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Abstract: Leaf area index (LAI) and normalized difference vegetation index (NDVI) are key parame-
ters for various applications. However, due to sensor tradeoff and cloud contaminations, these data
are often temporally intermittent and spatially discontinuous. To address the discontinuities, this
study proposed a method based on spectral matching of 30 m discontinuous values from Landsat
data and 500 m temporally continuous values from Moderate-resolution Imaging Spectroradiometer
(MODIS) data. Experiments have proven that the proposed method can effectively yield spatiotempo-
rally continuous vegetation products at 30 m spatial resolution. The results for three different study
areas with NDVI and LAI showed that the method performs well in restoring the time series, fills
in the missing data, and reasonably predicts the images. Remarkably, the proposed method could
address the issue when no cloud-free data pairs are available close to the prediction date, because of
the temporal information “borrowed” from coarser resolution data. Hence, the proposed method can
make better use of partially obscured images. The reconstructed spatiotemporally continuous data
have great potential for monitoring vegetation, agriculture, and environmental dynamics.

Keywords: LAI; NDVI; data integration; time series; similarity

1. Introduction

Landsat satellites are one of the most popular remote sensing (RS) data sources used for
studying the characteristics of the Earth’s surface [1–3], such as land cover monitoring [4–6],
land surface temperature estimation [7,8], urban heat island studies [9,10], agriculture
drought [11], wetlands [12], and glacier mapping [13]. However, the tradeoff between
spatial and temporal resolution results in images deficiency at most places each year.
Moreover, the effects of clouds, cloud shadows, and other “noises” make the problem
worse [14]. The spatial and temporal discontinuity of satellite data has constrained many
RS applications, such as crop mapping [15–17] and forest monitoring [18–20]. Although
an ever-increasing number of satellites have been launched in recent decades [21] and
an unprecedented wealth of remote sensing data has become accessible [22], meeting the
commands of local or regional studies with single satellite sensors is still challenging, for
which may need more details.

The time series of leaf area index (LAI) and normalized difference vegetation index
(NDVI) (the two parameters are referred to as “VI” in this article) are important indicators
of vegetation properties and ecosystem conditions, and provide indispensable tools for
monitoring vegetation dynamics [23] in climate and ecosystem research [24]. At a global
scale, frequent observations from coarse- to moderate-resolution satellite sensors make
it possible to monitor land surface and vegetation changes in terrestrial ecosystems [25].
However, the coarse spatial resolution is not suitable for detailed studies. Currently avail-
able products for VI suffer from the same problem. For example, current LAI products such
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as Moderate-resolution Imaging Spectroradiometer (MODIS) [26], Global Land Surface
Satellite (GLASS) [27,28], and Carbon Cycle and Change in Land Observational Products
from an Ensemble of Satellites (CYCLOPES) [29] are produced at coarse spatial resolution,
thus the pixels are usually mixed and not useful for local or regional studies [30]. In ad-
dition, cloud effects and bad weather conditions often caused the incompleteness of VI
products at either scale. Therefore, efforts to develop spatially and temporally continuous
and high-resolution products are urgently needed.

Fortunately, the advent and development of spatiotemporal fusion (STF) methods [22,31–33]
have efficiently combined fine and coarse spatial resolution data, and synthesized the ad-
vantages of each. Blending Landsat imagery with MODIS imagery is a common approach
of STF [34,35], which can derive images with 30 m spatial resolution and daily (even
sub-day, depending on the temporal frequency of the MODIS data) temporal resolution.
However, owing to the limitations of data availability, STF methods still face challenges.
Most importantly, the requirement of STF methods is collecting at least one pair of fine
and coarse clear images at adjacent days as input data [34]. For fine-resolution images
such as Landsat, no clear images are typically available during cloudy seasons in some
locations. In addition, obtaining clear images at two dates for MODIS data also are also not
guaranteed [4].

A good approach to the aforementioned problem is to simplify it. RS scenes are
abstractions of real features on the ground and are composed of discrete objects that are
arranged in a mosaic on continuous background [36]. From this perspective, the reflectance
received by the sensor is the most important parameter, which is the product of the spatial
structure of the scene. In other words, the relationship between the size of the objects and
the spatial resolution is fundamental, which consists of the spatial pattern of the observed
view. Therefore, in our study, we attempt to take a time series from a single fine-resolution
pixel as an objective and find a counterpart in coarse-resolution images, expecting that the
“found” pixel will have a similar spatial structure in the coarser view. The similarity was
assessed by time series similarity measurement methods [37], which are usually carried
out between a target and reference series.

In this study, the overriding objective is to obtain high spatiotemporal resolution
VI time series using a spectral similarity matching (SIM) approach. Aimed at finding a
similar time series, a main scheme using correlation measure and a backup scheme using
shape measure were applied. Notably, the method is especially effective when there are no
neighboring fine-resolution images as data input, which is a challenge for the usual STF
methods. The SIM method was tested and evaluated by experiments in three study areas
with different biome classes. In the following text, we introduce the methods in Section 2,
describe data and study areas in Section 3, show the experiment results in Section 4, discuss
the advantages and problems of SIM in Section 5, and conclude at the last section.

2. Methods
2.1. SIM Method

The proposed SIM method estimates the VI images using a search-and-match process.
Intrinsically, the basis of SIM is to find a similar counterpart time series at coarse resolution,
despite the geographic location. Unlike STF methods, the SIM requires inputs of the VI
time series from different scales (excluding the fine image at the prediction date).

Figure 1 shows a flowchart of the proposed SIM method. The first step was to
determine if the VI time series from a fine scale (TS1) is representative of the study period.
At least five points are important to composite the vegetation growth curve during one
growing season, including the start and end of the foliage season, two inflection points,
and the peak value [15]. Therefore, the threshold M of effective value numbers was set to
six. If the available pixel values were less than M, the method sought the surrogate time
series from neighboring pixels within the same class. Classification map was used in this
case, which was classified using the clear fine-resolution images within each study period.
Then, the closest neighbor from the same class was chosen and a linear relationship was
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built up between this neighbor and the current time series. The incomplete time series TS1
was filled up using the neighboring information.
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Figure 1. The flowchart of the similarity matching (SIM) process.

The second step of the SIM is the preselection of MODIS pixels in order to speed
up the searching process. A dynamic time warping (DTW)-based k-means clustering
method [38,39] was applied to MODIS time series. Compared with the ordinary k-means
algorithm, DTW-based k-means measures the similarity between time series more flex-
ibly [39]. After clustering, MODIS time series were classified to multiple classes, each
of which was represented by a centroid. The derived centroids then were directly com-
pared with TS1 and determined which classes TS1 belongs to. The process of preselection
accelerated the whole searching process significantly.

Subsequently, the highlight and third step of the SIM was measuring similarities of
time series from fine and coarse resolution and determining if the “found” time series
is satisfactory. In theory, the search-and-match process will succeed if the search range
is sufficiently large. However, unlimited extension of the search window is not feasible.
In this study, a workable solution was to search the candidate coarse pixels around the
neighboring area. The main scheme was to calculate the correlation coefficient r between
time series as the criterion. To ensure efficiency and accuracy, an additional calculation of
the Spearman rank correlation (SP) was evaluated. Two empirical thresholds, TH1 = 0.9
and TH2 = 0.8, were set to statistically illustrate that the measured time series were highly
related (r > TH1), and their variations were mostly similar (SP > TH2). If these requirements
were not met, a backup scheme based on Fourier component similarity measure (FCSM)
was performed. The most proximate time series (with the smallest distance (D)) from
coarse resolution according to FCSM was chosen. Then, a relationship was established
between the found and target time series. The predictions can be derived with the help
of established relationships and frequent coarse resolution data. Finally, as long as the
coarse-resolution data were continuous and of high quality, a continuous VI time series at
fine resolution was yielded by all the steps mentioned above.

Landsat VI images with a 16-day temporal frequency are usually used for long-term
vegetation analysis [16]. However, long revisit time and frequent contamination, resulting
in insufficient image numbers, are the main challenges for short-term vegetation studies.
The temporal trajectories are dominated by covered biome types. For example, crops and
forests usually have higher vegetation indices than grass in early spring, the crops will have
lower VI values after harvest, and similar variations are found in some regions between
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crops and grasslands. Trajectory features are identified as characteristics for different class
types, and are thus often applied to classifications [37,40]. Similar methods have been used
for spectral curve matching by calculating the linear correlation coefficient between a test
spectrum and a reference spectrum.

Two schemes are employed as the main and backup, respectively, for time series
similarity measure. The main scheme is to calculate the correlation coefficient between two
time series across scales in order to determine whether a linear relationship exists. Then, if
the main algorithm fails, a back-up algorithm is triggered using FCSM, which is performed
at frequency domain and avoids the effects of noises. The details of the two schemes are
described in Sections 2.1.2 and 2.1.3, respectively.

2.1.1. Selection of Candidate MODIS Pixels

The theoretical basis of the method is pixel-by-pixel searching, but it is time-consuming
to search a temporally similar time series from MODIS data for each fine-scale pixel. Hence,
it is helpful to filter and select candidate MODIS pixels in advance.

In this study, a DTW-based k-means clustering method was applied to MODIS time
series. The number of clustering classes depends on the available amount of coarse-
resolution time series and the computation efficiency of the computer. The clustering
process is as follows:

1. Randomly select k original clustering centroids.
2. For each time series, calculate the DTW distance and cluster to the closest centroid.
3. Average all the time series for each clustering class and generate new k centroids

based on the averages.
4. Repeat steps 2 and 3 until steady centroids are derived.

2.1.2. Correlation Measurement

Although the Landsat time series are usually incomplete, if the scarce observations of
Landsat and the complete MODIS time series are parallel on most of the observed days, it is
very likely that the two time series from different scales will have similar changes. For one
thing, the search in the study is within a neighboring range, meaning that the composition
of land cover types (e.g., the species of trees and crops) as well as the influence of climates
are usually very similar. Moreover, the variations of multiple vegetation types are different
during the growing season, which is the criterion for feature classification [37].

A variety of approaches for time series measurement have been studied [37], and
the correlation coefficient used as the similarity measure for time series is common in
the remote sensing field, for example, the similarity measurement between time series as
the criterion for crop type classification [41] or land cover type changes [42]. The most
straightforward approach is the correlation measure method, among which the Pearson's
cross-correlation coefficient (also referred to as Pearson's r) [43] is the most commonly used.
It measures the linear relationship between the time series following Formula (1):

R = E(TSX − µTX) (TSY − µTY)/σTXσTY, (1)

where TSX and TSY represent two time series, and µT* and σT* are the mean and standard
variation of the time series TS*, respectively.

2.1.3. Fourier Component-Based Shape Similarity Measure

For a specified Landsat pixel, a temporally similar MODIS time series can be difficult
to find because the search area is limited and data may be influenced by noise. Hence,
a broader definition of similarity is necessary, and a more flexible measurement of the
similarity between time series is applied following FSCM [44]. Fourier transformation is
one of the approaches [37] used to assess the similarity of time series. It is superior for
periodic signals, which is beneficial to vegetation dynamics.
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FSCM is a Fourier-based approach that focuses on the shape similarity of a time series.
A distance measure D is calculated using the first three harmonics in the frequency domain
after the Fourier transformation of the time series. D is expected to be close to zero if two
time series have similar shapes, and increases with the differences between the time series.
Detailed formulas of FSCM can be found at [37,44].

2.2. STF Methods

Past decades have witnessed the rapid development of STF methods. Numerous
methods have been developed, with applications across interdisciplinary fields [22,32,33].
Five categories of STF methods have been described in previous literatures: weight function-
based, unmixing-based, learning-based, Bayesian-based, and hybrid methods [22,45].

Among the various STF methods, three were chosen in this study to compare the
fusion results with the proposed approach. The first STF method is the spatial and temporal
adaptive reflectance fusion model (STARFM)—the original and most widely used STF
method [34,46,47]. It is based on the principle that changes in a fine-resolution pixel can be
derived from a corresponding pure coarse-resolution pixel because the observations taken
at the same time should be the same (ignoring the system errors), even at different scales.
Neighboring pixels are combined by assigning weights, which are determined by spectral,
spatial, and temporal differences.

Although STARFM can accurately predict pure and unmixed pixels, it is less advan-
tageous when applied to heterogeneous areas. An enhanced STARFM (ESTARFM) has
been developed [35] to address this insufficiency by incorporating unmixing theory and
changing rate. ESTARFM assumes that the land cover conditions are constant over a short
time period, and a conversion coefficient is used to relate coarse- and fine-resolution images.
This method requires at least two pairs of images as base dates, whereas STARFM used
only a single image pair at one base date.

The third method is the flexible spatiotemporal data fusion (FSDAF)—a hybrid STF
method characterized as effective for predicting abrupt changes, and compensating for
deficiencies of current STF methods [45]. FSDAF is a hybrid method of combining weight-
function and unmixing theory, in which temporal change is calculated according to spectral
linearly unmixing theory and spatial prediction is made by thin plate spline interpolation.
Neighboring pixels are involved, similar to STARFM, but the weights are calculated from a
homogeneity index of each coarse pixel.

2.3. Quantitative Evaluation

In each study area, all available Landsat images are used as input to obtain the best
prediction results. However, in terms of quantitative evaluation, fine-resolution data at
the prediction day should not be involved. Therefore, “artificial” missing and predicting
experiments were performed as cross-validation, dropping one day’s fine-resolution data
and estimating it with the remaining data. For example, in the central South Dakota, United
States, (CSD) area, the prediction at date of year (DOY) 191 used 14 Landsat images from
DOY 143 to DOY 271 and excludes only DOY 191. After prediction, statistical indices were
evaluated. The predictions were compared with the actual observed NDVI or derived
LAI images and results derived from popular STF methods (i.e., STARFM, ESTARFM,
and FSDAF).

The first index is the mean absolute error (MAE), which is the mean of the difference
between the predicted and true values. The second index is the root-mean-square error
(RMSE), defined as Formula (2), which measures the average squared difference between
the estimated and the actual values.

RMSE =

√
∑R

i=1 ∑C
j=1
(

L(i, j)− L̂(i, j)
)

R× C
, (2)
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where L and L̂ denote the observed and predicted values. R represents the pixel rows, and
C the columns. A better prediction result will produce smaller MAE and RMSE indices.
Pearson’s correlation coefficient (r) is the third evaluation index (Section 2.1.2), used for
accessing the correlation between real and predicted images, where a larger r means a more
similar prediction result.

In addition, a structural similarity (SSIM) measure [48] is applied between the input
and output image pairs. This index measures the similarity of spatial patterns, with a larger
SSIM indicating the patterns are more likely to show resemblance.

3. Data and Study Areas
3.1. Study Areas

To illustrate the general usefulness of SIM for various vegetation types and conditions,
experiments were conducted over three study areas containing different classes of biome.
A subset of each study area consisting of 500 × 500 Landsat pixels was used for direct
comparison. All the experiments were conducted over a period of one growing season
to explore the efficiency of similarities other than cyclic seasonality characteristics in the
time series.

The first study area (44◦32′N, 100◦17′W) is located in central South Dakota, United
States (CSD), and is covered by various-shaped patches of croplands (Figure 2a). According
to CropScape (https://nassgeodata.gmu.edu/CropScape/), the main types of crops here
include corn, wheat, and sunflowers. The second study area (39◦29.4′N, 120◦49.8′W)
is located at the northeast of Rocky Mountains (hereafter referred to as “NRM”). The
area is covered mainly by evergreen needleleaf forests and intersected with shrub lands
(Figure 2b). The third area (32◦15′N, 110◦27′E) selected is located in central China (hereafter
referred to as “CCN”). This location is heterogeneous, covered by mixed forests, including
evergreen, deciduous broadleaf, coniferous forests, and farmlands. The area has frequent
cloud cover due to subtropical monsoon climate and high elevation.

Remote Sens. 2021, 13, x FOR PEER REVIEW 6 of 21 
 

 

The first index is the mean absolute error (MAE), which is the mean of the difference 
between the predicted and true values. The second index is the root-mean-square error 
(RMSE), defined as Formula (2), which measures the average squared difference between 
the estimated and the actual values.  

, (2) 

where L and L ̂ denote the observed and predicted values. R represents the pixel rows, and 
C the columns. A better prediction result will produce smaller MAE and RMSE indices. 
Pearson’s correlation coefficient (r) is the third evaluation index (Section 2.1.2), used for 
accessing the correlation between real and predicted images, where a larger r means a 
more similar prediction result.  

In addition, a structural similarity (SSIM) measure [48] is applied between the input 
and output image pairs. This index measures the similarity of spatial patterns, with a 
larger SSIM indicating the patterns are more likely to show resemblance.  

3. Data and Study Areas 
3.1. Study Areas 

To illustrate the general usefulness of SIM for various vegetation types and condi-
tions, experiments were conducted over three study areas containing different classes of 
biome. A subset of each study area consisting of 500 × 500 Landsat pixels was used for 
direct comparison. All the experiments were conducted over a period of one growing sea-
son to explore the efficiency of similarities other than cyclic seasonality characteristics in 
the time series. 

The first study area (44°32′N, 100°17′W) is located in central South Dakota, United 
States (CSD), and is covered by various-shaped patches of croplands (Figure 2a). Accord-
ing to CropScape (https://nassgeodata.gmu.edu/CropScape/), the main types of crops here 
include corn, wheat, and sunflowers. The second study area (39°29.4′N, 120°49.8′W) is lo-
cated at the northeast of Rocky Mountains (hereafter referred to as “NRM”). The area is 
covered mainly by evergreen needleleaf forests and intersected with shrub lands (Figure 
2b). The third area (32°15′ N, 110°27′E) selected is located in central China (hereafter re-
ferred to as “CCN”). This location is heterogeneous, covered by mixed forests, including 
evergreen, deciduous broadleaf, coniferous forests, and farmlands. The area has frequent 
cloud cover due to subtropical monsoon climate and high elevation.  

 
Figure 2. Land cover types for the three study areas. (a) Central South Dakota (CSD); (b) northeast of Rocky Mountains 

(NRM); (c) central China (CCN). 
Figure 2. Land cover types for the three study areas. (a) Central South Dakota (CSD); (b) northeast of Rocky Mountains
(NRM); (c) central China (CCN).

3.2. Data and Preprocessing

In this study, all Landsat-7 Enhanced Thematic Mapper (ETM+) and Landsat-8 Opera-
tional Land Imager (OLI) NDVI images were acquired through the U.S. Geological Survey
(USGS) (https://espa.cr.usgs.gov/ordering/new/) website. For the CSD area, a total of 15
Landsat NDVI images were collected during the growing season in 2013; for the NRM area,
a total of 27 NDVI images from 2016 were collected, but only a third of them are complete
and clear.

Frequent observations are crucial for a continuous VI time series, especially when
the vegetation conditions change rapidly during the growing season. Therefore, in-
stead of using existing NDVI products (with 16-day temporal resolution), the MODIS
nadir Bidirectional Reflectance Distribution Function (BRDF)-adjusted reflectance (NBAR)
product (MCD43A4) allowed NDVI to be calculated through the corresponding red

https://nassgeodata.gmu.edu/CropScape/
https://espa.cr.usgs.gov/ordering/new/
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(0.620–0.670 µm) and near infrared (0.841–0.876 µm) bands with daily temporal resolution.
MODIS data were download from the USGS land processes distributed active archive cen-
ter (https://lpdaac.usgs.gov (accessed on 20 January 2021)). Continuous NDVI trajectories
from MODIS during the growing season were collected at the CSD and NRM areas.

Landsat LAI data used in this study were produced by Wuhan University and followed
studies by Jin et al. [49,50]. They used a machine learning method to integrate multisource
data from fields, simulation data, and Landsat observations to derive 30 m resolution LAI
dynamics. Due to the limitations of the production of Landsat LAI data (only Landsat-8
data were produced), only eight LAI images in 2013 were collected at the CSD area; and a
total of 30 LAI images were collected at the CCN area in 2015, and only a third of them are
complete and clear.

MODIS and GLASS LAI products were used to provide LAI temporal dynamics for
this study. The MODIS/Terra+Aqua Leaf Area Index product (MOD15A3H, collection 6)
is composited with 4-day temporal resolution and 500 m spatial resolution imagery. LAI
retrieval includes a combination of main and backup algorithms [26]. The main algorithm
relies on the inversion of a 3D radiative model, and if it fails, the backup algorithm estimates
LAI through the empirical LAI–NDVI relationship. Because of the cloud effects in the CCN
area, the MODIS LAI products are temporally intermittent and spatially discontinuous,
thus are not reliable to use as a data source. Therefore, GLASS LAI products, one of the
GLASS products suite [27,28,51–53], were used instead in the CCN area. This LAI dataset
also has a 500 m spatial resolution but an 8-day temporal resolution.

For this study, only the best-quality values were kept, while fill value and others were
labeled as “no data”. MODIS LAI pixels with the best quality assurance rating and retrieved
by the main algorithm were used because the main algorithm usually obtains higher data
quality than the backup [54]. Before the experiment, all coarse-resolution images were first
reprojected into the same Universal Transverse Mercator (UTM) projection with Landsat
data. Although validations of products were performed [55], the data quality of MODIS
products varies when influenced by clouds or other conditions. Missing values and
blanks are inevitable after the removal of poor-quality pixels, according to the quality flags
provided by the products. Therefore, in this study, the MODIS time series which has more
than 80% of the values valid was further processed with a Savitzky–Golay filter [56] to
ensure the continuity and the basic trend of the time series.

4. Results
4.1. NDVI and LAI Results in the CSD Area

• NDVI results

The images in Figure 3 show the original NDVI images (the upper image of each pair)
and the SIM results (the lower image of each pair) in the CSD area. Although a total of
15 Landsat NDVI images were collected during the growing season (date of year (DOY) 119
to DOY 271), most of the images suffer from the blanks and gaps after the cloud removal.
The proposed SIM method facilitated the filling of the Landsat data, and demonstrated
the reasonable evolvement of NDVI dynamics over time. The spatial patterns remained
nearly the same before (upper image) and after (lower image) the SIM process. The images
were restored even with only a few pixels available at some days (e.g., DOY 247). From
the calculated SSIM between the input and output image pairs (Table 1), most of the data
pairs have extremely high structural similarity, which proves that the consistency remains
after SIM.

https://lpdaac.usgs.gov
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Figure 3. Normalized difference vegetation index (NDVI) visual results of SIM (the upper image of each pair is the input
and the lower is the output) at the CSD area for all input days. The blanks and gaps at the upper images in each pair result
from the removal of clouds, cloud shadows, and scan line corrector failure.

Table 1. Structural similarity measure (SSIM) between input and output NDVI images for the
CSD area.

DOY 143 175 183 191 199 207 215 223 231 239 255 263 271

SSIM(%) 93.4 99.0 99.2 98.1 98.5 98.7 99.5 99.0 99.4 99.4 98.4 98.7 97.1

The results shown in Figure 3 used all available Landsat data as input to obtain the
best prediction results. In addition, quantitative experiments were implemented in this
area to evaluate the strength of prediction. The metrics of the prediction results from the
validation process are displayed in Table 2 and Figure 4. From the figure, MAEs are lower
than 0.08, RMSEs are lower than 0.1, and the correlation coefficient r almost reaches 1.0,
excluding DOY 143. The possible reasons for the low accuracy of the first day may include
(1) only a small proportion of pixel values are usable for comparison; (2) a very low value
range was present at DOY 143, thus, large differences with the other images existed; and
(3) these compromise the regression between scales, which results in a better degree of fit
further along in the process. In this case, if denser images had been available around the
start day, the prediction of that day would have been better. The statistics also illustrate the
fact that SIM is capable of predicting missing values from the coarse-resolution time series.

Table 2. Quantitative validation of NDVI for all input days at the CSD area.

DOY 143 175 183 191 199 207 215 223 231 239 255 263 271

MAE 0.07 0.08 0.06 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.05 0.07

RMSE 0.09 0.10 0.07 0.08 0.08 0.07 0.06 0.07 0.05 0.06 0.06 0.06 0.09

R 0.54 0.90 0.97 0.91 0.95 0.97 0.98 0.97 0.98 0.98 0.95 0.97 0.90
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Figure 4. Bar graph of NDVI predictions statistics (mean average error (MAE), root-mean-square
error (RMSE), and r) at the CSD area.

• LAI results

Similarly, images for input and output LAI data at the CSD area are shown in Figure 5.
Although sparser temporal images (only eight Landsat LAI images) were used, the pro-
posed SIM method still worked effectively, filling in the missing data, and showed a
reasonable evolvement of LAI dynamics over time (Figure 5). The missing data were
reconstructed after SIM and maintained high comparability with the original images and
showed no significant changes. The SSIM between the image pairs was calculated (Table 3)
as well, and the agreement between the input and output images was good, except the
start day. Possible reasons are discussed in previous NDVI experiments.
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Figure 5. Leaf area index (LAI) visual results of SIM (the upper image of each pair is the input and
the lower is the output) at the CSD area for all input days. The blanks and gaps in the upper images
in each pair result from the removal of clouds, cloud shadows, and scan line corrector failure.
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Table 3. Structural similarity measure (SSIM) between input and output LAI images for the CSD area.

DOY 143 175 191 207 223 239 255 271

SSIM(%) 79.5 99.2 98.8 99.5 99.7 99.6 99.2 95.9

Quantitative evaluations were also implemented on LAI data, similar to the NDVI
experiments. Eight missing-and-estimating experiments were performed in total. The
quantitative evaluation statistics are provided in Figure 6 and Table 4. The average MAE
was approximately 0.7, the average RMSE was lower than 1.0, and correlation coefficient
r was about 0.8 for most days, excluding DOY 143. From Figure 5, the vegetation status
at DOY 191 was in transition, which was a significant turning point that may explain the
lower accuracy of DOY 191.
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Table 4. Quantitative validation of LAI for all input days at the CSD area.

DOY 143 175 191 207 223 239 255 271

MAE 0.73 0.87 0.81 1.01 0.77 0.73 0.42 0.50
RMSE 1.02 1.15 1.06 1.44 1.06 1.02 0.67 0.69

r 0.78 0.71 0.54 0.84 0.812 0.78 0.82 0.68

• Comparison with STF methods

Experiments conducted at DOY 191 (Figure 7) showed the strength of the SIM method.
From Figure 7, the tones of the predicted images by four methods are similar, but the
details differ. Notably, the SIM result has the closest resemblance to the actual NDVI image
(images with “actual” title), and STARFM and FSDAF have some blurs in details. These
two STF methods rely on only one day data (clear image from DOY 175 was taken as the
base date), hence, the shape change of the croplands is not correctly detected. However,
the SIM can produce exact and clear boundaries and the correct pattern. The ESTARFM
method also used image from DOY 207 as the second base date, which is the reason for the
shadows of the ESTARFM result. An example is shown in the zoomed-in images (Figure 7,
Panel B), which better illustrate the phenomenon. In addition, the ESTARFM result is
influenced by clouds that came from the second base date because no clear images were
available after DOY 191 until DOY 239. The accuracies of the results are shown in Table 5,
which reveals that the SIM gets a higher accuracy than other STF methods with lower MAE,
MSE, and RMSE, and higher value of r. For STF methods, the closest clear image from
DOY 175 was taken as the base date.
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Table 5. Accuracies of different methods for NDVI and LAI prediction at the CSD area from DOY 191.

NDVI LAI

Methods MAE RMSE r MAE RMSE r

SIM 0.06 0.08 0.91 0.71 1.00 0.64
STARFM 0.11 0.145 0.67 0.80 1.00 0.64

ESTARFM 0.12 0.17 0.60 0.88 1.17 0.56
FSDAF 0.10 0.13 0.72 0.90 1.15 0.59

Figure 8 shows the LAI prediction results tested using the same methods as NDVI
on the same day. It is difficult to implement the SIM for LAI here because only four
complete images remain if the data of prediction day is artificially dropped. The lack of
data causes an inaccurate composition of the time series at fine resolution, which would
very likely mislead the search process at coarser resolution. Nevertheless, comparison
experiments were conducted to DOY 191 with the remaining days as input (DOY 175, 239,
255, 271). From Figure 5, DOY 191 was in transitional period, which further complicates
the issue. However, even though SIM was at a disadvantage, the derived result (Figure 8)
was comparable to STF methods and visually similar to actual LAI images. Specifically, the
shapes of the croplands in the SIM result were much more intact and clearer than the STF
methods (Figure 8, Panel B). In contrast, STF methods use images from DOY 175 (and DOY
239 for ESTARFM) as the data source, thus the transition status, which was hardly found
in the corresponding MODIS data, confused the results to some extent. The accuracies of
the LAI results are shown in Table 5, which proves the strength of SIM with lower MAE
and RMSE, and higher value of r.

4.2. NDVI Results in the NRM Area

• NDVI Results

Figure 9 shows the Landsat NDVI images collected (upper image of each pair) and
the SIM results (lower image of each pair) at this area. The blanks and gaps in the upper
images are also the results after the removal of clouds, cloud shadows, and filling values.
However, the reconstruction of the SIM method is impressive, especially at the beginning
of the time period during which nearly all valuable information is missing. The NDVI
images predicted by SIM filled the missing values and restored spatial details. It is crucial
for local or regional vegetation monitoring that the NDVI images have abundant details
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and clear patterns. The SSIM between the input and output image pairs was calculated
and is shown in Table 6. Compared with the CSD area, the statistics in this area are not
good enough; however, considering the proportion of available and complete images, the
results are acceptable.

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 21 
 

 

found in the corresponding MODIS data, confused the results to some extent. The accu-
racies of the LAI results are shown in Table 5, which proves the strength of SIM with lower 
MAE and RMSE, and higher value of r. 

 
Figure 8. Actual and predicted LAI images using different methods at the CSD area from DOY 191. A zoomed-in area of 
all images is shown in Panel B. 

Table 5. Accuracies of different methods for NDVI and LAI prediction at the CSD area from DOY 
191. 

 NDVI LAI 
Methods MAE RMSE r  MAE RMSE r 

SIM 0.06 0.08 0.91  0.71 1.00 0.64 
STARFM 0.11 0.145 0.67  0.80 1.00 0.64 

ESTARFM 0.12 0.17 0.60  0.88 1.17 0.56 
FSDAF 0.10 0.13 0.72  0.90 1.15 0.59 

 

4.2. NDVI Results in the NRM Area 
• NDVI Results 

Figure 9 shows the Landsat NDVI images collected (upper image of each pair) and 
the SIM results (lower image of each pair) at this area. The blanks and gaps in the upper 
images are also the results after the removal of clouds, cloud shadows, and filling values. 
However, the reconstruction of the SIM method is impressive, especially at the beginning 
of the time period during which nearly all valuable information is missing. The NDVI 
images predicted by SIM filled the missing values and restored spatial details. It is crucial 
for local or regional vegetation monitoring that the NDVI images have abundant details 
and clear patterns. The SSIM between the input and output image pairs was calculated 
and is shown in Table 6. Compared with the CSD area, the statistics in this area are not 
good enough; however, considering the proportion of available and complete images, the 
results are acceptable. 

Figure 8. Actual and predicted LAI images using different methods at the CSD area from DOY 191. A zoomed-in area of all
images is shown in Panel B.

Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 9. NDVI visual results of SIM (the upper image of each pair is the input and the lower image is the output) at the 
NRM area for all input days. The blanks and gaps in the upper images in each pair result from the removal of clouds, 
cloud shadows, and scan line corrector failure. 

Table 6. Structural similarity measure (SSIM) between input and output NDVI images for the NRM area. 

DOY 43 59 75 83 91 107 115 123 131 
SSIM(%) 86.0 nan 94.01 97.2 98.9 98.8 96.9 97.5 96.2 

          
DOY 139 171 179 187 195 203 211 219 227 

SSIM(%) 94.6 91.6 97.8 97.9 98.0 98.4 98.9 98.7 98.8 
          

DOY 235 243 251 259 275 283 307 315 323 
SSIM(%) 97.4 98.6 97.4 93.1 94.0 94.7 98.8 84.2 97.1 

A total of 27 quantitative experiments were conducted at this area. The evaluation 
results shown in Figure 10 and listed in Table 7 illustrate the importance of data frequency. 
The statistics at the earlier stage are worse than later, when complete and clear images are 
more frequent. For most days, the MAEs and RMSEs are less than or equal to 0.1, which 
is reasonable. 

Figure 9. NDVI visual results of SIM (the upper image of each pair is the input and the lower image is the output) at the
NRM area for all input days. The blanks and gaps in the upper images in each pair result from the removal of clouds, cloud
shadows, and scan line corrector failure.



Remote Sens. 2021, 13, 719 13 of 20

Table 6. Structural similarity measure (SSIM) between input and output NDVI images for the
NRM area.

DOY 43 59 75 83 91 107 115 123 131

SSIM(%) 86.0 nan 94.01 97.2 98.9 98.8 96.9 97.5 96.2

DOY 139 171 179 187 195 203 211 219 227
SSIM(%) 94.6 91.6 97.8 97.9 98.0 98.4 98.9 98.7 98.8

DOY 235 243 251 259 275 283 307 315 323
SSIM(%) 97.4 98.6 97.4 93.1 94.0 94.7 98.8 84.2 97.1

A total of 27 quantitative experiments were conducted at this area. The evaluation
results shown in Figure 10 and listed in Table 7 illustrate the importance of data frequency.
The statistics at the earlier stage are worse than later, when complete and clear images are
more frequent. For most days, the MAEs and RMSEs are less than or equal to 0.1, which
is reasonable.
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The results of DOY 307, by comparison, are less satisfactory. The closest and clear 
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Figure 10. Bar graph of NDVI predictions statistics (MAE, RMSE, and r) at the NRM area.

Table 7. Quantitative validation of NDVI for all input days at the NRM area.

DOY 83 91 107 123 131 139 171 179

MAE 0.17 0.09 0.09 0.12 0.09 0.10 0.05 0.04
RMSE 0.24 0.15 0.12 0.18 0.12 0.15 0.06 0.05

r 0.68 0.73 0.83 0.74 0.78 0.62 0.93 0.98

DOY 187 195 203 211 219 227 235 243
MAE 0.06 0.04 0.03 0.02 0.04 0.02 0.06 0.05
RMSE 0.05 0.05 0.04 0.03 0.06 0.03 0.07 0.06

r 0.97 0.98 0.97 0.98 0.97 0.97 0.97 0.97

DOY 251 259 275 283 307 323
MAE 0.04 0.04 0.05 0.05 0.15 0.07
RMSE 0.04 0.05 0.06 0.056 0.21 0.09

r 0.96 0.97 0.96 0.95 0.62 0.789

• Comparison with STF methods

Due to data deficiency at the earlier stage of the study period, STF methods could not
be implemented. SIM can improve the prediction outside the limits of STF when long-term
data are missing (if the interval is longer than the requirement for the STF method). Instead,
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SIM relies on information from the coarse-resolution data that has frequent observations.
This will be helpful for cloudy areas.

Overall comparison experiments were conducted at DOY 171 and 307 as examples to
illustrate cases with and without adjacent, fine-resolution images, and results are showed
in Figure 11. For DOY 171, the next visiting day DOY 179 was clear, providing the best
condition for STF methods. Prior to DOY 171, no fine images are of value, thus only
STARFM and FSDAF were tested (which required only one neighboring fine image).
Table 8 shows the accuracies of comparable results from the three methods, indicating the
effectiveness of SIM under this circumstance. In addition, SIM has slight improvements in
predicting low values, considering scattered points are observed at STF results (Figure 11).
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Table 8. Accuracies of different methods for NDVI prediction at the NRM area from DOY 171 and
DOY 307.

DOY 171 DOY 307

Methods MAE RMSE r MAE RMSE r

SIM 0.09 0.12 0.83 0.21 0.27 0.62
STARFM 0.11 0.13 0.83 0.16 0.21 0.78

ESTARFM / / / 0.15 0.21 0.79
FSDAF 0.11 0.14 0.82 0.17 0.22 0.79

The results of DOY 307, by comparison, are less satisfactory. The closest and clear
neighboring image is from DOY 275, which was used as the base data input (for ESTARFM,
data from DOY 323 were used as the second base data). The right part of Figure 11 shows
the predicted NDVI results of DOY 307. Although SIM appropriately avoids the clouds
(shown as the dark blue area in Figure 11), the result is not sufficient because the prediction
day is at the end of the study period and no reliable data are available (DOY 315 and 323)
after that. Besides, the cloud and cloud effects are not fully removed at the “actual” NDVI
image, which also contributes to the inaccuracy of the day.

4.3. LAI Results in the CCN Area

• LAI Results

The input and output LAI images before and after SIM are shown in Figure 12. SIM
results (the lower image of each pair) illustrate that temporal information “borrowed” from
GLASS LAI time series helped to restore complete LAI dynamics. The variation of LAI
after SIM follows the seasonal changes, slowly increasing at the onset of green up (i.e., the
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start of the season), reaching a peak during summer and gradually declining thereafter.
Only slight clues could be derived if the original data were used, but the restored LAI data
were capable of depicting the entire evolving process.
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shadows, and scan line corrector failure.

The SSIM between the input and output image pairs for the SIM are listed in Table 9
(only the days with more available pixels were kept). Most of the SSIM values were
larger than 90%, indicating good agreement after SIM. During the time of foliage growth
and development, the agreement was still high, but an exception occurred at DOY 239.
Analysis on that day revealed the remaining cloud and cloud shadows were the main
reason for disagreement.

Table 9. Structural similarity measure (SSIM) between input and output LAI images for the CCN area.

DOY 40 72 104 120 191 200 207 239 248 287 351 360
SSIM(%) 94.2 90.5 96.0 95.9 92.5 90.2 92.5 84.3 89.9 94.3 96.7 96.5

The quantitative evaluation results in this area are shown in Figure 13, and the statistics
are provided in Table 10. Images at all input days were dropped and predicted in turn. The
correlation coefficient r in this experiment was from about 0.6 to 0.9, which is lower than the
results in the CSD and NRM areas. However, considering the heterogeneity and frequent
cloud effects in this area, it can be concluded that the accuracy decreased reasonably. In
contrast with previous research in this region [41], the accuracy is acceptable.
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Table 10. Quantitative validation of LAI for all input days at the CCN area.

DOY 40 72 104 120 191 200 207 239 248 287 351 361

MAE 0.58 0.47 0.43 0.57 0.44 0.46 0.48 0.69 0.46 0.49 0.26 0.25
RMSE 0.78 0.59 0.55 0.72 0.59 0.63 0.53 1.14 0.62 0.63 0.34 0.34

r 0.59 0.77 0.79 0.81 0.76 0.70 0.67 0.63 0.73 0.70 0.90 0.89

• Comparison with STF methods

Experiments aimed at comparing different methods were also implemented in the
CCN area with LAI variable. DOY 104 and DOY 200 were chosen as the examples for days
with and without clear neighboring images available. Figure 14 shows the results obtained
from the two days.
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For DOY 104, DOY 120 input was used as the base date (and also DOY 40 for ES-
TARFM). Although there is one clear image on base date (DOY 120), the STF results for DOY
104 are not satisfactory. Only SIM and ESTARFM simulated the data with the correct tone,
among which SIM has better accuracy (statistics shown in Table 11). In contrast, STARFM
heavily blurred details, and although FSDAF result has better correlation with actual LAI
image (r is largest among four methods), the MAE and RMSE are much larger than the SIM
result. FSDAF depended more on the input fine image, resulting in overestimation of LAI.
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Table 11. Accuracies of different methods for LAI prediction at the CCN area from DOY 104 and
DOY 200.

DOY 104 DOY 200

Methods MAE RMSE r MAE RMSE r

SIM 0.43 0.55 0.79 0.46 0.63 0.70
STARFM 1.06 1.21 0.40 0.87 1.13 0.41

ESTARFM 0.48 0.65 0.71 0.78 0.99 0.49
FSDAF 0.80 0.96 0.81 0.74 0.97 0.53

The results from DOY 200 are a typical example of cloud contamination, and the base
dates were DOY 120 and DOY 287 (for ESTARFM). For this day and all its neighboring
days, the retrieved LAI images are partly cloudy. The predicted LAI values are inevitably
affected by clouds, displaying as disordered shadows. One procedure is to remove the
clouds first and fill the blanks by interpolation methods. Then, the repaired images can be
used as a clear data source for the STF methods. However, this would result in a double
accumulation of errors. Instead, the SIM addressed the problem by avoiding cloudy pixels
when extracting time series, and using only continuous coarse-resolution data. Thus, the
result for SIM at DOY 200 is the clearest and most similar to the actual LAI image.

In addition, Figure 14 displays MODIS LAI data on the two days. Apparently, MODIS
data are underestimated due to the effects of clouds and also lack details and variations.
The proposed SIM method innovatively breaks through these limits by seeking useful
information from the coarse-resolution data.

5. Discussions
5.1. Temporal Profile of VI

The temporal profiles of NDVI/LAI were extracted from a representative Landsat
pixel and the geographical corresponding MODIS pixel in each study area. In Figure 15,
MODIS temporal profiles are shown in the upper row and actual Landsat data and the
SIM results are shown in the lower row. Although the MODIS pixel is geographically
close to the Landsat pixel, the temporal profile is totally different. Hence, the temporal
information provided by corresponding MODIS pixels has little value for reconstructing
a fine-resolution profile. Furthermore, the original Landsat profiles are scarce and dis-
continuous, thus it is difficult to restore the profiles. However, by “borrowing” temporal
information from spectral similar profiles of MODIS, the SIM method achieved the goal,
filling the missing values and following the original trend of Landsat data.
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5.2. Accuracy of Coarse-Resolution Data

The performance of the SIM (as well as the STF methods) is strongly affected by
the quality of the coarse-resolution data. Although MODIS data have been accurate at
some locations, data reliability is still limited due to cloud contamination and other noises,
especially for tropical or subtropical areas. Hence, the Savitzky–Golay filter was used in
this study to obtain a continuous and smoothed VI time series. Therefore, GLASS LAI
data was employed in the CCN area, owing to the advantages of spatial and temporal
continuity, which could provide more reliable temporal information than MODIS.

5.3. Potentials and Limitations of SIM

The SIM is a special prediction method that utilizes information at two scales as
well as spatial information from neighboring pixels. It breaks the barrier of geographical
location and exploits the similarity relationship between time series, in contrast with STF
methods, where one common feature involves utilizing information across scales. However,
SIM is not limited to pixel-to-pixel correspondence while using similar time series across
scales; and, different from single curve fitting methods, SIM followed the temporal changes
borrowed from coarser images, which are the actual VI responses to environments from a
larger view.

An obvious drawback of SIM is that it is easy to mistake abrupt changes as noises
when measuring the similarity of the time series. Abrupt changes are most likely taken as
outliers and are discarded when comparing similarities between time series. Similar things
happen in the regression component, ensuring that most of the values linearly related
may easily overlook lower values, which usually occur at the beginning and end of the
study period.

6. Conclusions

Vegetation products (such as NDVI and LAI) with high spatial and temporal reso-
lution are fundamentally important for characterizing vegetation changes and dynamics.
However, the trade-off between spatial and temporal resolutions and frequent cloud cover
often cause data discontinuity. An innovative approach based on spectral matching was
proposed in this study to yield spatiotemporally continuous vegetation indices at 30 m
resolution. Experiments at three different study areas with NDVI and LAI showed the
proposed method performs well in restoring the VI time series, reconstructing the missing
data, and predicting the images at 30 m resolution. In particular, it could address the lack
of available clear images for STF due to temporal information “borrowed” from coarser
data. The advantage of the proposed approach is the true vegetation changes and the
true response of foliage to the external circumstances at local areas, other than speculating
from sparsely-distributed, fine-resolution images. In addition, the proposed method could
make better use of partly cloudy images at fine resolution, while these “imperfect” data
are easily neglected with other methods. In addition, the full utilization of the cloudy data
subsequently contributes to the reconstruction of vegetation time series.
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