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Abstract: Grouped normal variance mixtures are a class of multivariate distributions that generalize
classical normal variance mixtures such as the multivariate t distribution, by allowing different
groups to have different (comonotone) mixing distributions. This allows one to better model risk
factors where components within a group are of similar type, but where different groups have
components of quite different type. This paper provides an encompassing body of algorithms to
address the computational challenges when working with this class of distributions. In particular,
the distribution function and copula are estimated efficiently using randomized quasi-Monte Carlo
(RQMC) algorithms. We propose to estimate the log-density function, which is in general not available
in closed form, using an adaptive RQMC scheme. This, in turn, gives rise to a likelihood-based
fitting procedure to jointly estimate the parameters of a grouped normal mixture copula jointly.
We also provide mathematical expressions and methods to compute Kendall’s tau, Spearman’s rho
and the tail dependence coefficient λ. All algorithms presented are available in the R package nvmix
(version ≥ 0.0.5).

Keywords: grouped normal variance mixtures; distribution functions; densities; copulas;
grouped t copula; risk measures; quasi-random number sequences

1. Introduction

It is well known that for the purpose of modeling dependence in a risk management setting,
the multivariate normal distribution is not flexible enough, and therefore its use can lead to a misleading
assessment of risk(s). Indeed, the multivariate normal has light tails and its copula is tail-independent
such that inference based on this model heavily underestimates joint extreme events. An important
class of distributions that generalizes this simple model is that of normal variance mixtures. A random
vector X = (X1, . . . , Xd) follows a normal variance mixture, denoted by X ∼ NVMd(µ, Σ, FW),
if, in distribution,

X = µ +
√

WAZ, (1)

where µ ∈ Rd is the location (vector), Σ = AA> for A ∈ Rd×k denotes the symmetric, positive
semidefinite scale (matrix) and W ∼ FW is a non-negative random variable independent of the
random vector Z ∼ Nk(0, Ik) (where Ik ∈ Rk×k denotes the identity matrix); see, for example,
(McNeil et al. 2015, Section 6.2) or (Hintz et al. 2020). Here, the random variable W can be thought
of as a shock mixing the normal Z, thus allowing X to have different tail behavior and dependence
structure than the special case of a multivariate normal.

The multivariate t distribution with ν > 0 degrees of freedom (dof) is also a special case
of (1), for W ∼ IG(ν/2, ν/2); a random variable (rv) W is said to follow an inverse-gamma
distribution with shape α > 0 and rate β > 0, notation W ∼ IG(α, β), if W has density fW(w) =

β−αw−α−1 exp(−1/(βw))/Γ(α) for w > 0 (here, Γ(x) =
∫ ∞

0 tx−1 exp(−t)dt denotes the gamma
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function). If W ∼ IG(ν/2, ν/2), then Xj ∼ tν(µj, Σjj), j = 1, . . . , d, so that all margins are univariate
t with the same dof ν. The t copula, which is the implicitly derived copula from X ∼ td(ν, 0, P) for
a correlation matrix P via Sklar’s theorem, is a widely used copula in risk management; see, e.g.,
Demarta and McNeil (2005). It allows one to model pairwise dependencies, including tail dependence,
flexibly via the correlation matrix P. When P = Id, all k-dimensional margins of X are identically
distributed. To overcome this limitation, one can allow different margins to have different dof. On a
copula level, this leads to the notion of grouped t copulas of Daul et al. (2003) and generalized t copulas
of Luo and Shevchenko (2010).

In this paper, we, more generally, define grouped normal variance mixtures via the
stochastic representation

X = µ + Diag(
√

W)AZ, (2)

where W = (W1, . . . , Wd) is a d-dimensional non-negative and comonotone random vector with
Wj ∼ FWj that is independent of Z. Denote by F←W (u) = inf{w ≥ 0 : FW(w) ≥ u} the quantile function
of a random variable W. Comonotonicity of the Wj implies the stochastic representation

W = (W1, . . . , Wd) = (F←W1
(U), . . . , F←Wd

(U)), U ∼ U(0, 1). (3)

If a d-dimensional random vector X satisfies (2) with W given as in (3), we use the notation
X ∼ gNVM(µ, Σ, FW ) where FW (w) = P(W ≤ w) for w ∈ Rd and the inequality is understood
component-wise.

As mentioned above, in the case of an (ungrouped) normal variance mixture distribution from (1),
the scalar random variable (rv) W can be regarded as a shock affecting all components of X. In the
more general setting considered in this paper where W is a vector of comonotone mixing rvs, different,
perfectly dependent random variables affect different margins of X. By moving from a scalar mixing
rv to a comonotone random vector, one obtains non-elliptical distributions well beyond the classical
multivariate t case, giving rise to flexible modeling of joint and marginal body and tail behaviors.
The price to pay for this generalization is significant computational challenges: Not even the density
of a grouped t distribution is available in closed form.

At first glance, the definition given in (2) does not indicate any “grouping” yet.
However, Equation (3) allows one to group components of the random vector X such that all
components within a group have the same mixing distribution. More precisely, let W be split into
S sub-vectors, i.e., W = (W1, . . . , WS) where Wk has dimension dk for k = 1, . . . , S and ∑S

k=1 dk = d.
Now let each Wk have stochastic representation Wk = (F←Wk

(U), . . . , F←Wk
(U)). Hence, all univariate

margins of the subvector Wk are identically distributed. This implies that all margins of the
corresponding subvector Xk are of the same type.

An example is the copula derived from X in (2) when FWk = IG (νk/2, νk/2) for k = 1, . . . , S;
this is the aforementioned grouped t copula. Here, different margins of the copula follow (potentially)
different t copulas with different dof, allowing for more flexibility in modeling pairwise dependencies.
A grouped t copula with S = d, that is when each component has their own mixing distribution,
was proposed in Venter et al. (2007) (therein called “individuated t copula”) and studied in more detail
in Luo and Shevchenko (2010) (therein called “t copula with multiple dof”). If S = 1, the classical t
copula with exactly one dof parameter is recovered.

For notational convenience, derivations in this paper are often done for the case S = d, so that the
FWj are all different; the case S < d, that is when grouping is present, is merely a special case where
some of the FWj are identical. That being said, we chose to keep the name “grouped” to refer to this
class of models so as to reflect the original motivation for this type of model, e.g., as in Daul et al. (2003),
where it is used to model the components of a portfolio in which there are subgroups representing
different business sectors.

Previous work on grouped t copulas and their corresponding distributions includes some
algorithms for the tasks needed to handle these models, but were mostly focused on demonstrating the
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superiority of this class of models over special cases such as the multivariate normal or t distribution.
More precisely, in Daul et al. (2003), the grouped t copula was introduced and applied to model an
internationally diversified credit portfolio of 92 risk factors split into 8 subgroups. It was demonstrated
that the grouped t copula is superior to both the Gaussian and t copula in regards to modeling the tail
dependence present in the data. Luo and Shevchenko (2010) also study the grouped t copula and, unlike
in Daul et al. (2003), allow group sizes of 1 (corresponding to S = d in our definition). They provide
calibration methods to fit the copula to data and furthermore study bivariate characteristics of the
grouped t copula, including symmetry properties and tail dependence.

However, to the best of our knowledge, there currently does not exist an encompassing
body of work providing all algorithms and formulas required to handle these copulas and their
corresponding distributions, both in terms of evaluating distributional quantities and in terms of
general fitting algorithms. In particular, not even the problem of computing the distribution and
density function of a grouped t copula has been addressed. Our paper fills this gap by providing
a complete set of algorithms for performing the main computational tasks associated with these
distributions and their associated copulas, and does so in an as automated way as possible. This is
done not only for grouped t copulas, but (in many cases) for the more general grouped normal variance
mixture distributions/copulas, which allow for even further flexibility in modeling the shock variables
W . Furthermore, we assume that the only available information about the distribution of the Wj are
the marginal quantile functions in the form of a “black box“, meaning that we can only evaluate these
quantile functions but have no mathematical expression for them (so that neither the density, nor the
distribution function of Wj are available in closed form).

Our work includes the following contributions: (i) we develop an algorithm to evaluate the
distribution function of a grouped NVM model. Our method only requires the user to provide a
function that evaluates the quantile function of the Wj through a black box. As such, different mixing
distributions can be studied by merely providing a quantile function without having to implement
an integration routine for the model at hand; (ii) as mentioned above, the density function for a
grouped t distribution does not exist in closed form, neither does it for the more general grouped
NVM case. We provide an adaptive algorithm to estimate this density function in a very general setting.
The adaptive mechanism we propose ensures the estimation procedure is precise even for points that
are far from the mean; (iii) to estimate Kendall’s tau and Spearman’s rho for a two-dimensional
grouped NVM copula, we provide a representation as an expectation, which in turn leads to an
easy-to-approximate two- or three-dimensional integral; (iv) we provide an algorithm to estimate the
copula and its density associated with the grouped t copula, and fitting algorithms to estimate the
parameters of a grouped NVM copula based on a dataset. While the problem of parameter estimation
was already studied in Daul et al. (2003) and Luo and Shevchenko (2010), the computation of the
copula density which is required for the joint estimation of all dof parameters has not been investigated
in full generality for arbitrary dimensions yet, which is a gap we fill in this paper.

The four items from the list of contributions described in the previous paragraph correspond to
Sections 3–6 of the paper. Section 2 includes a brief presentation of the notation used, basic properties
of grouped NVM distributions and a description of randomized quasi-Monte Carlo methods that are
used throughout the paper since most quantities of interest require the approximation of integrals.
Section 7 provides a discussion. The proofs are given in Section 8.

All our methods are implemented in the R package nvmix (Hofert et al. (2020)) and all numerical
results are reproducible with the demo grouped_mixtures.

2. Notation, Basic Properties and Tools

This section provides the necessary background, notations and tools needed throughout the
remainder of this paper. The first part addresses some properties of grouped normal variance mixtures,
such as mean, covariance and the relationship with elliptical distributions. The second part of this
section describes randomized quasi-Monte Carlo methods, which is the type of integration method we
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apply to approximate quantities that are expressed as expectations, such as the distribution function of
grouped normal variance mixtures.

2.1. Grouped Normal Variance Mixtures

To simplify the notation throughout the remainder of this paper, we use the shorthand notations
F←W (U) = (F←W1

(U), . . . , F←Wd
(U)), W D = Diag(W), W D(U) = Diag(F←W (U));

√
W

D
, (1/W)D as well as

(1/
√

W)D are defined similarly.
Many properties of grouped normal variance mixtures are derived by conditioning on the

d-dimensional random vector W , or equivalently by conditioning on the underlying univariate uniform
rv U. Indeed,

X |W ∼ Nd

(
µ,
√

W
D
Σ
√

W
D
)

or equivalently X | U ∼ Nd

(
µ,
√

W
D
(U)Σ

√
W

D
(U)

)
,

where Nd(µ, Σ) denotes the d-dimensional multivariate normal distribution with mean vector µ and
covariance matrix Σ. One can see that W “mixes“ the covariance matrix of a multivariate normal and
can be regarded as a shock affecting all components of X.

2.1.1. Mean and Covariance

If E(
√

W) exists, then E(X) = µ, and if E(W) < ∞, then cov(X) = E(
√

W
D
Σ
√

W
D
).

Furthermore, corr(X) = P, where P denotes the correlation matrix corresponding to Σ. If A = Id,
the (uncorrelated) components of X are independent if and only if all components of W are constant
with probability 1 and thus if X is multivariate normal; see (McNeil et al. 2015, Lemma 6.5).
Assuming k = d, the matrix A is typically the Cholesky factor computed from a given Σ.
Other decompositions of Σ into AA> for some A ∈ Rd×d can be obtained from the eigendecomposition
or singular-value decomposition.

2.1.2. Relationship with Elliptical Distributions

It is well known that normal variance mixtures, such as the multivariate normal and t distributions,
are elliptical. A d-dimensional random vector Y is said to have an elliptical distribution, denoted by
Y ∼ ELLd(µ, Σ, FR), if

Y d
= µ + RAS, (4)

where µ ∈ Rd, AA> = Σ and S ∼ U(Sd−1) independent of a non-negative rv R ∼ FR.
Here, Sd−1 = {x ∈ Rd : x>x = 1} denotes the unit sphere in Rd.

Let Y ∼ NVMd(µ, Σ, FW). Using the fact that Z/
√

Z>Z ∼ U(Sd−1) is independent of Z>Z ∼ χ2
d

for Z ∼ Nd(0, Id) (see, e.g., (Devroye 1986, Chapter 5)) it is easy to see from (4) that Y ∼ ELLd(µ, Σ, FR)

for R = WX̃ where W ∼ FW is independent of X̃2 ∼ χ2
d.

If X ∼ gNVMd(0, Id, FW), then X is in general not elliptical, unless FW1 = · · · = FWd . This can be
seen from (4), since the scalar radial rv R cannot be used to model comonotone shocks. Applying the
same principle used to define grouped normal variance mixtures in (2), one can define grouped elliptical
distributions via the stochastic representation

X d
= µ + Diag(R)AS, (5)

where R = (R1, . . . , Rd) satisfies that Rj
d
= F←Rj

(U)× FW(Ũ) for U, Ũ ind.∼ U(0, 1) and Rj ≥ 0 a.s.

If X ∼ gNVMd(µ, Σ, FW ), we can set FRj = FWj for j = 1, . . . , d and FW to be the distribution
function of a χd random variable (the square root of a χ2

d random variable). This shows that X is a
grouped elliptical distribution in the sense of (5). In this work we focus on the more tractable class of
grouped NVM distributions and do not further detail grouped elliptical distributions.
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2.2. Randomized quasi-Monte Carlo Methods

Many quantities of interest in this paper, such as the distribution function of a gNVM distribution,
can, after a suitable transformation, be expressed as

µ =
∫
(0,1)d

g(u)du, (6)

where d ∈ N can be large (e.g., µ = F(a, b) for large d; see (15) in the next section) or small
(e.g., d = 3 in (22)) and the integral cannot be computed explicitly. As a method that works flexibly for
small and large dimensions, one might consider Monte Carlo (MC) estimation, that is, estimate µ by

µ̂MC
n =

1
n

n

∑
i=1

g(Ui), U1, . . . , Un
ind.∼ U(0, 1)d,

whose asymptotic (1− α)-confidence interval (CI) can be approximated for sufficiently large n by[
µ̂MC

n − z1−α/2σ̂g/
√

n, µ̂MC
n + z1−α/2σ̂g/

√
n
]

,

where zα = Φ−1(α) and σ̂2
g = v̂ar(g(U)) = ∑n

i=1(g(Ui)− µ̂MC
n )2/(n− 1). An often superior alternative

to MC estimation are quasi-Monte Carlo (QMC) methods. Instead of averaging function values of
a random sample U1, . . . , Un, a low discrepancy point-set Pn = {v1, . . . , vn} ⊂ [0, 1)d is employed,
which aims at filling the unit hypercube in a more homogeneous way. To make error estimation easily
possible, one can randomize the point-set Pn in a way such that the points in the resulting point set,
say P̃n, are uniformly distributed over [0, 1]d while keeping the low discrepancy of the point set overall,
giving rise to randomized QMC (RQMC) methods. In our algorithms, we use a digitally-shifted
Sobol’ sequence as implemented in the function sobol(, randomize = "digital.shift") of the
R package qrng; see Hofert and Lemieux (2019). We remark that generating P̃n is even slightly faster
than the Mersenne Twister, which is R’s default (pseudo-)random number generator.

Given B independently randomized copies of Pn, say P̃n,b = {u1,b, . . . , un,b} for b = 1, . . . , B,
we construct B independent RQMC estimators of the form

µ̂RQMC

b,n =
1
n

n

∑
i=1

g(ui,b), b = 1, . . . , B, (7)

which are combined into the RQMC estimator.

µ̂RQMC
n =

1
B

B

∑
b=1

µ̂RQMC

b,n (8)

of µ. An approximate (1− α)-CI for µ can be estimated as[
µ̂RQMC

n − z1−α/2σ̂µ̂RQMC /
√

B, µ̂RQMC
n + z1−α/2σ̂µ̂RQMC

n
/
√

B
]

, (9)

where σ̂2
µ̂RQMC = ∑B

i=1(µ̂
RQMC

b,n − µ̂RQMC
n )2/(B− 1) is an unbiased estimator of var(µ̂RQMC

b,n ). One can compute

µ̂RQMC
n from (8) for some initial sample size n (e.g., n = 27) and iteratively increase the sample size

of each µ̂RQMC

b,n in (7) until the length of the CI in (9) satisfies a pre-specified error tolerance. In our
implementations, we use B = 15, an absolute default error tolerance ε = 0.001 (which can be changed
by the user) and z1−α/2 = 3.5 (so α ≈ 0.00047). By using µ̂RQMC

n as approximation for the true value of µ,
one can also consider relative instead of absolute errors.

Sometimes it is necessary to estimate log(µ) rather than µ; in particular, when µ is small.
For instance, if µ = f (x) where f (x) is the density of some random vector evaluated at x ∈ Rd, interest
may lie in log( f (x)) as this quantity is needed to compute the log-likelihood of a random sample
(which then may be optimized over some parameter space). When µ is small, it is typically not a good
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idea to use log(µ) ≈ log(µ̂RQMC
n ) directly, but rather to compute a numerically more robust estimator

for log(µ), a proper logarithm. Define the function LSE (for Logarithmic Sum of Exponentials) as

LSE(c1, . . . , cn) = log

(
n

∑
i=1

exp(ci)

)
= cmax + log

(
n

∑
i=1

exp(ci − cmax)

)
,

where c1, . . . , cn ∈ R and cmax = max{c1, . . . , cn}.
The sum inside the logarithm on the right side of this equation is bounded between 1 and n so

that the right side of this equation is numerically more robust than the left side.
Let ci,b = log(g(ui,b)) for i = 1, . . . , n and b = 1, . . . , B. An estimator numerically superior to

log(µ̂RQMC
n ) (but mathematically equivalent) is given by

µ̂RQMC

n,log = − log(B) + LSE(µ̂RQMC

1,n,log, . . . , µ̂RQMC

B,n,log), (10)

where

µ̂RQMC

b,n,log = − log(n) + LSE(c1,b, . . . , cn,b), b = 1, . . . , B.

Using

σ̂µ̂RQMC,log =

√√√√ 1
(B− 1)

B

∑
b=1

(
µ̂RQMC

b,n,log − µ̂RQMC

n,log

)2

the integration error can be estimated from the length of the CI in (9) as before.
For more details about (randomized) quasi-Monte Carlo methods and their applications in the

financial literature, see, e.g., Niederreiter (1992), Lemieux (2009), Glasserman (2013).

3. Distribution Function

Let −∞ ≤ a < b ≤ ∞ componentwise (entries ±∞ to be interpreted as the corresponding limits).
Then F(a, b) = P(a < X ≤ b) is the probability that the random vector X falls in the hyper-rectangle
spanned by the lower-left and upper-right endpoints a and b, respectively. If a = (−∞, . . . ,−∞),
we recover F(a, x) = F(x) = P(X1 ≤ x1, . . . , Xd ≤ xd) which is the (cumulative) distribution function
of X.

Assume wlog that µ = 0, otherwise adjust a, b accordingly. Then

F(a, b) = P(a <
√

W
D
AZ ≤ b) = E

[
P
(
(1/
√

W)D(U) a < AZ ≤ (1/
√

W)D(U) b |U
)]

= E
[
ΦΣ
(
(1/
√

W)D(U) a, (1/
√

W)D(U) b
)]

=
∫ 1

0
ΦΣ

(
(1/
√

W)D(u) a, (1/
√

W)D(u) b
)

du,
(11)

where ΦΣ(a, b) = P(a < Y ≤ b) for Y ∼ Nd(0, Σ). Note that the function ΦΣ(a, b) itself is
a d-dimensional integral for which no closed formula exists and is typically approximated via
numerical methods; see, e.g., Genz (1992).

Comonotonicity of the Wj allowed us to write F(a, b) as a (d + 1)-dimensional integral; had the
Wj a different dependence structure, this convenience would be lost and the resulting integral in (11)
could be up to 2d-dimensional (e.g., when all Wj are independent).

3.1. Estimation

As demonstrated in Section 2.1, we need to approximate

F(a, b) =
∫ 1

0
ΦΣ

(
(1/
√

W)D(u) a, (1/
√

W)D(u) b
)

du.
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In Hintz et al. (2020), randomized quasi-Monte Carlo methods have been derived to approximate
the distribution function of a normal variance mixture X ∼ NVMd(µ, Σ, FW) from (1). Grouped normal
variance mixtures can be dealt with similarly, thanks to the comonotonicity of the mixing random
variables in W .

In order to apply RQMC to the problem of estimating F(a, b), we need to transform F(a, b) to an
integral over the unit hypercube. To this end, we first address ΦΣ. Let C = (Cij)

d
i,j=1 be the Cholesky

factor of Σ (a lower triangular matrix such that CC> = Σ). We assume that Σ has full rank which
implies Cjj > 0 for j = 1, . . . , d. Genz (1992) (see also Genz and Bretz (1999 2002 2009)) uses a series
of transformations, relying on C being a lower triangular matrix, to write

ΦΣ(a, b) =
∫ b1

a1

· · ·
∫ bd

ad

1√
(2π)d|Σ|

exp

(
− x>Σ−1x

2

)
dx

= (ê1 − d̂1)
∫ 1

0
(ê2 − d̂2) · · ·

∫ 1

0
(êd − d̂d)dud−1 . . . du1,

(12)

where the d̂i and êi are recursively defined via

ê1 = Φ
(

b1

C11

)
, êi = êi(u1, . . . , ui−1) = Φ

 bi −∑i−1
j=1 CijΦ−1

(
d̂j + uj(êj − d̂j)

)
Cii

 , (13)

and d̂i is êi with bi replaced by ai for i = 1, . . . , d. Note that the final integral in (12) is
(d− 1)-dimensional.

Combining the representation (12) of ΦΣ with Equation (11) yields

F(a, b) =
∫
(0,1)d

g(u)du =
∫ 1

0
g1(u0)

∫ 1

0
g2(u0, u1)· · ·

∫ 1

0
gd(u0, . . . , ud−1)dud−1 . . . du0, (14)

where

g(u) =
d

∏
i=1

gi(u0, . . . , ui−1), gi(u0, . . . , ui−1) = ei − di, i = 1, . . . , d, (15)

for u = (u0, u1, . . . , ud−1) ∈ (0, 1)d. The ei are recursively defined by

e1 = e1(u0) = Φ

 b1

C11

√
F←W1

(u0)

 ,

ei = ei(u0, . . . , ui−1) = Φ

 1
Cii

 bi√
F←Wi

(u0)
−

i−1

∑
j=1

CijΦ−1(dj + uj(ej − dj))

 ,

(16)

for i = 2, . . . , d and the di are ei with bi replaced by ai for i = 1, . . . , d.
Summarizing, we were able to write F(a, b) as an integral over the d-dimensional unit hypercube.

Our algorithm to approximate F(a, b) consists of two steps:
First, a greedy re-ordering algorithm is applied to the inputs a, b, Σ. It re-orders the

components 1, . . . , d of a and b as well as the corresponding rows and columns in Σ in a way
that the expected ranges of gi in (15) are increasing with the index i for i = 1, . . . , d. Observe
that the integration variable ui is present in all remaining d − i + 1 integrals in (14) whose ranges
are determined by the ranges of g1, . . . , gi; reordering the variables according to expected ranges
therefore (in the vast majority of cases) reduces the overall variability of g (namely, var(g(U)) for
U ∼ U(0, 1)d). Reordering also makes the first variables “more important” than the last ones, thereby
reducing the effective dimension of the integrand. This is particularly beneficial for quasi-Monte
Carlo methods, as these methods are known to perform well in high-dimensional problems with low
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effective dimension; see, e.g., Caflisch et al. (1997), Wang and Sloan (2005). For a detailed description
of the method, see (Hintz et al. 2020, Algorithm 3.2) (with aj/µ√W replaced by aj/µ√W j

and similarly

for bj for j = 1, . . . , d to account for the generalization); similar reordering strategies have been
proposed in Gibson et al. (1994) for calculating multivariate normal and in Genz and Bretz (2002) for
multivariate t probabilities.

Second, an RQMC algorithm as described in Section 2.2 is applied to approximate the integral
in (14) with re-ordered a, b, Σ and FW . Instead of integrating g from (15) directly, antithetic variates
are employed so that effectively, the function g̃(u) = (g(u) + g(1− u))/2 is integrated.

The algorithm to estimate F(a, b) just described is implemented in the function pgnvmix() of the
R package nvmix.

3.2. Numerical Results

In order to assess the performance of our algorithm described in Section 3.1, we estimate the
error as a function of the number of function evaluations. Three estimators are considered. First,
the “Crude MC“ estimator is constructed by sampling X1, . . . , Xn

ind.∼ gNVM(µ, Σ, FW ) and estimating

P(X ≤ x) by µ̂MC
n = (1/n)∑n

i=1 1{Xi≤x}. The second and third estimator are based on the integrand g
from (15), which is integrated once using MC (“g (MC)”) and once using a randomized Sobol’ sequence
(“g (sobol)”). In either case, variable reordering is applied first.

We perform our experiments for an inverse-gamma mixture. As motivated in the introduction,
an important special case of (grouped) normal variance mixtures is obtained when the mixing
distribution is inverse-gamma. In the ungrouped case when X ∼ NVMd(µ, Σ, FW) with
W ∼ IG(ν/2, ν/2), the distribution of X is multivariate t (notation X ∼ td(ν, µ, Σ)) with density

f t
ν,µ,Σ(x) =

Γ((ν + d)/2)

Γ(ν/2)
√
(νπ)d|Σ|

(
1 +

D2(x; µ, Σ)
ν

)− ν+d
2

, x ∈ Rd. (17)

The distribution function of X ∼ td(ν, µ, Σ) does not admit a closed form; estimation of the latter
was discussed for instance in Genz and Bretz (2009), Hintz et al. (2020), Cao et al. (2020). The same
holds for a grouped inverse-gamma mixture model. If Wj ∼ IG(νj/2, νj/2) for j = 1, . . . , d, the random
vector X follows a grouped t distribution, denoted by X ∼ gtd(ν1, . . . , νd; µ, Σ) or by X ∼ gtd(ν, µ, Σ)
for ν = (ν1, . . . , νd). If 1 < S < d, denote by d1, . . . , dS the group sizes. In this case, we use the notation
X ∼ gtd(ν1, . . . , νS; d1, . . . , dS; µ, Σ) or X ∼ gtd(ν, d, µ, Σ) for d = (d1, . . . , dS). If S = 1, it follows that
X ∼ td(ν1, µ, Σ).

For our numerical examples to test the performance of our procedure for estimating F(a, b),
assume X ∼ gtd(ν, 0, P) for a correlation matrix P. We perform the experiment in d = 5 with
ν = (1.5, 2.5, . . . , 5.5) and in d = 20 with ν = (1, 1.25, . . . , 5.5, 5.75). The following is repeated 15 times:
Sample an upper limit b ∼ U(0, 3

√
d)d and a correlation matrix P (sampled based on a random Wishart

matrix via the function rWishart() in R). Then estimate P(X ≤ b) using the three aforementioned
methods using various sample sizes and estimate the error for the MC estimators based on a CLT
argument and for the RQMC estimator as described in Section 2.2. Figure 1 reports the average
absolute errors for each sample size over the 15 runs.

Convergence speed as measured by the regression coefficient α of log(ε̂) = α log(n) + c where ε̂

is the estimated error are displayed in the legend. As expected, the MC estimators have an overall
convergence speed of 1/

√
n; however, the crude estimator has a much larger variance than the MC

estimator based on the function g. The RQMC estimator (“g (sobol)”) not only shows much faster
convergence speed than its MC counterparts, but also a smaller variance.
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Figure 1. Estimated average errors over 15 replications. In each run and for each sample size, P(X ≤ b)
is estimated where X ∼ gNVMd(0, P, FW ) for a random correlation matrix P and a random upper limit
b. For d = 5 (left), Xj ∼ t0.5+j and for d = 20 (right), Xj ∼ t0.75+0.25j for j = 1, . . . , d.

4. Density Function

Let us now focus on the density of X ∼ gNVM(µ, Σ, FW ), where we assume that Σ has full rank
in order for the density to exist. As mentioned in the introduction, the density of X is typically not
available in closed form, not even in the case of a grouped t distribution. The same conditioning
argument used to derive (11) yields that the density of X ∼ gNVMd(µ, Σ, FW ) evaluated at x ∈ Rd can
be written as

fX(x) = E

 1√
(2π)d|

√
W

D
(U)Σ

√
W

D
(U)|

exp

−D2
(

x; µ,
√

W
D
(U)Σ

√
W

D
(U)

)
2


=

1∫
0

1√
(2π)d|Σ|∏d

i=1 F←Wi
(u)

exp

−D2
(

x; µ,
√

W
D
(u)Σ

√
W

D
(u)
)

2

 du =

1∫
0

h(u)du,

(18)

where D2(x; µ, Σ) = (x − µ)>Σ−1(x − µ) denotes the (squared) Mahalanobis distance of x ∈ Rd

from µ with respect to Σ and the integrand h(u) is defined in an obvious manner. Except for some
special cases (e.g., when all Wj are inverse-gamma with the same parameters), this integral cannot be
computed explicitly, so that we rely on numerical approximation thereof.

4.1. Estimation

From (18), we find that computing the density f (x) of X ∼ gNVMd(µ, Σ, FW ) evaluated at x ∈ Rd

requires the estimation of a univariate integral. As interest often lies in the logarithmic density
(or log-density) rather than the actual density (e.g., likelihood-based methods where the log-likelihood
function of a random sample is optimized over some parameter space), we directly consider the
problem of estimating log(µ) for µ =

∫ 1
0 h(u)du with h given in (18).

Since µ is expressed as an integral over (0, 1), RQMC methods to estimate log(µ) from Section 2.2
can be applied directly to the problem in this form. If the log-density needs to be evaluated at several
x1, . . . , xN , one can use the same point-sets P̃n,b and therefore the same realizations of the mixing
random vector W for all inputs. This avoids costly evaluations of the quantile functions F←Wj

.

Estimating log( f (x)) via RQMC as just described works well for input x of moderate size,
but deteriorates if x is far away from the mean. To see this, Figure 2 shows the integrand h for three
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different input x and three different settings for FW . If x is “large”, most of the mass is contained in a
small subdomain of (0, 1) containing the abscissa of the maximum of h. If an integration routine is not
able to detect this peak, the density is substantially underestimated. Further complication arises as
we are estimating the log-density rather than the density. Unboundedness of the natural logarithm
at 0 makes estimation of log(µ) for small µ challenging, both from a theoretical and a computational
point of view due to finite machine precision.
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Figure 2. Integrand values h for a 2-dimensional distribution with t margins and x = (0, 0) (left),
x = (5, 5) (middle) and x = (25, 25) (right).

In (Hintz et al. 2020, Section 4), an adaptive RQMC algorithm is proposed to efficiently estimate
the log-density of X ∼ NVMd(µ, Σ, FW). We generalize this method to the grouped case. The grouped
case is more complicated because the distribution is not elliptical, hence the density does not only
depend on x through D2(x, µ, Σ). Furthermore, the height of the (unique) maximum of h in the
ungrouped case can be easily computed without simulation, which helps the adaptive procedure
find the relevant region; in the grouped case, the value of the maximum is usually not available.
Lastly, S (as opposed to 1) quantile evaluations are needed to obtain one function value h(u); from a
run time perspective, evaluating these quantile functions is the most expensive part.

If x is “large”, the idea is to apply RQMC only in a relevant region (ul , ur) with argmaxu h(u) =:
u∗ ∈ (ul , ur). More precisely, given a threshold εth with 0 < εth < hmax = maxu∈(0,1) h(u), choose ul , ur

(l for “left” and r for “right”) with 0 ≤ ul ≤ u∗ ≤ ur ≤ 1 so that h(u) > εth if and only if u ∈ (ul , ur).
For instance, take

εth = 10log(hmax)/ log(10)−kth (19)

with kth = 10 so that εth is 10 orders smaller than hmax.
One can then apply RQMC (with a proper logarithm) in the region (ul , ur) (by replacing every

ui,b ∈ (0, 1) by u′i,b = ul + (ur − ul)ui,b ∈ (ul , ur)), producing an estimate for log
∫ ur

ul
h(u)du.

By construction, the remaining regions do not contribute significantly to the overall integral anyway,
so that a rather quick integration routine suffices here. Note that neither hmax, nor ul , ur are
known explicitly. However, hmax can be estimated from pilot-runs and ul , ur can be approximated
using bisections.

Summarizing, we propose the following method to estimate log( f (xi)), i = 1, . . . , N, for given
inputs x1, . . . , xN and error tolerance ε.

This algorithm is implemented in the function dgnvmix(, log = TRUE) in the R package nvmix,
which by default uses a relative error tolerance.

The advantage of the proposed algorithm is that only little run time is spent on estimating
“easy” integrals, thanks to the pilot run in Step 1. If n0 = 210 and B = 15 (the current default in the
nvmix package), this step gives 15 360 pairs (u, F←W (u)). These pairs give good starting values for the
bisections to find ul , ur. Note that no additional quantile evaluations are needed to estimate the less
important regions (0, ul) and (ur, 1).
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4.2. Numerical Results

Luo and Shevchenko (2010) are faced with almost the same integration problem when estimating
the density of a bivariate grouped t copula. They use a globally adaptive integration scheme
from Piessens et al. (2012) to integrate h. While this procedure works well for a range of inputs,
it deteriorates for input x with large components.

Consider first X ∼ td(ν, 0, Id) and recall that the density of X is known and given by (17);
this is useful to test our estimation procedure. As such, let X ∼ t2(ν = 6, 0, I2) and consider the
problem of evaluating the density of X at x ∈ {(0, 0), (5, 5), (25, 25), (50, 50)}. Some values of
the corresponding integrands are shown in Figure 2. In Table 1, true and estimated (log-)density
values are reported; once estimated using the R function integrate(), which is based on the
QUADPACK package of Piessens et al. (2012) and once using dgnvmix(), which is based on
Algorithm 1. Clearly, the integrate() integration routine is not capable of detecting the peak when
input x is large, yielding substantially flawed estimates. The estimates obtained from dgnvmix(),
however, are quite close to the true values even far out in the tail.

Algorithm 1: Adaptive RQMC Algorithm to Estimate log( f (x1)), . . . , log( f (xn)).
Given x1, . . . , xN , Σ, ε, εth, n0, estimate log( f (xl)), l = 1, . . . , N, via:

1. Compute µ̂RQMC

log f (xi),n0
with sample size n0 using the same random numbers for all input xi,

i = 1, . . . , N. Store all uniforms with corresponding quantile evaluations F←W in a list L.
2. If all estimates µ̂RQMC

log f (xi),n0
, i = 1, . . . , N, meet the error tolerance ε, go to Step 4. Otherwise let xs,

s = 1, . . . , N′ with 1 ≤ N′ ≤ N be the inputs whose error estimates exceed the error tolerance.
3. For each remaining input xs, s = 1, . . . , N′, do:

(a) Use all pairs (u, F←W (u)) in L to compute values of h(u) and set ĥmax = maxu∈L h(u). If
the largest value of h is obtained for the largest (smallest) u in the list L, set u∗ = 1
(u∗ = 0).

(b) If u∗ = 1, set ur = 1 and if u∗ = 0, set ul = 0. Unless already specified, use bisections to
find ul and ur such that ul < u∗ < ur and ul (ur) is the smallest (largest) u such that
h(u) > εth from (19) with hmax replaced by ĥmax. Starting intervals for the bisections can
be found from the values in L.

(c) If ul > 0, approximate log(
∫ ul

0 h(u)du) using a trapezoidal rule with proper logarithm
and knots u′1, . . . , u′m where u′i are those u’s in L satisfying u ≤ ul . Call the approximation
µ̂(0,ul)

(xs). If ul = 0, set µ̂(0,ul)
= −∞.

(d) If ur < 1, approximate log(
∫ 1

ur
h(u)du) using a trapezoidal rule with proper logarithm

and knots u′′1 , . . . , u′′p where u′′i are those u’s in L satisfying u ≥ ur. Call the
approximation µ̂(ur ,1)(xs). If ur = 0, set µ̂(ur ,1)(xs) = −∞.

(e) Estimate log(
∫ ur

ul
h(u)du) via RQMC. That is, compute µ̂RQMC

log f ,n from (10) where every
ui,b ∈ (0, 1) is replaced by u′i,b = ul + (ur − ul)ui,b ∈ (ul , ur). Increase n until the error
tolerance ε is met. Then set µ̂(ul ,ur) = log(ur − ul) + µ̂RQMC

log f ,n which estimates

log(
∫ ur

ul
h(u)du).

(f) Combine

µ̂RQMC

log f (xs)
= LSE

(
µ̂(0,ul)

(xs), µ̂(ul ,ur)(xs), µ̂(ur ,1)(xs)
)

4. Return µ̂RQMC
log f (xl)

, l = 1, . . . , N.
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Table 1. Estimated and true density values of a bivariate t distribution with 6 degrees of freedom.
Logarithmic values are in brackets.

x True Density Estimated Density (integrate()) Estimated Density (dgnvmix())

(0, 0) 1.59× 10−1 (−1.84) 1.59× 10−1 (−1.84) 1.59× 10−1 (−1.84)
(5, 5) 2.10× 10−5 (−10.77) 2.11× 10−5 (−10.77) 2.16× 10−5 (−10.74)
(10, 10) 1.15× 10−7 (−15.98) 4.47× 10−8 (−16.92) 1.16× 10−7 (−15.97)
(25, 25) 8.29× 10−11 (−23.21) 5.50× 10−23 (−51.25) 8.00× 10−11 (−23.25)
(50, 50) 3.28× 10−13 (−28.74) 3.26× 10−76 (−173.82) 3.13× 10−13 (−28.79)

The preceding discussion focused on the classical multivariate t setting, as the density is known
in this case. Next, consider a grouped inverse-gamma mixture model and let X ∼ gtd(ν, µ, Σ).
The density f gt

ν,µ,P of X ∼ gtd(ν, µ, Σ) is not available in closed form, so that here we indeed need
to rely on estimation of the latter. The following experiment is performed for X ∼ gt2(ν, 0, I2) with
ν = (3, 6) and for X ∼ gt10(ν, 0, I10) where ν = (3, . . . , 3, 6, . . . , 6) (corresponding to two groups of
size 5 each). First, a sample from a more heavy tailed grouped t distribution of size 2500 is sampled
(with degrees of freedom ν′ = (1, 2) and ν′ = (1, . . . , 1, 2, . . . , 2), respectively) and then the log-density
function of X ∼ gtd(ν, 0, Id) is evaluated at the sample. The results are shown in Figure 3.
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Figure 3. Estimated log-density of a grouped t distribution with ν = (3, 6) in d = 2 (left) and
ν = (3, . . . , 3, 6, . . . , 6) in d = 10 (right). Estimation with dgnvmix() was carried out using a relative
error tolerance of 0.01. The plot also shows the log-density function of td(3, 0, Id) and td(6, 0, Id)

for comparison.

It is clear from the plots that integrate() again gives wrong approximations to f (x) for input
x far out in the tail; for small input x, the results from integrate() and from dgnvmix() coincide.
Furthermore, it can be seen that the density function is not monotonic in the Mahalanobis distance
(as grouped normal mixtures are not elliptical anymore). The plot also includes the log-density
functions of an ungrouped d-dimensional t distribution with degrees of freedom 3 and 6, respectively.
The log-density function of the grouped mixture with ν = (3, 6) is not bounded by either; in fact,
the grouped mixture shows heavier tails than both the t distribution with 3 and with 6 dof.

5. Kendall tau and Spearman rho

Two widely used measures of association are the rank correlation coefficients Spearman’s
rho ρS and Kendall’s tau ρτ . For elliptical models, one can easily compute Spearman’s rho as a
function of the copula parameter ρ which can be useful in estimating the matrix P non-parametrically.
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For grouped mixtures, however, this is not easily possible. In this section, integral representations for
Spearman’s rho and Kendall’s tau in the general grouped NVM case are derived.

If X = (X1, X2) ∼ F is a random vector with continuous margins F1, F2, then ρS(X1, X2) =

ρ(F1(X1), F2(X2)) and ρτ(X1, X2) = P ((X1 −Y1)(X2 −Y2) > 0) − P ((X1 −Y1)(X2 −Y2) < 0),
where (Y1, Y2) ∼ F independent of (X1, X2) and ρ(X, Y) = cov(X, Y)/

√
var(X) var(Y) is the linear

correlation between X and Y. Both ρS and ρτ depend only on the copula of F.
If X ∼ ELL2(µ, Σ, FR) is elliptical and ρ = Σ12/

√
Σ11Σ22, then

ρτ(X1, X2) =
2
π

arcsin(ρ); (20)

see (Lindskog et al. 2003, Theorem 2). This formula holds only approximately for grouped normal
variance mixtures. In Daul et al. (2003), an expression was derived for Kendall’s tau of bivariate,
grouped t copulas. Their result is easily extended to the more general grouped normal variance
mixture case; see Section 8 for the proof.

Proposition 1. Let X ∼ gNVM2(µ, Σ, FW ) and ρ = Σ12/
√

Σ11Σ22. Then

ρτ(X1, X2) =
2
π
E

arcsin

ρ
F←W1

(U)F←W2
(U) + F←W1

(Ũ)F←W2
(Ũ)√

(F←W1
(U)2 + F←W1

(Ũ)2)(F←W2
(U)2 + F←W2

(Ũ)2)

 , (21)

where U, Ũ ind.∼ U(0, 1).

Next, we address Spearman’s rho ρS. For computing ρS, it is useful to study P(X1 > 0, X2 > 0).
If X ∼ ELL2(µ, P, FR) where P is a correlation matrix with P12 = ρ and P(X = 0) = 0, then

P(X1 > 0, X2 > 0) =
1
4
+

arcsin(ρ)
2π

,

see, e.g., (McNeil et al. 2015, Proposition 7.41). Using the same technique, we can show that this result
also holds for grouped normal variance mixtures; see Section 8 for the proof.

Proposition 2. Let X ∼ gNVM2(µ, Σ, FW ) and ρ = Σ12/
√

Σ11Σ22. Then

P(X1 > 0, X2 > 0) =
1
4
+

arcsin(ρ)
2π

.

Remark 1. If Y is a grouped elliptical distribution in the sense of (5), a very similar idea can be used to
show that P(Y1 > 0, Y2 > 0) = 1/4 + arcsin(ρ)/(2π).

Next, we derive a new expression for Spearman’s rho ρS for bivariate grouped normal variance
mixture distributions; see Section 8 for the proof.

Proposition 3. Let X ∼ gNVM2(0, P, FW ) and ρ = P12. Then

ρS(X1, X2) =
6
π
E

arcsin

ρ

√√√√ F←W1
(U)F←W2

(U)

(F←W1
(U) + F←W1

(Ũ))(F←W2
(U) + F←W2

(Ū))

 , (22)

where U, Ũ, Ū ind.∼ U(0, 1).

Numerical Results

Let X ∼ gNVM2(0, P, FW ). It follows from Proposition 1 that
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ρτ(X1, X2) =
∫

(0,1)2

gτ(u)du, gτ(u) =
2
π

arcsin

ρ
F←W1

(u1)F←W2
(u1) + F←W1

(u2)F←W2
(u2)√

(F←W1
(u1)2 + F←W1

(u2)2)(F←W2
(u1)2 + F←W2

(u2)2)

 .

Similarly, Proposition 3 implies that

ρS(X1, X2) =
∫

(0,1)3

gρ(u)du, gρ(u) =
6
π

arcsin

ρ

√√√√ F←W1
(u1)F←W2

(u1)

(F←W1
(u1) + F←W1

(u2))(F←W2
(u1) + F←W2

(u3))

 .

Hence, both ρτ(X1, X2) and ρS(X1, X2) can be expressed as integrals over the d-dimensional unit
hypercube with d ∈ {2, 3} so that RQMC methods as described in Section 2.2 can be applied directly to
the problem in this form to estimate ρτ(X1, X2) and ρS(X1, X2), respectively. This is implemented in the
function corgnvmix() (with method = "kendall" or method = "spearman") of the R package nvmix.

As an example, we consider three different bivariate grouped t distributions with
ν ∈ {(1, 2), (4, 8), (1, 5), (4, 20), (1, ∞), (4, ∞)} and plot estimated ρτ as a function of ρ in Figure 4.
The elliptical case (corresponding to equal dof) is included for comparison. When the pairwise dof
are close and ρ is not too close to 1, the elliptical approximation is quite satisfactory. However, when
the dof are further apart there is a significant difference between the estimated ρτ and the elliptical
approximation. This is highlighted in the plot on the right side, which displays the relative difference
(ρell

τ − ρτ)/ρell
τ . Intuitively, it makes sense that the approximation deteriorates when the dof are further

apart, as the closer the dof, the “closer” is the model to being elliptical.
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Figure 4. Kendall’s tau for a bivariate grouped t distribution for various ρ estimated via corgnvmix()
(left); relative difference of ρτ wrt the elliptical case (right).

6. Copula Setting

So far, the focus of this paper was on grouped normal variance mixtures. This section addresses
grouped normal variance mixture copulas, i.e., the copulas derived from X ∼ gNVM(FW , µ, Σ) via
Sklar’s theorem. The first part addresses grouped NVM copulas in full generality and provides
formulas for the copula, its density and the tail dependence coefficients. The second part details the
important special case of inverse-gamma mixture copulas, that is copulas derived from a grouped
t distribution, X ∼ gtd(ν, µ, Σ). The third part discusses estimation of the copula and its density
whereas the fourth part answers the question of how copula parameters can be fitted to a dataset.
The last part of this section includes numerical examples.
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6.1. Grouped Normal Variance Mixture Copulas

Copulas provide a flexible tool for modeling dependent risks, as they allow one to model the
margins separately from the dependence between the margins. Let X ∼ F be a d-dimensional random
vector with continuous margins F1, . . . , Fd. Consider the random vector U given by U = (U1, . . . , Ud) =

(F1(X1), . . . , Fd(Xd)); note that Uj ∼ U(0, 1) for j = 1, . . . , d. The copula C of F (or X) is the distribution
function of the margin-free U, i.e.,

C(u) = P (F1(X1) ≤ u1, . . . , Fd(Xd) ≤ ud) = F (F←1 (u1), . . . , F←d (ud)) , u = (u1, . . . , ud) ∈ [0, 1]d.

If F is absolutely continuous and the margins F1, . . . , Fd are strictly increasing and continuous,
the copula density is given by

c(u) =
∂

∂u1 . . . ∂ud
C(u1, . . . , ud) =

f
(

F←1 (u1), . . . , F←d (ud)
)

d
∏
j=1

f j

(
F←j (uj)

) , u = (u1, . . . , ud) ∈ (0, 1)d, (23)

where f denotes the (joint) density of F and f j is the marginal density of Fj. For more about copulas
and their applications to risk management, see, e.g., Embrechts et al. (2001); Nelsen (2007).

Since copulas are invariant with respect to strictly increasing marginal transformations, we may
wlog assume that µ = 0, Σ = P is a correlation matrix and we may consider X ∼ gNVMd(0, P, FW ).
We find using (11) that the grouped normal variance mixture copula is given by

CgNVM
P,FW

(u) = F (F←1 (u1), . . . , F←d (ud)) =
∫ 1

0
ΦΣ ((1/

√
W)D(u)x) du, x = (F←1 (u1), . . . , F←d (ud)), (24)

and its density can be computed using (18) as

cgNVM
P,FW

(u) =
f
(

F←1 (u1), . . . , F←d (ud)
)

d
∏
i=1

fi
(

F←i (ui)
)

=

1∫
0

√
(2π)d|Σ|∏d

j=1 F←Wj
(u)
−1

exp
(
−D2(x;µ,

√
W

D
(u)Σ

√
W

D
(u))

2

)
du

d
∏
j=1

f j

(
F←j (uj)

) ,

(25)

where Fj and f j denote the distribution function and density function of Xj ∼ NVM1(0, 1, FWi ) for

j = 1, . . . , d; directly considering log(cgNVM
P,FW

(u)) also makes (25) more robust to compute.
In the remainder of this subsection, some useful properties of gNVM copulas are derived.

In particular, we study symmetry properties, rank correlation and tail dependence coefficients.

6.1.1. Radial Symmetry and Exchangeability

A d-dimensional random vector X is radially symmetric about µ ∈ Rd if X − µ
d
= µ − X.

It is evident from (2) that X ∼ gNVMd(µ, Σ, FW ) is radially symmetric about its location vector µ.
In layman’s terms this implies that jointly large values of X are as likely as jointly small values of X.
Radial symmetry also implies that cgNVM

P,FW
(u) = cgNVM

FW
(1− u).

If (XΠ(1), . . . , XΠ(d))
d
= (X1, . . . , Xd) for all permutations Π of {1, . . . , d}, the random vector X is

called exchangeable. The same definition applies to copulas. If X ∼ gNVMd(0, Id, FW ), then X is in
general not exchangeable unless FW1 = · · · = FWd in which case X ∼ NVMd(0, P, FW1). The lack of

exchangeability implies that cgNVM
Id ,FW

(u1, . . . , ud) 6= cgNVM
Id ,FW

(uΠ(1), . . . , uΠ(d)), in general.



Risks 2020, 8, 103 16 of 26

6.1.2. Tail Dependence Coefficients

Consider a bivariate CgNVM
P,FW

copula. Such copula is radially symmetric, hence the lower and upper
tail dependence coefficients are equal, i.e., λl = λu =: λ ∈ [0, 1], where

λl = lim
q→0+

P(U2 ≤ q | U1 ≤ q) = lim
q→0+

C(q, q)
q

,

for (U1, U2) ∼ CgNVM
P,FW

. In the case where only the quantile functions F←Wj
are available, no simple

expression for λ is available. In Luo and Shevchenko (2010), λ is derived for grouped t copulas,
as will be discussed in Section 6.2. Following the arguments used in their proof, the following lemma
provides a new expression for λ in the more general normal variance mixture case.

Proposition 4. The tail dependence coefficient λ for a bivariate CgNVM
P,FW

with ρ = P12 satisfies

λ = lim
q→0+

I(q, 1, 2) + I(q, 2, 1),

where for i, j ∈ {1, 2},

I(q, i, j) =
1∫

0

φ
(

F←i (q)/
√

F←Wi
(u)
)

√
F←Wi

(u) fi(F←i (q))
Φ

 F←j (q)/
√

F←Wj
(u)− ρF←i (q)/

√
F←Wi

(u)√
1− ρ2

 du.

6.2. Inverse-Gamma Mixtures

If X ∼ td(ν, 0, P) for a positive definite correlation matrix P, the copula of X extracted via Sklar’s
theorem is the well known t copula, denoted by Ct

ν,P. This copula is given by

Ct
ν,P(u) =

t−1
ν (u1)∫
−∞

· · ·
t−1
ν (ud)∫
−∞

Γ((ν + d)/2)

Γ(ν/2)
√
(νπ)d|P|

(
1 +

x>P−1x
ν

)− ν+d
2

dx, u = (u1, . . . , ud) ∈ [0, 1]d, (26)

where tν and t−1
ν denote the distribution function and quantile function of a univariate standard

t distribution. Note that (26) is merely the distribution function of X ∼ td(ν, 0, P) evaluated at the
quantiles t−1

ν (u1), . . . , t−1
ν (ud). The copula density ct

ν,P(u) is

ct
ν,P(u) = f t

ν,0,P(t
−1
ν (u1), . . . , t−1

ν (ud))

(
d

∏
j=1

ftν(t
−1
ν (uj))

)−1

, u ∈ [0, 1]d.

The (upper and lower) tail dependence coefficient λ of the bivariate Ct
ν,P with ρ = P12 is well

known to be

λ = 2tν+1

(
−
√
(ν + 1)(1− ρ)/(1 + ρ)

)
;

see (Demarta and McNeil 2005, Propositon 1). The multivariate t distribution being elliptical implies
the formula ρτ = 2 arcsin(ρ)/π for Kendall’s tau.

A closed formula for Spearman’s rho is not available, but our Proposition 3 implies that

ρS =
6
π
E
(

arcsin
(

ρW
√
(W + W̃)(W + W̄)

−1))
, W, W̃, W̄ ind.∼ IG(ν/2, ν/2).

The same formula was given in (McNeil et al. 2015, Proposition 7.44).
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Next, consider a grouped inverse-gamma mixture model. If X ∼ gtd(ν, 0, P), the copula of X is
the grouped t copula, denoted by Cgt

ν,P. From (24),

Cgt
ν,P(u) =

∫ 1

0
ΦP ((1/

√
W)D(u)x) du, x = (t−1

ν1
(u1), . . . , t−1

νd
(ud),

and the copula density follows from (25) as

cgt
ν,P(u) = f gt

ν,0,P

(
t−1
ν1

(u1), . . . , t−1
νd

(ud)
)( d

∏
j=1

ftνj

(
t−1
νj

(uj)
))−1

.

The (lower and upper) tail dependence coefficient λ of Cgt
ν1,ν2,P is given by

λ = Ω(ρ, ν1, ν2) + Ω(ρ, ν2, ν1),

Ω(ρ, ν1, ν2) =

∞∫
0

fχ2
ν1+1

(t)Φ
(
−(Bν1,ν2 tν1/(2ν2) − ρ

√
t)(1− ρ2)−1/2

)
dt,

Bν1,ν2 =

(
2ν2/2Γ((1 + ν2)/2)
2ν1/2Γ((1 + ν1)/2)

)1/ν2

;

(27)

see (Luo and Shevchenko 2010, Equation (26)). Here, fχ2
ν

denotes the density of a χ2
ν distribution.

Finally, consider rank correlation coefficients for grouped t copulas. No closed formula for either
Kendall’s tau or Spearman’s rho exists in the grouped t case. An exact integral representation of ρτ

for Cgt
ν1,ν2,P follows from Proposition 1. No substantial simplification of (21) therein can be achieved

by considering the special case when Wj ∼ IG(νj/2, νj/2). In order to compute ρτ , one can either
numerically integrate (21) (as will be discussed in the next subsection) or use the approximation
ρτ ≈ 2

π arcsin(ρ) which was shown to be a “very accurate” approximation in Daul et al. (2003).
For Spearman’s rho, no closed formula can be derived either, not even in the ungrouped t copula

case, so that the integral in (22) in Proposition 3 needs be computed numerically, as will be discussed
in the next subsection.

The discussion in this section highlights that moving from a scalar mixing rv W (as in the classical
t case) to comonotone mixing rvs W1, . . . , WS (as in the grouped t case) introduces challenges from a
computational point of view. While in the classical t setting, the density, Kendall’s tau and the tail
dependence coefficient are available in closed form, all of these quantities need to be estimated in the
more general grouped setting. Efficient estimation of these important quantities is discussed in the
next subsection.

6.3. Estimation of the Copula and Its Density

Consider a d-dimensional normal variance mixture copula CgNVM
P,FW

. From (24), it follows that

CgNVM
P,FW

(u) = FX(F←1 (u1), . . . , F←d (ud)), u = (u1, . . . , ud) ∈ [0, 1]d,

where FX is the distribution function of X ∼ gNVM(0, P, FW ) and Fj is the distribution function of
NVM1(0, 1, FWj) for j = 1, . . . , d. If the margins are known (as in the case of an inverse-gamma mixture),
evaluating the copula is no harder than evaluating the distribution function of X so that the methods
described in Section 3.1 can be applied.

When the mixing rvs Wj are only known through their quantile functions in the form of a
“black box”, one needs to estimate the marginal quantiles Fj of F first. Note that

Fj(x) = P(Xj ≤ x) =
∫
(0,1)

Φ
(

x
/√

F←Wj
(u)
)

du, x ∈ R, (28)



Risks 2020, 8, 103 18 of 26

which can be estimated using RQMC. The quantile F←j (uj) can then be estimated by numerically
solving Fj(x) = u for x, for instance using a bisection algorithm or Newton’s method.

The general form of gNVM copula densities was given in (25). Again, if the margins are known,
the only unknown quantity is the joint density fX which can be estimated using the adaptive
RQMC procedure proposed in Section 4.1. If the margins are not available, F←j can be estimated
as discussed above. The marginal densities f j can be estimated using an adaptive RQMC algorithm
similar to the one developed in Section 4.1; see also (Hintz et al. 2020, Section 4).

Remark 2. Estimating the copula density is the most challenging problem discussed in this paper if we assume
that FW is only known via its marginal quantile functions. Evaluating the copula density cgNVM

P,FW
at one

u ∈ [0, 1]d requires estimation of:

• the marginal quantiles F←j (uj), which involves estimation of Fj and then numerical root finding, for each
j = 1, . . . , d,

• the marginal densities evaluated at the quantiles f j(F←j (uj)) for j = 1, . . . , d. This involves estimation of
the density of a univariate normal variance mixture,

• the joint density evaluated at the quantiles f (F←1 (u1), . . . , F←d (ud)), which is another one dimensional
integration problem.

It follows from Remark 2 that, while estimation of cgNVM
P,FW

is theoretically possible with the methods
proposed in this paper, the problem becomes computationally intractable for large dimensions d. If the
margins are known, however, our proposed methods are efficient and accurate, as demonstrated
in next subsection, where we focus on the important case of a grouped t model. Our methods to
estimate the copula and the density of Cgt

ν,k,P are implemented in the functions pgStudentcopula()
and dgStudentcopula() in the R package nvmix.

6.4. Fitting Copula Parameters to a Dataset

In this subsection, we discuss estimation methods for grouped normal variance mixture copulas.
Let X1, . . . , Xn be independent and distributed according to some distribution with CgNVM

P,FW
as

underlying copula, with Xi = (Xi,1, . . . , Xi,d) and group sizes d1, . . . , dS with ∑S
j=1 dj = d. Furthermore,

let νk be (a vector of) parameters of the kth mixing distribution for k = 1, . . . , S; for instance, in the
grouped t case, νk = νk is the degrees of freedom for group k. Finally, denote by ν = (ν1, . . . , νS)

the vector consisting of all mixing parameters. Note that we assume that the group structure
is given. We are interested in estimating the parameter vector ν and the matrix P of the underlying
copula CgNVM

P,FW
.

In Daul et al. (2003), this problem was discussed for the grouped t copula where dk ≥ 2 for
k = 1, . . . , S. In this case, all subgroups are t copulas and Daul et al. (2003) suggest estimating the
dof ν1, . . . , νS separately in each subgroup. Computationally, this is rather simple as the density of
the ungrouped t copula is known analytically. Luo and Shevchenko (2010) consider the grouped
t copula with S = d, so dk = 1 for k = 1, . . . , d. Since any univariate margin of a copula is
uniformly distributed, separate estimation is not feasible. As such, Luo and Shevchenko (2010)
suggest estimating ν1, . . . , νS jointly by maximizing the copula-likelihood of the grouped mixture.
In both references, the matrix P is estimated by estimating pairwise Kendall’s tau and using the
approximate identity ρτ(Xi, Xj) ≈ 2 arcsin(ρi,j)/π for i 6= j. Although we have shown in Section 5
that in some cases, this approximation could be too crude, our assessment is that in the context of
the fitting examples considered in the present section, this approximation is sufficiently accurate.
Luo and Shevchenko (2010) also consider joint estimation of (P, ν) by maximizing the corresponding
copula likelihood simultaneously over all d + d(d − 1)/2 parameters. Their numerical results in
d = 2 suggest that this does not lead to a significant improvement. In large dimensions d > 2,
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the optimization problem becomes intractable, however, so that the first non-parametric approach for
estimating P is likely to be preferred.

We combine the two estimation methods, applied to the general case of a grouped normal
variance mixture, in Algorithm 2.

Algorithm 2: Estimation of the Copula Parameters ν and P of CgNVM
P,FW

.

Given iid X1, . . . , Xn, estimate ν and P of the underlying CgNVM
P,FW

as follows:

1. Estimation of P. Estimate Kendall’s tau ρτ(Xi, Xj) for each pair 1 ≤ i < j ≤ d. Use the approximate
identity ρτ(Xi, Xj) ≈ 2 arcsin(ρi,j)/π to find the estimates ρi,j. Then combine the estimates ρi,j
into a correlation matrix P̂, which may have to be modified to ensure positive definiteness.

2. Transformation to pseudo-observations. If necessary, transform the data X1, . . . , Xn to
pseudo-observations U1, . . . , Un from the underlying copula, for instance, by setting
Ui,j = Ri,j/(n + 1) where Ri,j is the rank of Xi,j among X1,j, . . . , Xn,j.

3. Initial parameters. Maximize the copula log-likelihood for each subgroup k with dk ≥ 2 over their
respective parameters separately. That is, if U(k)

i = (Ui,dk−1+1, . . . , Ui,dk−1+dk
) (where d0 = 0)

denotes the sub-vector of Ui belonging to group k, and if P̂(k) is defined accordingly, solve the
following optimization problems:

ν̂
(k)
0 = argmax l(ν(k); U(k)

1 , . . . , U(k)
n ), (29)

l(ν(k); U(k)
1 , . . . , U(k)

n ) =
n

∑
i=1

log cgNVM
P̂(k),FW

(U(k)
i ), ∀k : dk ≥ 2.

For “groups” with dk = 1, choose the initial estimate ν̂
(k)
0 from prior/expert experience or as a

hard-coded value.

4. Joint estimation. With initial estimates ν̂
(k)
0 , k = 1, . . . , S at hand, optimize the full copula

likelihood to estimate ν; that is,

ν̂ = argmax l(ν; U1, . . . , Un), l(ν; U1, . . . , Un) =
n

∑
i=1

log cgNVM
P̂,FW

(Ui). (30)

The method proposed in Daul et al. (2003) returns the initial estimates obtained in Step 3.
A potential drawback of this approach is that it fails to consider the dependence between the
groups correctly. Indeed, the dependence between a component in group k1 and a component in
group k2 (e.g., measured by Kendall’s tau or by the tail-dependence coefficient) is determined by
both ν(k1) and ν(k2). As such, these parameters should be estimated jointly.

Note that the copula density is not available in closed form, not even in the grouped t case,
so that each call of the likelihood function in (30) requires the approximation of n integrals. This poses
numerical challenges, as the estimated likelihood function is typically “bumpy”, having many local
maxima due to estimation errors.

If FW is only known via its marginal quantile functions, as is the general theme of this paper,
the optimization problem in (29) and in (30) become intractable (unless d and n are small) due to the
numerical challenges involved in the estimation of the copula density; see also Remark 2. We leave the
problem of fitting grouped normal variance mixture copulas in full generality (where the distribution
of the mixing random variables Wj is only specified via marginal quantile functions in the form of
a “black box”) for future research. Instead, we focus on the important case of a grouped t copula.
Here, the quantile functions F←j (of Xj) and the densities f j are known for j = 1, . . . , d, since the
margins are all t distributed. This substantially simplifies the underlying numerical procedure. Our
method is implemented in the function fitgStudentcopula() of the R package nvmix. The numerical
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optimizations in Steps 3 and 4 are passed to the R optimizer optim() and the copula density is
estimated as in Section 6.3.

Example 1. Consider a 6-dimensional grouped t copula, with three groups of size 2 each and degrees of
freedom 1, 4 and 7, respectively. We perform the following experiment: We sample a correlation matrix P using
the R function rWishart(). Then, for each sample size n ∈ {250, 500, . . . , 1750, 2000}, we repeat sampling
X1, . . . , Xn 15 times, and in each case, estimate the degrees of freedom once using the method in Daul et al. (2003)
(i.e., by estimating the dof in each group separately) and once using our method from the previous section. The true
matrix P is used in the fitting, so that the focus is really on estimating the dof. The results are displayed in
Figure 5. The estimates on the left are obtained for each group separately; on the right, the dof were estimated
jointly by maximizing the full copula likelihood (with initial estimates obtained as in the left figure). Clearly, the
jointly estimated parameters are much closer to their true values (which are known in this simulation study and
indicated by horizontal lines), and it can be confirmed that the variance decreases with increasing sample size n.
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Figure 5. Estimated dof for a 6-dimensional grouped t copula with 3 groups of size 2 each.
(left) Estimates are obtained by fitting the t copulas of each group separately; (right) the joint
copula-likelihood of the grouped t copula is maximized.

Example 2. Let us now consider the negative logarithmic returns of the constituents of the Dow Jones 30
index from 1 January 2014 to 31 December 2015 (n = 503 data points obtained from the R package qrmdata
of Hofert and Hornik (2016)) and, after deGARCHing, fit a grouped t copula to the standardized residuals.
We choose the natural groupings induced by the industry sectors of the 30 constituents and merge groups of
size 1 so that 9 groups are left. Figure 6 displays the estimates obtained for various specifications of maxit, the
maximum number of iterations for the underlying optimizer (note that the current default of optim() is as low
as maxit = 500). The points for maxit = 0 correspond to the initial estimates found from separately fitting
t copulas to the groups. The initial estimates differ significantly from the maximum likelihood estimates
(MLEs) obtained from the joint estimation of the dof. Note also that the MLEs change with increasing
maxit argument, even though they do not change drastically anymore if 1500 or more iterations are used.
Note that the initial parameters result in a much more heavy tailed model than the MLEs. Figure 6 also displays
the estimated log-likelihood of the parameters found by the fitting procedure. The six lines correspond to the
estimated log-likelihood using six different seeds. It can be seen that estimating the dof jointly (as opposed
to group-wise) yields a substantially larger log-likelihood, whereas increasing the parameter maxit (beyond a
necessary minimum) only gives a minor improvement.
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Figure 6. Estimated dof for a grouped t copula fitted to the standardized residuals obtained from the
Dow Jones 30 dataset from 1 January 2014 to 31 December 2015 after deGARCHing (left); estimated
log-likelihood of the estimated dof on the middle and right plot.

In order to examine the impact of the different estimates on the underlying copula in terms of its
tail behavior, Figure 7 displays the probability C(u, . . . , u) estimated using methods from Section 6.3
as a function of u; in a risk management context, C(u, . . . , u) is the probability of a jointly large loss,
hence a rare event. An absolute error tolerance of 10−7 was used to estimate the copula. The figure
also includes the corresponding probability for the ungrouped t copula, for which the dof were
estimated to be 6.3. Figure 7 indicates that the initial estimates yield the most heavy tailed model.
This seems reasonable since all initial estimates for the dof range between 0.9 and 5.3 (with average 2.8).
The models obtained from the MLEs exhibit the smallest tail probability, indicating that these are the
least heavy tailed models considered here. This is in line with Figure 6, which shows that the dof are
substantially larger than the initial estimates. The ungrouped t copula is more heavy tailed than the
fitted grouped one (with MLEs) but less heavy tailed than the fitted grouped one with initial estimates.
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Figure 7. Estimated shortfall probability C(u, . . . , u) for grouped and ungrouped t copulas fitted
to the standardized residuals obtained from the Dow Jones 30 dataset from 1 January 2014 to
31 December 2015 after deGARCHing.

This example demonstrates that it is generally advisable to estimate the dof jointly when grouped
modeling is of interest, rather than group-wise as suggested in Daul et al. (2003). Indeed, in this
particular example, the initial estimates give a model that substantially overestimates the risk of jointly
large losses. As can be seen from Figure 6, optimizing an estimated log-likelihood function is not at
all trivial, in particular when many parameters are involved. Indeed, the underlying optimizer never
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detected convergence, which is why the user needs to carefully assess which specification of maxit
to use. We plan on exploring more elaborate optimization procedures which perform better in large
dimensions for this problem in the future.

Example 3. In this example, we consider the problem of mean-variance (MV) portfolio optimization in the
classical Markowitz (1952) setting. Consider d assets, and denote by µt and Σt the expected return vector on
the risky assets in excess of the risk free rate and the variance-covariance (VCV) matrix of asset returns in the
portfolio at time t, respectively. We assume that an investor chooses the weights xt of the portfolio to maximize
the quadratic utility function U(xt) = x>t µt − γ

2 x>t Σtxt, where in what follows we assume the risk-aversion
parameter γ = 1. When there are no shortselling (or other) constraints, one finds the optimal xt as xt = Σ−1

t µt.
As in Low et al. (2016), we consider relative portfolio weights, which are thus given by

wt =
Σ−1

t µt

|1>Σ−1
t µt|

.

As such, the investor needs to estimate µt and Σt. If we assume no shortselling, i.e., xt,j ≥ 0 for
j = 1, . . . , d, the optimization problem can be solved numerically, for instance using the R package quadprog of
Turlach et al. (2019).

Assume we have return data for the d assets stored in vectors yt, t = 1, . . . , T, and a sampling window
0 < M < T. We perform an experiment similar to Low et al. (2016) and compare a historical approach with a
model-based approach to estimate µt and Σt. The main steps are as follows:

1. In each period t = M + 1, . . . , T, estimate µt and Σt using the M previous return data yi,
i = t−M, . . . , t− 1.

2. Compute the optimal portfolio weights wt and the out-of-sample return rt = w>t yt.

In the historical approach, µt and Σt in the first step are merely computed as the sample mean vector and
sample VCV matrix of the past return data. Our model-based approach is a simplification of the approach used in
Low et al. (2016). In particular, to estimate µt and Σt in the first step, the following is done in each time period:

1a. Fit marginal ARMA(1, 1) − GARCH(1, 1) models with standardized t innovations to yi,
i = t−M, . . . , t− 1.

1b. Extract the standardized residuals and fit a grouped t copula to the pseudo-observations thereof.
1c. Sample n vectors from the fitted copula, transform the margins by applying the quantile function of the

respective standardized t distribution and based on these n d-dimensional residuals, sample from the fitted
ARMA(1, 1)−GARCH(1, 1) giving a total of n simulated return vectors, say y′i , i = 1, . . . , n.

1d. Estimate µt and Σt from y′i , i = 1, . . . , n.

The historical and model-based approaches each produce T −M out-of-sample returns from which we can
estimate the certainty-equivalent return (CER) and the Sharpe-ratio (SR) as

ĈER = µ̂r −
1
2

σ̂2
r and ŜR =

µ̂r

σ̂r
,

where µ̂r and σ̂r denote the sample mean and sample standard deviation of the T −M out-of-sample returns; see
also Tu and Zhou (2011). Note that larger, positive values of the SR and CER indicate better portfolio performance.

We consider logarithmic returns of the constituents of the Dow Jones 30 index from 1 January 2013 to
31 December 2014 (n = 503 data points obtained from the R package qrmdata of Hofert and Hornik (2016)),
a sampling window of M = 250 days, n = 104 samples to estimate µt and Σt in the model-based approach,
a risk-free interest rate of zero and no transaction costs. We report (in percent) the point estimates µ̂r, ĈER and
ŜR for the historical approach and for the model-based approach based on an ungrouped and grouped t copula in
Table 2 assuming no shortselling. To limit the run time for this illustrative example, the degrees of freedom for the
grouped and ungrouped t copula are estimated once and held fixed throughout all time periods t = M + 1, . . . , T.
We see that the point estimates for the grouped model exceed the point estimates for the ungrouped model.
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Table 2. Estimated returns, certainty-equivalent returns (CERs) and Sharpe-ratios (SRs) (all in
percentage points) of a mean-variance (MV) investor under three investment rules assuming no
short-sales: Model-based with grouped and ungrouped t copula and historical.

µ̂r ĈER ŜR

historical 0.045 0.041 5.356
ungrouped t 0.075 0.071 8.678

grouped t 0.083 0.079 9.474

7. Discussion and Conclusions

We introduced the class of grouped normal variance mixtures and provided efficient algorithms
to work with this class of distributions: Estimating the distribution function and log-density function,
estimating the copula and its density, estimating Spearman’s rho and Kendall’s tau and estimating
the parameters of a grouped NVM copula given a dataset. Most algorithms (and functions in the
package nvmix) merely require one to provide the quantile function(s) of the mixing distributions.
Due to their importance in practice, algorithms presented in this paper (and their implementation in
the R package nvmix) are widely applicable in practice.

We saw that the distribution function (and hence, the copula) of grouped NVM distributions
can be efficiently estimated even in high dimensions using RQMC algorithms. The density function
of grouped NVM distributions is in general not available in closed form, not even for the grouped
t distribution, so one relies on its estimation. Our proposed adaptive algorithm is capable of estimating
the log-density even in high dimensions accurately and efficiently. Fitting grouped normal variance
mixture copulas, such as the grouped t copula, to data is an important yet challenging task due to
lack of a tractable density function. Thanks to our adaptive procedure for estimating the density, the
parameters can be estimated jointly in the special case of a grouped t copula. As was demonstrated in
the previous section, it is indeed advisable to estimate the dof jointly, as otherwise one might severely
over- or underestimate the joint tails.

A computational challenge that we plan to further investigate is the optimization of the estimated
log-likelihood function, which is currently slow and lacks a reliable convergence criterion that can
be used for automation. Another avenue for future research is to study how one can, for a given
multivariate dataset, assign the components to homogeneous groups.

8. Proofs

Proof of Proposition 1. This is an immediate application of a proposition proven in
(Daul et al. 2003, p. 6).

Proof of Proposition 2. Assume that Σ = P is a correlation matrix with P12 = ρ (otherwise standardize
the margins). We can write

X1 =
√

W1Z1, X2 =
√

W2

(
ρZ1 +

√
1− ρ2Z2

)
,

where Z = (Z1, Z2) ∼ N2(0, I2) and Wj = F←Wj
(U) for j = 1, 2 and U ∼ U(0, 1).

Let S = (S1, S2) ∼ U(S2−1) be uniformly distributed on the unit circle. Such random vector S can be
expressed via the stochastic representation

S1 = cos(Θ), S2 = sin(Θ), Θ ∼ U([−π, π)).

Note that Z/
√

Z>Z ∼ U(S2−1) is independent of Z>Z ∼ χ2
2. Let W2

3 ∼ χ2
2 be independent of S,

W1, W2 and set W ′j =
√

WjW3 for j = 1, 2. Then
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X1 = W ′1S1 = W ′1 cos(Θ), X2 = W ′2

(
ρS1 +

√
1− ρ2S2

)
= W ′2

(
ρ cos(Θ) +

√
1− ρ2 sin(Θ)

)
.

Finally, setting φ = arcsin ρ and noting that P(W ′j > 0) = 1 for j = 1, 2 allows us to compute
P(X1 > 0, X2 > 0) via

P(X1 > 0, X2 > 0) = P
(

W ′1 cos(Θ) > 0, W ′2

(
ρ cos(Θ) +

√
1− ρ2 sin(Θ)

)
> 0

)
= P (cos(Θ) > 0, sin(φ) cos(Θ) + cos(φ) sin(Θ) > 0) = P (cos(Θ) > 0, sin(Θ + φ) > 0)

= P (Θ ∈ (−π/2, π/2) ∩ (−φ, π − φ)) =
π/2 + φ

2π
.

Substituting φ = arcsin(ρ) gives the result.

Proof of Proposition 3. We follow (McNeil et al. 2015, Proposition 7.44), where a similar result was
shown for X ∼ NVM2(µ, Σ, FW). Since X has continuous margins, we can write

ρS(X1, X2) = 6P((X1 − X̃1)(X2 − X2) > 0)− 3, (31)

where X̃1 and X2 are random variables with X̃1
d
= X1 and X2

d
= X2 and where (X1, X2), X̃1 and X2 are

all independent; see (McNeil et al. 2015, Proposition 7.34).
Let Wj = F←Wj

(U) for j = 1, 2, W̃1 = F←W1
(Ũ) and W2 = F←W2

(U) for U, Ũ, U ind.∼ U(0, 1).

Furthermore, let Z̃, Z ind.∼ N(0, 1), independent of Z ∼ N2(0, P). Finally, set

X1 =
√

W1Z1, X2 =
√

W2Z2, X̃ =
√

W̃1Z̃, X =

√
W2Z.

and define the random vector Y = (Y1, Y2) via

Y1 = X1 − X̃ =
√

W1Z1 −
√

W̃1Z̃, Y2 = X2 − X =
√

W2Z2 −
√

W2Z.

From (31) it follows that we need to compute P(Y1Y2 > 0). Conditional on U, Ũ, U, we find

Y | U, Ũ, U ∼ N2

(
0,

(
W1 + W̃1

√
W1W2ρ√

W1W2ρ W2 + W2

))
.

Since the multivariate normal distribution is a special case of a gNVM distribution (obtained with
W1 = · · · = Wd = c for some c > 0), Proposition 2 can be applied to compute

ρS(X1, X2) = 6P
(
(X1 − X̃1)(X2 − X2) > 0

)
− 3 = 3

(
E
(
2P(Y1Y2 > 0 | U, Ũ, U)

)
− 1
)

= 3
(
E
(
4P(Y1 > 0, Y2 > 0 | U, Ũ, U)

)
− 1
)

=
6
π
E

arcsin

ρ

√√√√ F←W1
(U)F←W2

(U)

(F←W1
(U) + F←W1

(Ũ))(F←W2
(U) + F←W2

(Ū))

 .

Proof of Proposition 4. For u, q ∈ (0, 1), let xj(u, q) = F←j (q)/
√

F←Wj
(u) for j = 1, 2. Writing C

instead of CgNVM
P,FW

and Φρ for the distribution function of Z ∼ N2(0, P), we get C(q, q) =∫ 1
0 Φρ(x1(u, q), x2(u, q))du, which implies that

λ = lim
q→0+

1
q

C(q, q) = lim
q→0+

∂

∂q

∫ 1

0
Φρ (x1(u, q), x2(u, q)) du.

Taking the derivative with respect to q gives
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∂

∂q

∫ 1

0
Φρ (x1(u, q), x2(u, q)) du =

∫ 1

0

∂Φρ

∂x1

∂x1

∂q
du +

∫ 1

0

∂Φρ

∂x2

∂x2

∂q
du. (32)

We find ∂xi
∂q =

(√
F←Wi

(u) fi
(

F←i (q)
))−1

for i = 1, 2. Furthermore,

∂

∂x1
Φρ(x1, x2) =

∂

∂x1
P(Z1 ≤ x1, Z2 ≤ x2) = φ(x1)P(Z2 ≤ x2 | Z1 = x1) = φ(x1)Φ

(
x2 − ρx1√

1− ρ2

)
;

the derivative ∂
∂x2

Φρ(x1, x2) can be found analogously by swapping the roles of Z1 and Z2. Plugging the
derivatives into (32) and taking the limit gives the result in the statement.

Author Contributions: Methodology, E.H., M.H., C.L.; software, E.H., M.H., C.L.; validation, E.H., M.H.,
C.L.; formal analysis, E.H., M.H., C.L.; data curation, E.H., M.H.; writing–original draft preparation, E.H.;
writing–review and editing, E.H., M.H., C.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by NSERC Discovery Grant RGPIN-2020-04897 and NSERC Discovery
Grant RGPIN-238959.

Acknowledgments: We thank five anonymous reviewers for their comments and suggestions, which helped us
improve this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

Caflisch, Russel, William Morokoff, and Art Owen. 1997. Valuation of Mortgage Backed Securities Using Brownian
Bridges to Reduce Effective Dimension. Los Angeles: Department of Mathematics, University of California.

Cao, Jian, Marc Genton, David Keyes, and George Turkiyyah. 2020. Exploiting low rank covariance structures for
computing high-dimensional normal and student-t probabilities. arXiv, arXiv:2003.11183.

Daul, Stéphane, Enrico De Giorgi, Filip Lindskog, and Alexander McNeil. 2003. The Grouped t-Copula with
an Application to Credit Risk. SSRN 1358956. Available online: https://ssrn.com/abstract=1358956
(accessed on 21 August 2020).

Demarta, Stefano, and Alexander McNeil. 2005. The t copula and related copulas. International Statistical Review
73: 111–29. [CrossRef]

Devroye, Luc. 1986. Non-Uniform Random Variate Generation. New York: Springer.
Embrechts, Paul, Filip Lindskog, and Alexander McNeil. 2001. Modelling Dependence with Copulas. Rapport

Technique. Zurich: Département de Mathématiques, Institut Fédéral de Technologie de Zurich.
Genz, Alan 1992. Numerical computation of multivariate normal probabilities. Journal of Computational and

Graphical Statistics 1: 141–49.
Genz, A., and Frank Bretz. 1999. Numerical computation of multivariate t-probabilities with application to power

calculation of multiple contrasts. Journal of Statistical Computation and Simulation 63: 103–17. [CrossRef]
Genz, Alan, and Frank Bretz. 2002. Comparison of methods for the computation of multivariate t probabilities.

Journal of Computational and Graphical Statistics 11: 950–71. [CrossRef]
Genz, Alan, and Frank Bretz. 2009. Computation of Multivariate Normal and t Probabilities. Berlin: Springer, vol. 195.
Gibson, Garvin Jarvis, Chris Glasbey, and David Elston. 1994. Monte Carlo evaluation of multivariate normal

integrals and sensitivity to variate ordering. In Advances in Numerical Methods and Applications. River Edge:
World Scientific Publishing, pp. 120–26.

Glasserman, Paul 2013. Monte Carlo Methods in Financial Engineering. Berlin: Springer, vol. 53.
Hintz, Erik, Marius Hofert, and Christiane Lemieux. 2020. Normal Variance Mixtures: Distribution, Density and

Parameter Estimation. arXiv, arXiv:1911.03017.
Hofert, Marius, Erik Hintz, and Christiane Lemieux. 2020. nvmix: Multivariate Normal Variance Mixtures. R Package

Version 0.0.5. Available online: https://cran.r-project.org/package=nvmix (accessed on 21 August 2020).

https://ssrn.com/abstract=1358956
http://dx.doi.org/10.1111/j.1751-5823.2005.tb00254.x
http://dx.doi.org/10.1080/00949659908811962
http://dx.doi.org/10.1198/106186002394
https://cran.r-project.org/package=nvmix


Risks 2020, 8, 103 26 of 26

Hofert, Marius, Kurt Hornik, and Alexander McNeil. 2016. qrmdata: Data Sets for Quantitative Risk Management
Practice. R Package Version 2016-01-03-1. Available online: https://cran.r-project.org/package=qrmdata
(accessed on 21 August 2020).

Hofert, Marius, and Christiane Lemieux. 2019. qrng: (Randomized) Quasi-Random Number Generators. R Package
Version 0.0.7. Available online: https://cran.r-project.org/package=qrng (accessed on 21 August 2020).

Lemieux, Christiane. 2009. Monte Carlo and Quasi-Monte Carlo Sampling. Berlin: Springer.
Lindskog, Filip, Alexander Mcneil, and Uwe Schmock. 2003. Kendall’s tau for elliptical distributions. In Credit

Risk. Berlin: Springer, pp. 149–56.
Low, Rand, Robert Faff, and Kjersti Aas. 2016. Enhancing mean–variance portfolio selection by modeling

distributional asymmetries. Journal of Economics and Business 85: 49–72. [CrossRef]
Luo, Xiaolin, and Pavel Shevchenko. 2010. The t copula with multiple parameters of degrees of freedom:

Bivariate characteristics and application to risk management. Quantitative Finance 10: 1039–54. [CrossRef]
Markowitz, Harry. 1952. Portfolio selection. Journal of Finance 7: 77–91.
McNeil, Alexander, Rüdiger Frey, and Paul Embrechts. 2015. Quantitative Risk Management: Concepts, Techniques

and Tools. Princeton: Princeton University Press.
Nelsen, Roger. 2007. An Introduction to Copulas. Berlin: Springer.
Niederreiter, Harald. 1992. Random Number Generation and quasi-Monte Carlo Methods. Philadelphia: SIAM, vol. 63.
Piessens, Robert, Elise de Doncker-Kapenga, Christoph Überhuber, and David Kahaner. 2012. Quadpack:

A Subroutine Package for Automatic Integration. Berlin: Springer, vol. 1.
Tu, Jun, and Guofu Zhou. 2011. Markowitz meets talmud: A combination of sophisticated and naive

diversification strategies. Journal of Financial Economics 99: 204–15. [CrossRef]
Turlach, Berwin, Andreas Weingessel, and Cleve Moler. 2019. quadprog: Functions to Solve Quadratic Programming

Problems. R Package Version 1.5.8. Available online: https://cran.r-project.org/package=quadprog (accessed on
21 August 2020).

Venter, Gary, Jack Barnett, Rodney Kreps, and John Major. 2007. Multivariate copulas for financial modeling.
Variance 1: 103–19.

Wang, Xiaoqun, and Ian. Sloan. 2005. Why are high-dimensional finance problems often of low effective
dimension? SIAM Journal on Scientific Computing 27: 159–83. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://cran.r-project.org/package=qrmdata
https://cran.r-project.org/package=qrng
http://dx.doi.org/10.1016/j.jeconbus.2016.01.003
http://dx.doi.org/10.1080/14697680903085544
http://dx.doi.org/10.1016/j.jfineco.2010.08.013
https://cran.r-project.org/package=quadprog
http://dx.doi.org/10.1137/S1064827503429429
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Notation, Basic Properties and Tools
	Grouped Normal Variance Mixtures
	Mean and Covariance
	Relationship with Elliptical Distributions

	Randomized quasi-Monte Carlo Methods

	Distribution Function
	Estimation
	Numerical Results

	Density Function
	Estimation
	Numerical Results

	Kendall tau and Spearman rho
	Copula Setting
	Grouped Normal Variance Mixture Copulas
	Radial Symmetry and Exchangeability
	Tail Dependence Coefficients

	Inverse-Gamma Mixtures
	Estimation of the Copula and Its Density
	Fitting Copula Parameters to a Dataset

	Discussion and Conclusions
	Proofs
	References

