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A B S T R A C T

Surface Solar Irradiance (SSI) is a key parameter dictating surface-atmosphere interactions, driving radiative,
hydrological, and land surface processes, and can thus impinge greatly upon weather and climate. It is thereby a
prerequisite of many studies and applications. Estimating SSI from satellites began in the 1960s, and is currently
the principal way to map SSI spatiotemporal distributions from regional to global scales. Starting from an
overview of historical studies carried out in the past several decades, this paper reviews the progresses made in
methodology, validation, and products over these years. First, the requirements of SSI in various studies or
applications are presented along with the theoretical background of SSI satellite estimation. Methods to estimate
SSI from satellites are then summarized as well as their advantages and limitations. Validations of satellite-based
SSI on two typical spatial scales are discussed followed by a brief description of existing products and their
accuracies. Finally, the challenges faced by current SSI satellite estimation are analyzed, and possible im-
provements to implement in the future are suggested. This review not only updates the review paper by Pinker
et al. (1995) on satellite methods to derive SSI but also offers a more comprehensive summary of the related
studies and applications.

1. Historical background

Surface Solar Irradiance (SSI, ~0.3–4.0 μm), also commonly re-
ferred to as surface incident solar radiation, surface downward short-
wave radiation, incoming shortwave radiation at the surface, etc., is the
primary component of the surface radiation budget (SRB). As a fun-
damental driving force at the surface, SSI controls water and flux ex-
changes between the surface and the atmosphere and thus strongly
affects other surface processes (e.g., evapotranspiration). On the other
hand, negative and positive values of the SRB are compensated by heat
fluxes, which in turn cause atmospheric motions at different scales
(Mueller et al., 2009). SSI is thus not only of particular importance for
modeling land surface processes and assessing Earth's energy disposi-
tion (Li et al., 1997a; Stephens et al., 2012), but also necessary for
weather and climate predictions and studies of surface-atmosphere

interactions. In addition, as clean and renewable energy, it is also in-
dispensable for designing and operating the utilization technologies of
solar energy (Zhang et al., 2017).

There are three means of gaining knowledge of SSI: ground ob-
servation, numerical modeling and satellite remote sensing (Liang et al.,
2019). Each has its merits and deficiencies. Ground observation is the
most direct and reliable way to obtain SSI, and measurements those
with high-quality instrumentation and maintenance often provide
baseline SSI data. For studies and applications that need a stringent
data quality, ground observation is still the most indispensable mean.
As early as 1964, the World Meteorological Organization (WMO) had
set up the World Radiation Data Centre to collect, archive and publish
global measurements of SSI and the other SRB components (Kim and
Liang, 2010). The well-known Global Energy Balance Archive (GEBA;
Wild et al., 2017) currently contains records of ~2500 stations and
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many can extend over several decades. However, point-specific ground
measurements are inadequate to characterize the patterns of SSI spatial
distributions, especially in remote areas (e.g., sea surface) where ob-
servation sites are scarce.

Contrary to ground observation, numerical models (e.g., the general
circulation model, GCM) can produce spatiotemporally continuous SSI
maps on regional and global scales. Their biggest advantage is their
completeness and consistency. This is particularly important for long-
term climate monitoring and analysis. Of the various SSI products based
on numerical models, reanalysis products are the most common.
Typical reanalysis products, such as the Modern Era Retrospective
analysis for Research and Applications from the Goddard Space Flight
Center (GSFC) and the ERA-Interim reanalysis from the European
Centre for Medium-Range Weather Forecasts (Decker et al., 2012), are
all widely used. Their major deficiency lies in large errors of models in
simulating or predicting cloud quantities. Consequently, the quality of
SSI products, especially the high temporal resolution products, is highly
questionable (Zhao et al., 2013).

Given its capability of capturing the spatial distribution and dy-
namic evolution of clouds, satellite remote sensing offers a unique
means to monitor and estimate SSI. As such, it has been long recognized
that satellite remote sensing is a better way to derive regional and even
global SSI than numerical modeling. Many comparative investigations
have reinforced the notion that the SSI accuracies in satellite products
are higher than those of reanalysis products (Vindel et al., 2016; Zhang
et al., 2016; Zhang et al., 2015). The studies in the 1990s have revealed
that the estimates of global SSI can be obtained within 28Wm−2 (root
mean square error, RMSE) or better on a monthly timescale (Li et al.,
1995; Pinker et al., 1995). Recent studies have further demonstrated
that the uncertainty of satellite-derived monthly SSI may be in the
range of the uncertainty of ground observations (Muller et al., 2015;
Qin et al., 2011). The majority of discrepancies between satellite-de-
rived and ground-measured SSI are traceable to instrumentation
shortcomings (Perez et al., 2017). Therefore, estimating SSI from var-
ious satellites is promising to assess regional surface radiation condi-
tions, especially in regions with harsh environments that preclude
making routine ground measurements of SSI. Acquiring regional and
global SSI data can be divided into two distinct periods: pre-satellite
and post-satellite, as pointed out by Li et al. (1997a).

Since the advent of satellite data in the 1960s, numerous efforts
have been devoted to developing and improving the satellite-based SSI
estimation. This history can be roughly divided into three stages: 1960s
to the 1970s, 1980s to the 1990s, and after 2000 (see Fig. 1). In the
1960s and 1970s, pioneering attempts were made to estimate the
earth's radiation budget using early weather satellites such as the Tel-
evision Infrared Observation Satellites (TIROS). TIROS-1 was launched
in 1960 and is considered to be the first successful weather satellite. The
focus in this stage was mainly on the estimation of the radiation balance
of the Earth-atmosphere system (Rasool, 1964). The very first light
looming the possibility of estimating the SSI from satellites was shed by

Fritz et al. (1964) finding a high correlation (0.9) between satellite
observations and ground observation of solar flux. Though Vonderhaar
and Suomi (1969) already foresaw the possibility to derive SSI from
satellites, the first quantitative estimation of SSI was not made until the
late 1970s (Tarpley, 1979). This period is an infancy stage when the
concept of SSI remote sensing was proposed, and some experimental/
conceptual attempts were made with no practical methods or products
generated.

Faster development ensued in the subsequent decades (1980s and
1990s) thanks largely to (1) a new NASA project and a satellite mission,
and (2) numerous algorithms proposed during this period. In 1983, the
International Satellite Cloud Climatology Project (ISCCP) was estab-
lished by calibrating and systematically processing data acquired by the
narrowband weather satellite sensors onboard U.S. (primary) and in-
ternational (chiefly Europe) satellites covering the whole globe
(Schiffer and Rossow, 1985; Schiffer and Rossow, 1983). Note that
these operational sensors operate in narrowband window channels that
are least subject to atmospheric absorption so that clouds and surface
can be monitored without much interference. However, the solar
channels are not calibrated on board. By contrast, broadband calibrated
radiative fluxes reflected or emitted by the earth system were measured
by the Nimbus-7 and the Earth Radiation Budget Experiment (ERBE).
They provided much more accurate measurements of global radiation
budget in the entire atmospheric column than any previous missions.

Accompanying these satellite missions was the advent of numerous
algorithms to estimate SSI from satellites, as reviewed by Schmetz
(1989) and Pinker et al. (1995). Many algorithms were designed for
applications with calibrated narrowband data provided by the ISCCP or
standalone weather sensors (Gautier et al., 1980; Pinker and Laszlo,
1992; Rossow and Zhang, 1995; Zhang et al., 1995), and some were
developed for taking advantage of ERBE broadband measurements
(Cess and Vulis, 1989; Chou, 1991; Darnell et al., 1988; Li et al.,
1993b). But only a few were used to generate multi-year global SRB
products (Li et al., 1993b; Pinker and Laszlo, 1992; Rossow and Zhang,
1995). Two representative examples are the Look-Up Tables (LUTs)
based method proposed by Pinker and Laszlo (1992) and the para-
meterization method developed by Li et al. (1993b) (see Section 3 for
details).

It was not until the satellite-estimation made in the 1990s that
drastically altered our conventional knowledge of the global mean Solar
Surface Radiation Budget (SSRB) from>180Wm−2 to ~160Wm−2.
Li et al. (1997a) compared three SSRB products together with model
values from four GCMs, and found that the models produced system-
atically higher mean SSRBs than the satellite estimates. The model re-
sults agreed more or less with the conventional wisdom, namely, that
the global earth surface absorbs ~180–190Wm−2, whereas the sa-
tellite estimates ranged from 157Wm−2 (Li et al., 1993a) to
171Wm−2 (Pinker and Laszlo, 1992). The value obtained by Li et al.
(1993a) grossly agreed with later estimates of 160–165Wm−2 (Loeb
and Wielicki, 2016; Stephens et al., 2012; Wild et al., 2013).

Fig. 1. Schematic showing the history of SSI satellite estimation.
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After 2000, satellite-based estimation of SSI and other SRB com-
ponents had become increasingly mature thanks partially to the modern
satellite sensors that have onboard calibration for both narrow and
broadband channels, as well as further development of remote sensing
methods (e.g. Huang et al., 2016b; Kim and Liang, 2010; Ma and
Pinker, 2012; Tang et al., 2016; Zhang et al., 2018). Many sensors of the
new century, such as the Moderate Resolution Imaging Spectro-
radiometer (MODIS) and Clouds and the Earth's Radiant Energy System
(CERES) of NASA's Earth Observation System, employed an onboard
radiometric calibration system to quantify observations, which is
thought to be a more effective and accurate way for calibration.

Besides the advances in sensors, many more sophisticated algo-
rithms have been developed in which detailed radiative transfer pro-
cesses are considered (Huang et al., 2016b; Huang et al., 2011; Kim and
Liang, 2010; Tang et al., 2016; Zhang et al., 2018). In these algorithms,
multi-channel satellite observations are frequently combined to more
quantitatively determine the states of the atmosphere and surface
(Huang et al., 2016b; Kim and Liang, 2010; Zhang et al., 2018). Multi-
source satellite data are also combined to compensate for each other's
shortcomings (Huang et al., 2011; Tang et al., 2016).

With the development of quantitative remote sensing technology,
more satellite-based products regarding aerosols, water vapor, ozone
etc. have become or are becoming available (e.g., various MODIS pro-
ducts), which may provide better inputting choices for the generation of
regional or even global SSI products than traditional climatological data
(Bisht and Bras, 2010; Bisht et al., 2005; Huang et al., 2012; Van Laake
and Sanchez-Azofeifa, 2004). Also during this period, answers to some
scientific questions in history are becoming increasingly clear. For ex-
ample, the historical debate (once fervent in the 1990s) on the attri-
bution of large reduction in SSRB or big increase in atmospheric ab-
sorption, eventually ended up with a consensus that the reduction was
caused chiefly by underestimation of absorption by water vapor and
aerosols (Li et al., 2003; Li et al., 2004), not the so-called cloud ab-
sorption anomaly as was once claimed (Cess et al., 1995; Ramanathan
et al., 1995).

It has been 25 years since the last comprehensive review on SSI was
published (Pinker et al., 1995). An update on later progress is long
overdue given the recent fast and extensive development in the remote
sensing of SSI. The main objective of the review provided here is to
summary SSI studies with a focus on methods, validations, and data
products, and gain insight on the current status of the remote sensing of
SSI. Also discussed are the outlooks of future developments and im-
provements.

2. Requirements for SSI and the theoretical background of SSI
satellite estimation

2.1. Requirements for SSI in various applications or study areas

Different applications and studies have diverse requirements for SSI
with respect to its spatial resolution, timescale, coverage, and quality
levels. In climate-monitoring-related areas, long-term, consistent, and
calibrated SSI data are always needed (Ma and Pinker, 2012). In global
change research areas, features like global coverage (especially in-
cluding the Arctic, the Antarctic, the Tibet Plateau and other hotspots)
and data homogeneity are more emphasized (Hollmann et al., 2006).
For energy balance and water cycle studies at catchment scales, SSI is
expected to obtain at an hourly timescale and at a resolution of several
kilometers (Li et al., 2016; Margulis et al., 2006). For solar energy
applications, SSI is needed at finer spatial resolutions (e.g., satellite
pixel) and at a range of temporal resolutions (Perez et al., 2013; Zhang
et al., 2017), and so is for evapotranspiration modeling based on remote
sensing data (Liu et al., 2016; Xu et al., 2015).

Table 1 lists the quantitative user-defined requirements for SSI in
the application areas of the WMO, i.e., areas related to weather, water
and climate, which are collected by the WMO Observing System

Capability Analysis and Review Tool (OSCAR, a resource developed by
the WMO in support of Earth Observation applications, studies and
global coordination: https://www.wmo-sat.info/oscar/variables/view/
50). The requirements are divided into three grades: “goal”, “break-
through”, and “threshold”. The “threshold” grade is the lowest quality
level that one application can accept. The table shows that the spatio-
temporal features of the needed SSI vary greatly not only from one
application to another but also between the different grades.

Diverse SSI products with different features (spatial resolutions,
temporal cycles, accuracy criteria, etc.) are thus required to meet var-
ious application needs. Accordingly, a large number of studies have
been published over the past several decades on this topic. These stu-
dies were motivated differently and span a wide range of complexity. It
is impossible and unnecessary to review all of them, but a few are se-
lected for illustration purposes.

2.2. The theoretical background of SSI satellite estimation

Fig. 2 outlines the relations between satellite observations and SSI
under the approximation of a plane-parallel atmosphere for clear and
cloudy skies. Satellites observe the top-of-atmosphere (TOA) two-way
reflectance (or radiance) of the Earth-atmosphere system, whereas SSI
is mainly determined by the radiative attenuations caused by different
atmospheric constituents, and to a lesser degree, by the surface albedo.
So in principle, the atmospheric constituents' loadings should first be
retrieved directly or indirectly from satellite TOA observations then
subsequently used to infer the solar irradiance that finally arrives at the
surface. However, as shown by Fig. 2, satellite TOA observations
usually contain integrated information from both the atmosphere and
the surface. Retrievals always face the challenge of how to decouple
them.

Of the various atmospheric constituents under clear-sky conditions,
ozone, water vapor, and aerosols are three critical components because
of their influences on SSI and their variability in the atmosphere. Ozone
and water vapor absorb solar radiation at certain wavelengths, which
means that their loadings can be effectively retrieved by the sharp
contrasts between the absorption windows and the nearby non-ab-
sorption windows (Bhartia et al., 1996; Gao and Kaufman, 2003; Liu
et al., 2017). Consequently, various ozone and water vapor satellite
products, e.g., Total Ozone Mapping Spectrometer (TOMS) ozone pro-
ducts and MODIS water vapor products, are generally reliable for es-
timating SSI.

Compared to ozone and water vapor, aerosols are more challenging
to retrieve. Particularly over land, the quantitative retrieval of aerosols
is still fraught with difficulties due to various factors such as cloud
contamination, differentiation of reflection by aerosols and surface, and
aerosol properties, as reviewed by Li et al. (2009). For example, the
conventional and operational “dark target” strategy can only be suc-
cessfully implemented over dark land surfaces (Kaufman et al., 1997;
Levy et al., 2007). As the surface brightens, decoupling aerosol optical
depth (AOD) and surface reflectance from TOA reflectance becomes
increasingly difficult because of the worsening stability of the solution
space (Huang et al., 2015). Therefore, though there are some specia-
lized algorithms for bright surfaces (e.g., Hsu et al., 2013), AOD re-
trievals over bright surfaces are still questionable and inferior to those
over dark surfaces (Lyapustin et al., 2011).

As the strongest modulator of SSI (far stronger than other atmo-
spheric constituents), clouds play a pivotal role in estimations of SSI. In
view of the decisive influence of clouds on SSI, to some extent, SSI
satellite estimation is conducted around how to accurately account for
radiative attenuation by clouds (cloud scattering and absorption) in the
atmosphere. Towards this end, there are two different strategies: 1)
directly inferring the attenuation of clouds and subsequently SSI from
TOA satellite observations, or 2) estimating the attenuation of clouds
and SSI based on satellite cloud products that are already derived from
raw satellite data. Unlike Rayleigh scattering and scattering by aerosols,
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multiple scattering dominates in clouds (see Fig. 2). This is an in-
tractable issue and in radiative transfer theory, usually involves com-
plex numerical procedures that are difficult to understand and imple-
ment (Mayer et al., 2016). Therefore, both strategies face the difficulty
of how to develop a more operational and convenient approach to
circumvent these numerical procedures, but with little degradation in
accuracy.

In addition, clouds change dramatically in space and time. To ef-
fectively capture their spatial patterns and dynamic evolution, high
temporal resolution geostationary data are of particular importance in
satellite-based SSI estimations.

3. Estimation of SSI from satellites

As mentioned in Section 2.1, many algorithms to estimate SSI from
satellite data have been developed over the past several decades. From
the methodology point of view, they can be roughly grouped into two
categories: methods based on radiative transfer processes and statistical
methods.

3.1. Methods based on radiative transfer processes

Detailed radiative transfer in the atmosphere is a complex problem
(Liou, 2002). It involves the acquisition of atmospheric spectral prop-
erties and the development of radiative transfer equation solvers.
Therefore, it is costly and even unrealistic to run complicated radiative
transfer models (RTMs) like the MODerate resolution atmospheric
TRANsmission (MODTRAN) or LibRadtran (Emde et al., 2016; Mayer
and Kylling, 2005) to compute the SSI. Conversely, the core idea of
methods based on radiative transfer processes is how to reduce the

spectral dependence (using proper broadband modes) and simplify the
radiative transfer solution while retaining the accuracy as much as
possible.

3.1.1. LUT-based methods
LUT-based methods use offline two-way LUTs to simplify radiative

transfer processes and subsequently retrieve SSI. The so-called “two-
way LUT” emphasizes that the information along the solar-to-surface
path and the information along the surface-to-TOA path are both stored
in LUTs. Such methods usually contain the following two steps: 1) the
relationships between TOA albedos or reflectance and atmospheric
transmittances are established in the form of LUTs through extensive
radiative transfer simulations for different atmospheric conditions, and
2) SSI is then estimated by matching one given satellite TOA observa-
tion and the predefined LUT values.

Fig. 3 presents the flowchart of the broadband LUT algorithm pro-
posed by Pinker and Laszlo (1992). Narrowband bidirectional re-
flectance observed by geostationary satellites is first transformed into
broadband bidirectional reflectance; and the broadband bidirectional
reflectance is then converted into TOA broadband planetary albedo
using the angular distribution model based on the ERBE satellite. The
resulting TOA broadband planetary albedo serves as the starting point
of the algorithm to infer the transmission-reflection function by
matching it with the values stored in the LUTs for different atmospheric
and surface states. The broadband LUT algorithm of Pinker and Laszlo
(1992) has been widely used to generate global gridded SSI products.
For example, the Global Energy and Water cycle Exchanges (GEWEX)
project uses its modified version as the primary algorithm for producing
the GEWEX SRB global product. Ma and Pinker (2012) used an updated
version of the algorithm to produce the new University of Maryland

Table 1
Quantitative requirements for SSI collected by WMO OSCAR in weather, water, and climate related areas (Goal: an ideal requirement above which further im-
provements are not necessary; Break.: an intermediate level which, if achieved, would result in a significant improvement for the targeted application; Thres.: the
minimum requirement to be met to ensure that the SSI data are useful).

Application areas Spatial resolution Temporal scale Uncertainty (RMSE)

Goal Break. Thres. Goal Break. Thres. Goal Break. Thres.

Global NWPa 10 km 30 km 100 km 60m 3 h 12 h 1Wm−2 10Wm−2 20Wm−2

Agricultural meteorology 1 km 5 km 20 km 24 h 2 d 7 d – – –
Nowcasting and VSRFb 5 km 15 km 50 km 60 s 10m 60m 1Wm−2 10Wm−2 20Wm−2

Climate monitoring 25 km 50 km 100 km 24 h 2 d 5 d 5Wm−2 6.5Wm−2 10Wm−2

a NWP: Numerical Weather Prediction.
b VSRF: Very Short Range Forecasting.

Fig. 2. Simplified relations between satellite observations and SSI according to one-dimensional radiative transfer theory for a) clear sky and b) cloudy sky.
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(UMD) SRB global dataset (see Table 3 in Section 5.2 for details). Based
on this algorithm, the EUMETSAT Satellite Application Facility on
Climate Monitoring (CM SAF) generated global long-term SSI maps
from the Advanced Very High Resolution Radiometer (AVHRR) data
(Mueller et al., 2009; Trentmann and Kothe, 2016).

On the other hand, SSI can also be directly retrieved from a nar-
rowband satellite channel using a similar retrieval scheme, namely,
narrowband LUT algorithms. Here, the TOA narrowband bidirectional
reflectance observed by satellites is directly linked with SSI using a set
of more detailed LUTs that are created by radiative transfer modeling
(Huang et al., 2016b; Huang et al., 2011; Liang et al., 2006; Lu et al.,
2010). One of the earliest narrowband LUT algorithms was developed
by Liang et al. (2006), who retrieved surface photosynthetically active
radiation (PAR, ~0.4–0.7 μm) by establishing LUTs between the MODIS
blue channel and PAR at the surface. The MODIS blue channel is gen-
erally considered sensitive to aerosols, so their LUTs implicitly include
the explanations for aerosols and clouds. Following Liang et al. (2006),
Lu et al. (2010) and Huang et al. (2011) developed their narrowband
SSI retrieval algorithms, which are based on the Geostationary Me-
teorological Satellite 5 (GMS-5) visible channel and the Multifunctional
Transport Satellites (MTSAT) visible channel, respectively. But because
the GMS-5 and MTSAT visible channels are both insensitive to aerosol
loading over land surfaces, only the influences of clouds were con-
sidered in these LUTs. Using a similar algorithm, Zhang et al. (2014)
produced a set of experimental global high-resolution (~5 km) SSI and
PAR datasets covering 2008 to 2010.

In addition to single-channel algorithms, there are a few multi-
channel-based algorithms that use information from two or more sa-
tellite-observing channels. For instance, Huang et al. (2016b) improved
their LUT algorithm based on a geostationary satellite visible channel
by importing the thermal infrared channel to distinguish between ice
clouds and water clouds. Zhang et al. (2018) proposed an optimized
LUT algorithm to retrieve SSI from the first seven MODIS channels by
defining a cost function.

In the LUT-based methods, determining the surface states (surface
albedo or reflectance) is a critical prerequisite. In general, for broad-
band LUT algorithms, the surface albedo is determined according to the
collective information of the background surface types and the nar-
rowband surface reflectance estimated from clear-sky satellite

observations. For narrowband LUT algorithms, the narrowband surface
reflectance is calculated using clear-sky satellite observations or the
minimum reflectance technique. The so-called minimum reflectance
technique utilizes the fact that the minimum TOA reflectance during a
certain time window always represents a clear case and even the
clearest case (the lowest aerosol load).

LUT-based methods provide a direct SSI retrieval strategy from raw
satellite data and avoid the need for atmospheric state parameters (e.g.,
cloud property parameters). They are thus suitable for SSI retrievals
when satellite-based atmospheric products are unavailable. Of course, if
these parameters, as well as the surface albedo, are already known, two-
way LUTs can also reduce into the simpler one-way mode, that is, only
information about the solar-to-surface path is used to estimate SSI
(Deneke et al., 2008). However, such LUT-based algorithms are un-
common. Since the LUT is a close approximation to a complicated RTM,
in theory, LUT-based algorithms should be accurate. Their weakness is
that this kind of algorithm is usually computationally inefficient and
strongly sensor-specific. Also, not all radiative extinction processes are
accounted for in LUTs for the sake of efficiency.

3.1.2. Simplified RTM-based methods
If the needed atmospheric parameters as well as the surface albedo

have been derived from raw satellite data, they can be straightfor-
wardly fed into a simplified RTM to estimate SSI. Here, the simplified
RTM (suitable for irradiance or flux calculations) serves as a forward
SSI inference scheme, driven by satellite-based atmospheric and surface
state information. For example, ISCCP gridded cloud datasets as well as
other ancillary data are input into the NASA Goddard Institute for Space
Sciences (GISS) RTM to produce the global ISCCP flux dataset (Zhang
et al., 2004).

Compared with complicated spectral RTMs, the simplified RTMs
involve the simplification of spectral modes and the choice of a simpler
radiative transfer solution. A simplified RTM is thus usually assembled
with a broadband spectral parameterization and a fast RTM solver for
irradiance calculations. The simplified RTM-based methods generally
contain three processes. Different atmospheric state parameters like the
ozone profile, surface pressure, and cloud microphysical parameters are
first converted into their individual optical properties. These optical
properties are then integrated and the integrated atmospheric optical

Fig. 3. Diagram of the broadband LUT algorithm proposed by Pinker and Laszlo (1992) (ssa: single scattering albedo; gg: asymmetric factor; N/B: narrowband to
broadband; ADM: angular distribution model).
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property is input into a fast RTM solver to obtain SSI. Of the various
RTM solvers, the two-stream approximation and its derivatives are
preferred because they have definite analytical solutions. In particular,
tuned two-stream approximations like the δ-two-stream approximation
or its variants like the δ-Eddington approximation are generally thought
of as suitable solvers to approximate irradiance (Briegleb, 1992;
Raisanen, 2002), and are thus frequently used to estimate the surface
irradiance or flux. For instance, based on the δ-Eddington approxima-
tion, Wang and Pinker (2009) developed a new algorithm to infer fluxes
in seven spectral intervals at the surface as well as the given atmo-
spheric layers. CERES Level 3 SYN1deg products utilize a classic δ-two-
stream algorithm to estimate SSI in 15 shortwave spectral bands from
0.2 to 4.0 μm (https://ceres.larc.nasa.gov/science_information.php?
page=CeresComputeFlux).

The simplified RTM-based methods have very solid physical basis,
and their accuracies are contingent on the quality of the input para-
meters to some extent. The availability of reliable atmospheric products
(retrieved from satellite observations or provided by various auxiliary
data, or both) thus appears more important in such methods. One of
their disadvantages is that simplified RTMs are more complicated than
other methods.

3.1.3. Parameterization methods
Following the same philosophy, SSI can also be estimated using

various parameterization schemes provided that satellite-based atmo-
sphere as well as surface state information is known. These para-
meterization schemes generally consist of schemes for clear skies and
parameterizations of clouds. In clear-sky parameterization schemes, the
absorption of permanent gases, ozone absorption, water vapor ab-
sorption, Rayleigh scattering, and aerosol scattering are often para-
meterized separately. This means that the radiative extinctions caused
by various atmospheric constituents are treated independently. Such a
strategy is different from that of simplified RTM-based methods, where
the integrated optical property of all atmospheric constituents is first
obtained then fed into the simplified RTMs.

Since there have already been many parameterizations of the ra-
diative extinctions due to different atmospheric constituents
(Gueymard, 2003a, 2003b; Slingo, 1989; Stephens et al., 1984; Yang
et al., 2001; Yang et al., 2006b), recent studies have mainly focused on
how to combine them with various atmospheric products and surface
products that are derived from new satellites to obtain new SSI (Bisht
and Bras, 2010; Bisht et al., 2005; Huang et al., 2012; Qin et al., 2015;
Van Laake and Sanchez-Azofeifa, 2004). For instance, Van Laake and
Sanchez-Azofeifa (2004) used the clear-sky parameterization scheme of
Iqbal (1983) and the cloud parameterization of Stephens et al. (1984) to
calculate surface incident PAR from MODIS atmospheric products. Bisht
et al. (2005) developed a more empirical parameterization algorithm
for estimating SSI under clear-sky conditions using the MODIS atmo-
spheric profile product, and then further extended it to all-sky condi-
tions by importing the cloud parameterization of Slingo (1989) and
more MODIS products (Bisht and Bras, 2010). Also based on MODIS
products, Huang et al. (2018) developed a new broadband para-
meterization to estimate all-sky SSI.

We regard the above methods as general parameterization methods.
General parameterization methods are a simple and efficient way to
estimate SSI. The feature that various radiative extinctions caused by
different atmospheric constituents are accounted for separately has at
least two advantages: 1) a certain physical basis and 2) the ability to
quickly identify problems when poor estimates of SSI occur. The chal-
lenge of such methods lies in their explicit requirements for atmosphere
and surface parameters. As mentioned in Section 2.2, some needed
parameters are so difficult to retrieve because of inherently ill-posed
retrieval problems (Holz et al., 2016; Levy et al., 2010) that their re-
trieval uncertainties generally are much larger than that of SSI itself.

However, there is another school of parameterization methods that
can implicitly infer SSI from TOA satellite observations (Ciren and Li,

2003; Li et al., 1993a; Li et al., 1993b; Li and Moreau, 1996; Li et al.,
2000; Moreau and Li, 1996). Li et al. (1993b) found there is a simple
relation between net surface solar irradiance (can be abbreviated as
NSSI) and TOA albedo, which is only significantly affected by water
vapor in the atmosphere. NSSI (a simple function of SSI and surface
albedo) can, therefore, be inferred by a parameterization in which only
water vapor is explicitly imported. The foundation of the para-
meterization lies in the fact that the most influential variables driving
TOA irradiance also dictates surface irradiance, especially scattering by
clouds which reduce NSSI at the expense of increase in reflection at
TOA as measured by satellite. The challenging task of inferring cloud
variables is thus circumvented. The same principle has been applied to
the retrievals of PAR (Li et al., 1993a; Li and Moreau, 1996; Li et al.,
1997b) and ultraviolet radiation (Ciren and Li, 2003; Li et al., 2000;
Wang et al., 2000) having an even higher accuracy, thanks to the fact
that clouds and water vapor have no absorption in these bands.

The parameterizations developed by Li and colleagues avoid the ill-
posed retrieval problem for they have fewer input parameters than the
full-fledged radiative transfer models have. They are more convenient
due to the minimum demands for information about the atmosphere,
cloud and the surface. The limitation is that only NSSI can be directly
retrieved. One can, however, easily derive SSI by knowing surface al-
bedo. The parameterization scheme of Li et al. (1993a) has been em-
ployed by the CERES to generate the instantaneous global SRB pro-
ducts.

3.2. Statistical methods

Besides physical methods and physics-based parameterization
methods, there are many statistical methods used to estimate SSI.
According to the specific statistical relationships used in these methods,
statistical methods can be divided into conventional statistical methods
and statistical optimization methods. A variety of machine-learning
methods are most representative of the latter.

3.2.1. Conventional statistical methods
Conventional statistical methods adopt experience-based statistics

functions to connect satellite observations and SSI. These methods
usually use the fact that the TOA reflectance measured by satellites is
approximately proportional to the cloud transmission. Among these
methods, the most famous is perhaps the Heliosat method (Cano et al.,
1986; Qu et al., 2012; Rigollier et al., 2004).

In the early Heliosat method, the clear-sky SSI was first calculated
via an empirical model where the atmospheric transmittance was
deemed to be a function of the Linke turbidity factor. Then a cloud
index (n) and a clear-sky index (kT⁎) was introduced to characterize the
amount of cloudiness and the cloud radiative extinction, respectively.
They are defined as (Rigollier et al., 2004)

=n clr

clrmax (1)

and

=k G
G

,T
clr (2)

where ρ is the apparent reflectance observed by satellites (note that the
term “reflectance” is often misused as “albedo” in many Heliosat-re-
lated articles). ρmax is the apparent reflectance of the brightest clouds
and ρclr is the apparent reflectance under clear skies. G and Gclr are the
actual surface irradiance and the clear-sky irradiance, respectively. Fi-
nally, the two variables are correlated to each other in a statistical re-
lationship (shown in Fig. 4) and the SSI under all-sky conditions can be
derived. The Heliosat method was originally proposed by Cano et al.
(1986) and later modified by many others (e.g., Beyer et al., 1996; Qu
et al., 2012; Rigollier et al., 2004). Currently, it has been updated to the
forth version (Heliosat-4), and among different versions there are slight
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difference.
Similar methods are frequently applied for solar energy applica-

tions. For example, Perez et al. (2002) developed an operational sa-
tellite model (with basically the same steps as Heliosat), which evolved
over years into the SUNY model and the SolarGIS model. They are the
engines of commercial SSI products of SolarAnyWhere and SolarGIS
(Perez et al., 2015).

In spite of their experiential nature, statistical methods generally
have a good accuracy for their fundamental nature of “tuning” against
surface measurements. As pointed out by Perez et al. (2013), even using
short-term surface data to calibrate the methods, their long-term ac-
curacies are substantially improved. This kind of methods is often used
to produce industry SSI products for solar energy applications.

3.2.2. Machine Learning (ML) based methods
ML-based methods are similar to conventional statistical methods,

but here, various machine-learning techniques act as bridges between
satellite observations and SSI. Machine-learning techniques that are
often used for SSI estimation include artificial neural networks (ANN),
support vector machine/support vector regression (SVM/SVR),
Bayesian networks (BN), decision tree learning (DTL) etc. (Aguiar et al.,
2015; Akarslan and Hocaoglu, 2016; Voyant et al., 2017). Of these
machine-learning techniques, ANN is most common in the literature. As
an example, next the model of Linares-Rodriguez et al. (2013) is in-
troduced.

An ANN-based model is generally comprised of three layers, i.e.,
input layer, hidden layer, and output layer. The input layer (in-
dependent vector) of the model of Linares-Rodriguez et al. (2013) in-
cludes 11 channels of the Spinning Enhanced Visible and Infrared Im-
ager (SEVIRI) instrument plus a clear-sky term Gcs that represents SSI
under clear skies. The hidden layer consists of 25 neurons and an ac-
tivation function to standardize the inputs to the range of [−1, 1]. In
the output layer (dependent vector), a linear activation function is
adopted to implement the prediction of all-sky SSI. In their paper,
measurements from 65 out of 83 stations across the Andalusian region
in Spain were used for training the model (the remaining 18 were for
testing) and daily SSI with a relative RMSE of 6.8% were finally pro-
duced.

There are a huge number of similar papers published in the five
main journal for solar energy application studies (Applied Energy,
Energy, Energy Conversion and Management, Renewable Energy, and Solar
Energy) (Aguiar et al., 2015; Akarslan and Hocaoglu, 2016; Akarslan
et al., 2014; Janjai et al., 2009; Mefti et al., 2008) that have recently
been reviewed (Voyant et al., 2017; Zhang et al., 2017). Machine-
learning is a subfield of computer science and is classified as an artifi-
cial intelligence method (Voyant et al., 2017). The advantage of this
kind of method is that it can solve some obscure problems in which the
mapping from the independent vector to the dependent vector cannot
be represented by explicit functions. But owing to the lack of a physical
basis, the representativeness of such methods highly depends on the

Fig. 4. The clear-sky index kT⁎ (cloud transmission) is treated as a segmentation
function of cloud index (n) in the Heliosat method (Hammer et al., 2003).

Table 2
Summary of methods for estimating SSI from satellites.

Usual algorithms Main inputs Advantages Limitations References

LUT-based methods
Broadband algorithms; narrowband

algorithms; multichannel
algorithms

1) TOA reflectance or radiance;
2) Auxiliary atmospheric data

1) A direct SSI retrieval
strategy;
2) Accurate in theory

1) Computationally inefficient;
2) Sensor-specific
3) Linear interpolation

Pinker and Laszlo (1992);
Huang et al. (2011)

Simplified RTM methods
δ-2-stream approximation; δ-Eddington

approximation
Integrated atmospheric optical
properties and surface optical
properties (albedo or reflectance)

1) Solid physical basis;
2) Accurate in theory;
3) Independent of specific
sensors

1) Requires reliable optical input
parameters on atmosphere and surface
2) Higher complexity

Zhang et al. (2004); Wang
and Pinker (2009)

Parameterization methods
General parameterization 1) Satellite-based atmospheric and

surface products;
2) Auxiliary data

1) Simple;
2) Certain physical basis;
3) Easy to determine the
reasons for poor estimates

1) Explicit requirements for various
atmosphere and surface state
parameters
2) Quality products of some
parameters are unavailable

Bisht and Bras (2010);
Huang et al. (2018)

Parameterization of Li and colleagues 1) TOA planetary albedo;
2) Water vapor

1) A direct strategy
2) Convenient;
3) Minimum demand for
information

NSSI not SSI is directly retrieved Li et al. (1993a, 1993b); Li
et al. (2000); Wang et al.
(2000)

Conventional statistical methods
Heliosat algorithm; SUNY algorithm 1) TOA reflectance or radiance;

2) Other auxiliary data
1) Simple;
2) Efficient

1) Lack of physical basis;
2) Sensor-specific;
3) Possibly needs calibrations over
different regions

Rigollier et al. (2004);
Perez et al. (2013)

Machine Learning based methods
SVM/SVR algorithms; BN algorithms;

DTL algorithms
1) TOA reflectance or radiance;
2) Various other information
dependent on specific algorithms

1) Efficient;
2) Non-linear relationship

1) Lack of physical basis;
2) Sensor-specific;
3) Dependent on training data and
representativeness problem

Linares-Rodriguez et al.
(2013); Voyant et al.
(2017)
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training data and consequently, their generalizability is limited.
Though occasionally adopted to estimate instantaneous SSI (Kim and
Liang, 2010), statistical methods are more frequently used to estimate
SSI on longer timescales such as daily, monthly, or yearly.

3.3. Comparison of different methods

For a concise overview, Table 2 summarizes the needed input data,
advantages, limitations, and representative literature for each method
previously discussed. Because of their different nature, input require-
ments, and operability, there is no general conclusion on which method
is superior to others. Likewise, a quantitative summary of the accuracies
of different methods is difficult to conclude. As for the choice of an
optimal method, one must comprehensively consider the sensor char-
acteristics, the availability of reliable atmospheric products and surface
observation, and the expected timescale of SSI. For scientific research
and application, physical methods are in favor, and vice versa for solar
energy application. Of course, this is not an either-or choice. Actually in
many operational algorithms two or more kinds of methods are often
combined. For example, in Heliosat-4 (Muller et al., 2015) the physical
LUT method for clear skies and Heliosat empirical relationships for
cloudy skies are combined to calculate the all-sky SSI. The operational
algorithms developed by Mueller et al. (2009) imported various para-
meterizations to reduce the computational burden under the framework
of the broadband LUT method of Pinker and Laszlo (1992). The inter-
national energy agency Solar Heating and Cooling Project Task 4 “Solar
Resource Assessment and Forecasting” is also addressing the objective
of advancing solar SSI modeling based on physical principles (http://
task46.iea-shc.org/).

4. Validations of satellite-based SSI

We usually use in-situ measurements to validate satellite-based SSI
products including high-resolution kilometer-scale products and coarse-
resolution gridded products. However, the discrepancy between in-situ
measurements and collocated estimates of satellite-based SSI may not
denote the true error of satellite products (Li et al., 1995), because
many factors may contribute to it (Wang et al., 2016). These factors not
only may result in considerable validation uncertainties, but in turn
affect our validation strategies to some extent, as elaborated in more
details next.

4.1. Validations of the high-resolution SSI

For the validation of high-resolution SSI (generally consistent with
the native resolution of satellite observations, i.e., about several

kilometers), many studies (Deneke et al., 2009; Huang et al., 2016a)
have shown that the 3D effect of clouds may affect validation results
significantly with increasing temporal resolutions. Especially for the
instantaneous products, the uncertainty originating from the 3D effect
of clouds is very large.

First, the 3D effect of clouds makes instantaneous surface mea-
surements more unstable and thus lowers their representativeness
(Huang et al., 2016a). Second, inhomogeneous cloud fields lead to a
smoother SSI beneath clouds compared with that retrieved by con-
ventional algorithms (based on the 1D radiative transfer theory for a
plane parallel atmosphere) due to the strong adjacent effect of pixels
(Wyser et al., 2005; Wyser et al., 2002). A simple way to mitigate the
impact of the 3D effect of clouds on the validation of instantaneous SSI,
is through temporal averaging of surface measurements and spatial
averaging of satellite-based SSI estimates (Wyser et al., 2002).

Based on a multi-resolution analysis of 5-min resolution atmo-
spheric transmittance and geostationary TOA reflectance, Deneke et al.
(2009) recommended a 40–60min averaging interval for surface mea-
surements to validate the instantaneous SEVIRI pixel-level
(6 km×3 km) SSI products. In an investigation into validation un-
certainty using a dense matrix of surface observations, Huang et al.
(2016a) suggested that a 30-min averaging interval instead of smaller
time intervals is the most optimal timescale for the validation of in-
stantaneous 5-km resolution satellite retrievals. This is because the
higher frequency surface measurements likely contain more detailed
cloud information on a sub-pixel scale not captured by satellite ob-
servations. After comparing the SSI output from a 3D Monte Carlo RTM
and that from a conventional 1D RTM for the same simulated cloud
fields, Wyser et al. (2005) showed that a spatial averaging of ≥5 km
can dramatically reduce the impact of the 3D effect of clouds and that
the optimal spatial size is ~25 km. So, in the validation of in-
stantaneous high-resolution SSI, we recommend decreasing the tem-
poral resolution of surface measurements to 30–40min and decreasing
the spatial resolution of satellite-based SSI to an area larger than
5 km×5 km to reduce the validation uncertainty.

In spite of this, the impact of the 3D effect of clouds is still difficult
to eliminate completely. An extreme case is when a cloud only exists in
the solar-to-surface path or in the surface-to-satellite path as illustrated
in Fig. 5. In this scenario, a pair of opposite atmospheric conditions
(clear and cloudy) is observed by satellites and by surface sites, re-
spectively. The validation result will be severely contaminated. There-
fore, some studies have suggested that extreme cases should be ex-
cluded when the difference between an instantaneous retrieval and a
surface observation is larger than the triple standard deviation of their
difference (Pinker et al., 2009; Qin et al., 2015; Wang and Pinker,
2009).

Fig. 5. Illustration of misleading atmospheric condition (clear or cloudy) observed by the satellite sensor: a) when a cloud only exists in the sun-to-surface path and b)
when a cloud only exists in the surface-to-satellite path.
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Note that the validation uncertainty due to the 3D effect of clouds
rapidly decreases as the timescale of a satellite product increases. When
the timescales of satellite products are ≥3 h, we generally ignore the
impacts of the 3D effect of clouds on validations (Huang et al., 2016a).
Therefore, for 3-hour, monthly, or yearly high-resolution SSI products,
the validation strategy of a straight comparison does not need any
adjustments.

4.2. Validations of the coarse-resolution gridded SSI

The term “grid” in coarse-resolution gridded products refers ex-
clusively to larger geographic latitude-longitude grids that are generally
≥0.25° (global SSI products are usually produced at these spatial
scales). As spatial scales increase, point-specific surface measurements
become increasingly inadequate to characterize and represent grid-
level surroundings (Li et al., 2013). The uncertainty due to the spatial
representativeness error thereby becomes more important. Here, the
spatial representativeness error is defined as the sampling error origi-
nating from the different spatial scales between in-situ measurements
and satellite products (Jin et al., 2017; Liu and Li, 2017).

Though not considered in most operational validations (Pinker
et al., 2005; Yang et al., 2008; Zhang et al., 2013; Zhang et al., 2015),
the inadequate spatial representativeness of surface measurements has
long been realized. When using GEBA measurements to validate two
monthly satellite-based products, Li et al. (1995) found that if multiple
GEBA sites within a grid cell were simultaneously employed, the dis-
crepancy between products and measurements would significantly drop
to ~5Wm−2, versus> 20Wm−2 obtained using single site. Li et al.
(2005) used high-resolution kilometer-scale SSI retrievals to quantify
the representativeness error of a single surface site within a given grid
domain. Their study revealed that the spatial representativeness error
(uncertainty) is not only contingent upon the spatial scale of the vali-
dated products, but also their temporal cycles. Inspired by Li et al.
(2005), Hakuba et al. (2013) studied the spatial representativeness of
143 surface stations in Europe and demonstrated a maximal annual
RMAD (relative mean absolute deviation) of up to 10% and an average
annual RMAD of ~1.6% for a standard grid of 1°. Using a similar ap-
proach, Hakuba et al. (2014) expanded their study to the entire Me-
teosat disk (the zone between 70°W to 70° E and 70°S to 70°N). Schwarz
et al. (2018) presented a near-global investigation on the representa-
tiveness of SSI point observations.

When using high-resolution satellite products to investigate the
subgrid spatial variability and the spatial representativeness, the
variability of SSI within these products is in fact omitted. A more
comprehensive investigation was conducted by Huang et al. (2016a) in
which representativeness errors were calculated by combining high-
resolution satellite products and a dense matrix of surface observations.
They found that when doing a validation using a single site's mea-
surements, the resulting uncertainty is much larger than the accuracy
criteria proposed by many applications (e.g., climate change mon-
itoring), and significant enough to undermine some validation conclu-
sions we have made.

Generally, the spatial representativeness error decreases rapidly as
the timescale increases up to one day and levels off to a relatively small
value (Li et al., 2005). On a monthly timescale, Hakuba et al. (2014)
and Schwarz et al. (2018) both found that the majority of stations are
representative within the in-situ measurement accuracy except near
coasts, mountains, and in the tropics. But on shorter timescales (≤one
day) spatial representativeness errors may be considerably large and
significantly affect the results of validations. Huang et al. (2016a),
therefore, proposed a cross-validation strategy, namely using a well-
validated high-resolution SSI product as a reference to assess the
gridded product that needs to be validated. This strategy is also known
as a hierarchical validation strategy. High-resolution SSI product is first
validated and calibrated using in-situ measurements to remove any
potential systematic bias. The resulting unbiased high-resolution SSI is

then used to evaluate the gridded product.
In short, SSI gridded products can be assessed using single-site

measurements, but considerable uncertainties may be incurred. The
cross-validation strategy likely provides a more appropriate alternative
for validating SSI gridded products.

5. Products and accuracies

As mentioned in Section 4, there are two groups of SSI products:
high-resolution kilometer-scale products and coarse-resolution gridded
products. The following describes their respective statuses.

5.1. High-resolution SSI products and accuracies

To date, mature high-resolution SSI datasets with global and multi-
year coverage are still rare. High-resolution kilometer-scale products
are mainly produced over specific regions like Europe, North America,
and China, or are produced on the basis of one specific satellite (or
sensor) like the Geostationary Operational Environmental Satellite
(GOES), SEVIRI, MTSAT, etc. (Bisht and Bras, 2010; Bisht et al., 2005;
Deneke et al., 2008; Forman and Margulis, 2009; Hollmann et al., 2006;
Huang et al., 2016b; Huang et al., 2012; Huang et al., 2011; Lu et al.,
2010; Mueller et al., 2004; Mueller et al., 2009; Pinker et al., 2003;
Tang et al., 2016; Wang and Pinker, 2009).

From these studies, different satellite missions/sensors have been
employed to generate SSI products of varying uncertainties that are
generally acceptable. Over mid-latitude regions, the RMSE of in-
stantaneous retrievals are frequently within 50Wm−2 (≤10% of the
mean SSI) for clear skies, while for all skies, it may range from
60Wm−2 to 140Wm−2 (~15–30% of the mean SSI) depending on the
local cloud climatology. The quality of hourly SSI is frequently slightly
better than that of instantaneous SSI (Deneke et al., 2008; Huang et al.,
2016b). The accuracy substantially improves as the timescale increases
up to one day or more. For daily SSI, the typical RMSE is ~35Wm−2

(~10% of the mean SSI), and for monthly SSI, some studies have re-
ported RMSEs<10Wm−2 (≤5% of the mean SSI; Mueller et al., 2009;
Qin et al., 2011).

In general, most physical algorithms tend to overestimate SSI over
snow-free surfaces and underestimate SSI over snow-covered surfaces
(Huang et al., 2016b; Li et al., 2007; Pinker et al., 2007). Particularly
for the estimation of instantaneous SSI under cloudy-sky conditions,
many studies have demonstrated a systematic overestimation over
snow-free surfaces (Huang et al., 2013; Liang et al., 2006; Lu et al.,
2010; Zhang et al., 2014). A plausible explanation is the satellite signal
saturation for very thick clouds that results in underestimated COD
(Huang et al., 2016b; Platnick et al., 2015). The difficulty in completely
identifying intermittent snow-cover periods causes the underestimation
over snow-covered surfaces. If snow under clouds goes undetected,
COD is overestimated, and SSI is underestimated (Pinker et al., 2003).

Although a well-established global kilometer-scale SSI product is
not available yet, regional kilometer-scale products covering almost all
of the world's middle and low latitude areas, including Europe, Africa,
East Asia, and North America, are available. In recent years, many
scholars have pointed out the necessity and demand to produce high
spatiotemporal resolution SSI over the globe (Huang et al., 2013; Yang
et al., 2008; Zhang et al., 2014). In support of the Global LAnd Surface
Satellite (GLASS) project (Liang et al., 2014), Zhang et al. (2014)
generated a set of experimental, 5-km resolution, globe-covering SSI
products from 2000 to 2017 by combining multiple polar-orbiting and
geostationary data (http://glass-product.bnu.edu.cn/). During the pre-
paration of our paper, MODIS global 5-km downward shortwave ra-
diation and PAR (MCD18) was also released (https://lpdaac.usgs.gov/).
We have no reason to doubt that there will be more and better products
appearing in the near future.

Moreover, there are a few commercial high-resolution SSI datasets
with near-global coverage for solar energy assessment and operation.
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For example, the SolarGIS coverage extends 60oN to 50oS (https://
solargis.com/). Given their high quality and up to real time update,
they have played an important role in the solar energy industry today.

5.2. Coarse-resolution gridded SSI products and accuracies

Unlike the kilometer-scale products, there are already several
global, coarse-resolution, gridded SSI products that have been released
since the 1990s. Common ones include the GEWEX SRB products, the
ISCCP Flux dataset (FD) products, the CERES products, the UMD SRB
products, and the CM SAF products. Table 3 summarizes these products
and the algorithms involved. Note that many of the products focus not
only on SSI but also on other radiation budget components both at the
surface and the TOA. Therefore, many algorithms listed in the table are
not designed specifically for the estimation of SSI.

A quantitative description of the accuracy of each dataset is in-
tentionally omitted here because it varies from study to study, region to
region, and version to version, depending on the specific latitude,
aerosol climatology, and cloud climatology. But roughly speaking on a
monthly timescale typical RMSEs of these global products range from
20Wm−2 to 35Wm−2, and overall the CERES-EBAF product may be
better than other products (Pinker et al., 2005; Zhang et al., 2013;
Zhang et al., 2014). On a daily timescale the RMSE fluctuates drama-
tically, but values between 30 and 40Wm−2 are the most common
(Zhang et al., 2013). In general accuracies of these products worsen and
discrepancies between different products strengthen in some remote
regions. For example, over the Arctic, Riihela et al. (2017) found that
the RMSE of GEWEX SRB daily products reached as high as 60.4Wm−2

in summer and satellite-based estimates are not homogeneous. CERES
daily products are more accurate than the other daily products. Over
the Tibetan Plateau, on monthly timescale Yang et al. (2006a) reported
that the RMSEs of ISCCP FD and GEWEX SRB products are 17Wm−2

and 50Wm−2, respectively. The ISCCP FD products clearly outperform
GEWEX SRB products. However, on a daily timescale RMSEs are, re-
spectively, 34Wm−2 and 39Wm−2. In this case, the ISCCP FD pro-
ducts are slightly worse than GEWEX SRB products (Yang et al., 2008).
Therefore, further efforts are necessary to investigate the differences
between different products over these areas. Of course, as mentioned
before, RMSE in here cannot be attributed to the accuracy problem of
satellite products completely because bulk of it may be due to large
sampling errors in surface point-specific measurements compared with
gridded satellite products (Li et al., 1995).

Similar to kilometer-scale products, there is also an overestimation
of SSI over snow-free surfaces as a whole in gridded products, an im-
proving tendency in accuracy with decreasing temporal resolution, and
a drop in quality during the winter and spring seasons because of the
influence of intermittent snow cover. After an in-depth assessment of
four widely-used monthly gridded products (CERES-EBAF, GEWEX-
SRB, UMD-SRB, and ISCCP-FD) using 1152 globally distributed GEBA
stations and 99 China Meteorological Administration (CMA) stations in
China, Zhang et al. (2015) concluded that SSI is overall overestimated
by ~10Wm−2. Over 80% of the CMA stations show positive biases,
and only one clear negative bias is seen at the station on the Tibetan
Plateau (see Fig. 3 in their paper). Such a conclusion is consistent with
other studies (Wu and Fu, 2011; Xia et al., 2006), which suggests that
these global products likely systematically overestimate SSI over China
except for the Tibetan Plateau. Owing to the highly variable terrain and
more frequent snow cover, satellite products for the Tibetan Plateau are
usually less accurate than for other regions (Yang et al., 2006a; Yang
et al., 2008).

While retrievals of SSI are far better than the retrievals of other
variables such as evapotranspiration, leaf area index, and surface soil
moisture, this does not mean that its accuracy level can readily meet the
demand of a particular study or application in need of SSI. Let us look
again at the WMO accuracy criteria listed in Table 1. Even the basic
“threshold” grades are a challenge for current SSI products to meet. As

early as the 1980s, the World Climate Research Program had set the
goal of deriving a global monthly climatology of radiative fluxes with
an accuracy of 10Wm−2 (RMSE) over a spatial resolution of 250 km
(~2.5°; Suttles and Ohring, 1986). Until now whether this accuracy
goal has been reached is still unclear. The previous studies (Pinker
et al., 1995) reported a monthly accuracy of ~20Wm−2 on a global
scale, and recent products appear to have improved this accuracy (Ma
and Pinker, 2012). Anyway, satellite products still have a long way to
go to meet the demands proposed of many applications. Lowering the
uncertainties in the satellite-based estimation of SSI is still crucial in the
next decade.

6. Current problems and future perspectives

Although current SSI-related studies have become increasingly
quantitative and sophisticated, there has not been a substantial im-
provement in product quality due to various practical difficulties and
problems. Some key difficulties and problems are:

(1) The impact of 3D effect of clouds on the estimation of high-re-
solution SSI, especially instantaneous SSI, is very difficult to elim-
inate. In theory, current satellite-based estimations are all con-
ducted under the assumption of an independent pixel
approximation (IPA), but strictly speaking, the IPA assumption only
makes sense for lower spatial resolution retrievals. As the spatial
resolution increases to several kilometers, the area affected by
spatially inhomogeneous clouds (generally ≥25 km) is much larger
than the footprint of an individual pixel. Therefore, the IPA is no
longer justified (Wyser et al., 2002). This means that the theoretical
basis of the retrievals would be difficult to uphold when estimating
high-resolution SSI. Despite the large uncertainty caused by the 3D
variability of clouds, retrieval algorithms are unable to tackle the
problem. This uncertainty is perhaps the largest error source for
instantaneous SSI retrievals (Wyser et al., 2005).

(2) The complexity of clouds is another intractable barrier for the im-
provement of satellite-based SSI products. In nature multilayer
clouds are not uncommon (Chang and Li, 2005; Desmons et al.,
2017), and so are mixed-phase clouds (Wood, 2008). Both of these
issues affect the estimation of SSI significantly, but are not easy to
address within the scope of passive optical remote sensing (Platnick
et al., 2003; Platnick et al., 2017). These complex issues are so
difficult to resolve that the incurring uncertainties can readily
overshadow those gained through the improvement of a retrieval
algorithm. For example, in principle, ice clouds and water clouds
have distinct optical properties, and distinguishing between them in
algorithms would improve estimation of SSI. However, Deneke
et al. (2005) and Huang et al. (2016b) have both shown that the SSI
accuracy cannot be significantly improved even if the ISCCP
thermal infrared threshold algorithm is used to distinguish them
(Rossow and Schiffer, 1999).

(3) Reliable aerosol information also constrains the accuracy of esti-
mates of SSI under clear-sky conditions. As the only means to obtain
regional or global aerosol distributions (King et al., 1999; Lee et al.,
2009), aerosol retrievals over land surface are still fraught with
challenges as discussed in Section 2.2. Because there are no high-
quality satellite-based aerosol products, auxiliary aerosol clima-
tology datasets are often used instead to estimate SSI in many op-
erational algorithms. However, the accuracies of most aerosol cli-
matology datasets are considerably low in many regions (Li et al.,
2009). An integrated aerosol product that merges multi-source
aerosol data including various satellite-based products, ground-
based observations, and some good climatology datasets needs to be
urgently developed.

(4) Globally representative cloud and aerosol optical models, especially
ice cloud models and aerosol models over some regions are still
subjects of debate (Baum et al., 2011; Deneke et al., 2005; Xin et al.,
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2011; Yang et al., 2013; Zhang et al., 2002). As a prerequisite of the
remote sensing of clouds and aerosols, this not only affects the re-
trievals themselves, but also SSI estimates. For instance, Huang
et al. (2011) and Wang et al. (2014) have shown that use of an
improper aerosol model (characterized by the SSA and the asym-
metry factor) in a region undergoing rapid industrialization and
urbanization may be a major reason for the SSI overestimation in
East China (aerosol absorption is underestimated). The acquisition
of representative cloud and aerosol optical models depends on
ground-based or airborne measurements of clouds and aerosols.
With the establishment of more observation networks and the re-
lease of more measured data, there may be a substantial advance in
this respect in the foreseeable future.

(5) Snow/Ice cover may affect the estimation of SSI significantly.
Clouds and snow have similar reflective optical characteristics in
many spectral regions. While it is possible to identify clouds over
bright snow/ice surface (Li and Leighton, 1991), retrievals of cloud
optical depths over such surfaces are subject to large uncertainties
(Platnick et al., 2015; Platnick et al., 2001; Platnick et al., 2017). It
is even more challenging over short-lived snow or ice (Pinker et al.,
2007). As discussed in Section 5.1, this may result in a lower ac-
curacy in satellite estimation of SSI (Huang et al., 2016b; Li et al.,
2007).

(6) Sparse spectral channels of previous geostationary satellites as well
as small number of overpasses of polar-orbiting satellite systems
limits the more quantitative acquisition of historical SSI (Deneke
et al., 2008). The previous generation of geostationary satellites
usually had only one channel in the reflection part of the solar
spectrum. This made the detection of thin clouds such as cirrus
problematic (Ricciardelli et al., 2008), and AOD retrieval difficult
to implement. Therefore, for historic geostationary data, some
studies proposed combining polar-orbiting satellite data to estimate
the surface radiation budget (Huang et al., 2011; Tang et al., 2016).

(7) When creating long-term, continuous, and consistent databases to
study the long-term trends of SSI, sensor-related issues may un-
dermine our efforts (Blanc et al., 2011; Ma and Pinker, 2012). Be-
sides recalibration due to sensor degradation, other issues include
possible slight discrepancies in spectral response functions among
sensors, sampling changes in space and time during different per-
iods, changes of numbers of sensor channels, etc. These issues are
not new and were noted earlier on by Schiffer and Rossow (1985).
For more detailed discussions, we refer the interested readers to
Whitlock et al. (1995) and Blanc et al. (2011).

The above are just a few difficulties or problems facing the remote
sensing of SSI from the satellite meteorology perspective. Actual diffi-
culties may be more than those, e.g., the effect of topography in com-
plex mountain areas (Gu et al., 2012; Liou et al., 2013; Yang et al.,
2008). Further improvements are expected in the development of new
methods or techniques to address these problems (Li et al., 2007),
specially quantitative assessments and eliminations of 3D effect of
clouds and proper treatments of aerosol influences. The 3D effect of
clouds can significantly affect the high temporal resolution retrievals of
SSI (≤3 h), and is always the largest error source of resulting SSI pro-
ducts. Several studies in recent years have already tried to address this
problem by combining numerical weather model and 3D radiative
transfer theory developed for light propagation in the real atmosphere
(Gu et al., 2012; Liou et al., 2013). But these studies are still in the
experimental stage. A general solution on how to tackle such a problem
has not been proposed. Until the 3D effect of clouds is eliminated, it is
infeasible to substantially improve SSI accuracy at a high temporal
resolution.

Meanwhile, not only aerosol loading but also aerosol optical prop-
erties will affect the long-term estimation of SSI. The SSA of aerosol
typically ranges from 0.96 for areas with a pristine atmosphere, to 0.93
for a typical rural area, to 0.86 for a typical urban area, and to 0.67 for

a highly polluted area (Li et al., 2009). This results in large un-
certainties in the estimation of aerosol absorption that is especially
important for it determines the amount of solar radiation absorbed in
the atmosphere. The worst happens if absorbing aerosol is mixed with
clouds that can drastically lower the TOA reflection and lead to a large
overestimation of SSI (Li et al., 2014). In the tropical Africa and
Amazon regions during the biomass burning season an overestimation
of up to 100 Wm−2 on a monthly scale may be seen (Li, 1998). The
value of aerosol SSA is very difficult to acquire over large scales, and
may fluctuate dramatically because it is largely affected by the in-
dustrialization, and human activities. For example, at an urban center
and the nearby surrounding, there may be two distinct values even if
they are not too far. Solutions to aerosol-related problems need the
collective effort of ground-based observation and satellite remote sen-
sing. Currently a global network, Aerosol Robotic NETwork
(AERONET), had been established by NASA and other collaborators.
With more ground-based observations and the development of new
satellite remote sensing techniques, a better solution may be seen in the
near future.

The progress of satellite-based SSI also depends on advancements in
satellite sensor technology. Of the recently new launched satellite
sensors, particularly noteworthy are various multispectral sensors on-
board the new generation of geostationary satellites and the Earth
Polychromatic Imaging Camera (EPIC) onboard the Deep Space Climate
Observatory (DSCOVR) satellite. The first modern generation of geos-
tationary satellites is Meteosat-8, which was launched by the EUMET-
SAT in 2002. As the Meteosat-8 satellite's main payload, the SEVIRI, has
up to 12 spectral channels (4 visible/near-infrared channels and 8 in-
frared channels) and has shown a stronger ability to identify cloud
properties, composition, and dynamics (Henken et al., 2011; Stengel
et al., 2014). Accordingly a better estimation of high-resolution SSI is
expected (Deneke et al., 2008). Following in the footsteps of the Me-
teosat-8, Himawari-8, GOES-R, and FengYun-4 new generation of
geostationary satellites were launched in succession from 2014 to 2016
by Japan, the U.S., and China, respectively. The new optical imaging
radiometers carried by these satellites have not only a higher spectral
resolution (up to 16 channels) but also higher spatial and temporal
resolutions. This provides a new opportunity for estimating regional
and global SSI.

Different from all previous satellites, the DSCOVR satellite orbits a
special space location called the Lagrange point 1 (or simply L1), which
is one of the neutral gravity points between the Sun and Earth. From
this location, the satellite can keep its onboard Earth-observing sensor
viewing the earth in the direction of the sun at all times, i.e., con-
tinuously viewing the sunlit side of the earth. Such a unique observa-
tion mode (see Fig. 6) ensures that the atmospheric column that de-
termines the surface incident solar irradiance is the same one as
observed by the satellite. Thus 3D radiative effects due to in-
homogeneous atmospheric constituents can be substantially reduced
and the quality of SSI is expected to improve. DSCOVR-EPIC will pro-
vide a unique vantage point for studies of high-resolution SSI. However,
its current resolution is only 25 km.

Since reliable ground observation is chiefly available in the popu-
lated middle and low latitudes, satellite-based estimates are more
needed in remote regions like the Arctic, the Tibetan Plateau, and the
Antarctic etc. These regions are research hotspots in earth science. But
as mentioned before, current satellite products still have a large un-
certainty. Studies on how to improve the SSI accuracy in these regions
should be of scientific interest in the future (Riihela et al., 2017; Yang
et al., 2008). Over these decades, in fact there are already many SSI
products available over most regions. Perhaps developing various data
fusion methods to assimilate the merits of these products and subse-
quently reduce the uncertainties is also promising. For example,
through integrating surface observation data, satellite products as well
as reanalysis datasets, Shi and Liang (2013a) generated a fusion dataset
using the multiple linear regression method, which demonstrate a
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better quality over Tibetan Plateau (Shi and Liang, 2013b). Forman and
Margulis (2010) introduced the Ensemble Kalman Filter to assimilate
satellite products with different resolutions and sources. Compared
with previous studies, not only the optimal estimate of SSI is given, but
also its uncertainty. This provides an alternative mean of understanding
and characterization of the variability in SSI.

In short, estimating SSI from satellites has been a “classical” remote
sensing problem that has been tackled for nearly half a century. While
substantial progresses have been made in improving its retrieval ac-
curacy that is better than many other geophysical quantities (in terms of
relative error), daunting challenges still confront us. It will continue to
be a major subject of remote sensing in the future.
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Appendix A. Terminology and symbols

AERONET AERONET
AOD Aerosol Optical Depth
AVHRR Advanced Very High Resolution Radiometer
CERES Clouds and the Earth's Radiant Energy System
CLARA CLoud, Albedo and RAdiation dataset, AVHRR-based
CM SAF Satellite Application Facility on Climate Monitoring
CMA China Meteorological Administration
COD Cloud Optical Depth
DSCOVR Deep Space Climate Observatory

EBAF Energy Balanced and Filled
EPIC Earth Polychromatic Imaging Camera
ERBE Earth Radiation Budget Experiment
EUMETSAT European Organization for the Exploitation of

Meteorological Satellites
FD Flux Data
GADS/OPAC Global Aerosol Data Set/Optical Properties of Aerosols

and Clouds
GCM General Circulation Model
GEBA Global Energy Balance Archive
GEOS Goddard Earth Observing System
GEWEX Global Energy and Water cycle Exchanges
GISS Goddard Institute for Space Studies
GMS Geostationary Meteorological Satellite
GOES-R Geostationary Operational Environmental Satellite-R Series
GSFC Goddard Space Flight Center
IPA Independent Pixel Approximation
ISCCP International Satellite Cloud Climatology Project
LUT Look-up Table
MODIS Moderate Resolution Imaging Spectroradiometer
MODTRAN MODerate resolution atmospheric TRANsmission
MTSAT Multifunctional Transport Satellites
NASA National Aeronautics and Space Administration
NSSI Net Surface Solar Radiation
PAR Photosynthetically Active Radiation
RMAD Relative Mean Absolute Deviation
RMSE Root Mean Square Error
RTM Radiative Transfer Model
SEVIRI Spinning Enhanced Visible and Infrared Imager
SRB Surface Radiation Budget
SSA Single Scattering Albedo
SSF Surface Fluxes and Clouds
SSI Surface Solar Irradiance
SSRB Solar Surface Radiation Budget
TIROS Television Infrared Observation Satellites

Fig. 6. Illustration of the unique observation mode of the DSCOVR-EPIC.
(Taken from https://www.nesdis.noaa.gov/content/dscovr-deep-space-climate-observatory.)
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TOA Top Of the Atmosphere
TOMS Total Ozone Mapping Spectrometer
TOVS TIROS Operational Vertical Sounder
UMD University of Maryland
WMO World Meteorological Organization
WMO OSCAR WMO Observing System Capability Analysis and Review

Tool
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