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Abstract: Several successful approaches to structure determination of hierarchical Archimedean copulas
(HACs) proposed in the literature rely on agglomerative clustering and Kendall’s correlation coe�cient. How-
ever, there has not been presented any theoretical proof justifying such approaches. This work �lls this gap
and introduces a theorem showing that, given the matrix of the pairwise Kendall correlation coe�cients cor-
responding to a HAC, its structure can be recovered by an agglomerative clustering technique.
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1 Introduction
Hierarchical (also called nested) Archimedean copulas (HACs) bring to the popular class of Archimedean
copulas (ACs) the possibility to have di�erent multivariate margins. This possibility is enabled by their con-
struction through nesting of several ACs into each other; see [8, pp. 87]. Such a construction, on the one hand,
allows for constructing copulamodels outperformingother recently popularmultivariate copulamodels, e.g.,
see [15], where HACs are compared to pair and factor copulas in an empirical study from risk management.
On the other hand, such a construction involves an extra e�ort when estimating HACs, since the structure of a
HAC, which represents the way the ACs in this HAC are nested into each other, has to be estimated as another
parameter.

We can observe intensive research in this direction, e.g, see [2, 5, 10, 14, 17, 18, 20], which provide an-
swers to the question of how to estimate the structure of a HAC based on a data sample. These answers in-
volve di�erent approaches to the problem. In [17], the authors make use of a possibility to decompose the
structure of a HAC to a set of trivariate structures. In [10], the problem is treated as an amended shortest path
problem. In [18], an approach based on supertrees is presented. The rest of the mentioned articles provides
approaches that share the feature that both an agglomerative clustering technique [19] and the Kendall cor-
relation coe�cient (Kendall’s tau) are involved in the estimation process. In the following, we thus refer to
these approaches as to tau-clustering-based. E.g., in [14], the pair of random variables corresponding to the
highest value of Kendall’s tau is clustered and the new cluster is represented by its Kendall transformation.
In [1], the authors suggest to use the diagonal transformation instead of the Kendall’s one. In [10], Kendall’s

*Corresponding Author: J. Górecki: Department of Informatics, SBA in Karviná, Silesian University in Opava, Univerzitní
náměstí 1934/3, 733 40 Karviná, Czech Republic, E-mail: gorecki@opf.slu.cz
M. Hofert: Department of Statistics and Actuarial Science, University of Waterloo, 200 University Avenue West, Waterloo, ON,
Canada, E-mail: marius.hofert@uwaterloo.ca
M. Holeňa: Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodárenskou věží 271/2, 182 07
Praha, Czech Republic, E-mail: martin@cs.cas.cz



76 | J. Górecki, M. Hofert, and M. Holeňa

tau used in the previous two approaches is replaced by a more general τ-Euclidean metric. Finally in [2, 5],
the authors use an agglomerative clustering technique in which the similarity between two random variables
is directly the corresponding Kendall’s tau and consider the single-, complete- and average-linkage type of
clustering.

A simulation study concerning the e�ciency of some of the previouslymentioned approaches is provided
in [18]. There, the approach denoted kt_kagg, originally proposed in [2] and merged with an approach to
collapsing of HAC structures from [14], has shown the best results in the ability to estimate the true structure
of a HAC among the 11 estimators considered. Also note that in [3], the kt_kagg approach was improved by
a new approach to collapsing HAC structures and re-estimation of the parameters, which is con�rmed in the
simulation study reported therein. In the same article, the authors also show that a structure obtained by this
improved kt_kagg satis�es the su�cient nesting condition, which guarantees that a proper copula results,
under relatively weak conditions provided the families of the Archimedean generators in the structure are all
the same.

However, despite these desirable properties, there has not been presented any theoretical proof show-
ing that if the matrix of Kendall pairwise correlation coe�cients (or another measure of concordance) cor-
responding to a HAC is known, then such an approach recovers the true structure of this HAC. This work
attempts to �ll this gap and introduces a theorem showing that if such a matrix is known, the structure de-
termination used in the kt_kagg approach leads to the true structure.

Thiswork is structured as follows. Section 2 recalls somebasics for ACs andHACs. Section 3 recalls the ap-
proach to structure determinationmentioned in the previous paragraph, including an algorithm in a pseudo-
code. In Section 4, the announced theorem is provided. Discussion for the theorem is presented in Section 5
and Section 6 concludes.

2 Hierarchical Archimedean Copulas
Let I = [0, 1] and Ψ = {ψ : [0,∞]→ I | ψ(0) = 1, ψ(∞) = limt→∞ ψ(t) = 0, ψ is continuous, non-increasing
and strictly decreasing in [0, inf{t ∈ [0,∞) | ψ(t) = 0}] }. Also, let a real function y be called d-monotone in
(a, b), where a, b ∈ R and d ≥ 2, if it is di�erentiable up to order d − 2, the derivatives satisfy

(−1)ky(k)(x) ≥ 0, k = 0, 1, ..., d − 2, (1)

for any x ∈ (a, b), and (−1)d−2y(d−2) is non-increasing and convex in (a, b). For d = 1, let y be called 1-
monotone in (a, b) if it is non-negative and non-increasing there. Note that if a function is d-monotone for
all d ∈ N, then it is called completely monotone [9, 13]. As follows from [12], given an Archimedean generator
ψ ∈ Ψ , the function C : Id → I such that

C(u1, ..., ud) = ψ(ψ−1(u1) + ... + ψ−1(ud)) (2)

is a d-dimensional Archimedean copula (d-AC, also denoted by Cψ) if, and only if, ψ is d-monotone, where
ψ−1 is the general inverse of ψ given by ψ−1(s) = inf{t ∈ [0,∞] | ψ(t) = s}, s ∈ I.

To construct a hierarchical Archimedean copula (HAC), one just need to replace some arguments in an
AC by other HACs [6, 8]. The formal de�nition of HACs we will recall in this work is taken from [3], which is
mainly motivated by the fact that it explicitly refers to the tree HAC structure through concepts from graph
theory and thus no auxiliary tools to formalize HAC structures are needed. Note that in the following, #s
denotes the number of elements of a set s.

De�nition 1. Let d, f ∈ N, d ≥ 2, f ∈ {1, ..., d − 1}, (V, E) be a labeled tree with nodes V = {1, ..., d + f},
edges E ⊂ V × V and rooted in the node d + f . Let the nodes {1, ..., d} be the leaves of (V, E) and the nodes
{d + 1, ..., d + f}, which will be called forks, have at least two children each. In connection with (V, E), the
following notation will be used:
• For v ∈ V, denote by ∧(v) the set of children of v; thus the cardinality of ∧(v) ful�lls # ∧ (v) ≥ 2 for

v ∈ {d + 1, ..., d + f} (i.e., v being a fork) and # ∧ (v) = 0 for v ∈ {1, ..., d} (i.e., for v being a leaf).
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• For S ⊂ V and xu ∈ Id+f , the simpli�ed notation

xS = (xv1 , ..., xv#S ), where S = {v1, ..., v#S}, (3)

will be used with a further simpli�cation xv = x{v} for v ∈ V.

Finally, let λ : {d + 1, ..., d + f} → Ψ be a labeling of forks with Archimedean generators such that for each
u ∈ Id, there exists xu ∈ Id+f with the following two properties:

(i) ∀v ∈ {d + 1, ..., d + f}, xuv = Cλ(v)(xu∧(v));
(ii) ∀v ∈ {1, ..., d}, xuv = uv.

Then:

a) if the function C(V,E,λ) : Id → I, de�ned

∀u ∈ Id , C(V,E,λ)(u) = xud+f , (4)

is a d-variate copula, it is called d-variate hierarchical Archimedean copula (d-HAC) with the (tree) struc-
ture (V, E) and the labeling λ;

b) if (V, E) is binary, then C(V,E,λ) is called binary.

As this de�nition explicitly employs a tree structure (V, E), we can directly adopt necessary concepts from
graph theory, which employs ancestors and descendants of a node, where the �rst refers to the set containing
the parent of that node, the parent of this parent, etc., and the latter refers to the set containing the children
of that node, the children of these children, etc. These concepts are shown in Table 1.

Table 1: The concepts adopted from graph theory.

concept meaning
↑ (v) the parent of v
⇑ (v) the set of all ancestors of v
⇓ (v) the set of all forks that are descendants of v
↓ (v) the set of all leaves that are descendants of v, if v is a fork
↓ (v) {v}, if v is a leave

For clarity, recall that ∧(v) ⊂ ⇓ (v)∪ ↓ (v) and also that v ∈ ̸⇓ (v) and v ∈ ̸⇑ (v).
Let us now illustrate the involved concepts on a simple example. Consider a HAC Cψ1 ,ψ2 (u1, u2, u3) =

Cψ1 (u1, Cψ2 (u2, u3)) for two generators ψ1, ψ2 ∈ Ψ; its tree structure is depicted in Figure 1(a). For this
representation, one can derive a tree with the same structure such as the one depicted in Figure 1(b)
just by assigning di�erent numbers to all of its nodes. For this tree, we have V = {1, ..., 5} and E =
{{1, 5}, {2, 4}, {3, 4}, {4, 5}}, which also imply that f = 2, the nodes {1, 2, 3} are leaves and the nodes
{4, 5} are forks. Let u ∈ I3. Then xu ∈ I5, xu1 = u1, xu2 = u2, xu3 = u3, xu4 = Cλ(4)(xu{2,3}) = Cλ(4)(u2, u3)
and analogously xu5 = Cλ(5)(xu{1,4}) = Cλ(5)(u1, Cλ(4)(u2, u3)). Also note that ↑ (1) =↑ (4) =⇑ (1) =⇑ (4) = 5, ↑
(2) =↑ (3) = 4, ⇑ (2) =⇑ (3) = {4, 5} for such a structure. Finally, ⇓ (5) = 4, ⇓ (4) = ∅, ↓ (5) = {1, 2, 3} and
↓ (4) = {2, 3}.

A necessary and su�cient condition for the function given by (4) to be a proper copula is not known.
However, there are known several su�cient conditions. An early one based on complete monotonicity has
been proposed in [11], see Theorem 4.4 therein, which is proven for a subclass of HACs called fully nested
Archimedean copulas. Its generalization to all HACs has been proposed in [7]. A weaker su�cient condition
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Figure 1: (a) A tree-like representation of a 3-HAC given by Cψ1 ,ψ2 (u1 , u2 , u3) = Cψ1 (u1 , Cψ2 (u2 , u3)). (b) A binary tree
(V, E), V = {1, ..., 5}, E = {{1, 5}, {2, 4}, {3, 4}, {4, 5}} corresponding to the structure of a 3-HAC C(V,E,λ).

based on d-monotonicity has appeared recently in [16] and is recalled in the following theorem. Note that
y1 ◦ y2 denotes the composition of two functions y1 and y2.

Theorem 1. [16] Let (V, E) and λ be the tree and the labeling from De�nition 1, respectively. Also let

hm = {y : [0,∞]→ [0,∞] | y(0) = 0, y(∞) = ∞, y′ is m-monotone } (5)

for all m ≥ 2. If λ ful�lls that

1) λ(v) is #↓ (v)-monotone, and
2) λ(v)−1 ◦ λ(ṽ) ∈ h#↓(ṽ), (6)

for all v ∈ {d + 1, ..., d + f} and ṽ ∈ ∧(v) ∩ {d + 1, ..., d + f}, then C(V,E,λ) is a copula.

The condition on λ stated in Theorem 1 will be called the su�cient nesting condition (s.n.c.). Also note that
h2 ⊃ h3 ⊃ ... ⊃ hm for all m > 3.

As has already been mentioned in the introduction, Kendall’s tau is the most popular measure of con-
cordance used in connection to estimation of HACs. In term of copulas, Kendall’s tau of random vector
(U1, U2) ∼ C, where C is a bivariate copula, is given by

τ(C) = 4
∫
I2

C(u1, u2)dC(u1, u2) − 1. (7)

Also, given a random vector (U1, ..., Ud) ∼ C, where C is a d-variate copula, the matrix (τij) ∈ Id,d such that
for all i, j ∈ {1, ..., d} either

1) τij = τ(Cij), if i ≠ j, or
2) τij = 1, otherwise, (8)

where Cij is the (i, j)-th bivariate margin of C, is called the Kendall correlation matrix of (U1, ..., Ud).
If Cψ is a 2-AC and ψ is a twice continuously di�erentiable generator with ψ(t) > 0 for all t ∈ [0,∞),

Kendall’s tau can be represented as [8, p. 91], [13, p. 163]

τ(ψ) = τ(Cψ) = 1 − 4
∞∫
0

t(ψ′(t))2dt = 1 + 4
1∫

0

ψ−1(t)
(ψ−1)′(t)dt. (9)
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Due to this connection of generators andKendall’s tau, the restrictions on λ given by the s.n.c. also induce
restrictions on λ in terms of Kendall’s tau, as is stated in the following lemma.

Lemma 1. Let C(V,E,λ) be a d-HAC satisfying the s.n.c. stated in Theorem 1. Then

τ(λ(v)) ≤ τ(λ(˜̃v)) (10)

for all v ∈ {d + 1, ..., d + f} and ˜̃v ∈ ⇓ (v).

Proof. Let us call a function f : [0,∞]→ R subadditive if f (x+y) ≤ f (x)+ f (y) for all x, y ∈ [0,∞). Let v, ṽ ∈ V

be two forks such that ṽ ∈ ∧(v). Using Part 2) of the s.n.c. and the consideration that #∧ (ṽ) ≥ 2, see De�nition
1, this implies that (λ(v)−1 ◦ λ(ṽ))′ ∈ h2 and thus (λ(v)−1(λ(ṽ)(t)))′′ ≤ 0 for all t ∈ (0,∞), i.e., λ(v)−1 ◦ λ(ṽ) is
concave on (0,∞). Further λ(v)−1(λ(ṽ)(0)) = 0. Using Lemma 4.4.3 in [13, p. 136], it follows that λ(v)−1 ◦ λ(ṽ)
is subadditive. With Theorem 4.4.2, this implies that Cλ(v)(u1, u2) ≤ Cλ(ṽ)(u1, u2) for all u1, u2 ∈ I and thus,
as Kendall’s tau re�ects this concordance ordering, τ(λ(v)) ≤ τ(λ(ṽ)). The same reasoning can be done for a
child of ṽ, a child of a child of ṽ, etc. Denoting such a descendant fork by ˜̃v establishes the proof.

The condition given by (10) does not generally guarantee that a proper copula results. However, for a HAC
with all generators from the same one-parametric Archimedean family, e.g., Ali-Mikhail-Haq, Clayton, Frank,
Gumbel, Joe or many others, (10) combined with relatively weak assumptions turns to a su�cient nesting
condition, as has been shown in Lemma 4.1 in [3]. In other words, under the assumption of the same family
(e.g., one of the families mentioned above) for all generators in a HAC, one can aim to satisfy (10) instead of
(6) in order to construct a proper copula, which is successfully applied in the construction of HAC estimators
proposed in [3].

3 Structure determination
This section recalls the approach underlying the structure determination in kt_kagg. As has already been
outlined in the introduction, kt_kagg merges the structure estimator from [2], which delivers a binary struc-
ture, with a collapsing procedure from [14], which, if needed, turns the binary structure to a non-binary one.
The binary structure estimator from [2] stems from the approach introduced in [4], see Algorithm 2 therein,
which, given a Kendall correlation matrix1, applies agglomerative clustering in order to recover the underly-
ing structure. Here, this approach is recalled in Algorithm 1. Note that a binary HAC C(V,E,λ) has always d − 1
forks, which implies that V = {1, ..., 2d − 1}. Also note that Algorithm 1 uses the following de�nition.

De�nition 2. Let either r = [0,∞), or r = [0, a], where a > 0. Any function g : rk → r, k ∈ N, satisfying 1)
g(x, ..., x) = x for all x ∈ r and 2) g is exchangeable (i.e., g(xp1 , ..., xpk ) = g(x1, ..., xk) for all x1, ..., xk ∈ r
and all permutations (p1, ..., pk) of (1, ..., k)) is called an r-aggregation function.

For example, the maximum, minimum or average restricted to I are I-aggregation functions.
The goal of the algorithm is to build a HAC such that (10) is satis�ed. I.e., the algorithm assigns forks

corresponding to the highest values of τ (through τ(λ(·))) to the lowest levels of the branches in the structure.
Ascending higher up in the tree, forks with lower values of τ are assigned.

1 Note that Algorithm 2 in [4] is stated more generally, i.e., it is possible to use it also with other concordance measures, not only
with Kendall’s tau.
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Algorithm 1. Structure determination of a HAC based on Kendall’s tau
Input:

1) (τij) ... a Kendall correlation matrix
2) g ... an I-aggregation function

The structure determination:
1. V̂ = {1, ..., 2d − 1}, Ê = ∅
2. ↓̂(k) = {k}, k = 1, ..., d
3. I = {1, ..., d},
for k = 1, ..., d − 1 do

4. �nd the pair of clusters (leaves) with the highest similarity according to τ, i.e.,
(i, j) := argmax

ĩ< j̃, ĩ∈I, j̃∈I

g((τ˜̃ĩ̃ j)(̃̃i ,̃̃j)∈↓̂(̃i)×↓̂(̃j))

5. join these two clusters, i.e.,
↓̂(d + k) := ↓̂(i) ∪ ↓̂(j)

6. remove the clusters i and j from the next considerations and substitute them by the cluster d + k, i.e.,
I := I ∪ {d + k}\{i, j}

7. create a part of the output structure by connecting the node d + k with the nodes i and j, i.e.,
Ê := Ê ∪ {{i, d + k}, {j, d + k}} ..., i.e., ∧̂(d + k) := {i, j}

end for

Output:
the binary tree (V̂, Ê)

4 Justi�cation of a tau-clustering-based approach
In [4], the approach recalled in the previous section was theoretically justi�ed only for d = 4. In this sec-
tion, as the main result of this work, a theorem that generalizes this justi�cation to an arbitrary dimension
is proposed. Before its statement, three auxiliary lemmas are provided. Note that, as Algorithm 1 serves for
delivering binary structures, the considerations below are also mostly restricted to such structures. However,
the consequences of the main theorem are discussed also for the non-binary case.

De�nition 3. [2] Let C(V,E,λ) be a d-HAC and i, j two di�erent leaves in V such that neither i nor j is the root.
We call youngest common ancestor of i, j (denoted by ⇑y (i, j)) the fork m ∈ V for which m ∈ ⇑ (i)∩ ⇑ (j) and
⇑ (i)∩ ⇑ (j)∩ ⇓ (m) = ∅.

Remark 1. Given a d-HAC C(V,E,λ), as (V, E) is a tree, if i, j ∈ V are two di�erent nodes such that neither i
nor j is the root, it follows that the set ⇑ (i)∩ ⇑ (j) always contains the root. This thus implies the existence of
⇑y (i, j) for such a pair of nodes.

Remark 2. Observe that if C(V,E,λ) is a binary d-HAC, m is a fork in V, ∧(m) = {l, r}, i ∈ ↓ (l) ∪ ⇓ (l) and
j ∈ ↓ (r) ∪ ⇓ (r), then ⇑y (i, j) = m.

Lemma 2. Let C(V,E,λ) be a binary d-HAC and {i1, ..., ik} ⊂ V, k ≥ 2 be such that the sets ↓ (i1), ..., ↓ (ik) are
a disjoint decomposition of {1, ..., d}. Then for each fork m ∈⇑ (i1) ∪ ...∪ ⇑ (ik), there exists a pair (i, j),
i < j, i, j ∈ {i1, ..., ik} such that ⇑y (i, j) = m.

Proof. Assume that m ∈⇑ (i1) ∪ ...∪ ⇑ (ik), {l, r} = ∧(m), ĩ ∈ ↓ (l) and j̃ ∈ ↓ (r), i.e, according to Remark 2,
⇑y (̃i, j̃) = m. Since (V, E) is a binary tree and the sets ↓ (i1), ..., ↓ (ik) are a disjoint decomposition of {1, ..., d},
there exists either a fork i ∈ {i1, ..., ik} such that ĩ ∈↓ (i) or a leaf i ∈ {i1, ..., ik} such that ĩ = i. Analogously,
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there exists either a fork j ∈ {i1, ..., ik} such that j̃ ∈↓ (j) or a leaf j ∈ {i1, ..., ik} such that j̃ = j. Also, as
ĩ ∈↓ (l), it implies that i ∈ ↓ (l) ∪ ⇓ (l). Analogously, j ∈ ↓ (r) ∪ ⇓ (r). Using Remark 2, the proof is established.

Lemma 3. [2] Let C(V,E,λ) be a binary d-HAC. Then

C(V,E,λ)(1, ..., 1, ui , 1, ..., 1, uj , 1, ..., 1) = Cλ(⇑y(i,j))(ui , uj), 1 ≤ i < j ≤ d (11)

for all (ui , uj) ∈ I2.

Hence for all i, j ∈ {1, ..., d} such that i ≠ j, the random vector (Ui , Uj) is distributed according to the 2-AC
Cλ(⇑y(i,j)), where (U1, ..., Ud) ∼ C(V,E,λ). Note that Lemma 3 is actually Proposition 3 introduced in [2].

Lemma 4. Let C(V,E,λ) be a binary d-HAC, (U1, ..., Ud) ∼ C(V,E,λ) and (τij) be the Kendall correlation matrix
of (U1, ..., Ud). Then

τij = τ(λ(⇑y (i, j))) (12)

for all leaves i and j such that i ≠ j.

Proof. This directly follows from Lemma 3, i.e., as (Ui , Uj) ∼ Cλ(⇑y(i,j)), it is τij = τ(Cλ(⇑y(i,j))) = τ(λ(⇑y
(i, j))).

Now follows the main theorem of this work.

Theorem 2. Let C(V,E,λ) be a binary d-HAC satisfying the s.n.c. given by (6) and

τ(λ(2d − 1)) < τ(λ(2d − 2)) < ... < τ(λ(d + 1)), (13)

(U1, ..., Ud) ∼ C(V,E,λ), and (τij) be the Kendall correlation matrix of (U1, ..., Ud). Then, given the input (τij)
and any I-aggregation fuction g, Algorithm 1 returns (V, E).

Proof. First consider that, if one knows the children of all forks in a HAC structure (in a tree (V, E)), then one
knows the whole HAC structure, i.e., the sets ∧(d + 1), ...,∧(2d − 1) determine (V, E). Hence, in the proof,
instead of showing directly that (V, E) = (V̂, Ê), we show that ∧̂(k) = ∧(k) for all k ∈ {d+1, ..., 2d−1}, where
∧̂(k) denotes the children of a fork k in the structure (V̂, Ê).

The proof is performed by induction according to k. Let k = 1. Also, let I = {1, ..., d} and

(i, j) = argmax
ĩ< j̃, ĩ∈I, j̃∈I

g((τ˜̃ĩ̃ j)(̃̃i ,̃̃j)∈↓(̃i)×↓(̃j)). (14)

As I = {1, ..., d}, it is (by the de�nition, see Section 2) ↓ (̃i) = {̃i} and ↓ (̃j) = {̃j} for all ĩ, j̃ ∈ I. Hence, given
ĩ, j̃ ∈ I, it follows that g((τ˜̃ĩ̃ j)(̃̃i ,̃̃j)∈↓(̃i)×↓(̃j)) = g(τ ĩ̃ j) = τ ĩ̃ j; for the latter equality, see De�nition 2. Hence, (14)
simpli�es to

(i, j) = argmax
ĩ< j̃, ĩ∈I, j̃∈I

τ ĩ̃ j . (15)

Note that the argument corresponding to the maximum is unique, which is addressed at the end of this in-
duction step. Now, rewrite (15) to

τij = max
ĩ< j̃, ĩ∈I, j̃∈I

τ ĩ̃ j . (16)

As, according to Lemma 4, τ ĩ̃ j = τ(λ(⇑y (̃i, j̃))), ĩ < j̃, ĩ, j̃ ∈ I, (16) turns to

max
ĩ< j̃, ĩ∈I, j̃∈I

τ ĩ̃ j = max
ĩ< j̃, ĩ∈I, j̃∈I

τ(λ(⇑y (̃i, j̃))). (17)
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According to Remark 1, for each pair (̃i, j̃), ĩ < j̃, ĩ, j̃ ∈ I there exists a fork v ∈ {d + 1, ..., 2d − 1} such that
⇑y (̃i, j̃) = v and, vice versa, according to Lemma 2, for each fork v ∈ {d + 1, ..., 2d − 1}, there exists a pair
(̃i, j̃) such that ĩ < j̃, ĩ, j̃ ∈ I and ⇑y (̃i, j̃) = v. This in turn implies that

max
ĩ< j̃, ĩ∈I, j̃∈I

τ(λ(⇑y (̃i, j̃))) = max
v∈{d+1,...,2d−1}

τ(λ(v)). (18)

According to (13),

max
v∈{d+1,...,2d−1}

τ(λ(v)) = τ(λ(d + 1)), (19)

and thus τij = τ(λ(d + 1)). But also, as follows from Lemma 4, τij = τ(λ(⇑y (i, j))). Considering (13), it implies
that τ(λ(m)) < τ(λ(d + 1)) for any fork m such that m ≠ d + 1. It is thus clear that d + 1 = ⇑y (i, j).

However, it is still not clear if d + 1 =↑ (i) =↑ (j), i.e., if

{i, j} = ∧(d + 1). (20)

But, if (20)wouldnot hold, then itwould exist a forkm ∈ {d+2, ..., 2d−1}, such that ↑ (i) = m (or analogously
for ↑ (j) = m). This would imply that m ∈ ⇓ (d + 1) and thus, according to Lemma 1, τ(λ(d + 1)) ≤ τ(λ(m)).
However, this contradicts (13).

Now discuss the uniqueness of the maximum in (15). Assume that there exists a pair {i0, j0} ⊂ I such
that i0 ∈ ̸ {i, j} and

(i0, j0) = argmax
ĩ< j̃, ĩ∈I, j̃∈I

τ ĩ̃ j . (21)

With the same argument as above, it would imply that ↑ (i0) = d + 1 (or analogously ↑ (j0) = d + 1 in the case
that the assumption would be j0 ∉ {i, j}). However, this contradicts the fact that (V, E) is binary.

Finally, considering that (14) is Step 4 of Algorithm 1, this implies that

∧̂(d + 1) = ∧(d + 1), (22)

see also Step 7. Now, update I := I∪{d+1}\{i, j}, de�ne that {̃i1, ..., ĩd−1} = I, and observe that ↓ (̃i1)∪ ...∪ ↓
(̃id−1) = {1, ..., d} and⇑ (̃i1)∪ ...∪ ⇑ (̃id−1) = {d+2, ..., 2d−1}, where the latter follows from the consideration
that ⇑ (1) ∪ ...∪ ⇑ (d) = {d + 1, ..., 2d − 1} and the fact that d + 1 is the parent of the leaves i and j and thus
cannot be an ancestor of any node from I. Also observe that the sets ↓ (̃i1), ..., ↓ (̃id−1) are disjoint and thus
they are a disjoint decomposition of {1, ..., d}.

Now the induction step for k ∈ {2, ..., d−1}. Assume that ∧̂(d+m) = ∧(d+m) for allm ∈ {1, ..., k−1} and
that I = {i1, ..., id−k+1} such that i1, ..., id−k+1 < d+k, the sets ↓ (i1), ..., ↓ (id−k+1) are a disjoint decomposition
of {1, ..., d} and ⇑ (i1) ∪ ...∪ ⇑ (id−k+1) = {d + k, ..., 2d − 1}. Again, let

(i, j) = argmax
ĩ< j̃, ĩ∈I, j̃∈I

g((τ˜̃ĩ̃ j)(̃̃i ,̃̃j)∈↓(̃i)×↓(̃j)). (23)

Since the sets ↓ (̃i) and ↓ (̃j) are disjoint for any pair (̃i, j̃) in the domain of maximization and thus neither
ĩ ∈⇓ (̃j) nor j̃ ∈⇓ (̃i), given ĩ, j̃ ∈ I, ĩ < j̃, it holds that ⇑y (̃̃i, ˜̃j) = ⇑y (̃i, j̃) for all (̃̃i, ˜̃j) ∈ ↓ (̃i)× ↓ (̃j), which follows
from the consideration that (V, E) is a binary tree. Hence, it follows that, using Lemma 4, τ˜̃ĩ̃ j = τ(λ(⇑y (̃̃i,

˜̃j))) =

τ(λ(⇑y (̃i, j̃))) for all (̃̃i, ˜̃j) ∈ ↓ (̃i)× ↓ (̃j) and thus g((τ˜̃ĩ̃ j)(̃̃i ,̃̃j)∈↓(̃i)×↓(̃j)) = g(τ(λ(⇑y (̃i, j̃))), ..., τ(λ(⇑y (̃i, j̃)))). Using
Part 1) of De�nition 2, we get g(τ(λ(⇑y (̃i, j̃))), ..., τ(λ(⇑y (̃i, j̃)))) = τ(λ(⇑y (̃i, j̃))). Hence, (23) turns to

(i, j) = argmax
ĩ< j̃, ĩ∈I, j̃∈I

τ(λ(⇑y (̃i, j̃))). (24)

Note that the argument corresponding to themaximum is unique for the same reason as in the induction step
k = 1. Again, rewrite (24) to

τ(λ(⇑y (i, j))) = max
ĩ< j̃, ĩ∈I, j̃∈I

τ(λ(⇑y (̃i, j̃))). (25)
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Using the assumption that ↓ (i1), ..., ↓ (id−k+1) are a disjoint decomposition of {1, ..., d}, Remark 1 implies that
for each pair (̃i, j̃) such that ĩ < j̃ and ĩ, j̃ ∈ I there exist a fork v ∈⇑ (i1) ∪ ...∪ ⇑ (id−k+1) such that v = ⇑y (̃i, j̃)
and, vice versa, according to Lemma 2, for each fork v ∈⇑ (i1) ∪ ...∪ ⇑ (id−k+1), there exists a pair (̃i, j̃) such
that ĩ < j̃, ĩ, j̃ ∈ I and ⇑y (̃i, j̃) = v. Using the assumption that ⇑ (i1) ∪ ...∪ ⇑ (id−k+1) = {d + k, ..., 2d − 1}, it
follows that

max
ĩ< j̃, ĩ∈I, j̃∈I

τ(λ(⇑y (̃i, j̃))) = max
v∈{d+k,...,2d−1}

τ(λ(v)), (26)

and in turn, using (13),

max
v∈{d+k,...,2d−1}

τ(λ(v)) = τ(λ(d + k)). (27)

As the maximum is unique, it holds that d+ k =⇑y (i, j). But also ↑ (i) = ↑ (j) = d+ k, because, if that would not
hold, then it would exist a fork m ∈ {d + k + 1, ..., 2d − 1} such that ↑ (i) = m (or analogously for ↑ (j) = m).
This would imply that m ∈ ⇓ (d + k) and thus τ(λ(d + k)) ≤ τ(λ(m)) according to Lemma 1. However, this
contradicts (13).

Finally, considering that (14) is Step 4 of Algorithm 1, this implies that

∧̂(d + k) = ∧(d + k), (28)

see also Step 7. Now, perform the update I := I ∪ {d + k}\{i, j}, de�ne that {̃i1, ..., ĩd−k} = I, and observe
that ↓ (̃i1) ∪ ...∪ ↓ (̃id−k) = {1, ..., d} and that the sets ↓ (̃i1), ..., ↓ (̃id−k) are disjoint and thus they are a
disjoint decomposition of {1, ..., d}. Also observe that ĩ1, ..., ĩd−k < d + k + 1 and ⇑ (̃i1) ∪ ...∪ ⇑ (̃id−k) =
{d+k+1, ..., 2d−1},where the latter follows from theassumption that⇑ (i1)∪...∪ ⇑ (id−k+1) = {d+k, ..., 2d−1}
and the fact that d + k is the parent of the nodes i and j and thus cannot be an ancestor of any node from I,
which follows from the assumption that the sets ↓ (i1), ..., ↓ (id−k+1) are a disjoint decomposition of {1, ..., d}.

5 Discussion
It follows from Theorem 2 that the choice of the I-aggregation function g does not in�uence the output of
Algorithm 1. However note that if Algorithm 1 is transformed to an algorithm for HAC estimation, as, e.g, has
been shown in [2], see Section 4 therein, the choice of g becomes essential for the �t of the HAC estimates, as
is also experimentally shown in the cited article.

To recover the structure of aHAC,Algorithm 1 relies on theKendall’s correlation coe�cient,which re�ects
the popularity of this coe�cient in practical applications concerning ACs and HACs. However, it is clear from
the proof of Theorem 2 that any other measure of concordance, e.g, Spearman’s Rho, can be used instead
provided an analogue of Lemma 1 for such a measure is available.

Now, let us consider the assumption given by (13). Assume that C(V,E1 ,λ1) and C(V,E2 ,λ2) depicted in Figure
2 are 4-HACs. Observe that C(V,E2 ,λ2) results from C(V,E1 ,λ1) if the forks 5 and 6 in (V, E1, λ1) are permuted in
(V, E2, λ2), i.e.,

λ2(5) = λ1(6) and λ2(6) = λ1(5), (29)

and for the rest of the forks the labeling is the same (i.e., λ2(7) = λ1(7)), and the structure
(V2, E2) relates to (V1, E1) as depicted in Figure 2. This can be seen from the fact that C(V,E1 ,λ1)(u) =
Cλ1(7)(u1, Cλ1(6)(u2, Cλ1(5)(u3, u4))) = Cλ2(7)(u1, Cλ2(5)(u2, Cλ2(6) (u3, u4))) = C(V,E2 ,λ2)(u) holds for all u ∈ I4,
where the second equality follows from (29).

As follows from Lemma 1, (13) cannot be satis�ed for C(V,E2 ,λ2). However, one can use instead of it the
same copula function C(V,E1 ,λ1) constructed in the way described above. Generally, given a d-HAC C(V,E2 ,λ2)
satisfying the s.n.c. but violating (13), one can in the sameway as described above construct a d-HAC C(V,E1 ,λ1)
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u 1
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u 3 u 4

λ 1(5 )

λ 1(6 )

λ 1(7 )

u 1

u 2

u 3 u 4

λ 2(6 )

λ 2(5 )

λ 2(7 )

Figure 2: Two 4-HACs C(V,E1 ,λ1) and C(V,E2 ,λ2) such that (V, E2 , λ2) results from (V, E1 , λ1), if the forks 5 and 6 in (V, E1 , λ1) are
permuted, i.e, λ2(5) = λ1(6), λ2(6) = λ1(5) and λ2(7) = λ1(7)), and E1 = {{7, 1}, {7, 6}, {6, 2}, {6, 5}, {5, 3}, {5, 4}} and
E2 = {{7, 1}, {7, 5}, {5, 2}, {5, 6}, {6, 3}, {6, 4}}.

such that (13) is satis�ed. This can be done just by assigning the fork d + 1 to the generator corresponding to
the highest Kendall’s tau, d + 2 to the generator corresponding to the second highest Kendall’s tau, etc. This
implies that the assumption (13) can be weakened to

τ(λ(i)) ≠ τ(λ(j)) for all i ≠ j, i, j ∈ {d + 1, ..., 2d − 1}. (30)

Finally note that, if C(V,E,λ) satis�es both the s.n.c. and (30), it holds that τ(λ(2d − 1)) < τ(λ(k)) for all k ∈
{d + 1, ..., 2d − 2}, i.e., it is never necessary to permute the root with some other fork in order to construct a
HAC satisfying (13) in the sense described above. This follows from the fact that, assuming {l, r} = ∧(2d −1),
according to Lemma 1, τ(λ(2d−1)) ≤ τ(λ2(l)) and τ(λ(2d−1)) ≤ τ(λ(r)), and using (30), it turns to τ(λ(2d−1)) <
τ(λ(l)) and τ(λ(2d − 1)) < τ(λ(r)). The inequality for the rest of the forks follows again from Lemma 1 and the
previous consideration.

Now, let us concern how Algorithm 1 behaves when (30) is not satis�ed. The two following cases can be
distinguished:

1. There is a parent-child pair of forks such that their corresponding values of Kendall’s tau are equal. E.g.,
let C(V,E,λ) depicted in Figure 3(a) be a 4-HAC such the s.n.c. is satis�ed and τ5 = τ6 > τ7. As addressed
in the proof of Theorem 2, for k = 1, in Step 4, the algorithm searches for the pair of leaves correspond-
ing to the largest tau. Under our assumptions here, however, there are three pairs corresponding to the
maximum, see the Kendall correlation matrix in Figure 3(d). Also consider that the algorithm does not
explicitly state any speci�c procedure for choosing the pair (i, j) in such a case. Hence, a common ap-
proach is to take one of the pairs arbitrarily, which of course generally does not lead to the true structure.
But, consider the implications of our assumptions.
Assuming λ(5) and λ(6) to belong to a one-parametric family of generators (or possibly to two di�erent
one-parametric families of generators), which is a common assumption in many applications of HACs,
for a lot of families, it follows that τ5 = τ6 implies that Cλ(5) = Cλ(6), e.g., cf. Tables 1, 2 and 3 in [3]. Hence,
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(f)

Figure 3: Three 4-HACs and their corresponding Kendall correlation matrices.

applying this assumption, it follows that

C(V,E,λ)(u1, u2, u3, u4) =
Cλ(7)(u1, Cλ(6)(u2, Cλ(5)(u3, u4))) =
Cλ(7)(u1, Cλ(5)(u2, Cλ(5)(u3, u4))) =
Cλ(7)(u1, Cλ(5)(u2, λ(5)(λ(5)−1(u3) + λ(5)−1(u4)))) =
Cλ(7)(u1, λ(5)(λ(5)−1(u2) + λ(5)−1(λ(5)(λ(5)−1(u3) + λ(5)−1(u4))))) =
Cλ(7)(u1, λ(5)(λ(5)−1(u2) + (λ(5)−1(u3) + λ(5)−1(u4)))) =
Cλ(7)(u1, Cλ(5)(u2, u3, u4)). (31)

But also

Cλ(7)(u1, Cλ(5)(u2, u3, u4)) = Cλ(7)(u1, Cλ(5)(u3, Cλ(5)(u2, u4))) = Cλ(7)(u1, Cλ(5)(u4, Cλ(5)(u2, u3))), (32)

which follows from the consideration that Cλ(5) is an AC. Looking at De�nition 1, one can thus easily
see that if λ(5) = λ(6), one can use three di�erent binary structures to get the same copula function
(with {3, 4}, {2, 4} or {2, 3} at the lowest level, respectively). In other words, these three structures are
unidenti�able based on such a copula function.
However, denoting λ(7) by λ̃(6) and λ(5) by λ̃(5), one obtains the same copula function but with a dif-
ferent structure that is depicted in Figure 3(b), i.e., if there is a parent-child pair of forks such that their
corresponding values of Kendall’s tau are equal, one can derive the same copula function but with a
non-binary structure in the way mentioned above. What about determining this structure instead of the
unidenti�able binary one?
Let us get back to the binary 4-HAC C(V,E,λ) in Figure 3(a) and to the idea where (for k = 1) one chooses
arbitrarily the pair of nodes that will be assigned to the lowest level. It follows from Algorithm 1 that, for
k = 2, the chosen pair in Step 4will be (m, 5), wherem is the leaf that was not chosen in the loop for k = 1
out of {2, 3, 4}. Just to be complete, for k = 3, the chosen pair will be (1, 6). Now, if we apply a collapsing
strategy that collapses two parent-child nodes into one if the corresponding values of Kendall’s tau are
equal, the nodes 6 and 5 collapse to a new node, resulting in a non-binary structure described above,
which is depicted in Figure 3(b). In other words, such an approach leads in this case to the true non-
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binary structure. Proving that Algorithm 1 together with such a collapsing strategy leads generally to the
true non-binary structure remains still an open problem.

2. There is a pair of forks such that their corresponding values of Kendall’s tau are equal but these forks
appear at di�erent branches. E.g., let C(V,E,λ) depicted in Figure 3(c) be a 4-HAC such the s.n.c. is satis�ed
and τ5 = τ6. In this case, again, for k = 1, one can arbitrarily choose (i, j) = (1, 2) or (i, j) = (3, 4) in Step
4, see the Kendall correlation matrix in Figure 3(f). Let choose the �rst possibility. For k = 2, it is easy to
see that (i, j) = (3, 4), and for k = 3, (i, j) = (5, 6), i.e., the true structure has been obtained. One can also
easily see that if (i, j) = (3, 4) is chosen for k = 1 in Step 4, the result is the same. Proving that Algorithm 1
leads generally to the true structure for this case remains still an open problem.

6 Conclusion
This work considered an existing approach to structure determination of HACs based on agglomerative clus-
tering and the Kendall correlation matrix. The approach was �rst recalled including a detailed example, and
then, as the main results of this work, a theorem showing that it leads to the true structure was proven. The
assumptions of the theorem were discussed and two open problems for further research were identi�ed.
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