0.01◦, such as Blackard biomass and
NBCD2000, were aggregated to the 0.01◦ resolution.

2.2. Reference AGB Datasets

The reference AGB data were used to calibrate source AGB maps and validate the accuracy of the
generated global forest AGB map using the data fusion technique. Reference AGB was obtained by
compiling field measurements and high-resolution biomass datasets that were originally derived from
field data and lidar data [44]. Field biomass measurements were compiled from plot-level AGB that
were acquired on or after the year 2000 from the published literature and online databases. These plots
were mainly located in the mature or primary forest with minimal human disturbances. For each plot,
the coordinate information, plot name, plot code, plot size, forest status (e.g., old-growth or regrowth),
sampling years, as well as the corresponding forest AGB were recorded. Plot-level AGB was estimated
using allometric equations developed for a specific region or a specific type of forest. Only trees
above a defined diameter at breast height (1.3 m above the ground) larger than or equal to 10 cm
were considered to computing plot-level AGB [45–48]. For field plots that provided carbon density
rather than AGB, a carbon concentration of 0.5 gC·g−1 was used to calculate AGB in the unit of Mg/ha.
To ensure the representativeness of in-situ plot measurements to the forest conditions of corresponding
locations and reduce the potential error in data geolocation, the collected plots less than 0.05 ha in size
were filtered out [49,50]. A total of 5885 field plots from 25 sources were selected and aggregated into
2199 reference AGB cells with 0.01◦ resolution (Table 2).

Table 2. A summary of field AGB data used in this study.

Regions Number of Plots Source

South America 27 Álvarez-Dávila et al. [51]

United States 33 AmeriFlux
(http://ameriflux.ornl.gov/)

Pantropical Region 1057 Avitabile et al. [34]
Amazon 36 Baker et al. [52]
Amazon 1463 Brienen et al. [53]

India 15 Devagiri et al. [54]
United States 30 Gonçalves et al. [55]

China 113 Li et al. [56]
Global 33 Keeling and Phillips [49]
Global 9 Keith et al. [57]

French Guiana and Gabon 1093 Labrière et al. [58]
United States 235 Law and Berner [59]

Africa 44 Lewis et al. [47]
Global 14 Liu et al. [60]
China 40 Luo et al. [61]
Global 158 Luyssaert et al. [62]
Canada 66 Ma et al. [63]
Amazon 323 Mitchard et al. [16]

Tropical Region 226 Lopez-Gonzalez et al. [64]
United States 20 Palace et al. [65]

Brazil 44 Salimon et al. [66]
Tropical Region 206 Sullivan et al. [46]

Global 507 Xue et al. [67]
China 84 Zhang et al. [68]
China 9 Wang [69]

http://ameriflux.ornl.gov/
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High-resolution biomass datasets were used to generate reference AGB data because of their
relatively high accuracies. Generally, field plots had a size of approximately 0.25~1.0 ha, corresponding
to a pixel size of approximately 50~100 m; therefore, we only considered gridded biomass maps
with spatial resolutions finer than 100 m to ensure that field datasets and high-resolution biomass
datasets could match well at the spatial scale. Six datasets were selected to derive reference AGB
data, including the Cook biomass map at four forested sites in the US: Garcia River Tract in California,
Anne Arundel and Howard Counties in Maryland, Parker Tract in North Carolina, and Hubbard
Brook Experimental Forest in New Hampshire, for the nominal year of 2011 at 20–50-m resolution [70];
the Babcock biomass map at 13-m spatial resolution in the Penobscot Experimental Forest (PEF) in
Bradley, Maine, for the year 2012 [71]; the Dubayah biomass map at a 30-m spatial resolution for
Maryland for the nominal year 2011 [72]; the Dubayah map for Sonoma County, California, for the
nominal year 2013 [73]; the Labberière River biomass data at two sites in French Guiana and four areas
in Gabon [58]; the Fatoyinbo biomass map at a 1-m spatial resolution for a mangrove forest in the
Zamamamamé Delta Mombita Mozaque forest [74]. Consistent with the preprocessing of source AGB
maps, the preprocessing of high-resolution biomass maps included reprojection to the geographical
coordinate system and aggregation to the 0.01◦ scale. For the biomass maps that provided carbon
density values instead of AGB, the common factor 2.0 was used to convert carbon density to AGB.

We combined the aggregated field reference data and high-resolution reference biomass datasets
and generated a global reference AGB dataset. Since the mismatches in spatial scales between field plots
and pixels of satellite products may lead to uncertainties of forest AGB mapping, particularly when
forest AGB showed strong local spatial variation [75], we assessed the spatial variation in reference
AGB datasets using the coefficient of variation (CV) of tree cover data from Hansen et al. [76] within
each 0.01◦ pixel and removed the reference AGB data with a CV of tree cover larger than 1.0, leaving
13,597 pixels (Figure 1).Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 23 
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Figure 1. The spatial distribution of global reference aboveground biomass (AGB) data. The background
map shows the forest types according to the International Geosphere-Biosphere Programme classification
based on MCD12Q1 data for 2005. Pixels with less than 10% tree cover were masked.
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2.3. Data Fusion Framework

Based on the generated reference AGB data in Section 2.2, source AGB maps were integrated using
the linear combination method. The integration of multiple-satellite data products was essentially a
weighted combination of multiple datasets. Estimating forest AGB from multiple source AGB maps
can be expressed as:

Y(k) =
N∑

i=1

wi(k)Xi(k) (1)

N∑
i=1

wi = 1 (2)

where k represents the forest pixel, Y(k) is the estimated biomass of pixel k, N is the number of source
AGB maps with biomass values for pixel k, Xi is the AGB value of the i-th source map, and wi(k) is the
weight that was set for the i-th source AGB map at pixel k. For any pixel, the sum of all the weights of
the source AGB maps is equal to 1.

Since the calculation of weights greatly affects the estimated AGB, we explored several algorithms,
including the adaptive-weighted average algorithm that computes the weights of each source AGB
map by its prediction performance [77] and the skill and independence weighted average algorithm,
which can account for both the performances of source AGB maps and independences among these
AGB maps [78], and found that these weighted average algorithms could not provide accurate estimates
of forest AGB. Therefore, we proposed the error removal and simple averaging method for the fusion
of ten source AGB maps.

Using the error removal and simple averaging algorithm, estimated pixel-level AGB was derived
as follows:

Yi(k) =
1
N

N∑
i=1

(Xi(k) − Ei(k)) (3)

where k represents the forest pixel, Y(k) is the estimated biomass of pixel k, N is the number of source
AGB maps with biomass values at pixel k, X is the observed biomass of the i-th source AGB map,
and Ei(s) is the error of the i-th source biomass map at pixel k.

According to Equation (3), estimating AGB from multiple source maps consisted of the following
steps: (1) determine the pixel-level errors of each source AGB map, (2) calibrate the source AGB by
removing the corresponding pixel-level errors, and (3) average the calibrated source AGB maps with
equal weights. The core of the proposed error removal and the simple average algorithm was to obtain
pixel-level errors associated with each source AGB map. Once we modeled the errors of each source
AGB map, estimated AGB through the fusion of source AGB maps could be obtained using Equation (3).

2.4. Estimating Pixel-Level Errors of Source AGB Maps

The accuracies or performances of a source AGB map were not uniformly distributed across its
whole coverage, and in addition, source AGB maps were not accompanied by a pixel-level error or
uncertainty map. It was thus necessary to estimate the pixel-level errors of AGB data. For each source
AGB map, pixel-level errors of AGB values corresponding to reference AGB data points were obtained
from the differences between extracted AGB from the source AGB map and coincident reference AGB
data and used as the training samples for estimating pixel-level errors of AGB. Pixel-level errors of
source AGB maps were obtained by extrapolating the dispersed observational errors into the same
spatial extent as the source AGB maps. In this study, we implemented extrapolation with the random
forest regression tree algorithm. Predictor variables were the leaf area index (LAI), forest canopy
height, forest cover, elevation and slope, and temperature and precipitation, which were correlated
with forest AGB [34].
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The Global Land Surface Satellites (GLASS) LAI product, with a temporal resolution of eight days
and a spatial resolution of 1 km from 2000 to 2010, was used [79,80]. To reduce the noise in the LAI time
series and minimize the impacts of LAI seasonality on biomass estimates, we aggregated the 8-day
LAI to the monthly scale and extracted the maximum monthly LAI within one year as the maximum
annual LAI. The LAI used in the error modeling was the average of the maximum annual LAI values
from 2001–2010. The global forest canopy height map was provided by Simard et al. [81], with a
1-km spatial resolution. The global forest cover map at 30-m spatial resolution generated by Hansen
et al. [76] was aggregated to 0.01 degrees and used as one of the covariates of errors. It also served as
the base map of the global tree cover. Forests and shrubs with a tree cover of no less than 10% were
considered forest pixels, and other pixels were masked [82]. Additionally, the land surface elevation
and slope information derived from the Global Multiresolution Terrain Elevation Data (GMTED) 2010
dataset at 7.5 arc-second resolution [83], as well as the average monthly temperature and precipitation
data at 30-s resolution download from WorldClim (http://worldclim.org/version2) [84], were included
in the modeling of errors associated with each source AGB map. For consistency with AGB datasets,
predictor variables, including LAI, forest canopy height, forest cover, elevation and slope, and climate
data, were all reprojected to the WGS 84 geographical system and resampled to 0.01 degrees.

2.5. Validation and Intercomparison

Ten-fold cross-validation was performed to evaluate the accuracy of estimated forest AGB from
multiple source AGB maps using the error removal and simple averaging algorithm. Evaluation
metrics were the correlation of determination (R2), bias, and RMSE.

Intercomparison was also performed to indirectly assess the accuracy of our estimated results relative
to global forest AGB maps from published studies, with AGB maps provided by Kindermann et al. [9],
Liu et al. [10], Hu et al. [12], and Yang et al. [13]. Liu et al. [10] provided forest carbon estimates from
1993 to 2012 at a 0.25◦ resolution. We converted the carbon to biomass using the common factor and took
the average AGB from 2001 to 2010 as the Liu biomass map used in the comparison. The Liu biomass
map and the Kindermann et al. [9] AGB data for 2005 at a half-degree resolution had a spatial resolution
coarser than 0.01◦ and were resampled to 0.01◦ for consistency with other global forest AGB maps.

We extracted the estimated AGB from four previous studies and fused the AGB of this study for the
reference AGB pixels and assessed how closely the five global forest AGB data matched the reference
AGB data. Their similarities with reference AGB data were quantified in terms of the correlation
coefficients, standard deviation, and centered root-mean-square difference (RMSD) and graphically
described by the Taylor diagram [85].

Additionally, we obtained the different AGB maps by subtracting each of the four global forest
AGB maps from the fused AGB. Statistical analysis of AGB differences for different continents and
frequency distributions of each global AGB map for different forest types were conducted. The forest
types were separated according to the MODIS land cover type product (MCD12Q1, version 6) for 2005
and the International Geosphere-Biosphere Program legend [86]. Consistent with other global forest
AGB data, the 500-m resolution data were first reprojected to the geographical coordinate system using
the nearest-neighbor resampling method and then aggregated to the 0.01-degree resolution by selecting
the most dominant land cover type within the extent of each 0.01-degree pixel. We extracted the AGB
values with a corresponding tree cover of no less than 10% and forest types, including deciduous
broadleaf forests (DBF), deciduous needleleaf forests (DNF), evergreen needleleaf forests (ENF),
evergreen broadleaf forests (EBF), mixed forests (MF), open shrublands (OSH), closed shrublands
(CSH), woody savannas (WSA), and savannas (SAV), and performed statistical analysis of the number
of pixels within 20 Mg/ha bins. Since different definitions of forests were used in the generation of
these forest AGB maps, all the statistical analyses were carried out on the pixels that were considered
forests by the AGB datasets used in a comparison.

http://worldclim.org/version2
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3. Results

3.1. Modeled Errors Associated with Source AGB Maps

Pixel-level errors associated with each source AGB map were modeled using the RF algorithms, and
the results showed that the modeled errors were close to the observation errors, which were calculated
from the difference between the reference AGB data and the corresponding gridded AGB extracted
from the source map (Figure 2). The correlation coefficients between modeled error and observation
error at reference AGB data points ranged from 0.76 for Su biomass to 0.90 for Hu biomass and Wilson
biomass, while RMSEs of predicted errors in source AGB maps ranged from 26.48 Mg/ha to 79.59 Mg/ha.
Three source AGB maps had RMSEs of less than 30 Mg/ha, four source datasets had RMSEs of 30~40 Mg/ha,
and for the three remaining source AGB maps, including the Su biomass, Barredo biomass, and Avitabile
biomass, the differences between observation errors and modeled errors at the reference AGB data points
were relatively large. Nevertheless, the pixel-level errors in the majority pixels of each source AGB map
were modeled accurately, very close to the observation errors, which also suggested the efficiency of our
approach in estimating errors of source AGB maps (Figure 2).
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Figure 2. Density scatter plot comparing observed errors of source biomass maps and the corresponding
modeled errors using the RF approach.

3.2. Spatial Patterns of the Fused Global Forest AGB Map for the 2000s

Based on the pixel-by-pixel errors of each source AGB map, source AGB maps were calibrated and
then averaged to generate the global forest AGB map for the 2000s (Figure 3). The results showed that
tropical forests stocked the most carbon in the aboveground per hectare [9,12,87]. When aggregated
to the country level, New Zealand, French Guiana, Equatorial Guinea, Gabon, Suriname, Guyana,
Brunei Darussalam, and Congo were found to have the highest forest AGB, with corresponding forest
area-weighted averages of AGBs higher than 300 Mg/ha. At the continental scale, the AGB of Oceania
and South America was higher than those of other continents. Europe and Asia had the lowest forest
AGB but exhibited different spatial patterns. In Europe, nearly all countries had low biomass densities,
whereas, in Asia, there were large discrepancies in forest biomass among different countries.
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forest cover.

3.3. Validation Results

Cross-validation results showed that the generated forest AGB map achieved a good overall
accuracy, which had an R-squared of 0.61, RMSE of 53.68 Mg/ha, RMSE% of 30.28%, and bias of
3.15 Mg/ha globally (Figure 4). To the best of our knowledge, this accuracy is the best among studies
on estimating forest AGB on a large scale. Another study that used satellite data and the RF algorithm
to predict the forest AGB had an R-squared of 0.56 and RMSE of 87.53 Mg/ha on a global scale [12].
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3.4. Intercomparison Results

Compared with global AGB maps from other studies, the forest AGB map generated by the fusion
of source AGB maps (fused AGB) was closer to the reference AGB (Figure 5). Estimated AGB from
Yang et al. [13] and Hu et al. [12] for the reference AGB pixels was similar in terms of correlation,
standard deviation, and RMSD. AGB estimated by Liu et al. [10], Yang et al. [13], and Hu et al. [12]
had similar standard deviations, but their correlations with reference AGB were slightly different.
AGB estimated by Kindermann et al. [9] was quite different from other studies; it had the least standard
deviation and correlation and the largest RMSD.
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Figure 5. Taylor diagram showing pattern statistics of reference AGB data and five global AGB datasets.

The spatial distribution of AGB differences between fused AGB and global AGB maps from
other studies also showed substantial discrepancies in AGB estimation among different studies on
a global scale (Figure 6). The fused AGB tended to be higher than the Liu AGB and Kindermann
AGB for most forests in the world (Figures 6 and 7) but slightly lower than the Hu AGB map at a
global scale, which was probably caused by the extremely low fused AGB in Europe and Central
and South America (Figure 7).

At the continental scale, the differences in five global forest AGB maps were not substantial in
Europe and North America as in Oceania, Africa, Asia, and South America, consistent with published
studies that emphasized the uncertainties of estimated AGB in tropical regions [4,88]. Since boreal
forests have lower AGB than tropical forests, it is not appropriate to directly compare the uncertainties
in estimated AGB for different regions. The intercomparison results of relative AGB differences showed
that larger discrepancies in estimated AGB among different datasets existed for forests in Europe and
North America, while the relative AGB differences in South America and Africa mostly ranged within
±50% (Figure 8). This indicated the strong necessity to improve the accuracy of AGB estimates in
boreal forests, which is largely ignored in previous studies.
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Figure 7. Boxplots showing the differences between fused AGB and four global forest AGB data at the
global scale (a) and for the forests located in Asia (b), Europe (c), North America (d), Africa (e), Central
America (f), South America (g), and Oceania (h). A, B, C, and D represent differences in AGB obtained
by subtracting Liu AGB, Kindermann AGB, Hu AGB, and Yang AGB from fused AGB generated in this
study, respectively.
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Figure 8. Boxplots showing the relative differences between fused AGB and five global forest AGB
datasets at the global scale (a) and for the forests located in Asia (b), Europe (c), North America (d),
Africa (e), Central America (f), South America (g), and Oceania (h). A, B, C, and D represent relative
differences in AGB obtained by calculating the ratio of the subtraction of Liu AGB, Kindermann AGB,
Hu AGB, and Yang AGB from fused AGB to fused AGB, respectively.
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Comparing the frequency distributions of five global forest AGB datasets, we found that the
frequency of fused AGB for all forest types except CSH had one peak, and the number of pixels with
corresponding AGB values within the peak bins was small, suggesting that fused AGB had dispersed
distributions compared with other datasets within each forest type (Figure 9). The Kindermann AGB
data had quite different distributions from the other datasets, particularly in ENF, EBF, DNF, DBF, MF,
and CSH. All the datasets except Kindermann revealed higher AGB in EBF than those in other forest
types. DBF also had high AGB values, while DNF had lower AGB, distributed within a narrower
range. Large discrepancies in the frequency distribution of Liu AGB with other datasets were also
found in all forest types except WSA and SAV. In CSH, OSH, WSA, and SAV, this study provided lower
AGB with more reasonable distributions than other datasets.Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 23 
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4. Discussions

4.1. Uncertainty Analysis of Global Forest AGB Mapping

The generated global forest AGB map was derived by merging ten source AGB maps using the
error removal and simple averaging method. Uncertainties of this fused AGB map thus mainly come
from the uncertainties of pixel-level errors of source AGB maps. If the errors of source AGB maps can
be estimated accurately, the derived forest AGB map will have a high level of confidence. Although
this study provided more accurate AGB estimates than published datasets globally, uncertainties are
still large in some regions, partly attributed to the remotely sensed datasets used. The primary datasets
were from optical sensors, which were responsive to canopy cover, rather than vertical structure.
This could affect the accuracy of modeled errors of source AGB maps. Predictors that describe the
vertical structure of forests should be included to improve the accuracy of modeled errors and further
AGB estimates in future studies.
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In this study, the accuracy of the modeled errors had R-squared values ranging from 0.58 to 0.81
and RMSE values ranging from 26.48 Mg/ha to 79.59 Mg/ha. Cross-validation results suggested that
estimated global forest AGB achieved accuracy with an R-squared of 0.61 and RMSE of 53.68 Mg/ha,
located within the accuracy of modeled errors of source biomass maps, which was probably because
the discrepancies between real observation errors and the corresponding predicted errors accounted
for the majority of uncertainties in forest AGB estimation. The results of this study indicated that
accurate quantification or knowledge of uncertainties was not only important for understanding the
uncertainty of the datasets and facilitating their application in related fields but also indispensable for
improving the accuracy of estimated forest AGB.

Previous studies have quantified the pixel-level errors or uncertainties of biomass estimates
mainly by the error propagation approach, calculating the uncertainties due to model algorithms,
datasets used, the choice of allometric equations, and the mismatch of field data and remotely sensed
data [89–91]. However, it is difficult to measure all the uncertainties in the AGB estimation since
the influencing factors are so complex, and nearly all the studies have quantified only parts of the
uncertainties in the AGB estimation. This study provided a new perspective to describe uncertainties
without distinguishing the sources of uncertainties, which can help in understanding and quantifying
uncertainties in forest AGB estimation in future studies.

4.2. Strength and Limitation of the Error Removal and Simple Averaging Method

The true AGB value can be mathematically described as the sum of observed or estimated AGB
and the associated errors. If we can infer the errors associated with the estimated forest AGB, the true
or actual forest AGB will be known. Therefore, to generate an accurate global forest AGB map,
it is essential to quantify the pixel-level errors of source AGB maps accurately. Since it is difficult
to quantify the errors or uncertainties in AGB estimates, the RF algorithm was used to model the
pixel-level errors of each source AGB map in this study. The results showed that the modeled errors
were close to the observational errors of the source biomass maps, which were obtained by comparison
with reference AGB data. Different from most studies that use RF algorithms to estimate forest
AGB with ancillary datasets, we used similar methods to estimate errors of AGB maps rather than
AGB [92,93]. The underlying principle is that errors of estimation are often negatively correlated
with the AGB values, partly due to the underestimation of AGB at low values and overestimation at
high values caused by datasets and empirical modeling methods used, as demonstrated in previous
studies [68]. Through estimating errors of source biomass maps and further calibrating these AGB
maps with predicted errors, this study produced forest AGB at a global scale by simple averaging these
calibrated AGB maps, which rectified parts of the overestimation and underestimation existing in the
original AGB maps or estimated AGB through direct empirical modeling [94,95].

Previous studies used other methods, such as the weighted average method, to combine source
biomass maps [34]. We tried this to estimate global forest AGB in this study and achieved accuracy
with an R-squared of 0.42, RMSE of 88.51 Mg/ha, RMSE% of 49.88%, lower than the results of this study.
The error removal and simple averaging method was thus used to generate the global forest AGB map.
Moreover, the proposed error removal and simple averaging algorithm made no assumptions about
the source AGB maps and their errors and was quite simple to deal with massive datasets.

However, it is noteworthy that the proposed method is subject to currently existing biomass maps.
Despite its good performance in producing forest AGB maps, this methodology will not be as efficient
as the generation of a global forest AGB map using data-driven machine learning algorithms when we
attempt to generate accurate biomass map time series or monitor forest biomass changes.

4.3. Factors Influencing the Assessment of Fused Global Forest Maps

In this study, the reference AGB data and ancillary datasets used to model errors were mainly
for 2000 and after. Source AGB datasets were also from 2000 to 2010, but most of them were for a
specific year or a small period rather than for the whole period 2001–2010, which suggested that they
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may correspond to different forest statuses due to the existence of forest disturbances and growth.
Therefore, the temporal mismatch between reference AGB data with the generated global forest AGB
map using the error removal and simple averaging approach could have affected the evaluation
results. Fortunately, forest disturbances generally occur only in a small part of forests [76,96,97],
and the reference AGB data selected had minimal disturbances; therefore, the impacts of the temporal
mismatch of datasets on the estimation and evaluation results should be limited.

Additionally, reference AGB was considered accurate without uncertainties, which is slightly far
from the fact, despite the efforts of extensively collecting and carefully preprocessing field biomass
data and high-resolution AGB maps. This assumption could also lead to uncertainties associated with
the validation and intercomparison. In future studies, the uncertainties of reference AGB datasets
should be examined, and the associated impacts on the validation and intercomparison results should
be considered.

The number of reference data points could also have had a great effect on the evaluation results.
For a certain source biomass map, a limited number of reference data points located in the corresponding
region indicated the limited training datasets to predict the errors, which would further lead to the
dispersion of modeled errors in Figure 2. As suggested by previous studies, the derivation of AGB
maps from sparse field measurements was not advocated, and AGB could be best mapped using
a combination of remotely sensed datasets calibrated and validated using a substantial number of
carefully compiled reference datasets [17]. Therefore, more reference biomass datasets could be
incorporated to increase the robustness and accuracy of modeled pixel-level errors of source biomass
maps and further reduce the uncertainties of estimated forest AGB in the future.

5. Conclusions

In this study, we integrated ten existing forest AGB maps with substantial uncertainties and
generated an improved global forest AGB map for the 2000s at 0.01◦ spatial resolution using the
proposed error removal and simple averaging algorithm. Cross-validation using reference AGB data
that were compiled from in situ measurements as well as high-resolution biomass data derived from
field data and airborne lidar data showed the high accuracy of the generated forest AGB map with an
R-squared of 0.61, RMSE of 53.68 Mg/ha, and bias of 3.15 Mg/ha at a global scale. The intercomparison
with several published studies also demonstrated a better accuracy of our generated global forest
AGB map. We found large differences in the estimated AGB of boreal forests among different studies,
which were largely neglected in published studies. Since it is difficult to quantify the errors involved in
the biomass estimation, such as the allometric error, errors caused by the mismatch between field data
and satellite data, as well as errors of the dataset used and the mapping algorithms directly, this study
directly predicted pixel-level errors of existing forest AGB maps using RF models, which offers an
alternative perspective to quantify errors of the estimated biomass at a large scale. Although much
work is needed to improve the accuracy of global forest AGB estimates, this study moves one step
forward for climate mitigation strategies and advances our understanding of the global terrestrial
carbon cycle by providing improved benchmarks of global forest carbon stocks.
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