
1. Introduction
Surface downward longwave radiation (SDLR) is a fundamental component of the Earth's radiation budget 
(Iziomon et al., 2003). Understanding of SDLR variation is vitally important for weather prediction, energy 
budget evaluations, and numerous applications, such as predicting evapotranspiration and temperature 
variations (Flerchinger et al., 2009). SDLR is mainly emitted by H2O, CO2, and O3 molecules and cloud water 
droplets in the atmosphere (Guo et al., 2019). SDLR is considered to be an important forcing on the Earth's 
surface energy budget that can produce surface warming (Burt et al., 2016; Woods & Caballero, 2016; Zep-
petello et al., 2019). Additionally, it is essential for understanding the impact of increasing CO2 and other 
greenhouse gases on the climate (Stephens et al., 1994).

SDLR is not conventionally measured, because it is difficult and expensive to measure directly (Duarte 
et al., 2006; Enz et al., 1975; Sridhar & Elliott, 2002; K. C. Wang & Liang 2009a). Consequently, different 
parameterization schemes have to be developed that take more readily available meteorological values as 
input. The weighting function of SDLR peaks near the surface, and correctly calculating the air temperature 
close to the surface is critical for SDLR estimation (Gupta et al., 2004). Previous studies showed that under 
clear sky conditions, the distributions of air temperature (Ta) and humidity are most important for SDLR es-
timation (Cheng et al., 2017). Ta and surface water vapor pressure measured close to the ground are used for 
SDLR estimation in the parameterization schemes under clear sky conditions (Brunt, 1932; Brutsaert, 1975; 
Idso, 1981; Swinbank, 1963). However, the coefficients for the parameterization schemes are often specific 
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Earth and Space Science

for a limited range of climate regions and atmosphere conditions under which they were calibrated and 
validated. The parameterization scheme should be redefined or calibrated before it is used in other places 
(Bilbao & De Miguel, 2007). Retrievals of Ta and relative humidity (RH) profiles from satellite observations 
are also employed to estimate SDLR (Ellingson, 1995). Radiative transfer models (e.g. LOWTRAN or MOD-
TRAN), named physical based methods, have been used to describe the actual emission and absorption pro-
cesses in the atmosphere and to estimate SDLR (Duarte et al., 2006). Darnell et al. (1983) estimated SDLR 
based on Television and Infrared Observation Satellite (TIROS) Operational Vertical Sounder (TOVS) data 
obtained from the National Oceanic and Atmospheric Administration (NOAA). Although these physical 
based methods have explicit physical basis, the accuracy of the input parameters may directly affect the esti-
mation accuracy. It is also very difficult to obtain temperature and humidity profiles of the lower atmosphere 
at stations with the accuracy required for SDLR estimation (Duarte et al., 2006; Ellingson, 1995; K. Wang & 
Dickinson 2013; K. C. Wang & Liang 2009a). Moreover, the physical based methods may not be suitable for 
cloudy sky conditions since clouds are always impenetrable in the thermal infrared spectrum as pointed by 
K. C. Wang and Liang (2009a). For example, most passive satellite sensors can only provide observations of 
the cloud top, but SDLR is more closely related to the parameters of cloud base (Ellingson, 1995).

Most existing parameterization schemes use cloud cover fraction to quantify the contribution of clouds to 
SDLR, which is proportional to the total cloudiness (Aladosarboledas, 1993; Bilbao & De Miguel, 2007; Ell-
ingson, 1995; Niemela et al., 2001). Meteorological observations and satellite cloud detection products can 
provide reliable cloud cover fraction measurements (Ackerman et al., 2008). For example, Diak et al. (2000) 
proposed a parameterization for SDLR estimation under cloudy sky conditions, in which the cloud product 
collected from the Geostationary Operational Environment Satellite (GOES) was used to quantify the in-
fluence of clouds. This parameterization method showed an overall root mean square error (RMSE) value 
of 20 Wm−2 against the ground measurements. The cloud cover fraction can alternatively be represented 
by the ratio of the measured horizontal global solar radiation to the horizontal global solar radiance under 
clear sky conditions (Crawford & Duchon,  1999). Downward shortwave radiation (DSR) can reflect the 
contribution of cloud to the SDLR. Crawford and Duchon (1999) proposed an improved parameterization 
scheme for calculating SDLR based on DSR measurements. K. Yang et al. (2010) estimated the SDLR based 
on calculating the cloud cover fraction using DSR estimated from a hybrid model. The evaluation analysis 
showed that the error of four Chinese Meteorological Administration (CMA) stations in the Tibetan Plateau 
(TP) was less than 30 Wm−2. Most of the parameterization schemes under cloudy sky conditions strongly 
depend on the calibration data and do not fully consider the impact of cloud characteristics, such as the 
cloud base. Thus, it may also have larger biases outside the parameter range of their local calibration (K. 
Wang & Dickinson, 2013).

Besides these physical based methods, machine learning methods are alternative ways to estimate surface 
radiation (X. Y. Wang et al., 2017; Wei et al., 2019; L. Yang et al., 2018). Machine learning methods provide 
techniques that can automatically construct the relationship between input parameters and surface radi-
ation by processing the available data and maximizing a problem dependent performance criterion. Wei 
et al. (2019) estimated the DSR using four machine learning methods based on Advanced Very High Res-
olution Radiometer (AVHRR) data. The evaluation results with ground measurements exhibited that the 
gradient boosting regression tree (GBRT) method was the most accurate. Unlike other machine learning 
methods, the GBRT method can automatically find nonlinear interaction via decision tree learning and 
achieve more accurate predictions (Johnson & Zhang, 2014). However, few studies have directly applied the 
GBRT method to estimate SDLR based on ground measurements, especially over China.

Many studies have been reported for estimating SDLR over China, including the parameterization meth-
ods (Yu et al.,  ; Yu et al., 2018), hybrid methods (B. Tang & Li, 2008; J. Wang et al., 2014; W. H. Wang & 
Liang, 2009b) and artificial neural networks (ANN) based methods (T. X. Wang et al., 2012; T. X. Wang 
et al., 2018). For example, Yu et al. () compared twelve and eight parameterizations methods under clear 
and cloudy sky conditions over Heihe River Basin in China, respectively. It showed that the estimated 
SDLRs based on the proposed schemes by Idso  (1981) and Dilley and O'Brien  (1998), and Maykut and 
Church (1973) performed best for the clear and cloudy sky conditions, respectively. J. Wang et al. (2014) de-
veloped an improved hybrid method to estimate SDLR over the TP using the Moderate-resolution Imaging 
Spectroradiometer (MODIS) observations under clear sky conditions. The estimated SDLRs based on the 
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proposed hybrid method have an overall RMSE value of 25.9 and 25.7 Wm−2 for the MODIS observations 
from Terra and Aqua, respectively. The ANN-based model was used to estimate SDLR over the TP by T. X. 
Wang et al. (2012). The model is comparable with or even better than existing algorithms, with an overall 
RMSE value of 20.1 Wm−2 and a bias value of −8.8 Wm−2. Although much effort has been conducted on the 
improvements of the methods for SDLR estimation, studies on reconstructing the long-term SDLR datasets 
over China is still rare. Chang and Zhang (2019) reconstructed SDLR data sets at 351 stations over China. He 
et al. (2020) developed the China Meteorological Forcing Data set (CMFD) based on the ground measure-
ments at 753 CMA stations from 1979 to the present. The SDLR forcing data set was estimated based on the 
semi-empirical method proposed by Crawford and Duchon (1999), which calculated the atmospheric emis-
sivity as a function of cloud amount and Ta. The temporal coverage of the estimated SDLR by the released 
methods is limited and the spatiotemporal analysis of SDLR over China is not well discussed. To improve 
our understanding of the climate change, it is still necessary to reconstruct a comprehensively spatiotempo-
ral extended SDLR data set over China and computed spatiotemporal analysis based on this data set.

The physical relationship between the Ta, RH, DSR, and SDLR is fairly well known. In particular, Cheng 
et al. (2017) and Zeppetello et al. (2019) have shown that near surface air temperature is the prominent 
driver of both clear and all-sky downward longwave radiation in observations and climate models respec-
tively. The radiative kernels presented by Previdi  (2010) and Pendergrass et al.  (2018) also present clear 
physical explanations for the relationship between SDLR and meteorological variables, including Ta and 
RH. SDLR estimation under cloudy sky conditions depends strongly on cloud condition. DSR can be used 
to quantify the contribution of clouds to SDLR under cloudy sky conditions (Crawford & Duchon, 1999; K. 
Yang et al., 2010). Crawford and Duchon (1999) calculated cloud fraction from DSR under clear and cloudy 
conditions. Thus, Ta, RH, and DSR measurements are selected as input variables of the GBRT method in 
this study.

There are a total of 756 CMA meteorological stations where Ta, RH, and other surface meteorological pa-
rameters are measured, and all these data are available to the public. Compared with 756 routine meteor-
ological stations, only 122 have global solar radiation measurements. Among 122 radiation observation 
stations, only 48 have relatively complete record from 1970 to 2015 through statistics. It is clear that the 
current existing radiation observation stations have relatively low spatial coverage and representativeness 
for long-term analysis. Therefore, the objectives of this study are: (1) to estimate SDLR using ground meas-
urements. Ground measurements collected at the Baseline Surface Radiation Network (BSRN) and the Arid 
and Semi-arid Region Collaborative Observation Project (ASRCOP) were used to build and evaluate the 
GBRT model, respectively; and (2) to analyze the spatial pattern and temporal variations of the SDLR over 
China. To obtain long-term and densely distributed SDLR data over China for subsequent spatiotemporal 
analysis, the reconstructed long-term DSR (Hou et al., 2020), and the ground measured Ta and RH collected 
at 756 CMA stations from 1958 to 2015 were used as input of the proposed GBRT method. The accuracy and 
trend evaluation results of the SDLR estimates based on the GBRT method are also compared with existing 
SDLR products.

This paper is organized as follows: In Section 2, the ground measurement data used in this paper are de-
scribed. The machine learning method and trend test method are described in Section 3. The results are 
presented in Section 4. In Section 5, we discuss the correlation between the trends of estimated SDLRs and 
other variables (such as Ta). The conclusions are given in Section 6.

2. Data
2.1. Ground Measurements

The data records at BSRN stations have been reported to show a higher level of data quality (Liang 
et al., 2010). The ground measurements collected at the BSRN were used to build the model, including daily 
DSR (Wm−2), SDLR (Wm−2), air temperature (Ta, °C) at 2 m height, relative humidity at 2 m height (RH, 
%), and elevation (m). Since the SDLR ground measurements are not provided at the CMA stations, the 
ground measured SDLR collected at the ASRCOP stations was used to validate the robustness and accuracy 
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of the model. Ground measurements collected at the CMA from 1958 to 2015 were used to derive the SDLR 
estimates over China in this study.

1.  BSRN: The BSRN was initiated by the World Climate Research Programme (WCRP) to provide validation 
material for satellite radiometry and climate models. The BSRN operation started in 1992 at nine stations 
and currently consists of more than 60 operational stations (Ohmura et al., 1998). Recent reports have 
indicated that the BSRN measurements have the highest possible accuracy and a high temporal resolu-
tion in various climate zones and with uncertainties of approximately ±5 Wm−2 (Liang et al., 2010). Data 
extracted at 25 stations, which provide both DSR and SDLR records from 2000 to 2015, were used to train 
the model in this study. The spatial distribution of the data is shown in Figure 1

2.  ASRCOP: The ASRCOP provides pyranometer data from 18 China meteorological stations in the sum-
mers of 2008 and/or 2009. The observed SDLR and meteorological data at the ASRCOP stations were 
recorded with a temporal resolution of 10 or 30 min (Cheng & Liang, 2016; Huang et al., 2013). Data 
collected from nine stations were used to evaluate the accuracy of the estimation model. Figure 2 and 
Table 1 show the spatial distribution and detailed information of these stations

3.  CMA: There are a total of 756 CMA meteorological stations where daily Ta, the RH and other surface 
meteorological parameters are measured, and all these data are available to the public. Among these 
stations, only 122 have global solar radiation measurements. Figure 2 shows the spatial distribution of 
these routine meteorological and radiation stations. Solar radiation measurements at the CMA stations 
started in 1957. Since 1994, only 96 stations continued to measure solar radiation as the measurements 
at various stations stopped over the years (W. J. Tang et al., 2013). It is noted that there were two dif-
ferent types of radiometers equipped at the CMA stations before 1994 and afterward. Solar radiation 
measurements are more prone to errors and often encounter more problems, such as technical failures 
and operation-related problems, than other meteorological variable measurements (Moradi, 2009; W. J. 
Tang et al. 2010). Therefore, data quality control is indispensable for many applications. In this study, the 
quality control procedure proposed by Zhang et al. (2015) was performed

2.2. Existing SDLR Products

Existing SDLR products are used for comparison with the SDLR estimates based on the GBRT method. 
Considering the time series and accuracy of different SDLR products, CERES-SYN SDLR product were used 
to compare accuracy on ASRCOP stations, the ERA5 and GEWEX-SRB SDLR products were used for com-
parison of long-term trend. The brief introduction of three SDLR products are as follows:

1.  GEWEX-SRB: The latest version of GEWEX-SRB (v3.0) is applied in this study. The GEWEX-SRB SDLR 
data can be available from July 1983 to December 2007 at a 3-hourly resolution, which are then averaged 

WEI ET AL.

10.1029/2020EA001370

4 of 24

Figure 1. Spatial distribution of the radiation stations provided by the BSRN. BSRN, Baseline Surface Radiation 
Network.
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Earth and Space Science

into daily, monthly values. The data set is produced on a 1º  ×  1º global grid using satellite-derived 
cloud parameters and ozone fields, reanalysis meteorology, and a few other ancillary data sets (Cox 
et al., 2006). Based on their official Web site, the overall daily mean bias for GEWEX-SRB is 0.5 Wm−2 
and the RMSE is 21.8 Wm−2 compared to BSRN measurements from 1992 through 2007. These values 
are −0.1 and 11.2 Wm−2 at the monthly time scale

2.  CERES-SYN: CERES (Clouds and the Earth′s Radiant Energy System) SYN (Synoptic Radiation Fluxes 
and Clouds) product sponsored by National Aeronautics and Space Administration (NASA) were de-
signed to study the earth's top-of-atmosphere (TOA), on surface and within the atmosphere radiation 
budgets (Doelling et al., 2013; Ohmura et al., 1998). Data used in this study for comparison with the 
SDLR estimates based on the GBRT method are available from March 2000 to present with a spatial 
resolution of 1º × 1º and a daily temporal resolution

3.  ERA5: ERA5 data on single levels are the fifth-generation ECMWF atmospheric reanalysis of the glob-
al climate, covering the period from 1979 to present (Hersbach & Dee, 2016; Naseef & Kumar, 2008). 
The data can be available on the time resolution of hourly and monthly with the spatial resolution of 
0.25° × 0.25°. Reanalysis combines model data with observations from across the world into a globally 
complete and consistent data set using the laws of physics
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Figure 2. Spatial distribution of the radiation stations provided by the ASRCOP and CMA. ASRCOP, Arid and Semi-
arid Region Collaborative Observation Project; CMA, Chinese Meteorological Administration.

Station Latitude (°) Longitude (°) Elevation (m) Land cover Time period

Arou 38.04 100.46 3,033 Desert/grassland 2008–2009

Dongsu 44.09 113.57 970 Desert/grassland 2008–2009

Jinzhou 41.18 148.48 22 Farmland 2008–2009

Maqu 33.89 102.14 3,423 Wetlands 2008

Miyun 40.63 117.32 350 Farmland 2008–2009

Tongyu grass 44.58 122.92 184 Grassland 2008–2009

Tongyu farmland 44.59 122.93 184 Farmland 2008–2009

Yingke 38.86 100.41 1,519 Farmland/oasis 2008–2009

Yuzhong 35.95 104.13 1,965 Desert/grassland 2008–2009

Table 1 
Basic Summary of the ASRCOP Stations Used to Validate the Model
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2.3. Reconstructed DSR Data set over China

The reconstruction data set of long-term DSR over China from Hou et al. (2020) was used as input to obtain 
long-term and densely distributed SDLR data over China. This data set was generated based on the random 
forest (RF) algorithm using the ground measured DSR data and the routine meteorological station data 
collected at 756 CMA stations. This data set was available from 1958 to 2015 with a daily time resolution. 
The DSR estimates are validated using the ground measurements with a correlation coefficient (R) value of 
0.99, a bias value of 0.01 Wm−2, and an RMSE value of 8.88 Wm−2. The reconstructed DSR data set is also 
reasonably accurate compared to the existing reconstructed data set.

3. Method
3.1. Gradient Boosting Regression Tree

The GBRT algorithm can be considered as an improved version of boosting that is based on iteratively 
constructing multiple individual decision trees. Boosting is an ensemble learning algorithm which com-
bined a series of weak classifiers into a strong classifier according to different weights. The basic idea of 
GBRT algorithm is to establish a new regression model in the direction of gradient reduction, and to form 
a regression tree model through continuous iterations. The main advantage of the GBRT algorithm is that 
it can automatically find nonlinear interactions via decision tree learning, and it has relatively few tuning 
parameters as a nonlinear learning scheme (Johnson & Zhang, 2014).

Assuming that xi is a set of predictor variables, yi is a set of response variables, and N is the number of train-
ing samples. The GBRT method constructs M different individual decision trees h(x;a1), h(x;a2),…, h(x;aM), 
then h(x;am) can be used as the basic function to express the approximation function f(x) as follows (Ding 
et al. 2016):

     

   
1 1

1

;
,

; , 1 ; 0, otherwise





 




 



     


 



M M
m m m

m m
J

m jm jm jm
j

f x f x h x a

h x a I x R where I if x R I
 (1)

where βm and αm represent the weight and classifier parameter of each decision tree, respectively. The loss 
function L(y, f(x)) is used to describe the accuracy of βm and αm. Each tree partitions the input space into 
J regions R1m, R2m,…, Rjm, and each Rjm predicts the constant γjm. The main flowchart of the GBRT method 
is shown in Figure 3. In this study, the GBRT method is implemented using the scikit-learn toolbox on the 
Python platform (Pedregosa et al., 2012). The main flowchart of this study is shown in Figure 4.

3.2. Mann-Kendall (MK) Trend Test

The nonparametric MK statistical test (Kendall, 1938; Mann, 1945) has been employed to detect trends in 
different hydrological and meteorological time series. Compared to linear regression trend analysis, the MK 
trend test is more suitable for cases where the trend may be assumed as a monotonic and normal distribu-
tion (Zhou et al., 2018). The test statistic S is given by (Gocic & Trajkovic, 2013):

 
1

1 1
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where n, xi, xj represent the number of data points, data values in the time series i and j(j > i), respectively.
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Figure 3. The main flowchart of the GBRT method. GBRT, gradient boosting regression tree.

Figure 4. The main flowchart of this study.
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The variance is computed as:

 
     

1
1 2 5 1 2 5
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i i i
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n n n t t t

S 
    


 (4)

where n and m are the number of data points and tied groups, respective-
ly, and ti denotes the number of ties of extent i. A tied group is a set of 
sample data with the same value. In cases where the sample size is n > 10, 
the standard normal test statistic ZS is expressed as (Zhou et al., 2018):

Zs

S
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if S

if S
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In a two-tailed test, the null hypothesis of no trend should be accepted at a specific significance level for 
1 /2 1 /2Z Zs Z   ‐ ‐ , where 1 /2Z ‐  is the standard score of the standard normal distribution with a cumulative 

probability of 1 / 2‐ . Otherwise, the null hypothesis of no trend is rejected, and a monotonic trend is identified 
at significance level  . Positive values of ZS indicate increasing trends, while negative ZS values indicate decreas-
ing trends. In this study, a = 0.05 was taken to identify a significant trend which means that 1 /2 1.96Z   ‐ .

In this study, we used the Sen's slope to describe the steepness of the trend in long time series, which is 
computed as (Sen, 1968):
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where N is the number of data pairs, xj and xk are the data values at times j and k (j > k), respectively. The N 
values of Qi are ranked from smallest to largest.

3.3. Model Construction

The GBRT model can be constructed in three steps.

 (1)  Preparation of the training datasets: Four variables extracted at the BSRN stations were used as predictor 
variables, including elevation, daily Ta, daily RH, and daily DSR. The daily SDLR measurements were 
used as target variables

 (2)  Configuration of the model coefficients: We used the k-fold cross validation method to determine the 
optimal parameters. Each parameter is traversed in range of parameter threshold, as shown in Table 2. 
The error of predicted results is evaluated against ground measurements and parameters providing the 
highest average R in the training data set were selected as optimal parameters. The GBRT model is influ-
enced by the number of iterations, learning rate, depth of the tree, and sampling rate. The learning rate 
parameter limits the contribution of each tree. A small learning rate parameter can reduce overfitting. A 
larger iteration number parameter means more boosting stages to perform and usually provides better 
performance for the training data set. The iteration number parameter should be carefully set to avoid 
overfitting. Moreover, there is a trade-off between the learning rate and iteration number. The model 
complexity and computational cost increase with increasing iteration number and decreasing learning 
rate, leading to a poor prediction performance. The tree depth represents the maximum depth of the 
individual regression estimators which can limit the number of nodes in the tree. The sampling rate 
parameter represents the fraction of training samples used for fitting. A subsample parameter smaller 
than 1.0 can prevent overfitting and reduce the variance. Successive performance testing showed that a 

WEI ET AL.
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Parameters Threshold Intervals

Learning rate 0.1–0.9 0.1

Subsample 0.2–1 1

Max depth 4–9 5

n-Estimators 50–350 250

Table 2 
Parameters Setting to Determine the Optimal Parameters for the GBRT 
Method
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Earth and Space Science

GBRT model with a learning rate parameter of 0.1, a sampling rate of 1, a tree depth of 5, and an itera-
tion number of 250 was optimal to estimate the SDLR

 (3)  Application of the GBRT method: After determining the optimal parameters, the performance of the 
trained model for the SDLR estimation was evaluated using ground measurements collected from the 
ASRCOP stations

4. Results and Analysis
4.1. Validation Against Ground Measurements

4.1.1. Validation of the SDLR Estimates

Ground measurements collected at 25 BSRN stations were used as the training data set to determine the 
optimal parameters. Then, daily SDLR measurements collected at nine ASRCOP stations in the summers of 
2008 and/or 2009 were used as the validation data set to evaluate the performance of the GBRT method for 
the SDLR estimation. The selected BSRN stations are mainly concentrated in South America, North America, 
and Europe. Using ASRCOP data in China as the validation data set can validate the accuracy of the GBRT 
method without local correction, that is, validate the robustness of the model. Three statistical measures 
were used to evaluate the estimates against ground measurements, including overall RMSE, R, and bias.

The performance of the GBRT method for the estimation of daily SDLR are evaluated on BSRN training 
data set and ASRCOP validation data set, respectively. The evaluation results are shown in Figure 5. The 
daily SDLR estimates for the BSRN training data set have an overall RMSE value of 13.22 Wm−2, a bias val-
ue of 0 Wm−2, and an R value of 0.99, whereas these values are 16.5, 3.82 and 0.91 Wm−2 for the ASRCOP 
validation data set, respectively. The validation results for each ASRCOP station was further investigated to 
study the stability of the GBRT method, as shown in Figure 6. The daily SDLR estimates correlate well with 
the ground measurements at most ASRCOP stations, with the R values ranging from 0.76 to 0.96, the bias 
values ranging from −9.56 to 22.78 Wm−2, and overall RMSE values ranging from 10.06 to 26.11 Wm−2. Note 
that the R value is greater than 0.85 at eight out of nine stations and the absolute value of the bias is less 
than 10 Wm−2 at seven out of nine stations. The estimated SDLRs at Dongsu correlate best with the ground 
measurements, with an overall RMSE value of 10.06 Wm−2, a bias value of −0.14 Wm−2, and an R value 
of 0.96. These evaluation results further indicate that the SDLR estimates derived from the GBRT method 
correlate well with the ground measured SDLRs.

WEI ET AL.
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Figure 5. Evaluation results of the (a) BSRN training and (b) ASRCOP validation data set's daily SDLR estimates based on the GBRT method against ground 
measurements. N is the number of total data points. ASRCOP, Arid and Semi-arid Region Collaborative Observation Project; BSRN, Baseline Surface Radiation 
Network; GBRT, gradient boosting regression tree; SDLR, Surface downward longwave radiation.
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Earth and Space Science

4.1.2. Validation of the Reconstructed DSR Dataset

In order to ensure the accuracy of the input variables of the machine learning method, the reconstructed 
long-term DSR data set over China from 1958 to 2015 was validated at the DSR ground measures collected 
at 122 CMA radiation stations. As shown in Figure 7, the DSR estimates from reconstructed data set have 
an R value of 0.95, a bias value of 1.34 Wm−2, and an RMSE value of 27.01 Wm−2, at a daily time scale. These 
values are 0.97, 15.95, and 1.34 Wm−2, respectively, at a monthly time scale. Thus, the reconstructed DSR 
data set is reasonably accurate against the DSR ground measures.

4.2. Comparison with Existing SDLR Products

The CERES-SYN SDLR product was used to compare the evaluation results of SDLR estimates based on the 
GBRT method against ground measurements at ASRCOP stations in the summers of 2008 and/or 2009. As 
shown in Figure 8, the SDLR estimates based on the GBRT method correlate better with the ground meas-
urements, with an overall RMSE value of 16.5 Wm−2, a bias value of 3.82 Wm−2, and an R value of 0.91. 

WEI ET AL.
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Figure 6. Evaluation results of daily SDLR estimates on each ASRCOP station based on the GBRT method against ground measurements. ASRCOP, Arid and 
Semi-arid Region Collaborative Observation Project; GBRT, gradient boosting regression tree; SDLR, Surface downward longwave radiation.

(a) (b)

(d) (e)

(c)

(f)

(g) (h) (i)
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Earth and Space Science

The CERES-SYN and ERA5 SDLR products all show lower accuracy. The CERES-SYN SDLR product has 
an overall RMSE value of 23.93 Wm−2, a bias value of 7.95 Wm−2, and an R value of 0.84. These values were 
28.38, −7.29, and 0.74 Wm−2, respectively, for the ERA5 SDLR product.

To further testify the SDLR estimates based on the GBRT method on 563 CMA stations, the RMSE and 
bias between daily SDLR estimates and ERA5 SDLR product are calculate at each CMA station from 1979 
to 2015, as shown in Figures 9 and 10. The RMSE and bias range from 11.61 to 80.94 Wm−2 and −77.56 
to 40.58 Wm−2, respectively. There are 292 and 278 sites whose RMSE and bias values range from 20 to 
25 Wm−2 and −10 to 0 Wm−2, respectively; these are followed by 102 and 90 sites whose RMSE and bias 
values range from 25 to 30 Wm−2 and −20 to −10 Wm−2, respectively. The lower RMSE values are mainly 
found in the Northeast and South China; while the higher RMSE values are mainly distributed in the Tibet 
Plateau and west of Southwest China, which may be due to the high altitude and harsh environment lead-
ing to large ground observation errors. There are 27 out of 563 sites whose biases are more than 30 Wm−2, 
which may be due to the DSR estimates with relative big uncertainties at some stations. Moreover, the 
replacement of the CMA radiation instruments may also be a source of errors. It is worth to note that the 
spatial scaling issue would be another potential error sources for SLDR evaluation. We also compare the 
long-term trend of the SDLR estimates based on the GBRT method on 563 CMA stations with those from 
GEWEX-SRB and ERA5 products. The time period is set to 1984–2007 when all three SDLR datasets can 
be available. Figure  11 shows that the long-term trend of SDLR estimates based on the GBRT method 
(2.33 Wm−2 per decade, significant at 95% confidence) was similar to that from GEWEX-SRB (2.1 Wm−2 
per decade, significant at 95% confidence), higher than that from ERA5 (1 Wm−2 per decade, significant at 
95% confidence). Through the comparison of long-term trend with existing SDLR products, it is obvious 
that the SDLR estimates based on the GBRT showed a similar trend but different change magnitudes to 
existing SDLR products. Thus the temporal variations of SDLR based on the GBRT method on CMA sta-
tions are reasonable.

WEI ET AL.
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Figure 7. Evaluation results of the reconstructed data set of long-term DSR over China based on the RF method at (a) daily and (b) monthly time scales. DSR, 
downward shortwave radiation; RF, random forest.
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4.3. Spatial and Temporal Analysis of SDLR over China

The GBRT method used in this study performed well without a local correlation and only required surface 
meteorological and solar radiation data. Thus, we applied the GBRT method to obtain long-term and dense-
ly distributed SDLR data over China.

WEI ET AL.
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Figure 8. Evaluation results of daily SDLR estimates from (a) CERES-SYN and (b) ERA5 SDLR products on each ASRCOP station against ground 
measurements. ASRCOP, Arid and Semi-arid Region Collaborative Observation Project; CERES, Clouds and the Earth′s Radiant Energy System; SDLR, Surface 
downward longwave radiation; SYN, Synoptic Radiation Fluxes and Clouds.

Figure 9. The RMSE between daily SDLR estimates and ERA5 SDLR products at 563 CMA stations from 1979 to 2015. 
CMA, Chinese Meteorological Administration; RMSE, root mean square errors; SDLR, Surface downward longwave 
radiation.
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Meteorological measurements and reconstructed DSR data set were used to estimate SDLR based on the 
proposed GBRT method. The input variables of the GBRT method were Ta, RH measurements, elevation of 
the stations, and reconstructed DSR values at 756 CMA stations from 1958 to 2015. Monthly SDLR estimates 
were obtained by averaging the daily values over the month. If there were more than 10 missing daily SDLR 
estimates in a month at a station, the data for this month at this station were deleted. Then, if there was 
less than one missing monthly SDLR estimate at one station in a year, the missing values were obtained by 
piecewise cubic Hermit interpolation to calculate annual values. Meanwhile, if there were less than two 
missing annual values for the time period at a station, the missing annual values at this station were also 
obtained by piecewise cubic Hermit interpolation. Otherwise, this station would be eliminated to study the 
long-term trends of SDLR. Therefore, 563 stations were used to analyze the spatial pattern and temporal 
variations of SDLR based on the completeness of the data records.

WEI ET AL.
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Figure 10. The Bias between daily SDLR estimates and ERA5 SDLR products at 563 CMA stations from 1979 to 2015. 
CMA, Chinese Meteorological Administration; SDLR, Surface downward longwave radiation.

Figure 11. The comparison of anomalous annual mean SDLR estimates (unit: Wm−2) averaged over mainland China 
from GBRT-based estimates, GEWEX-SRB and ERA5 SDLR products during 1984–2007. GBRT, gradient boosting 
regression tree; SDLR, Surface downward longwave radiation.

 23335084, 2021, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2020E

A
001370 by U

niversity of H
ong K

ong L
ibraries, W

iley O
nline L

ibrary on [22/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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4.3.1. Comparison with the SDLR Estimates Based on DSR Ground Measures

The SDLR estimates based on the reconstructed DSR data set was compared with which based on DSR 
ground measures at 122 CMA radiation stations from 1958 to 2015 to ensure the feasibility of spatiotempo-
ral analysis. As shown in Figure 12, the SDLR estimates based on the reconstructed DSR data set correlate 
well with which based on the ground measures, with an R value of 1, a bias value of −0.42 Wm−2, and an 
RMSE value of 6.65 Wm−2, at a daily time scale. These values are 1, −0.42, and 5.17 Wm−2, respectively, at 
a monthly time scale. Thus the error of the reconstructed data set has little effect on the accuracy of SDLR 
estimates based on the GBRT method. We also compare the long-term trend between the SDLR estimates 
based on the reconstructed and ground measured DSRs. Regarding the completeness of the DSR ground 
measures, the time series is determined to be 1970–2015 for comparison. 48 and 563 CMA stations were 
used for long-term trend analysis from 1970 to 2015 based on the reconstructed and ground measured 
DSRs, respectively. As shown in Figure 13, the SDLR estimates at CMA stations based on the reconstructed 
and ground measured DSRs show consistent trends from 1970 to 2015. The difference between anomalous 
annual mean SDLR estimates based on two DSR datasets was range from −0.02 to 3.09 Wm−2, and the abso-
lute values were within 1 Wm−2 in most years. The SDLR estimates used the DSR ground measurements as 
input showed significant increasing trends at a rate of 0.98 Wm−2 per decade from 1970 to 2015, while the 
value was 1.25 Wm−2 per decade for the SDLR estimates based on the reconstructed DSR data set. Thus, the 
SDLR estimates using reconstructed DSR data set as input can be used to perform spatiotemporal analysis 
of SDLR over China.

4.3.2. Spatial Distribution and Seasonal Variations of SDLR

According to the classification method of climatic types in China proposed by Zhou et al. (2018) and Liu 
et al. (2018), this study divided mainland China into six regions to compute spatiotemporal analysis, in-
cluding East China (EC), North China (NC), Northeast China (NE), Southwest China (SW), South China 
(SC), and the TP. The spatial distribution and annual mean SDLR estimates of each region are presented in 
Figure 14. The different sizes and colors of the stations indicate the magnitude of the annual mean SDLR 
estimates at 563 CMA stations during 1958–2015. As it is shown in the figure, the annual mean SDLR es-
timates shows a pronounced latitudinal dependency except over the TP, with larger values at low latitudes 
and smaller values at high latitudes. This may be due to the low values of aerosol optical thickness and 
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Figure 12. Evaluation results of the SDLR estimates based on the reconstructed DSR data set and which based on the DSR measure at (a) daily and (b) monthly 
time scales. DSR, downward shortwave radiation; SDLR, Surface downward longwave radiation.
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atmospheric water vapor content over the TP. Table 3 shows the annual mean SDLR estimates over China 
and six climate regions. EC, SC, and SW show higher annual mean SDLR than the other regions in China. 
The maximum annual mean SDLR estimates occur in SC, whereas the minimum value occurs in TP. The 
difference between the annual mean SDLR estimates in SC and TP is up to 100 Wm−2.

Figures  15 and 16 show the monthly and seasonal mean SDLR estimates over mainland China and six 
subregions during 1958–2015, respectively. The monthly SDLR estimates gradually increase from Janu-
ary to July and then gradually decrease from July to December over both mainland China and six subre-
gions. The highest seasonal mean SDLR typically occurs in summer, with areal averaged SDLR estimates of 
379.20 Wm−2. Following the same logic, the minimum SDLR occurs in winter, with values of 255.60 Wm−2. 
The SDLR estimates show similar seasonal variation trends in all six subregions. The maximum seasonal 
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Figure 13. Comparison between the anomalous annual mean SDLR estimates (unit: Wm−2) based on the DSR 
estimates and the DSR ground measures during 1970–2015. DSR, downward shortwave radiation; SDLR, Surface 
downward longwave radiation.

Figure 14. The annual mean SDLR estimates (unit: Wm−2) at 563 CMA stations during 1958–2015. CMA, Chinese 
Meteorological Administration; SDLR, Surface downward longwave radiation.
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differences occur in NE (147.7 Wm−2), while smaller values occur in SC 
and SW (66.9 and 68.3 Wm−2, respectively).

4.3.3. Long-Term Trends

Figure  17 demonstrates the trends of the SDLR estimates at 563 CMA 
stations during 1958–2015. The size of each triangle represents the mag-
nitude of the trend, and the red and green triangles indicate increasing 
and decreasing trends, respectively. Stations with a circle indicate that 
the trend detected by the MK test is significant at a 95% confidence level. 
The SDLR estimates at stations in central and northern China all showed 
increasing trends from 1958 to 2015, whereas the SDLR estimates at 
some stations in southern China showed decreasing trends. 549 out of 
563 CMA stations show positive trends, and 476 stations increasing sig-
nificantly during 1958–2015; 14 stations show negative trends, with one 
stations decreasing significantly. The stations with negative SDLR trends 
were mainly concentrated in SC and SW.

Figure 18 shows the anomalous annual mean SDLR estimates averaged 
over mainland China and the six subregions from 1958 to 2015. A line 

was fitted to the anomalous annual mean SDLR estimates using linear regression. In mainland China, the 
maximum values occurred in 1998, and the minimum values occurred in 1969. A 1.04 Wm−2 per decade 
increasing linear trend of SDLR is observed during the period of 1958–2015. The trends in EC, NC, NE, SW, 
and TP regions are similar to those over mainland China. In SC, the trend is insignificant but exhibits large 
interannual variations during the period of 1958–2015.

Since the MK test is more statistically rigorous than the regression method (Mann, 1945), the MK test is 
used to further analyze the long-term trend. The annual mean SDLR estimates over mainland China show 
significant increasing trends at a rate of 1.02 Wm−2 per decade detected by the MK test. The increasing 
trends are comparable to those from previous studies (Prata,  2008; K. C. Wang & Liang,  2009a). CO2 is 
another dominant emitter of SDLR, hence the effect of CO2 on SDLR should be considered. The global at-
mospheric CO2 concentration has increased by an average of 1.5 ppm per year from 1958 to 2015, which was 
calculated based on globally averaged marine surface data from the National Oceanic and Atmospheric Ad-
ministration (NOAA) Earth System Research Laboratory (ESRL) flask network (Laboratory, 2019). The CO2 
concentration increase in China approximately at the same rate as that of global (Administration, 2018). 
Increasing CO2 concentration amount by 10% causes ∼0.2% (∼0.6 Wm−2) increase in SDLR (Prata, 2008). If 
the CO2 concentration in the atmosphere increases at a rate of 1.5 ppm yr−1, it will result in a corresponding 
increase in SDLR of 0.28 Wm−2 per decade. Therefore, the increasing trend of the SDLR estimates would be 
1.3 Wm−2 per decade considering the variability of CO2 concentration over China. Table 3 also shows that 
positive values are dominated in most regions. The annual mean SDLR estimates in EC, NC, NE, SW and 

WEI ET AL.

10.1029/2020EA001370

16 of 24

Region
Annual mean SDLR 

(Wm−2) 1958–2015 1958–1990
1991–
2015

China 316.14 1.02* 0.59 0.59

EC 336.74 1.07* 0.44 0.73

NC 277.06 1.30* 0.51 0.57

NE 278.31 1.31* 0.41 0.94

SC 384.22 0.61 0.53 0.10

SW 347.74 0.60* 0.43 −0.68

TP 271.55 1.18* 0.62 0.25

*Trend at the 5% significant level (p < 0.05). SDLR, Surface downward 
longwave radiation; EC, East China; NC, North China; NE, Northeast 
China; SC, South China; SW, Southwest China; TP, Tibetan Plateau.

Table 3 
The Trends in Annual Mean SDLR Estimates Over Mainland China and 
Six Regions Detected by MK Test

Figure 15. Monthly mean SDLR estimates (unit: Wm−2) over the six regions and mainland China during 1958–2015. 
SDLR, Surface downward longwave radiation.
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TP show significant increasing trends at a rate of 1.07, 1.30, 1.31, 0.60, 
and 1.18 Wm−2 per decade, respectively. SC shows insignificant increas-
ing trends from 1958 to 2015, at a rate of 0.61 Wm−2 per decade. It can be 
seen that most regions over China showed a significant increasing trend 
from 1958 to 2015, except in SC and SW.

Given the long-term variability in SDLR, characterizing various time pe-
riods separately may be more useful than linearly fitting the entire time 
period. Pinker et al. (2005) claimed that the DSR showed a decrease until 
about 1990 and then a sustained increase. Therefore, the annual mean 
SDLR estimates series was divided, with break at 1990. A 0.59 Wm−2 per 
decade insignificant increasing between 1958 and 1990, followed by a 
0.59  Wm−2 per decade insignificant increasing from 1991 to 2015, was 
found in anomalous annual mean SDLR estimates over mainland Chi-
na. Annual mean SDLR estimates in EC, NC, NE, SC, and TP had very 
similar trends to mainland China in the specified three time periods, 
but with different magnitudes. The corresponding values were 0.44 and 
0.73 Wm−2 for EC, 0.51 and 0.57 Wm−2 for NC, 0.41 and 0.94 Wm−2 for 
NE, 0.53 and 0.1 Wm−2 for SC, and 0.62 and 0.25 Wm−2 for TP. The trends 

in SW were different from other regions. In SW, there were a 0.43 Wm−2 per decade insignificant increasing 
over 1958–1990, and a 0.68  Wm−2 per decade insignificant decreasing over 1991–2015. Before 1990, the 
anomalous annual mean SDLR was negative in most years, but mostly positive after 1990. Therefore, the 
trends in these two time periods over all subregions are insignificant.

Table 4 summarizes the trends of the seasonal mean SDLR estimates over mainland China detected by 
the MK test from 1958 to 2015. The mean SDLR estimates exhibits a positive trend in the four seasons, 
with the highest rising rate in winter and lowest in summer. The seasonal mean SDLR in four season all 
show insignificant increasing trends from 1958 to 2015, with rates of 0.36, 0.38, 0.45, and 0.99 Wm−2 per 
decade, respectively. We also divided the time period with break at 1990. The seasonal mean SDLR esti-
mates in four seasons all showed insignificant increasing over 1958–1990 and significant decreasing over 
1991–2015. In spring, there were a 0.13  Wm−2 per decade increasing over 1958–1990, and a 3.13  Wm−2 
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Figure 16. Seasonal mean SDLR estimates (unit: Wm−2) over the six 
regions and mainland China during 1958–2015. SDLR, Surface downward 
longwave radiation.

Figure 17. Long-term trends of SDLR estimates detected by MK test at 563 CMA stations over 1958–2015. Upward-
pointing triangles (red) denote an increasing trend in SDLR estimates, whereas downward pointing triangles (green) 
represent a decreasing trend in SDLR estimates. Stations with a circle mean that the trend is significant at the 95% 
confidence level. CMA, Chinese Meteorological Administration; SDLR, Surface downward longwave radiation.
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Figure 18. The anomalous annual mean SDLR estimates (unit: Wm−2) averaged over each region and mainland China during 1958–2015. SDLR, Surface 
downward longwave radiation.
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per decade decreasing over 1991–2015. The corresponding values were 
0 and 3.97 Wm−2 for summer, 0.9 and 1.45 Wm−2 for autumn, 1.15 and 
3.75 Wm−2 for winter.

5. Discussion
Previous studies suggest that long-term SDLR variation is often deter-
mined by Ta and atmospheric water vapor concentration (K. C. Wang & 
Liang, 2009a). In this session, we investigate the correlation between the 
long-term variation of SDLR and other parameters over China. Near sur-
face temperature and water vapor are used to calculate SDLR based on 
the Stefan-Boltzmann equation:

  4,a aSDLR T e T  (8)

where   is the Stefan-Boltzmann constant (5.67×10−8 Wm−2K−4).   is the atmospheric effective emissivity 
under clear sky conditions.   can be modeled as a function of Ta, water vapor pressure (e). RH is the ratio 
of water vapor pressure and saturation water vapor pressure, which can be calculated by Ta using the fol-
lowing equations. We choose water vapor pressure rather than RH to investigate the correlation between 
the trend in SDLR. Under cloudy sky conditions, the cloud cover fraction can also be estimated by the ratio 
of the measured horizontal global solar radiation to the horizontal global solar radiance under clear sky 
conditions. Thus, the DSR can be used to reflect cloud conditions. Next, the correlation between the trend 
in SDLR and the trend in Ta, water vapor pressure, DSR over China from 1958 to 2015 are further explored:

100%,
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eRH
e

  (9)
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where e and es are the water vapor pressure and the saturation water vapor pressure, respectively.

Figure 19 shows the time series of anomalous annual mean SDLR estimates, measured Ta, calculated water 
vapor pressure and measured DSR from 1958 to 2015 over China. It is shown that the trend of SDLR is gen-
erally consistent with the trend of Ta and water vapor pressure, whereas the trend of SDLR is opposite to the 
trend of DSR. To fully assess the causes of changes in SDLR, we further quantitatively investigated the cor-
relation between the SDLR and other variables. Figure 20 is the scatterplots of the trend in SDLR estimates 
detected by the MK test as a function of the trends in Ta, water vapor pressure, and DSR at the 563 CMA 
stations. One point in the figure represents one station. The trend of SDLR is positively correlated with the 
trends in Ta and water vapor pressure, and the R values between SDLR with Ta and vapor pressure are 0.62 
and 0.60, respectively. The trend of SDLR is negatively correlated with the trend in DSR, with an R value 
of −0.16. SDLR is not strongly correlated with DSR over mainland China during the period of 1958–2015.

In order to study the characteristics of parameters which controlling the long-term variation of SDLR in dif-
ferent regions over China, the correlation of the trends in SDLR with the trends in Ta, water vapor pressure 
and DSR over the six regions is also shown in Figure 21. The trend of SDLR is positively correlated with the 
trend in Ta and water vapor pressure, whereas it is negatively correlated with the trend in DSR in all sub-
regions. In EC and TP, the trend of SDLR is highly correlated with the trend of Ta, with R values of 0.65. In 
EC, NE, SC, SW, and TP, the trend of SDLR is highly correlated with the trend of water vapor pressure, with 
an R value of 0.63, 0.72, 0.70, 0.75, and 0.69, respectively. In TP, the trend of SDLR exhibits a relatively high 
negative correlation with the trend of DSR, with R values of −0.57. The trend of SDLR has no significant 
correlation with the trend of Ta, water vapor pressure and DSR in NC. These results suggest that the primary 
controlling factors of the SDLR long-term variation for six climatic zones were different: the increases in 
water vapor pressure results to the rising trend over most subregions, the rising trend over TP mainly results 
from both increases in Ta and water vapor pressure and decreases in DSR, the rising trend over NC has no 
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Season
Seasonal mean SDLR 

(Wm−2) 1958–2015 1958–1990
1991–
2015

Spring 309.38 0.36 0.13 −3.13*

Summer 379.20 0.38 0 −3.97*

Autumn 320.52 0.45 0.90 −1.45

Winter 255.60 0.99 1.15 −3.75*

*Trend at the 5% significant level (p < 0.05). SDLR, Surface downward 
longwave radiation.

Table 4 
The Trends in Seasonal Mean SDLR Estimates of Each Season Over 
Mainland China Detected by MK Test
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significant correlation with those of other three variables. It is noted that the number of samples over each 
region is quite limited based on the completeness of the data records, and the points are scattered and une-
ven, which may lead to errors in the results.

6. Conclusions
SDLR is a major component of the energy budget in the Earth's climate system. However, SDLR is not con-
ventionally observed due to the high cost and difficulty of a direct measurement. It has great significance 
to generate a comprehensively spatiotemporal extended SDLR data set over China based on more readily 
available data has. In this study, we reconstructed SDLR based on the GBRT method using Ta, RH and DSR. 
Daily ground measurements collected at the BSRN and ASRCOP stations were used to build and validate 
the GBRT model, respectively. The evaluation results showed that the estimated SDLRs using the GBRT 
method correlate well with the SDLR in situ, with an overall RMSE of 16.5 Wm−2 and an R value of 0.91 
at a daily time scale. Thus, applying the GBRT method to estimate SDLR provides reasonable and realistic 
radiation quantity and its variation without a local correlation.
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Figure 19. Anomalous annual mean SDLR estimates, measured Ta, calculated water vapor pressure and measured 
DSR during 1958–2015 over China. DSR, downward shortwave radiation; SDLR, Surface downward longwave radiation.

Figure 20. The scatterplots of trends in SDLR (unit: W/m2/yr) as a function of trends in (a) Ta, (b) water vapor pressure, and (c) DSR at the stations. DSR, 
downward shortwave radiation; SDLR, Surface downward longwave radiation.
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Figure 21. The scatterplots of trends in SDLR as a function of trends in Ta, water vapor pressure and DSR over six 
regions. DSR, downward shortwave radiation; SDLR, Surface downward longwave radiation.
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To obtain long-term SDLR data for subsequent spatiotemporal analysis based on the proposed method over 
China, the densely distributed reconstructed DSR and ground measured Ta and RH collected at 756 CMA 
stations were used as input to estimate the SDLR based on the GBRT method over China from 1958 to 2015. 
We also analyzed the spatial pattern and temporal variations of the estimated SDLRs at 563 CMA stations 
over China where the data were relatively complete during the period of 1958–2015. The maximum annual 
mean SDLR occurred in SC, whereas the minimum value occurred in TP. The seasonal mean SDLR esti-
mates were highest in summer and lowest in winter. The spatial distribution of the estimated SDLRs in each 
season was similar to that in the whole year. It was found that SDLR increased significantly at an average 
rate of 1.3 Wm−2 per decade from 1958 to 2015 as detected by the MK test. The long-term trends in most 
regions were consistent with those in the whole China area, except for SC. In SC, the annual mean SDLR 
exhibited insignificant increasing trends at a rate of 0.61 Wm−2 per decade. We also compared the accuracy 
and trends of the SDLR estimates based on the GBRT method between those from existing SDLR products. 
The comparison result showed that accuracy and trends of the estimated SDLRs of the GBRT method are 
reasonable.

The primary controlling factors of the SDLR long-term variation was investigated in mainland China by 
analyzing the correlation between the trend of SDLR and the trends of Ta, water vapor pressure, and DSR at 
the 563 CMA stations. The trend of SDLR was generally positively correlated with the trend in Ta and water 
vapor pressure, negatively correlated with the trend in DSR. The primary controlling factors of the SDLR 
long-term variation for six climatic zones were different.

Although the GBRT method is robust to outliers in output space, and has been efficient and practical for 
many research applications, the GBRT method also has some disadvantages. First, the GBRT method has 
poor scalability due to the order nature of its promotion. Second, the training procedure is sensitive to the 
choice of parameters. There is a trade-off between overfitting and computational cost. The step size of learn-
ing rate parameter may need to be small to avoid overfitting. However, the small learning rate parameter 
may imply a high computational cost of applications. Thus other machine learning methods or deep learn-
ing methods can be further explored to improve accuracy and efficiency of SDLR estimation.

The density of the SDLR measurements is sparser than that of the meteorological and DSR measurements. 
The SDLR can be estimated and easily extended to more stations and over longer time periods using the 
GBRT method without a local correlation. This study only applies the GBRT method at stations using 
ground measurements. However, the number and spatial distribution of the training samples may have 
influence on SDLR estimation. We plan to extend the GBRT method for SDLR estimation from stations to 
surface, using reanalysis data and/or retrievals from satellite observations.

Data Availability Statement
The ground measurements at CMA stations are available at http://cdc.nmic.cn/home.do; the ground meas-
urements at BSRN stations are available at https://dataportals.pangaea.de/bsrn; the CERES-SYN data are 
available at https://ceres.larc.nasa.gov/; the ERA5 data are available at https://www.ecmwf.int/en/fore-
casts/datasets/reanalysis-datasets/era5; the GEWEX-SYN data are available at http://www.gewex.org/
data-sets-surface-radiation-budget-srb/.
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