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Recently, there are many researches on signature molecules of periodontitis

derived from different periodontal tissues to determine the disease occurrence

and development, and deepen the understanding of this complex disease.

Among them, a variety of omics techniques have been utilized to analyze

periodontitis pathology and progression. However, few accurate signature

molecules are known and available. Herein, we aimed to screened and

identified signature molecules suitable for distinguishing periodontitis

patients using machine learning models by integrated analysis of TMT

proteomics and transcriptomics with the purpose of finding novel prediction

or diagnosis targets. Differential protein profiles, functional enrichment

analysis, and protein–protein interaction network analysis were conducted

based on TMT proteomics of 15 gingival tissues from healthy and periodontitis

patients. DEPs correlating with periodontitis were screened using LASSO

regression. We constructed a new diagnostic model using an artificial neural

network (ANN) and verified its efficacy based on periodontitis transcriptomics

datasets (GSE10334 and GSE16134). Western blotting validated expression

levels of hub DEPs. TMT proteomics revealed 5658 proteins and 115 DEPs,

and the 115 DEPs are closely related to inflammation and immune activity. Nine

hub DEPs were screened by LASSO, and the ANN model distinguished healthy

from periodontitis patients. The model showed satisfactory classification ability

for both training (AUC=0.972) and validation (AUC=0.881) cohorts by ROC

analysis. Expression levels of the 9 hub DEPs were validated and consistent with

TMT proteomics quantitation. Our work reveals that nine hub DEPs in gingival

tissues are closely related to the occurrence and progression of periodontitis

and are potential signature molecules involved in periodontitis.
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Introduction

Periodontitis, a bacterially induced, complex, inflammatory

disease characterized by continuous destruction of the

periodontal soft and hard tissues of the oral cavity, is the main

cause of tooth loss in adults (1). Periodontitis is caused by

multiple factors and involved in many risk factors making it

urgent to explore its mechanism. Previous studies suggest that

NLRP3 (2), Transglutaminase 2 (TG2) (3) and periodontal

biotype (4), were significant predictors involved in

periodontitis or oral diseases related to risk factors of oral

health. With the development of omics technology, a variety

of transcriptomic and proteomic studies have analyzed

periodontitis pathology and progression. However, there is still

lacking accurate signature molecules for periodontitis based on

multi-omics analysis.

Presently, omics analysis of periodontitis mainly focuses

on the orchestration of RNA expression profiling using

different tissues (such as GCF, saliva, gingiva and serum),

including 5 transcriptomes (5–9), 4 miRNA profiles (10–13),

2 lncRNA profiles (14, 15) and 1 circRNA profile (16). Based

on different types of RNA profiles, scholars have gradually

revealed a variety of signature mRNAs or ncRNAs that are

involved in different periodontitis processes, improving

understanding of the pathological mechanisms. However,

tremendous amounts of RNA-omics studies attempting to

identify specific signature molecules involved in periodontitis

have inconsistent results.

In recent years, increasing attention has been given to the

proteomics of periodontitis due to the actual function of

proteins in various diseases. Ngo et al. first used liquid

chromatography-mass spectrometry (LC–MS) to determine

the protein composition of GCF and identify 66 proteins, of

which 43 were newly reported. Their research had been

presented the most comprehensive proteomic study of

periodontitis up to 2010 (17). Subsequently, scientists have

attempted to describe the protein expression profiles of

different samples from the systemic or oral cavity in healthy

individuals and periodontitis patients, including saliva (18),

dental plaque (19), serum (20) and GCF (21). Nevertheless,

few peptides and proteins have been identified in such

proteomic studies of periodontitis, and the results were

inaccurate due to limitations including low sensitivity, poor

separation, and resolution in gel-based MS technology. With
02
the advancement of MS technology, the quantitative

proteome technique of tandem mass tags (TMTs) has

been widely applied in the analysis of differentially

expressed proteins in various diseases based on its deep

analysis, good reproducibility and high sensitivity (22).

Regardless , few related studies have examined the

proteomic profile involved in periodontitis using the TMT

proteome technique.

Multi-omics studies play a central role in exploring the

pathology and progress ion of per iodont i t i s , pr ior

investigations have almost focused on the single omics

analysis associated with periodontitis. Herein, we first

carried out differential expression protein profiling of

gingival tissue in healthy individuals and periodontitis

patients utilizing quantitative TMT proteomics and found

inflammatory immunity-related clusters to be most

significantly enriched among 115 DEPs. 9 hub DEPs

were screened by LASSO analysis based on proteomics-

based protein expression levels. Finally, integrating the

transcriptomics of periodontitis, an artificial neural network

(ANN) model consisting of 9 hub DEP-coding genes was

constructed and confirmed to be effective in distinguishing

healthy individuals from periodontitis patients. Furthermore,

9 signature proteins participating in periodontitis were

validated with western blotting of human gingiva samples.

The results showed that the ANN network of 9 signature

molecules identified in our study might be involved in

periodontitis, and which may provide a new prediction or

diagnosis models for periodontitis.
Materials and methods

Study population

The study was conducted in the department of

stomatology of Nanfang Hospital. It was approved by the

Ethics Committee of Nanfang Hospital, Southern Medical

University (No. NFEC-2021-031) and in accordance with the

Declaration of Helsinki of 1975, as revised in 2000. The full-

mouth and site-specific periodontal parameters for each

individual included plaque index, bleeding on probing

(BOP) , pocket probing depth (PPD), and cl in ical

attachment loss (CAL). The periodontitis and periodontal
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heal thy were diagnosed by periodontal and X-ray

examination according to the periodontitis case definition

of 2017 World Workshop (23). Inclusion criteria of

participants included over 18 years of age, systemic health,

with Stages II/III/IV periodontitis; and retaining > 20 teeth

equally distributed in all quadrants and >6 teeth per

quadrant. Exclusion criteria included smoking, the presence

of cardiovascular and respiratory diseases, diabetes mellitus,

HIV infection, systemic inflammatory conditions or

nonplaque induced oral inflammatory conditions, and

immunosuppressive chemotherapy, and pregnancy or

lactation. Patients with a history of periodontal therapy or

taking medication such as antibiotics or anti-inflammatory

drugs that could affect their periodontal status for at least 6

months prior to the study were excluded. Patients unable to

maintain sufficient oral hygiene were also excluded from

the study. Finally, 10 periodontit is patients and 5

periodontal healthy individuals were included. The basic

information of the 15 individuals included in the study is

shown in Table 1.
Frontiers in Immunology 03
Collection of gingival tissue

Gingival tissues were collected from one site of 10

periodontitis patients and 5 periodontal healthy individuals.

The detail for 15 sites was listed in Table 1. For the patients

with periodontitis, gingival tissue specimens were obtained from

periodontal inflamed teeth with no prior supra- or sub-gingival

instrumentation. BOP was shown in the sites of biopsies. The

PPD at these sites was greater than 4 mm, and radiographic

evaluation revealed alveolar bone destruction. In resected sites,

sufficient attached gingiva was ensured. Gingival tissue in the

periodontal healthy group was obtained during a crown

lengthening procedure (CLP). No BOP was observed at these

sites, and the PPD was 1-3 mm. No alveolar bone resorption was

observed. The gingival samples were resected under local

anaesthesia: an internal oblique incision was made, and the

resected tissue included gingival epithelium, sulcus epithelium,

gingival connective tissue and inflammatory granulation tissue.

After resection, the gingival tissue was washed with normal

saline and stored at -80°C until used for analysis (24).
TABLE 1 The basic information of the 15 individuals included in proteomic analysis.

Sample Age Gender Diagnosis Smoking Tooth
loss

Treatment
stage

Full-mouth Site-specific

Mean
PPD
(range;
mm)

Mean
CAL

(range;
mm)

BOP
(%)

Mean
PPD
(range;
mm)

Mean
CAL

(range;
mm)

BOP
(+/-)

P 1 48 Female Periodontitis No 0 Before initial
therapy

5.15 (3–10) 5.24 (3–11) 57.14 8.40 (6–10) 8.50 (6-10) +

2 48 Male Periodontitis No 0 Before initial
therapy

6.95 (3-10) 7.39 (3-10) 75.00 8.50 (7-9) 8.00 (7-9) +

3 41 Male Periodontitis No 1 Before initial
therapy

5.31 (2-9) 5.54 (2-11) 82.14 8.20 (7-10) 8.8 (7-10) +

4 55 Female Periodontitis No 1 Before initial
therapy

6.81 (4-10) 7.72 (4-11) 85.71 9.00 (8-10) 9.33 (9-10) +

5 58 Male Periodontitis No 6 Before initial
therapy

5.35 (3-10) 5.81 (3-11) 59.52 7.75 (6-9) 8.25 (7-9) +

6 38 Female Periodontitis No 0 Before initial
therapy

3.42 (2-5) 3.83 (0-4) 39.88 4.00 (3-5) 3.50 (3-4) +

7 44 Male Periodontitis No 0 Before initial
therapy

3.55 (2-5) 3.75 (0-4) 36.31 4.50 (3-5) 3.60 (3-4) +

8 41 Male Periodontitis No 0 Before initial
therapy

3.67 (3-6) 3.80 (0-4) 26.19 4.80 (4-5) 3.60 (3-4) +

9 58 Male Periodontitis No 0 Before initial
therapy

3.49 (2-6) 3.66 (0-4) 28.57 4.25 (4-5) 3.17 (2-4) +

10 35 Female Periodontitis No 0 Before initial
therapy

3.27 (2-5) 3.41 (0-4) 38.69 4.50 (4-5) 3.75 (3-4) +

H 1 34 Female Healthy No 0 During CLP 2.02 (1-4) 0.89 (0-2) 4.17 2.75 (2-3) 0 –

2 43 Female Healthy No 0 During CLP 2.10 (1-3) 0.30 (0-1) 4.76 2.67 (2-3) 0 –

3 37 Male Healthy No 0 During CLP 2.05 (1-3) 0.48 (0-1) 5.95 2.20 (1-3) 0 –

4 38 Male Healthy No 0 During CLP 2.08 (1-3) 0.71 (0-1) 6.54 2.00 (1-3) 0 –

5 34 Male Healthy No 0 During CLP 2.01 (1-3) 0.58 (0-2) 7.74 2.25 (2-3) 0 –
frontiers
P, Periodontitis; H, Healthy individuals; CLP, crown lengthening procedure; PPD, periodontal probing depth; CAL, clinical attachment loss; BOP, bleeding on probing.
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Tandem mass tag (TMT) proteomics

After protein was extracted from the gingival sample, the

concentration was determined using the bicinchoninic acid

(BCA) method. Protein samples were analyzed by 12% SDS–

PAGE (sodium sulfate polyacrylamide gel electrophoresis), and

the quality of the samples was evaluated in accordance with the

requirements of subsequent experiments. Protein samples with

qualified quality were treated with reductive alkylation. The

same amount of protein was taken from each sample for

trypsin hydrolysis. The peptides were labelled with TMT

reagent and mixed in equal amounts. The mixed peptides were

preseparated using a C18 reverse-phase column. Liquid

chromatography coupled with tandem mass spectrometry

(LC–MS/MS) analysis was performed. The search library in

the Sequest or Mascot module of ProteomeDiscoverer™

Software 2.4 was used for raw data identification and analysis

(25). The filter parameter is Peptide false discovery rate

(FDR) ≤0.01.
Identification of differentially
expressed proteins

We first compared the data of the periodontitis group (P

group) and healthy group (H group), differentially expressed

proteins (DEPs) defined as |log2-fold-change (FC) | > 1 and adj.

p values < 0.05 were identified using the R package “DEqMS”

(26). The DESeqMS package is able to estimate different prior

variances for proteins quantified by different numbers of PSMs/

peptides, which were used to process and analyze proteomic

data. A volcano plot and heatmap were used to visualize the

differential results using the R packages “ggplot2” and

“pheatmap”, respectively.
Functional enrichment analysis and
protein–protein interaction (PPI)

Functional and pathway enrichment analyses of DEPs were

conducted using the Metascape online website (https://

metascape.org). Significant Gene Ontology (GO) terms and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways

(both p value and q value were less than 0.05) were represented

using the R package “GOplot”. The PPI network was constructed

with the online tool Search Tool for Retrieval of Interacting

Genes/Proteins (STRING) (https://string-db.org/) and

visualized using Cytoscape software 3.9.0. Subsequently, we

divided the PPI network of DEPs into subnetworks through a

k-means clustering algorithm, and GO enrichment analysis was

applied to identify characteristic biological processes for DEPs in

sub-networks.
Frontiers in Immunology 04
Least absolute shrinkage selector
operator (LASSO) regression analysis

To screen out hub DEPs, least absolute shrinkage selector

operator (LASSO) regression analysis was employed with the R

package “glmnet.” Cross-validation was performed to screen the

optimal tuning parameter (l). The minimum log(l) value was

determined as the candidate number of variables. Finally, the

combination of predictors (hub DEPs) was analyzed by

LASSO regression.
Transcriptome data acquisition and
infiltration of immune cells

Transcriptome data from gingival tissue samples were

acquired from two publicly available datasets from the Gene

Expression Omnibus (GEO) database: 183 periodontitis and 64

healthy samples from the GSE10334 dataset and 241

periodontitis samples and 69 healthy samples from GSE16134.

The Affymetrix probe ID from the microarray data was

annotated to gene symbols according to the GPL570 platform.

Next, we used the normalize BetweenArrays method in the R

package “limma” (27) to normalize the gene expression matrix.

The “Comabat” method in the R package “Sva” was used to

eliminate the batch effect. The resulting pooled dataset contained

424 periodontitis and 133 healthy samples. Subsequently, we

performed Principal Component Analysis (PCA) on the gene

expression profile between the GSE10334 and GSE16134

datasets after batch correction. Expression of differentially

expressed genes (DEGs) was visualized using the R

package “pheatmap”.

Next, single-sample gene set enrichment analysis (ssGSEA)

was performed to quantify the relative abundance of immune

cell types in the periodontitis microenvironment. The relative

abundance of each immune cell type was represented by an

enrichment score in ssGSEA and normalized to unity

distribution from 0 to 1. The R package “ggcor” (https://

github.com/xukaili/ggcor) was used to visualize the correlation

between hub DEPs and immune cells.
Artificial neural network (ANN) analysis

We applied GSE10334 as a training dataset to construct an

ANN model based on the “neuralnet” R package (28). As a

validation dataset, GSE16134 was used to verify the classification

efficiency of the model score constructed with gene expression

and gene weight. Before training the ANN model, the datasets

were filtered and normalized by min-max normalization. Next,

the processed training data were input into the neural network

model; the number of neurons should be between the input layer
frontiersin.org
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size and the output layer size, usually two-thirds of the input

size. Finally, hub genes were inputted and hidden layers, and two

outputs (healthy and periodontitis) were set. The output of the

first hidden layer (input of the last output layer) in the network

results was considered as the gene weight. In this model, the sum

of the product of the weight scores multiplied by the expression

levels of the important genes was used as the disease

classification score. The 5-time cross-validation results display

the model classification performance using receiver operating

characteristic (ROC) curve analysis. The areas under the ROC

curves (AUCs) of the five cross-validation results illustrated the

diagnostic ability of the model, and the “pROC” R package was

used to calculate and draw the AUC classification

performance results.
Western blotting validation

Total protein (20-40 mg) from human gingival tissues

(n=4) was separated by 10% SDS–PAGE and then transferred

onto a 0.45-mm polyvinylidene difluoride membrane

(Millipore) at 250 mA for 2 h on ice. The membrane was

blocked with 5% skim milk dissolved in Tris-buffered saline

containing 0.05% Tween 20 and probed with primary

antibodies against CD38 (cat# sc-374650), CD79A (cat# sc-

20064), ADPGK (cat# sc-100751) were purchased from Santa

Cruz Biotechnology (Dallas, Texas, USA), OGN (cat# 12755-

1-AP), HLA-DPA1 (cat# 16109-1-AP), PLCH1 (cat# 19143-

1-AP), GAPDH (cat# 10494-1-AP) were purchased from

Proteintech (Wuhan, Hubei , P.R.C), TMED5 (cat#

SRP08852), GSTCD (cat# SRP11511) were purchased from

Saier Biotechnology (Tianjin, P.R.C) and TBXAS1 (cat#

ab157481) was purchased from Abcam (Cambridge, MA,

USA) at the indicated dilutions overnight at 4°C. The

membrane was then incubated with horseradish peroxidase

(HRP)–conjugated secondary antibodies (anti-rabbit, cat#

B900210 and anti-mouse, cat#SA00001-1) were purchased

from Proteintech (Wuhan, Hubei, P.R.C) and detected by

enhanced chemiluminescence reagents (Biosharp Life

Sciences) using an image analyser. Levels of target proteins

were normalized to GAPDH, which served as a reference

control. The intensity of the protein bands was analyzed with

ImageJ software, and the values are expressed as the mean ±

standard deviation (SD).
Statistical analyses

Unpaired Student’s t test was used to compare two groups

with distributed variables. Band intensity in western blot images

was quantified with ImageJ software, and values are expressed as

the mean ± SD. All statistical analyses were performed using R
Frontiers in Immunology 05
software (Version 4.1.2, https://www.r-project.org/).

Significance was determined at p <0.05.
Results

Summary of TMT proteomics analysis

The sampling operation and Hematoxylin-Eosin (H&E)

staining of gingival tissues from healthy or periodontitis

populations are shown in Figures 1A, B. The workflow of TMT-

label quantitative proteomics analyses of 15 gingival tissues from

healthy or periodontitis individuals is diagrammed in Figure 1C.

By using high-throughput technology, we identified 45,447 unique

peptides, with a FDR < 1%, covering 5658 protein groups. The

mass spectrometry proteomics data have been deposited at

ProteomeXchange Consortium (http://proteomecentral.

proteomexchange.org) via the iProX partner repository with the

dataset identifier PXD031302 (29).

Differential expression analysis showed that 115 proteins were

differentially expressed between the healthy group and the

periodontitis group, with 66 being up-regulated and 49 down-

regulated (shown in Supplementary Table 1). These results are

visualized by a volcano plot, in which red dots indicate proteins

that were significantly up-regulated, blue dots indicate proteins

that were significantly down-regulated, and green dots indicate

proteins with no differential expression (Figure 2A). The DEP

expression levels of the top 20 up-regulated and top 20 down-

regulated proteins are illustrated by the heatmap in Figure 2B,

where red represents up-regulated proteins and blue down-

regulated proteins.
Functional characterization of DEPs

GO and KEGG enrichment analyses of all 115 DEPs were

performed to explore their biological functions (Figure 2C). We

found terms related to inflammation and immune function to be

the most abundant, such as neutrophil degranulation, activation

of immune response, human immune response, and B/T-cell

receptor signalling pathway.

DEPs were enriched in 9 significant GO terms, as illustrated

in Figure 2D, with a focus on inflammation-immune related

processes, including neutrophil activation involved in immune

response, immune response-activating signal transduction,

protein N−linked glycosylation via asparagine, antigen

receptor-mediated signalling pathway, intermediate filament

organization, signal peptide processing, humoral immune

response, immune response-activating cell surface receptor

signalling pathway and B-cell receptor signalling pathway.

These processes have been defined as being closely related

to periodontitis.
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The significant biological pathways based on KEGG

enrichment analysis are visualized in Figure 2E. The 115 DEPs

revealed 4 significantly enriched pathways (p value<0.05) in which

Staphylococcus aureus infection signalling pathway, including

FCGR3B and HLA-DPA1, exhibited a significant difference in

gingival tissues from healthy and periodontitis groups.
Frontiers in Immunology 06
Protein–protein interaction (PPI) network
analysis of DEPs

To further evaluate interactions between the DEPs

identified, we used the STRING website to construct a PPI

network (Figure 3A), which consisted of 174 edges and 112
B

C

A

FIGURE 1

Characteristics of gingival tissues from healthy individuals and periodontitis patients and a schematic overview of the quantitative TMT
proteomics workflow. (A, B) Collection and H&E staining of gingival tissues from healthy individuals (A) and periodontitis patients (B). (C) Flow
diagram of TMT-based quantitative proteomics.
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nodes, with an average node degree of 3.11. We divided the PPI

network of DEPs into 3 subnetworks using k-means clustering

functional module to understand the core biological functions of

the network (Figure 3B), and GO enrichment analysis was used

to identify characteristic biological processes for DEPs in

subnetworks (Supplementary Table 2). Among them, 45 DEPs

were clustered into the red PPI subnetwork I, which was

enriched in immunomodulation-related biological processes,

including B-cell receptor signalling pathway, antigen receptor-

mediated signalling pathway, and innate immune response. 43

DEPs were clustered into the green PPI subnetwork II, with
Frontiers in Immunology 07
enrichment in the biological process of protein cornification.

The remaining 24 DEPs were clustered into the blue PPI

subnetwork III, which was enriched in the biological process

of protein processing and transport.
Identification of 9 hub proteins by LASSO

To further identify hub DEPs, we performed LASSO

regression analysis based on the 115 DEPs between the healthy

and periodontitis groups. As depicted in Figure 4A, we identified
B

C

D E

A

FIGURE 2

DEPs were identified in gingival tissues from periodontitis versus healthy tissues. (A) Volcano plot displaying DEPs in gingival tissues. Green dots
indicate down-regulated DEPs, and red dots indicate up-regulated DEPs. (B) Heatmap of the top 30 DEPs. Red cells represent up-regulated
DEPs, and blue cells represent down-regulated DEPs. (C) Metascape enrichment network visualization shows the intra-cluster and inter-cluster
similarities of enriched terms for the 115. Nodes of the same color belong to the same cluster. Terms with similarity scores > 0.3 are linked by
edges, and nodes in the same condensed network are colored with p values. (D, E) Circos plots represent significantly enriched GO terms (D)
and pathways (E) associated with DEPs.
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B

C D

A

FIGURE 4

Screening of hub DEPs using LASSO regression analysis. (A) Coefficients of nine DEPs were selected by the lambda with the minimum binomial
deviance marked by the black dashed line (ln(lambda) = -4.88). (B) The LASSO binomial model fitting process. Each curve represents a variable.
(C) Coefficient values for each of the nine selected proteins from LASSO regression. A positive coefficient for a protein signature within its class
indicates that elevated expression of this protein increases the probability of a specimen belonging to its tissue type. (D) Circos plot shows the
correlations between the nine hub DEPs according to the protein expression levels. Green connecting lines represent negative correlations, and
red lines represent positive correlations.
BA

FIGURE 3

PPI network and subnetwork of DEPs. (A) PPI network of 115 DEPs constructed using STRING. (B) Functional sub-network analysis of the PPI
network.
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a binomial classifier for all samples, including the healthy and

periodontitis samples. This classifier was based on the expression

signatures of 9 DEPs (Figure 4B), and DEPs with non-zero

coefficients for each class were found to be almost mutually

exclusive (Figure 4C). Finally, 9 hub DEPs (CD38, TMED5,

HLA-DPA1, CD79A, ADPGK, TBXAS1, GSTCD, PLCH1, and

OGN) were selected among the 115 DEPs. The coefficient values

of 9 hub DEPs for LASSO analysis are shown in Figure 4C. In

addition, interaction among 9 hub DEPs according to the

protein expression levels is presented in Figure 4D. We found

that GSTCD displayed a strongly negative correlation with the

remaining proteins, particularly the strongest negative

correlation with ADPGK. ADPGK also showed a negative

correlation with PLCH1, HLA-DPA1 and CD79A. Conversely,

CD79A, CD38, TMED5, TBXAS1, PLCH1, and OGN showed a

positive correlation.
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Expression profiles of 9 hub DEPs in GEO
transcriptome datasets

To explore changes in the genes corresponding to these nine

hub DEPs, we obtained transcription data from the GEO database,

and two independent datasets, GSE10334 and GSE16134, were

downloaded for analysis. We normalized and combined the gene

expression profiles obtained from the GSE10334 and GSE16134

datasets and then performed batch correction. The resulting

pooled dataset contained 424 periodontitis and 133 healthy

samples (Supplementary Table 3). PCA demonstrated

homogeneity in the expression profile between GSE10334 and

GSE16134 after removing the batch effect (Figure 5A). Compared

with the healthy group, the genes encoding the 9 hub DEPs, as

DEGs, were significantly differentially expressed in gingival tissues

from the periodontitis group in both datasets (Figure 5B). Detailed
B

C

A

FIGURE 5

Dataset preprocessing and differential expression analysis of 9 hub DEGs. (A) The PCA plot displays removal batch effect between GSE10334
and GSE16134 cohorts. (B) Expression profile of the 9 hub DEGs in the “pooled” dataset. (C) Expression of 9 hub DEGs correlated with the
infiltration levels of various immune cells in periodontitis. The size and color of the pie chart were related to the correlation for the interaction
of immune cells. The line color is related to the degree of correlation, and line size represents the p value.
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expression profile information of the 9 hub DEGs in the

GSE10334 and GSE16134 datasets can be found in

Supplementary Table 4.

We further determined the level of immune cell infiltration

in each sample from the GEO cohort using the ssGSEA method

based on transcriptomic data (Supplementary Table 5). Next, we

calculated correlations between the 9 DEGs and the 23 types of

infiltrating immune cells (Figure 5C).
ANN development and verification

To construct artificial neural networks of the 9 hub DEPs,

the GSE10334 and GSE16134 datasets were used as the
Frontiers in Immunology 10
training and validation cohorts, respectively. The network

architecture is schematized in Figure 6A utilizing the

training cohort. The colors and linewidths in the figure

typify the connections, the weights, and the groups of layers.

There were totally 6 hidden layers. Subsequently, we

performed ROC analysis of the 9 hub DEGs to predict their

sensitivity for periodontitis in the training cohort and the

validation cohort respectively. The results of ROC curves

showed that the model had relatively high accuracy for the

training cohort, with an area under the curve (AUC) of 0.972

(Figure 6B). Similarly, ROC curves had an AUC of 0.881 for

the validation cohort (Figure 6C). These results suggest that

this model of 9 hub DEPs is able to effectively distinguish

between periodontitis and healthy samples.
B C

A

FIGURE 6

Establishment and validation of artificial neural networks. (A) Results of neural network visualization based on the expression of nine hub genes.
Linewidths of connectors represent the weights: the wider the line is, the heavier the weight is. O1: healthy group; O2: periodontitis group.
(B, C) ROC curves for the 9 hub DEGs in the training cohort (B) and validation cohort (C) by the five-time cross-validation model. AUC, area
under the curve.
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Western blotting validation

Nine hub DEPs, involved in the progression of periodontitis

were selected and validated by western blotting using human

gingival tissues. Levels of CD38, TMED5, HLA-DPA1, CD79A,
Frontiers in Immunology 11
ADPGK, TBXAS1, GSTCD and PLCH1 in diseased tissues were

significantly increased. However, the protein level of OGN was

decreased in periodontal gingival tissues compared with healthy

individuals (Figures 7A, B). These validation results were

consistent with the proteomics analysis data.
B

A

FIGURE 7

Validation results of western blotting. (A) Validation of the 9 hub DEPs by western blotting. GAPDH was used as a loading control. (B)
Quantitative results of western blotting from Fig 7A. Data are represented as the mean ± SD. *p < 0.05.
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Discussion

Previous studies suggest that in the pathogenesis of

periodontitis, it begins with the localized inflammation

of gingiva. During the occurrence and development of

periodontitis, the first pathological change is the inflammation

of gingival tissue. Exploring the inflammatory process of gingival

tissue is very important to clarify the occurrence and

development of periodontitis (30). In this study, we analyzed

the TMT-proteomics and transcriptomics of gingiva from

periodontitis patients and healthy participants. Finally, we

identified nine signature molecules-based on ANN model,

which were closely related to the progression of periodontitis.

At present, there are three main comprehensive gene

expression/transcriptome profiles for healthy and periodontal

gingival tissues, GSE10334, GSE16134, and GSE23586, in the

GEO database. Scientists have utilized these datasets to identify

specific biological processes involved in periodontitis and analyze

significantly DEGs that belong to pathological pathways in the

disease (31). Additionally, Kim H et al. investigated differential

DNA methylation in gingival tissues of periodontal health,

gingivitis, and periodontitis and its association with differential

mRNA expression (32), and Richter et al. identified biologically

active methylation marks of the oral masticatory mucosa by an

epigenome-wide association study (EWAS) (33). These studies

have attempted to explore the epigenetic pathological mechanisms

associated with periodontitis. In addition to the transcriptomes of

periodontitis, researchers have focused on the construction of

ncRNA expression profiles (34), especially lncRNA-based ceRNA

networks (15).

Compared with in-depth omics studies involving gene

expression, there are relatively few studies in this area about

proteomics in healthy and periodontal gingival tissues. To date,

there are only four reports revealing DEP profiles in human

gingival tissue of periodontitis compared with healthy gingiva.

Among them, Bertoldi C et al. carried out two-dimensional gel

electrophoresis (2-DE) combined with LC–MS/MS to compare

the proteomic profiles of inter-proximal pocket tissues and inter-

proximal healthy tissues in the same subject at sites where

periodontal pathogens were not detectable, and 19 DEPs were

identified (35). Monari et al. also used 2-DE with LC–MS/MS to

reveal 32 DEPs in periodontal pocket tissue of periodontitis

patients compared with the corresponding gingival tissue of

periodontal healthy participants (36). Guzeldemir-Akcakanat

et al. used comparative proteomic analysis by LC−MS/MS of

gingival tissues from chronic periodontitis patients compared

with periodontal healthy controls, and found that 319 proteins

showed statistically significant expression differences (37).

Moreover, Bao et al. used pressure cycling technology (PCT)-

assisted label-free quantitative proteomics to explore the DEPs

between diseased gingival tissues and healthy control gingival

tissues. Finally, 62 up-regulated and 7 down-regulated proteins
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were identified (38). Although gel-based proteomic strategies

mentioned above provide insight into the proteomic landscape

of gingival tissues in healthy and periodontitis, they also have

serious limitations, including the inability to isolate acidic, basic

and hydrophobic (membrane) proteins and a limited number of

identified proteins (39).

To overcome these limitations, we first applied advanced

quantitative TMT proteomics to characterize the full proteomic

profile in 5 healthy and 10 periodontal gingival tissues

(Figure 1A). TMT proteomics has the advantages of accurate

quantification, good repeatability, and high sensitivity.

Therefore, it is widely utilized in the analysis of DEPs (40). In

our study, a total of 45,447 unique peptides covering 5658

proteins were identified in all 15 gingival tissues from healthy

and periodontitis patients, far exceeding the number of peptides

and proteins identified in the above four proteomics reports

based on gel electrophoresis. Next, 115 proteins were

differentially expressed in periodontal gingiva compared with

healthy gingiva using the R package “DEqMS” method (41).

DEqMS is gradually becoming a trend, compared with Student’s

t test, ANOVA, Limma and linear mixed-model methods, in the

statistical analysis of DEPs in quantitative proteomics, especially

TMT proteomics (26). To explore the specific or dynamic

protein expression profiles of different degrees of periodontitis,

5 gingival samples from individuals with stage II periodontitis

and 5 samples with stage III or IV periodontitis were included in

our proteomic study. However, PCA revealed no significant

difference in the samples between the SP group and MP group.

The differential protein analysis also showed that there was no

significant difference in protein expression levels between the

two groups (data not shown). These results suggest that the

protein expression profiles in gingival tissues with different

degrees of periodontitis, at least in our study, were similar.

In periodontitis, inflammatory response occurs as the

initiator of a series of events including the host-derived

immune response, inflammatory cell adhesion and migration,

cell death, proliferation and differentiation (42). According to

functional and pathway enrichment analysis, we found the DEPs

to be significantly enriched in inflammation- and immunity-

related GO terms or pathways, especially neutrophil activation

involved in the immune response and Staphylococcus aureus

infection signalling pathway. These processes have been proven

to be closely related to the host local inflammation caused by

microbial infection (43), which similarly occurs in the pathology

of periodontitis. LASSO regression analysis has usually been

employed to screen signature molecules or disease biomarkers in

various reports (44). In the present study, we used LASSO

analysis to narrow down the 115 DEPs and constructed a

binomial classifier on all samples, including healthy and

periodontitis samples, based on the expression signatures of 9

hub DEPs. Correlation analysis indicated that some degree of

positive or negative correlation existed between the 9 hub DEPs.
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CD38 is a non-lineage-restricted, type II transmembrane

glycoprotein that synthesizes and hydrolyses cyclic adenosine 5’-

diphosphate-ribose, an intracellular calcium ion-mobilizing

messenger. Beikler et al. reported that the CD38 gene

expression level in gingiva from patients with chronic

periodontitis following nonsurgical periodontal therapy

was significantly increased compared to that in healthy

controls (45). Golijanin et al. found that the number of CD38-

labelled plasma cells in gingival biopsy samples from

parodontopathy-affected patients was significantly less than

that in healthy populations (46). These studies suggest that the

gene level of CD38, especially the dynamic changes in CD38-

related plasma cells, is closely related to periodontitis. Besides,

both gene expression level and protein expression level of CD38

were up-regulated in periodontitis, and this consistent

expression trend also suggested it as a representative signature

of periodontitis. In summary, we also found that CD38 had the

highest correlation with periodontitis among the 9 hub DEPs,

which was used as the main variable of the disease classifier.

GSTCD (glutathione S-transferase, C-terminal domain

containing) was the most up-regulated protein (log2 fold

change: 5.86) among the 9 hub DEPs. The pathway related to

GSTCD is Metapathway biotransformation. GO annotations

related to this gene include methyltransferase activity and

rRNA methyltransferase activity. GSTCD is closely related to

lung function (47), though there has beenalmost no reports on

the relationship between GSTCD and periodontitis to date. In

our study, gene expression of GSTCD in gingiva from

periodontitis individuals was significantly increased in the

GSE10334 (logFC=5.58) and GSE16134 (logFC=5.57) datasets

compared with healthy populations, which is consistent with our

TMT proteomics results. These results suggest that GSTCD may

be closely related to periodontitis, and further in-depth

exploration is needed.

In addition to the above 2 hub DEPs, there is no direct

evidence from previous studies for the remaining hub DPEs

(TMED5, HLA-DPA1, CD79A, ADPGK, TBXAS1 and PLCH1)

correlating closely with periodontitis, OCN had been reported

that it is involved in the physiological or pathological process of

periodontitis. Therefore, we attempted to further verify the

accuracy of the 9 signature proteins involved in the

pathogenesis of periodontitis obtained from our gingival tissue

proteome using an ANN model (48). ANNs are one of the

current tools with intelligent pattern recognition ability, and

their application in the classification and diagnosis of infectious

diseases, tumors, hypertension and related diseases (49–51), but

not periodontitis, has been reported. Considering that the size of

our periodontitis proteomics sample was only 15 and the

proteomics sample size was also small in previous reports, we

were unable to establish an effective ANN model to classify

periodontitis utilizing existing proteomic data.

To address this limitation, we utilized transcriptome data

(GSE10334 and GSE16134) in gingival tissues from the GEO
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database to validate the efficiency of the coding genes for the 9

hub DEP classifying periodontitis. Notably, compared with

the healthy group, the genes encoding the 9 hub DEPs were

significantly differentially expressed in gingival tissues from

the periodontitis group in both the GSE10334 and GSE16134

transcriptome profiles, suggesting the potential correlation

of 9 signature molecules with periodontitis. In this study,

an ANN model consisting of 9 hub DEP-encoding genes

obtained by LASSO analysis was constructed for the

first time to efficiently distinguish periodontitis and

healthy populations.

Isola et al. [2]. analyzed the association between serum and

salivary NLRP3 concentrations in patients with periodontitis

and type-II diabetes mellitus through a clinical trial, and found

that NLRP3 had demonstrated a promising biomarker of

disease risk in patients with periodontitis and type-II

diabetes mellitus. Matarese et al. demonstrate that increased

TG2 expression in HPDL cells from periodontitis patients

could be associated with high levels of pro-inflammatory

markers promoting the bone remodeling and resorption [3].

Wu et al. reported salivary biomarkers for diagnosing

periodontitis using the Spearman rank correlation coefficient

with logistic regression and found that the combination of IL-

1b, IL-1Ra, and MMP-9 exhibited the highest AUC (0.853),

with high sensitivity and specificity for diagnosing

periodontitis (52). In our ANN model, the 9 hub DEGs

exhibited AUCs of 0.972 and 0.881 (higher than those

reported by Wu et al.) for the training and validation

cohorts, respectively, and showed that this ANN model had

satisfactory classification capacity. Finally, we verified the

expression of 9 hub DEPs in gingiva using western blotting.

Overall, how these signature molecules affect the pathogenesis

of periodontitis needs to be further explored. In particular,

classical biological experiments and clinical trials are required

to explore the role and underlying mechanism of those

promising biomarkers above involved in periodontitis.

In summary, we first determined the protein profiles of

gingival tissue in periodontitis and healthy individuals

utilizing quantitative TMT proteomics and discovered 9

hub proteins involved in periodontitis by integrated

proteomics and transcriptomics analysis using LASSO. The

ANN model based 9 signature molecules showed satisfactory

c lass ificat ion abi l i ty for dis t inguish hea l thy from

periodontitis patients. This study provides novel insight

into potential signature molecules in gingival tissue to

predict or diagnosis periodontitis.
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