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Abstract
Understanding intratumor heterogeneity is critical for studying tumorigenesis and designing personalized treat-
ments. To decompose the mixed cell population in a tumor, subclones are inferred computationally based on variant
allele frequency (VAF) from bulk sequencing data. In this study, we showed that sequencing depth, mean VAF, and
variance of VAF of a subclone are confounded. Without considering this effect, current methods require deep-
sequencing data (>300× depth) to reliably infer subclones. Here, we present a novel algorithm that incorporates
depth-variance and mean-variance dependencies in a clustering error model and successfully identifies subclones
in tumors sequenced at depths of as low as 30×. We implemented the algorithm as a model-based adaptive grouping
of subclones (MAGOS) method. Analyses of computer simulated data and empirical sequencing data showed that
MAGOS outperformed existing methods on minimum sequencing depth, decomposition accuracy, and computation
efficiency. The most prominent improvements were observed in analyzing tumors sequenced at depths between
30× and 200×, whereas the performance was comparable between MAGOS and existing methods on deeply se-
quenced tumors. MAGOS supports analysis of single-nucleotide variants and copy number variants from a single
sample or multiple samples of a tumor. We applied MAGOS to whole-exome data of late-stage liver cancers and dis-
covered that high subclone count in a tumor was a significant risk factor of poor prognosis. Lastly, our analysis sug-
gested that sequencing multiple samples of the same tumor at standard depth is more cost-effective and robust for
subclone characterization than deep sequencing a single sample. MAGOS is available at github (https://github.com/
liliulab/magos).
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Introduction

The development of a tumor is an evolutionary process
that typically initiates from a single clone and grows into
a diverse population of cells via incessant mutations and
selections (Nowell 1976; Greaves and Maley 2012; Miura
et al. 2018). As a tumor progresses over time and
space, different cell populations (i.e., subclones) emerge,
expand, and diminish, leading to a heterogeneous neo-
plasm. Studies have revealed that distinctive subclones
are involved in metastatic spread, drug resistance, and
other clinically important characteristics of cancers
(Jamal-Hanjani et al. 2017; McGranahan and Swanton
2017). Understanding intratumor heterogeneity and evo-
lutionary dynamics provides valuable insights into disease
mechanism and clinical management of cancers (Gerlinger
and Swanton 2010; Aktipis et al. 2011; Ma et al. 2012;
Nik-Zainal et al. 2012; Fisher et al. 2013; Andor et al. 2014).

Whole-exome sequencing (WES) and whole-genome se-
quencing (WGS) are common approaches to examine

intratumor heterogeneity (Egan et al. 2012; Landau et al.
2013; Schwartz and Schaffer 2017). By tracking relative
abundances of genomic variants in a collection of cancer-
ous cells, scientists aim to quantify the genetic diversity of
a tumor and to reconstruct the subclonal compositions
and phylogenies. As single-cell genome sequencing is a
promising technology to examine genetic profiles of indi-
vidual cells, uneven genome coverage, low accuracy of vari-
ant calls, and prohibitive cost currently limit its usage in
subclonal investigations (Navin et al. 2010, 2011; Hughes
et al. 2014; Gawad et al. 2016). Current studies and likely
many others in the future still rely on bulk sequencing
to interrogate mixed tumor cells, then apply computation-
al approaches to deconvolute the cell population into
clones and subclones.

SciClone (Miller et al. 2014), PyClone (Roth et al. 2014),
and Expands (Andor et al. 2014) are popular computation-
al methods used to infer subclones from bulk sequencing
data. These methods share a common framework, in
which variant allele frequency (VAF; i.e., fraction of reads
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containing a specific mutant allele among all reads cover-
ing the locus) serves as a surrogate of cellular prevalence
(i.e., fraction of cells carrying this mutant among all cells).
Decomposing a mixed cell population is then formulated
as a clustering problem such that variants with similar
VAF are grouped together representing a clone or a sub-
clone (Miller et al. 2014). Cluster analysis seeks solutions
that minimize within-cluster variance and maximize
between-cluster variance (Saxena et al. 2017). However,
in bulk sequencing data, within-cluster variance of VAF
changes with sequencing depth. In a study that sequenced
the same tumor sample at different depths, the inferred
clusters became more dispersed as sequencing depth de-
creased (Griffith et al. 2015). Furthermore, a cluster with
a high mean VAF tends to be more dispersed than a cluster
with a low mean VAF does. Such depth-variance depend-
ence and mean-variance dependence are present in many
subclonal analysis results (Griffith et al. 2015; Deveau et al.
2018; Chkhaidze et al. 2019). Surprisingly, current methods
overlook these confounders, leading to unexplained vari-
ance that may reduce decomposition accuracy, especially
when within-cluster variance and between-cluster vari-
ance lack a strong contrast. To curtail the adverse impact,
current methods require a minimum sequencing depth of
100×. An independent evaluation of SciClone further
showed that consistent subclonal characterization can
only be achieved when sequencing depth exceeds 300×.
This precludes analysis of an overwhelming majority of
tumors sequenced to date, including those from collabora-
tive consortia, such as the TCGA project (average depth=
68×; Grossman et al. 2016). New methods capable of
accurately identifying subclones without the needs for
deep-sequencing data will help discover information
hidden in the myriad of established genomic data that
are currently unexploited.

In this study, we first examine the statistical significance
and the magnitude of depth-variance dependence and
mean-variance dependence in different scenarios. We
then present a model-based adaptive grouping of sub-
clones (MAGOS) method that incorporates these con-
founders in an error model at the subclonal level. We
show that MAGOS accurately identifies subclones in tu-
mors sequenced at depths as low as 30×. MAGOS also
achieved an acceleration of 4- to 120-fold in processing
time when compared with SciClone and PyClone. We im-
plemented MAGOS as an R package that is freely available
at github (https://github.com/liliulab/magos).

Results
Variance of VAF Decreases with Sequencing Depth
and Increases with Mean VAF
To examine the depth-variance dependence and mean-
variance dependence in empirical data, we analyzed a tu-
mor genome that was sequenced at three different depths
(Griffith et al. 2015). This data set contains 1,343 high-
quality validated somatic single-nucleotide variants

(SNVs) in a primary acute myeloid leukemia. Three se-
quencing experiments, namely “Illumina capture,”
“IlluminaWGS,” and “Ion Torrent capture” produced reads
supporting these SNVs at a median depth of 1,394×, 326×,
and 42×, respectively. Griffith et al. combined reads from
these experiments and performed SciClone analysis, which
identified six clusters with size ranging from 43 to 911
SNVs and mean VAF ranging from 0.001 to 0.47. Because
true subclones in this tumor are unknown, they treated
these clusters as benchmark and mapped data from
each experiment to these clusters.

Using these data, we built a mixed-effects regression
model in which sequencing depth and mean VAF had
fixed effect on within-cluster variance of VAF and cluster
had a random effect (details in Materials andMethods sec-
tion). This model estimated that within-cluster variance of
VAF was negatively associated with sequencing depth (co-
efficient=–0.79, P= 6.7× 10−6; fig. 1A), and positively as-
sociated with mean VAF (coefficient= 0.97, P= 1.3× 10−6;
fig. 1B).

To ensure the detected associations were not artifacts
of the different sequencing platforms used in the three ex-
periments, we performed computer simulations (details in
Materials and Methods). Based on Poisson distribution, we
down-sampled reads in the Illumina capture experiment
to a target sequencing depth and a target VAF, forming
a simulated cluster. We examined 8 levels of sequencing
depths ranging from 30× to 500×, and 9 levels of mean
VAF ranging from 0.05 to 0.45, producing 72 combinations.
Correlation tests using the simulated data confirmed the
depth-variance dependence (Pearson correlation coefficient
PCC min=–0.97, max=–0.95, all P< 10−42; fig. 1C–E) and
mean-variance dependence (PCCmin= 0.92, max= 0.97, all
P< 10−36; fig. 1F–H ).

New Method: MAGOS
The significant associations between variance of VAF and
sequencing depth andmean VAF suggested the confound-
ing effects were not negligible. Our new method MAGOS
explicitly models these dependencies in cluster analysis.
The input to MAGOS contains read counts supporting ref-
erence alleles and mutant alleles of each somatic variant in
a tumor. The output contains cluster assignments and
confidence scores. MAGOS supports SNVs and copy num-
ber variants (CNVs) obtained from one or more samples,
and simultaneously estimates sample purities. Below we
first present the algorithm for a single-tumor sample and
then generalize it to multiple samples. Because an inferred
cluster corresponds to a subclonal expansion, we use clus-
ters and subclones interchangeably.

Given a set of diploid SNVs in a tumor sample, our task
is to find clusters of SNVs with similar VAF. For an SNVi, we
denote the total number of reads aligned to this position
as sequencing depth ei, and denote the fraction of reads
containing the mutant allele as VAF vi∈ (0, 1). If a variant
has a heterozygous genotype in germline and the VAF is
>0.5, we swap the reference and mutant alleles and adjust
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the vi accordingly. For a set of m SNVs belonging to the
same cluster, we model their VAF using a beta distribution
Beta(α, β) with shape parameters α and β. In a beta distri-
bution, α+ β approximates the sample size, which is
equivalent to the mean sequencing depth �e; and α

α+β ap-
proximates the expected frequency, which is equivalent
to mean VAF �v. Therefore, we derive

α+ β = �e
α

α+ β
= �v

⎧⎨
⎩ (1)

Based on equation (1), the variance of VAF is
var(v) = αβ

(α+β)2(α+β+1)
= �v(1−�v)

�e+1 . As �v is constrained within

the range of 0 and 0.5, var(v) is positively correlated with
the mean VAF and negatively correlated with the mean se-
quencing depth, which reflects the observed dependen-
cies. When multiple subclones are present, the observed
VAFs are a mixture of samples from multiple beta

distributions, each defined by a set of shape parameters.
Therefore, identification of subclones is equivalent to de-
composing mixed beta distributions, with equation (1)
fit to each subclone (fig. 2A). We solve this problem with
a two-phase algorithm that performs agglomerative hier-
archical clustering and adaptive partitioning.

In the first phase, we organize SNVs into a hierarchical
tree structure by progressively grouping variants with simi-
lar VAF into a cluster. Starting with leaf nodes each consist-
ing of an individual variant, we iteratively merge a pair of
nodes that has the shortest distance among all pairs to cre-
ate a new cluster till all variants are merged into one root
cluster. Given two nodes C1 and C2 consisting ofm1 andm2

variants, respectively, we define their distance d as the
weighted negative log-likelihood that VAF of all variants
in C1 and C2 are drawn from the same beta distribution,

d(C1, C2) = w
∑

i∈{C1, C2}
−log(P(vi ; Beta(α, β))) (2)

FIG. 1. Variance of VAF decreases with sequencing depth and increases with mean VAF. (A, B) Griffith et al. (2015) conducted three experiments
to sequence genomic variants in a tumor at different depths and grouped the variants into six clusters. In this data set, the variance of VAF in a
cluster is negatively associated with sequencing depth (A) and positively associated with mean of VAF (B). Fitted lines represent mixed effect
models in which sequencing depth and mean VAF have fixed effect (slope) and clusters have random effect (intercept) on variance of VAF.
Coefficient and P-value of fixed effect are displayed. (C–H ) Given a target sequencing depth and a target mean VAF, ten clusters were simulated
computationally. When mean VAF is fixed, variance of VAF is negatively correlated with sequencing depths (C–E). When sequencing depth is
fixed, variance of VAF is positively correlated with mean VAF (F–H ). Pearson correlation coefficient (PCC) and P-value are displayed.

Identification of Subclones in Tumor Genomes · https://doi.org/10.1093/molbev/msac136 MBE

3

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/39/7/m
sac136/6617617 by U

niversity of H
ong Kong Libraries user on 13 February 2023

https://doi.org/10.1093/molbev/msac136


where α and β are calculated by solving equation (1) and
the weight w = 1

(m1+m2)·var(v)·range(v). We compute the likeli-

hood P using the density function of beta distribution that
may produce values >1, leading to negative distance.
Because negative distances are shorter than positive dis-
tances, negative-distance clusters will be merged before
positive-distance clusters. The weight w has three parts.
The first part, 1/(m1 +m2), is to compute the average value
of log-likelihood. The second part, 1/var(v), is to adjust for
outliers due to uneven sequencing depth. If a subclone
consists of variants from genomic regions with drastically
different local sequencing depths, those sequenced at
low depths tend to have inflated VAFs. The mean
log-likelihood is sensitive to these outliers, biased toward
longer distance. Because low depth and high VAF both in-
crease variance of VAF (fig. 1), we use var(v) in the weight
to counteract with this effect. The third part, 1/range(v),
also serves to adjust for these outliers that inflate the range
of VAFs in the same subclone.

In the second phase, we identify boundaries of distinct
beta distributions by traversing and partitioning the tree
into clades (i.e., aggregation of nodes below a branching
point). Unlike traditional approaches that cut the tree at
a fixed branch level, we perform an adaptive partitioning
(fig. 2B). Along the root-to-leaves path, we examine the
clade at each branching point and test the null hypothesis
that all VAFs in this clade are drawn from the same beta
distribution. This is done by comparing the observed vari-
ance of VAF with the expected variance of VAF. Specifically,
given a clade containingm variants, we assume they all be-
long to the same cluster and compute α and β by solving
equation (1). We then draw m random samples x1:m ∼
Beta(α, β) and calculate var(x). By repeating this process
1,000 times, we derive 1,000 var(x) values representing the
null distribution. Using one-sample one-sided t-test, we
evaluate if var(v) ≤ var(x). We reject the null hypothesis
if the P-value <0.01, which indicates VAFs of this clade
are from heterogeneous beta distributions and need to be

partitioned further. Otherwise, we consider this clade as
homogeneous and stop traversing below this branching
point. We repeat this process till we find homogeneous
clades along all branches, or we reach the leaf nodes.
Each homogeneous clade represents a unique cluster.
For each unique cluster, we derive the corresponding
beta distribution using equation (1). The confidence
score of assigning a variant to a cluster is the probability
that its VAF is drawn from the corresponding beta distri-
bution. Specifically, if the VAF of the variant is lower than
the mean VAF of a given cluster, the confidence score
equals to the left tail probability. Otherwise, the right
tail probability is taken.

When multiple samples of a tumor are available, the
same SNVmay have different VAFs and sequencing depths
in different samples. However, because SNVs from the
same subclone evolve together, changes of their VAFs shall
be concordant across all samples. We then extend equa-
tion (1) to

αs + βs = es

αs

αs + βs
= vs

⎧⎨
⎩ (3)

where es is the mean sequencing depth and vs is the mean
VAF of these variants in sample s, and αs and βs are the two
shape parameters of a beta distribution specific to this
sample. To determine the between-cluster distance in
each tumor sample, we extend equation (2) to

ds(C1, C2) = ws
∑

i∈{C1, C2}
−log(P(vsi ; Beta(α

s, βs))) (4)

where weight ws is computed for each sample s as 1/(m1 +
m2) · var(v

s) · range(vs). We then define the between-
cluster distance across all S samples as

d(C1, C2) = max(d1, . . . , ds) (5)

FIG. 2.MAGOS algorithm. (A) Beta mixture distribution. The observed distribution (solid unshaded curve) of VAF is a combination of multiple
hidden groups of VAFs, each forming a beta distribution (dashed shaded curves) defined by different parameters. (B) Hierarchical clustering and
adaptive partitioning. In this example, ten variants at the leaf nodes are progressively grouped into clusters to form a tree structure. To partition
the tree, MAGOS follows the root-to-leave paths. At each branching point, the variance of VAF of the clade is compared with the expected
variance. A cluster is accepted if the variance is lower than or equal to the expected value. Otherwise, it is rejected (marked by crosses), and
partitioning continues. In this example, three clusters (shaded circles) are accepted.
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Thus, variants with concordant VAFs across all samples will
be merged prior to variants with discordant VAFs. During
tree partitioning, we evaluate if var(vs) ≤ var(xs) for each
sample s. We accept a clade as a single cluster if no sample
produces a P-value <0.01.

Because the above analyses are performed ondiploid SNVs
not affected by CNVs, themeanVAF vsc of variants in the clus-
ter c from the sample s is linearly correlated with the cellular
prevalence ρsc = 2vsc. In a tumor sample that is 100%pure, the
clusterwithmeanVAF= 0.5 consists of heterozygous SNVs in
the founding clone fc. If a tumor sample is contaminatedwith
normal cells, the mean VAF of the founding clone �v fc will de-
viate from 0.5, and the difference is proportional to the frac-
tionof normal cells in the admixture. Therefore, sample purity
rs = ρsfc = 2vsfc, where fc corresponds to the cluster with the
mean VAF closest to 0.5 in the sample s. Other clusters with
lower mean VAF emerge at various time points after the
founding clone expansion.

Lastly, we solve subclones containing CNVs. We assume
that all subclones have sufficient diploid SNVs to be recog-
nized in the previous steps, and CNVs do not introduce
new clusters. Our task is to assign SNVs at CNV-affected
loci to existing clusters. Because an SNV and its harboring
CNV region may not belong to the same cluster, we infer
their cluster assignments concurrently. Given an SNV i in a
CNV region in sample s, its expected VAF is

v̂si =
ks2vsg
φsi

(6)

where φsi is the average ploidy, k
s is the unknown number

of copies carrying the mutant allele, and vsg is the mean
VAF of cluster g this SNV belongs to. To find the most like-
ly cluster from among existing SNV clusters {1, …, C}, we
solve

arg min
ks , g

|vsi − v̂si | = arg min
ks , g

vsi −
ks2vsg
φsi

∣∣∣∣∣
∣∣∣∣∣ (7)

where vsi is the observed VAF. We limit the search space of
ks to integers between 1 and a user-defined upper limit
(default= 10). Because all SNVs in the same CNV region
share the same average ploidy φsi = 2(1+ vsω(N− 2)),
where N is the reported total copy number and ω is the
cluster the CNV belongs to, we can inferω via a grid search
among all existing clusters to minimize the sum of equa-
tion (7) over all affected SNVs. Solutions to these optimiza-
tion problems will produce cluster assignments of CNVs,
cluster assignments of SNVs, and the number of copies car-
rying the mutant allele of each SNV.

Performance on Simulated Single-Tumor Samples
We evaluated MAGOS, PyClone, and SciClone on the min-
imum sequencing depth and the minimum difference of
mean VAF (Δ�v) between subclones that can be decom-
posed. Because true subclonal structures of a real tumor

are unknown, we performed computer simulations (details
in Materials and Methods section). Each simulated tumor
contained 90% cancerous cells and 10% normal cells. We
generated read counts of variants belonging to two sub-
clones. The sequencing depth �e varied across 8 levels in
the range of 30× and 500×, and the mean VAF �v of each
subclone varied across 9 levels in the range of 0.05 and
0.45, producing 72 combinations. Within a tumor, the sub-
clone with the high �v mimicked a founding subclone,
and the one with the low �v mimicked a descendent sub-
clone. For each combination of �e and �v, we simulated ten
tumors. To quantify decomposition accuracies, we com-
puted a J-score based on clustering precision and recall
(Ahmadinejad and Liu 2021; supplementary materials,
Supplementary Material online). A J-score takes a value be-
tween 0 and 1, with 1 indicating a perfect match between
true cluster compositions and inferred compositions.

We first examined simulated tumors in which �v of
the founding subclone was fixed at 0.45 and �v of the des-
cendent subclone varied from 0.05 to 0.40. We presented
three examples to illustrate decomposition results of
MAGOS, PyClone, and SciClone. In the first example, a tu-
mor with Δ�v = 0.2 and �e = 300× was simulated. The
founding and descendent subclones in this tumor had
well-separated VAF distributions (fig. 3A). MAGOS and
SciClone inferred two clusters correctly and had J-scores
of 0.99. Interestingly, PyClone split each subclone into mul-
tiple clusters, many of which contained only a few SNVs,
giving a J-score of 0.48. Adjusting algorithm parameters
of PyClone did not improve the performance. However,
this is not surprising because poor performance in single-
sample analysis is a known limitation of PyClone (Roth
et al. 2014). In the second example, we dropped
the sequencing depth to 30× while keeping Δ�v = 0.2.
VAFs in the two subclones overlapped substantially and
spanned a wide spectrum from 0.09 to 0.85 (fig. 3B).
MAGOS was still able to infer the correct number of clus-
ters. However, misassignment of overlapping variants to
the opposite cluster brought down the J-score to 0.66.
SciClone produced excessive clusters, mistaking the large
variance of VAF associated with low sequencing depth as
variance caused by mixed cell populations, as expected
for algorithms overlooking the depth-variance depend-
ence. Consequently, it had a low J-score of 0.42. PyClone
reported one cluster spanning the entire VAF range with
several interspersed small clusters, giving a J-score of
0.40. In the third example, we reduced Δ�v to 0.05.
Although the sequencing depth was kept high at 300×,
it was extremely challenging to separate the two subclones
(fig. 3C). In this case, MAGOS was the only method that
recognized the existence of two clusters, although all three
methods produced poor J-scores (MAGOS: 0.60, SciClone:
0.50, PyClone: 0.57).

Using J ≥0.80 as the accuracy threshold, we recorded
the minimum Δ�v between two subclones at a given se-
quencing depth for each method. The advantage of
MAGOS was the most prominent at the depths of 30×
to 50× (fig. 3D). In these simulations, MAGOS could
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FIG. 3. Performance of MAGOS, PyClone, and SciClone on simulated single-tumor samples, each consisting of two subclones. (A–C) Scatter
plots of variants belonging to two simulated subclones (orange dots and blue dots). Vertical lines and the numbers above represent mean
VAF of a subclone. Colored bars below a scatter plot represent clusters identified by each method. Stacked colored bars represent clusters
with overlapping VAF ranges. Thin colored bars inside wide colored bars represent small clusters nested in large clusters. (D) Minimum
ΔVAF of two subclones that can be decomposed with an accuracy J-score ≥0.80 by each method. Bars with a black cross above indicate
J-scores ≥0.80 cannot be achieved. (E, F ) Numbers of reported clusters (upper triangles) and J-scores (lower triangles) at sequencing depths
of 30× (E) and 300× (F ). Displayed values are averages of ten simulations. Perfect decompositions shall report two clusters and a J-score
value of 1.

Ahmadinejad et al. · https://doi.org/10.1093/molbev/msac136 MBE

6

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/39/7/m
sac136/6617617 by U

niversity of H
ong Kong Libraries user on 13 February 2023

https://doi.org/10.1093/molbev/msac136


produce accurate decompositions with Δ�v as low as 0.25.
PyClone required a Δ�v of at least 0.35. SciClone could
not achieve J≥ 0.80 at any level of Δ�v, which is consistent
with its requirement of a minimum 100× sequencing
depth. MAGOS remained at the leading position until
the sequencing depth increased to 200×, beyond which
MAGOS and SciClone could decompose the admixtures
equally well. The minimum Δ�v for PyClone remained at
0.35 across all sequencing depths, reflecting its known limi-
tation in analyzing single-tumor samples.

Next, we examined the decomposition accuracies of all
tumors without restricting the �v of the founding subclone.
The J-score of all three methods was positively correlated
with the Δ�v value (linear regression coefficients for
MAGOS, PyClone, and SciClone= 1.30, 1.03, and 0.87, re-
spectively, all P< 10−12). The J-score was positively corre-
lated with the sequencing depth for MAGOS and
SciClone (coefficients are 0.08 and 0.15, respectively,
P< 10−16), but not for PyClone (coefficient= 0.006,
P= 0.51). At the 30× depth, MAGOS could achieve an
average J-score ≥0.80 when Δ�v ≥0.25 (fig. 3E). In a total
of 100 such tumors, the average J-score of MAGOS was
0.87, which was significantly better than that of PyClone
(0.74, t-test P= 0.008) and SciClone (0.54, P= 3.5× 10−8).
As the depth increased to 300×, MAGOS could achieve
an average J-score ≥0.80 when Δ�v ≥0.15 (fig. 3F). In a total
of 210 such tumors, the average J-score of MAGOS was
0.97, which was significantly better than that of PyClone
(0.65, t-test P= 2× 10−8) but slightly worse than
SciClone (0.99, P= 0.02).

MAGOS reports the probability of a variant belonging
to each cluster. Variants close to cluster borders tend to
have lower probability score than those close to cluster
centers (supplementary material fig. S1, Supplementary
Material online). Low probability of assigning a variant to
a cluster or similar probabilities of assigning it to different
clusters warrant manual examination. For example, all the
misassigned variants in fig. 3B had probability <0.5.
SciClone also reports probability scores. However, the
probability scores of misassigned variants were still high
in SciClone analysis (73.2% have probability >0.9).

Performance on Simulated Multiple-Tumor Samples
To simulate subclonal structures embedded in multiple
samples from an individual tumor, we used an established
method that imposes the order of subclonal expansions
(El-Kebir et al. 2015). Each simulated tumor contained
200 variants distributed among three subclones. The �v of
each subclone was randomly selected in the range of 0–
0.5. We simulated read counts from two, three, and four
samples of a tumor at depths of 30×, 50×, 100×, and
300×. For each combination of sample numbers and se-
quencing depths, we created 40 simulations.

Overall, sequencing additional samples from the same
tumor and increasing the depth improved the accuracies
of all three methods (multivariate linear regressions
P< 0.002, fig. 4A–C). The performance of SciClone was

more sensitive to sequencing depths than to sample num-
bers (R2= 0.17 vs. 0.03). Conversely, the performance of
PyClone was more sensitive to sample numbers than to se-
quencing depths (R2= 0.16 vs. 0.02). The influences of
these two factors on MAGOS were similar (R2= 0.09 vs.
0.12).

In all combinations of sequencing depths and sample
numbers, MAGOS consistently outperformed PyClone
(all paired t-tests P≤ 0.05). We observed the largest im-
provement of MAGOS over PyClone when two samples
of a tumor were sequenced at the depth of 100× (mean
J-score= 0.92 vs. 0.76). Compared with SciClone, the ad-
vantages of MAGOS were the most prominent when the
sequencing depths were 30×. In these cases, MAGOS
had a mean J-score of 0.82, 0.88, and 0.94 when two, three,
or four samples of a tumor were sequenced, respectively,
whereas the corresponding mean J-scores of SciClone
were 0.66, 0.74 and 0.75 (all paired t-tests P< 10−6).
MAGOS maintained its lead over SciClone until the se-
quencing depths reached 300×, where both methods
achieved average J-scores >0.95.

We also simulated cases in which six subclones were
present in a tumor. All three methods showed decreased
performance when compared with three subclone simula-
tions. However, MAGOS still outperformed the other two
methods consistently (fig. 4D–F ). The most significant ad-
vantage of MAGOS was with 30×–50× sequencing depth.
For two samples sequenced at 100× and 300× depths, the
performance of SciClone improved to the same level of
MAGOS. But when more samples were sequenced,
MAGOS regained its lead. PyClone had the most difficul-
ties when six subclones were present in a tumor.

Computational Efficiency
The computational efficiency of MAGOS was the best
among the three methods. Executed as a single-threaded
process on a desktop, MAGOS took an average of 0.9 s
to analyze 50 SNVs from two samples of a tumor, which
was 54 times faster than SciClone (51.4 s, t-test
P= 0.001) and 109 times faster than PyClone (102.8 s,
P= 10−10). As the number of SNVs increased, the acceler-
ation of MAGOS over PyClone was relatively stable at
about 120×, as the acceleration over SciClone narrowed
(fig. 5A). When the number of SNVs reached 1,000,
PyClone took more than an hour to complete the ana-
lysis, SciClone took 2.4 min, and MAGOS took
<0.6 min. Increasing sequencing depths helped speeding
up MAGOS and SciClone but did not affect PyClone
(fig. 5B). As expected, analyzing more samples took long-
er time (fig. 5C). Among all scenarios we tested, MAGOS
was significantly faster than the other two methods
(P< 0.05).

Performance on Empirical Sequencing Data
The Griffith et al. (2015) study sequenced the relapsed tu-
mor in addition to the primary tumor from the same pa-
tient. The median sequencing depth of the relapse tumor
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was 270×, 41×, and 47× in the Illumina capture, Illumina
WGS, and Ion Torrent capture experiments, respectively.
Griffith et al. combined reads from these experiments, ana-
lyzed the 1,343 high-quality SNVs in this primary-relapsed
tumor pair with SciClone, and identified six clusters.
Because true subclones are known, we assessed the per-
formance of MAGOS, PyClone, and SciClone on reprodu-
cing the six benchmark clusters.

To represent deep-sequencing scenario, we paired the
Illumina WGS data of the primary tumor with the
Illumina capture data of the relapsed tumor (median
depth= 326× and 270×, respectively). We applied
MAGOS, PyClone, and SciClone to this data set and com-
pared the results to the benchmark clusters. All three

methods achieved excellent J-scores, with the highest
score reported by MAGOS (0.94). PyClone that is designed
for analyzing multi-sample deep-sequencing data had a
J-score of 0.92. SciClone had a slightly lower J-score
(0.89) than the other twomethods. Interestingly, no meth-
ods inferred six clusters. MAGOS and PyClone both split
the benchmark cluster C5 into two (C5a and C5b, fig. 6A
and B). In the Griffith et al. study, 11 variants were tracked
over multiple time points, which included a TP53 variant
in cluster C5a and a KRT1 variant in cluster C5b. VAFs of
these two variants diverged over time (fig. 3A in Griffith
et al. study), supporting that they indeed belonged to dis-
tinct subclones, which was consistent with MAGOS and
PyClone partitions. PyClone also separated a subset of

FIG. 4. Performance on simulated multiple-tumor samples. Three subclones (A–C ) and six subclones (D–F ) were simulated. For each tumor, two
samples (A, D), three samples (B, E), or four samples (C, F ) sequenced at various depth were simulated. At a given sequencing depth, boxplots of
J-scores from 40 simulations are presented. Asterisks indicate a significant better performance of MAGOS when compared with the other two
methods.
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variants from C2 to form a new group. Conversely,
SciClone merged C4 and C6, reporting one less cluster
(fig. 6C). Temporal tracking of variants in these clusters
did not provide sufficient data to evaluate these
partitions.

To represent standard depth scenario, we used Ion
Torrent capture data for both the primary tumor and
the relapsed tumor (median depth= 42× and 47×, re-
spectively). At this reduced depth, VAF distributions of
the benchmark clusters had large overlaps. Even for this

challenging data set, MAGOS inferred the correct number
of clusters, producing a J-score of 0.82 (fig. 6D). In particu-
lar, MAGOS was able to identify the C5 and C6 clusters
that had very similar mean VAF in the primary tumor
(Δ�v= 0.03) and in the relapsed tumor (Δ�v= 0.06).
PyClone reported 17 clusters (fig. 6E). However, because
the excessive clusters contained only a few variants, the
overall J-score was the same as that of MAGOS. SciClone
had difficulties of separating overlapping clusters and
found only three clusters (J-score= 0.78, fig. 6F).

FIG. 5. Computational efficiency of analyzing simulated data. Each method is executed as a single-threaded process on a desktop. Average CPU
time over ten simulations is displayed with error bars indicating standard deviations. (A) Each tumor has two samples, and each sample contains
50 to 1,000 mutations sequenced at 100× depth. (B) Each tumor has two samples, and each sample contains 200 mutations sequenced at depths
ranging from 30× to 1,000×. (C ) Each tumor has 1 to 4 samples, and each sample contains 200 mutations sequenced at 100× depth.

FIG. 6. Performance on analyzing empirical sequencing data of two samples (primary tumor and relapsed tumor) from the same patient. (A–C )
Scatter plots show VAFs of variants from deep-sequencing experiments in which the primary and relapsed tumors were sequenced at 326× and
270×, respectively. The six benchmark clusters are numbered from C1 to C6 and are represented by shaded ellipses. Radiuses of an ellipse cor-
respond to two standard deviations of VAFs of variants belonging to a benchmark cluster. Dots of the same color are variants assigned to the
same cluster by each method. Both MAGOS and PyClone split C5 into two clusters: C5a containing a TP53 variants and C5b containing a KRT1
variants. (D–F ) Scatter plots show VAFs of variants from standard depth sequencing experiments in which the primary and relapsed tumors
were sequenced at 42× and 47×, respectively.
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These results showed that MAGOS clustering results
matched the benchmark clusters the best among the three
methods. Furthermore, the reproducibility of MAGOS at
different sequencing depths was the highest among the
three methods.

Performance on a Genome with Mixed CNVs and
SNVs
Nik-Zainal et al. (2012) performed WGS of a breast cancer
sample PD4120a containing somatic SNVs and CNVs. They
reconstructed the subclone structure of this tumor via
semi-manual analysis and in-depth curations. This data
set consisted of 68,749 somatic SNVs and 311 somatic
CNVs, which we retrieved via the ICGC data portal
(EGAD00001000138; Zhang et al. 2019). Among these var-
iants, 56,974 SNVs were in CN-neutral regions, and the re-
maining11,775 SNVs were in CNV-affected regions. We
used this data set to assess how well MAGOS, PyClone,
and SciClone could reproduce the results.

MAGOS and SciClone clustered the SNVs into four sub-
clones, which was consistent with the curated structure
(fig. 7A). PyClone produced five overlapping clusters
that lacked correspondence to the curated structure.
Among the three methods, MAGOS is the only one
capable of delineating subclone relationship for CNVs
and CNV-affected SNVs. Nik-Zaina et al. resolved the evo-
lutionary timing of several major CNV events (fig. 7B),
including clonal trisomy of chromosome 1 long arm
(Tri-1q in cluster D), early subclonal deletion to produce
hemizygous chromosome 13 (Del-13 in cluster C), early
subclonal deletion to produce a hemizygous translocation
between chromosome 1 and chromosome 22 (Del-t:1; 22
in cluster C), and 19 late subclonal homozygous deletions
of segments in 11 other chromosomes (in cluster A).
MAGOS correctly assigned all clonal and early subclonal
events (i.e., Tri-1q in cluster D, Del-13 in cluster C, and
Del-t:1; 22 in cluster C). Furthermore, Nik-Zaina et al.
identified seven SNVs acquired before Tri-1q because
they affected two copies of 1q, which MAGOS recovered
perfectly by inferring their affected copy number to be 2

and assigning them to cluster D. MAGOS also inferred
the correct subclone membership for seven (36.8%) of
the late subclonal events (deletions in cluster A). The
misassigned late subclonal events often affected short
genomic regions (median length= 68.9 kbps, median
SNVs involved= 2). Contrarily, the correctly assigned late
subclonal events affected large genomic regions (median
length= 500 kbps, median SNVs involved= 7).

These results showed that MAGOS had high accuracy
of inferring clusters from mixed SNVs and CNVs and re-
solving cluster assignments of CNVs affecting large genom-
ic regions.

Subclone Count as a Prognostic Marker for Late-Stage
Liver Cancer
The TCGA project published WESs and clinical data of 331
primary liver hepatocellular carcinomas (TCGA Research
Network 2017). On average, each tumor contained 149
somatic variants (fig. 8A) and was sequenced at the me-
dian depth of 93× (fig. 8B).

We applied MAGOS to infer subclonal composition of
each tumor. The results showed that a majority (79%) of
these tumors contained three to four subclones (fig. 8C).
To test if age at diagnosis was associated with the number
of subclones or the number of variants in a tumor, we built
a linear regression model with patient sex, tumor stage,
and tumor purity as covariates. This model returned insig-
nificant P-values for both subclone count and variant
count (P= 0.22 and 0.24, respectively). We then tested if
patient overall survival was associated with the number
of subclones or the number of variants in a tumor. We
built a Cox regression model for the 85 late-stage (stages
III and IV) tumors using patient sex, age at diagnosis, and
tumor purity as covariates. This model showed that high
subclone count was a significant risk factor of poor diagno-
sis (hazard ratio= 1.81, P= 0.02; fig. 8D), but variant count
was not (P= 0.74). Contrarily, the model built for the 246
early stage (stages I and II) tumors showed neither sub-
clone counts nor variant counts were associated with over-
all survival (P= 0.96 and 0.07, respectively). These results

FIG. 7. Analysis of the breast cancer sample PD4120a containing mixed SNVs and CNVs. (A) Histogram of VAFs of CN-neutral SNVs. Colored bars
below the histogram represent clusters identified by each method. Clusters A–D correspond to the four clusters curated by Nik-Zaina et al. (B)
Phylogenetic relationship of the four clusters resolved by Nik-Zaina et al. Major CNV events in each cluster are displayed. Cluster A likely consists
of several subclones, which have not been resolved.
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implied that subclone count was a novel prognostic factor
for late-stage liver cancers.

For comparisons, we also applied SciClone and PyClone
to these data. Analysis using subclone counts inferred by
these methods did not find significant associations with
age at diagnosis or overall survival (all P> 0.2).

Discussion
Cancer, as an evolutionary process, has an inherently het-
erogeneous and dynamic nature (Nowell 1976; Aktipis
et al. 2011; Greaves and Maley 2012). Precision identifica-
tion and intervention of cancers should consider the
past, present, and future of each tumor. With high-
throughput sequencing technologies, we can now catch
snapshots of this process and potentially reconstruct the
evolutionary history and trajectory of a tumor (Campbell
et al. 2008; Ding et al. 2012; Egan et al. 2012; Nik-Zainal
et al. 2012; Welch et al. 2012; Landau et al. 2013).
Although single-cell genome sequencing is on the rise,
bulk sequencing remains the dominant technology. Bulk
sequencing interrogates the amalgam of genomes of het-
erogeneous cells in the tumor sample and relies on compu-
tational analysis to deconvolute the mixed populations.

In this study, we developed a newMAGOSmethod that
infers subclones from bulk sequencing data. By comparing
MAGOS, PyClone, and SciClone on simulated and empiric-
al data, we found different strengths and weaknesses of
these methods. SciClone requires deep-sequencing data.
If the sequencing depth is lower than 300×, the results

have low reproducibility and accuracy. Sequencing add-
itional samples of the same tumor does not compensate in-
sufficient sequencing depth for SciClone, as demonstrated
in the analysis of the primary-relapsed tumor pair (fig. 6F).
Conversely, PyClone prefers multiple samples from the
same tumor. If only a single-tumor sample is available, in-
creasing sequencing depth does not help the decompos-
ition (fig. 3D). PyClone also tends to report excessive
small clusters that need to be manually examined
(figs. 3A, B and 6E). A plausible reason is the Dirichlet pro-
cess in the PyClone algorithm that often overestimates the
number of source components (Onogi et al. 2011; Miller
and Harrison 2013). Compared with these two methods,
the advantages of MAGOS are the most prominent
when the sequencing depth is lower than 200×. Even
when the sequencing depth drops to 30×, MAGOS can still
make accurate cluster inference (J-score >0.8), although
the Δ�v of adjacent clusters needs to be at least 0.25 in
single-sample analysis. Adding additional samples from
the same tumor improves MAGOS performance signifi-
cantly: at sequencing depth of ∼40×, MAGOS can decom-
pose clusters with Δ�v as low as 0.02–0.06 (fig. 6D). Its fast
execution also enables subclonal analysis in large cohorts.
For example, we applied MAGOS to 331 liver cancers
from the TCGA project and discovered subclone counts
as a novel prognostic marker.

MAGOS achieved these improvements by modeling the
depth-variance and mean-variance dependencies, which
reduced the unexplained variance in cluster analysis. It is
noteworthy that mean VAF and sequencing depth are

FIG. 8. Analysis of TCGA liver cancers. (A) Histogram of number of somatic variants in each tumor sample. (B) Histogram of median sequencing
depth of each tumor sample. (C ) Summary of liver cancer samples by tumor stage and number of subclones. (D) Kaplan–Meier plot of late-stage
(stages III and IV) liver cancers. Tumors are stratified into groups based on the number of subclones.
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not correlated. Increasing sequencing depth has little im-
pact on the centroid of each cluster (figs. 1B and 3A, B),
thus helps little for deconvoluting subclones with similar
VAFs. Contrarily, including additional samples from
the same tumor helps segregate these clusters that are
otherwise undiscernible. Both MAGOS and PyClone
show significant performance gain from analyzing multiple
samples, suggesting spatial or temporal resampling the
same tumor is more cost-effective and robust for subclone
characterization than increasing sequencing depth of a sin-
gle sample. However, sufficient sequencing depth shall be
maintained to account for tumor purity, cellular preva-
lence, and sequencing error that vary from samples to sam-
ples (Carter et al. 2012). A good balance between
sequencing depth and resampling adjusted for each tumor
will be the most beneficial to subclone analysis.
Meanwhile, single-cell genome sequencing shows great
promise to trace cellular ancestry in a tumor (Kuipers
et al. 2017). However, the error models in single-cell data
are drastically from that in bulk sequencing data (Zafar
et al. 2016). Because MAGOS is based on error models de-
tected in bulk sequencing data, it is inappropriate to apply
it to single-cell data. Algorithms that incorporate unique
characteristics of single-cell data are an active research
field (Jahn et al. 2016; Zafar et al. 2017).

Subclone decomposition is the first step of comprehen-
sive subclonal analyses. The identified clusters are used
for further investigations, such as inferring clonal phyl-
ogeny (Strino et al. 2013; El-Kebir et al. 2015; Niknafs
et al. 2015). LICHeE (Popic et al. 2015) and Rec-BTP
(Hajirasouliha et al. 2014) streamline the analysis by first
partitioning variants into subclones and then building an
evolutionary tree. Given the sequential procedure, the per-
formance of the subclone decomposition step imposes the
upper bound of the accuracy of the phylogeny reconstruc-
tion step. AncesTree (El-Kebir et al. 2015), CITUP (Malikic
et al. 2015), and PhyloSub (Jiao et al. 2014) take a different
strategy that infer subclone composition and phylogeny
concurrently such that the accuracy of the two steps are
jointly optimized. However, these methods require ex-
tremely high sequencing depth (200× to >1,000×) and
can analyze only a small number of mutations (<100).
PhyloWGS (Deshwar et al. 2015) is a newmethod that sup-
ports joint inference using WES or WGS data. Interestingly,
when compared with PyClone and SciClone on subclone
decomposition, PhyloWGS outperformed these twometh-
ods if regions affected by CNVs were mixed with those un-
affected by CNVs. When regions affected by CNVs were
excluded from the analysis, these three methods per-
formed similarly. Therefore, the superior performance of
PhyloWGS is likely due to its correction of CNVs instead
of joint optimization. Furthermore, multiple-tumor sam-
ples are required to resolve ambiguities in phylogeny.
When only a single sample is available, partial phylogeny
will introduce uncertainty to subclone decomposition.
Decoupling these two steps is a better solution in these
cases. Compared with these methods, MAGOS has clear
advantages of analyzing large data sets sequenced at

low-to-moderate depth in short computational time, clus-
tering SNVs and CNVs, and accommodating single and
multiple samples.

MAGOS, as well as PyClone and SciClone, relies on a
large number of diploid passenger SNVs that hitchhike
with driver mutations in each subclone to detect clusters.
When this requirement is not satisfied, such as in ovarian
cancers with pervasive CNVs, MAGOS risks missing sub-
clones that predominantly contain CNVs. Therefore, we
calculate the fraction of diploid SNVs among all SNVs in
a sample and in each subclone and display a warning if
this fraction is <0.5. Clusters with low VAFs also need spe-
cial attention because they may contain neutral variants
that are not monophyletic, such as cluster A in figure 7,
which may mislead downstream phylogenetic inference
(Caravagna et al. 2020). When VAF distributions of sub-
clones overlap, cluster borders reported by computational
methods are artificial, and variants close to the borders
may belong to neighboring clusters (supplementary
material figs. S1 and S2, Supplementary Material online).
We expect this information can facilitate the optimization
of downstream subclonal analysis. Furthermore, when
analyzing multiple samples, MAGOS includes all variants
including those found in only one sample to increase the
power to detect clusters, especially when the sequencing
depth is low (supplementary materials and fig. S3,
Supplementary Material online).

In summary, subclonal diversity provides the fuel for
natural selection in neoplasms. It is likely to be robust bio-
marker for risk stratification, prediction, and prognosis
(Maley et al. 2017). MAGOS and future improvements of
subclonal decomposition will facilitate basic research and
clinical management of cancer.

Materials and Methods
Testing Depth-Variance and Mean-Variance
Dependence
We used the six benchmark clusters identified by Griffith
et al. (2015) in a primary acute myeloid leukemia tumor.
For cluster i in sequencing experiment j, we denote its log-
transformed within-cluster VAF as Vi,j , its log-transformed
median sequencing depth as Di,j, its mean VAF as Fi,j, and
its cluster ID as Ci. To test if variance of VAF was associated
with sequencing depth and mean VAF, we built a
mixed-effects model Vi,j ∼ βDi,j + γFi,j + A(1 | Ci), in
which β represents the fixed effect of sequencing depth,
γ represents the fixed effect of mean VAF, and A is a vector
of estimated random effects of clusters. We used the
R/nlme package (Pinheiro et al. 2017) for this analysis.

Simulating Subclones in Single-Tumor Samples
To simulate subclones in a single-tumor sample, we used a
set of SNVs published by Griffith et al. (2015) which per-
formedWGS data of a primary acute myeloid leukemia tu-
mor. Among 1,343 high-quality validated SNVs, 911
variants were in the founding clone that had a mean
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VAF of 0.45 (i.e., the estimated purity of the tumor is
90.7%). Using these SNVs as a pool, we created subclones
by selecting sets of random variants. For each set, we
reduced the mean VAF �v and the mean sequencing
depth �e by down-sampling the read counts of each al-
lele based on Poisson distributions. Specifically, to cre-
ate a subclone containing m variants with a mean
VAF v, we first draw m random variants from the
pool. For a given variant, there are e0r number of reads
mapped to the reference allele and e0a number of reads
mapped to the alternative allele in the pool. We down-
sample these reads to the lower sequencing depth e ac-
cording to Poisson distributions

er = Pois e0rη
1− v

1− u

( )
ea = Pois e0aη

v

u

( )
⎧⎪⎨
⎪⎩ (8)

where η = e(e0r + e0a), and er and ea are the number of
reads mapped to the reference allele and to the alterna-
tive allele in the simulated tumor sample, respectively.
Using this strategy, we generate two subclones each
containing m= 100 somatic variants and combine
them to create an admixture, representing a single-
tumor sample with a two-subclone structure.

Simulating Subclones in Multiple-Tumor Samples
We used the simulation program published by El-Kebir
et al. (2015). This program allows users to specify the num-
ber of subclones in a tumor, the number of variants in each
subclone, the number of samples sequenced and the aver-
age sequencing depth. It then generates random values for
cellular prevalence of the subclones and produces read
counts for each variant in each sample. We configured
each tumor to have three subclones distributed among
two, three, or four samples. We set the average sequencing
depths to be 30×, 50×, 100×, and 300×. For each combin-
ation of sample numbers and sequencing depths, we cre-
ated 40 simulations.

Execution of SciClone and PyClone
We downloaded the latest version of SciClone program
(v1.1.0) and the PyClone program (v0.13.1) from
GitHub. We executed SciClone with these parameters
“–do-clustering –maximum-clusters= 10 –minimum-
depth= 1 –overlay-clusters.” We executed PyClone by
specifying “–density pyclone_binomial” and setting
“–tumor_contents” to the true tumor purity value (i.e.,
0.9 for simulated data, 0.91 for primary leukemia tumor,
and 0.36 for relapsed leukemia tumor) or MAGOS esti-
mated tumor purity values in liver cancer analysis. For
CNV data, PyClone did not finish the analysis within 7
days, even using the recommended configuration to
speed up the analysis (–max_clusters 10 –init_method
connected). We then applied PyClone to 5,000 randomly
selected SNVs and reported the result.

Analyzing Mixed SNVs and CNVs in a Breast Cancer
Tumor
Using the International Cancer Genome Consortium data
portal (Zhang et al. 2019), we downloaded WGS data pub-
lished by Nik-Zainal et al. (2012; EGAD00001000138) in
VCF format and extracted somatic variant calls in tumor
PD4120a. The broad-mutect-v3 file contained 56,615
SNVs with a “PASS” filter and a sequencing depth between
20× and 500×. For each SNV, we retrieved the genomic co-
ordinate and read counts of reference and mutant alleles.
The dkfz-copyNumberEstimation file contained 695 CN
non-neutral segments and reported total copy numbers
and allele-specific copy numbers. After merging overlap-
ping regions, we obtained 311 CNVs. We applied
MAGOS with the default settings for single-sample ana-
lysis of mixed SNVs and CNV data.

Preprocessing and Survival Analysis of TCGA Data
Using the Genomic Data Commons data portal (TCGA
Research Network 2017), we retrieved clinical data and
somatic mutations of 375 liver hepatocellular carcinomas.
We used somatic mutations called by the GATK/MuTect
pipeline against the hg38 human reference genome.
Among these tumors, 331 are primary tumors with clinical
information available on age at diagnosis, tumor stage, and
overall survival (censored and uncensored). None of these
tumors are from the same patient. We applied MAGOS to
each tumor and recorded the number of subclones. We
grouped tumors into an early stage group (stage I or II)
and a late-stage group (stage III or IV). For early stage tu-
mors and for late-stage tumors separately, we tested the
association of subclone counts to patient overall survival
using Cox proportional hazards regression in which sex
and age at diagnosis were covariates. A P-value <0.05 indi-
cates significant association.

Optimizing MAGOS to Improve Computational
Efficiency
The standard hierarchical agglomerative clustering pro-
cedure requires calculations of all pairwise distances at
each step, which leads to an exponential increase of com-
putational complexity as the number of variants grows.
Given the narrow range of VAFs between 0 and 1, not all
pairwise comparisons are necessary, especially for variants
with highly similar VAFs across all samples. To find these
variants, we first compute the Euclidean distance between
each pair of variants based on their VAFs in all samples. We
then construct an incidence matrix and set the entry in
row x and column y to 1 if the Euclidean distance between
variants x and y is <0.01. Using an undirected graph cre-
ated from this incidence matrix, we search for complete
graphs and collapse variants belonging to each complete
graph into a leaf node in our initial hierarchical clustering
step. Because the number of leaf nodes determines the
computational complexity of a bifurcating tree, this step
accelerates the speed of MAGOS significantly.
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