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a b s t r a c t

Outer power (OP) transformations of Archimedean generators are suggested to increase
the modeling flexibility and statistical fitting capabilities of classical Archimedean
copulas restricted to a single parameter. For OP-transformed Archimedean copulas,
a formula for computing tail dependence coefficients is obtained, as well as two
feasible OP Archimedean copula estimators are proposed and their properties studied by
simulation. For hierarchical extensions of OP-transformed Archimedean copulas under
the sufficient nesting condition, a new construction principle, efficient sampling and
parameter estimation for models based on a single one-parameter Archimedean family
are addressed. Special attention is paid to the case where the sufficient nesting condition
simplifies to two types of restrictions on the corresponding parameters. By simulation,
the convergence rate and standard errors of the proposed estimator are studied. Excel-
lent tail fitting capabilities of OP-transformed hierarchical Archimedean copula models
are demonstrated in a risk management application. The results show that the OP trans-
formation is able to improve the statistical fit of exchangeable Archimedean copulas,
particularly of those that cannot capture upper tail dependence or strong concordance,
as well as the statistical fit of hierarchical Archimedean copulas, especially in terms of
tail dependence and higher dimensions. Given how comparably simple it is to include OP
transformations into existing exchangeable and hierarchical Archimedean copula models,
OP transformations provide an attractive trade-off between computational effort and
statistical improvement.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Archimedean copulas (ACs) are dependence models frequently used in finance, insurance and risk management,
.g., for stress testing. In contrast to elliptical copulas such as the prominent Gaussian and t copulas, ACs allow for

asymmetry in the joint tails, which is of particular interest, e.g., in risk management (McNeil et al., 2015, Chapter 5)
or hydrology (Genest and Favre, 2007; Liu et al., 2018). ACs are also appreciated for their simple analytical form, for
efficient sampling techniques and for likelihood-based inference; see, for example, Hofert (2011) and Hofert et al. (2013).

However, as follows from their construction, all multivariate margins of an AC are the same, which limits the
applicability of ACs, particularly in high dimensions. Also, a vast majority of known ACs are one-parametric, which, on the
one hand, allows for the aforementioned advantages, but, on the other hand, also causes limitations. The single parameter

∗ Corresponding author.
E-mail addresses: gorecki@opf.slu.cz (J. Górecki), marius.hofert@uwaterloo.ca (M. Hofert), ostap.okhrin@tu-dresden.de (O. Okhrin).
https://doi.org/10.1016/j.csda.2020.107109
0167-9473/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).

https://doi.org/10.1016/j.csda.2020.107109
http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csda.2020.107109&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:gorecki@opf.slu.cz
mailto:marius.hofert@uwaterloo.ca
mailto:ostap.okhrin@tu-dresden.de
https://doi.org/10.1016/j.csda.2020.107109
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


J. Górecki, M. Hofert and O. Okhrin Computational Statistics and Data Analysis 155 (2021) 107109

o

a
m

m
e
d
c
m
p
s

2

2

a
N

a

2

g
t
G

determines all properties of an AC, and for many Archimedean families it is related in a one-to-one relationship to the
strength of the dependence, e.g., expressed by Kendall’s tau; see Table 1 in Genest and Rivest (1993). It is thus natural
that this parameter is frequently estimated with a method-of-moments-like estimator such that the implied measure of
association is close to its empirical counterpart. However, this often results in a model that fits well in its body, but not
so much in its tails.

To alleviate these limitations, several approaches have been introduced in the literature. Our work particularly focuses
n the following two:

1. Given a one-parameter family of ACs, a way to construct a two-parameter outer power AC (OPAC) family is proposed
in Nelsen (2006, Theorem 4.5.1 (note that this reference uses the name exterior instead of outer)). With the
additional parameter, one can fix, e.g., the model’s Kendall’s tau (τ ) to a specific value to keep a good fit in the
body while fine-tuning both parameters to get a good fit in one of the tails. Such a property is crucial, e.g., in risk
management applications (Hofert et al., 2013; McNeil et al., 2015);

2. Joe (1997, pp. 87) proposed a way to construct hierarchical (or nested) ACs (HACs) by nesting several ACs into each
other. This allows for different multivariate margins (so an asymmetric model) and extends the one-parameter
model to allow for up to (d − 1)-parameters. However, to this date, all contributions in the literature addressing
HACs’ estimation have been restricted to the case where all ACs nested in a HAC are one-parametric; see Okhrin
et al. (2013a), Górecki et al. (2016, 2017b) to mention a few.

Our work merges these two approaches, resulting in hierarchical outer power ACs (HOPACs), which are copulas that
llow for different multivariate margins with extra flexibility added by the outer power (OP) transformation; further
otivation is provided in Appendix A.
This paper is organized as follows. Section 2 recalls basic concepts and notation concerning ACs and the OP transfor-

ation. Efficient sampling and estimation strategies for HOPACs are then developed in Section 3, and several HOPAC
stimators are studied by means of simulations in Section 4. Excellent abilities of OP transformed AC models in tail
ependence modeling are demonstrated in an application from risk management covered in Section 5. Section 6 provides
oncluding remarks and ideas for future research. In Appendix B.1, the relationship of the OP transformation to three
easures of association is recalled. Also, a new result simplifying the computation of the tail dependence coefficients is
roposed. An efficient strategy for sampling OPACs is recalled in Appendix B.2 and feasibility of two OPAC estimators is
tudied by simulation in Appendix B.3.

. The exchangeable case

.1. Archimedean copulas

An Archimedean generator, or simply generator, is a continuous, decreasing function ψ : [0,∞) → [0, 1] that is
strictly decreasing on [0, inf{t : ψ(t) = 0}] and satisfies ψ(0) = 1 and limt→∞ ψ(t) = 0. If (−1)kψ (k)(t) ≥ 0 for
ll k ∈ N, t ∈ [0,∞), then ψ is called completely monotone (c.m.). As follows from Kimberling (1974) or McNeil and
ešlehová (2009), given a c.m. generator ψ , the function Cψ : [0, 1]d → [0, 1] defined by

Cψ (u1, . . . , ud) = ψ{ψ−1(u1)+ · · · + ψ−1(ud)} (1)

is a d-dimensional Archimedean copula (d-AC) for any d ≥ 2, where ψ−1 is the generalized inverse of ψ given by
ψ−1(s) = inf{t ∈ [0,∞] | ψ(t) = s}, s ∈ [0, 1]. By Bernstein (1929), c.m. generators are Laplace–Stieltjes transforms
of distributions on the positive real line, a well-known fact exploited when sampling ACs via their frailties with the
algorithm of Marshall and Olkin (1988). In what follows, we assume all appearing generators to be c.m., which allows us
to conveniently construct and sample hierarchical versions of ACs considered later, independently of their dimensions.

Table 1 shows the popular Archimedean generators of Ali–Mikhail–Haq (A), Clayton (C), Frank (F), Gumbel (G) and Joe
(J), which will serve as working examples throughout the paper. Also note that ψ(a,θ ) will denote the generator of a family
with a real parameter θ ∈ Θa ⊆ [0,∞).

.2. Outer power transformation

Theorem 4.5.1 in Nelsen (2006) implies that for any β ∈ [1,∞) and any generator ψ of a 2-AC

ψβ (t) = ψ(t1/β ) (2)

enerates again a proper 2-AC. Parametric families generated in this way are referred to as outer power families, where
he unintuitive use of ‘‘outer’’ relates to the fact that they were originally named with reference to generator inverses.
iven a one-parameter generator ψ(a,θ ), its OP transform with parameter β ∈ [1,∞) is denoted by ψ(a,θ,β). A well-known

example of an OPAC family is the generalized Clayton copula (denoted BB1 in Joe (2014, pp. 190)), which, as mentioned
before, encompasses as special cases the three one-parameter families from Nelsen (2006, pp. 116–119) denoted 4.2.1

(Clayton), 4.2.12 and 4.2.14.
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Table 1
Five popular families of c.m. one-parameter generators. For each family, the table shows
its family label a, parameter range Θa ⊆ [0,∞), form of ψ(a,θ ) , and the lower- and upper-
tail dependence coefficients λl := limt↓0 Cψ (t, t)/t and λu := limt↓0{1−2t+Cψ (t, t)}/(1−t),
where β ∈ [1,∞) is the OP transform parameter.
a Θa ψ(a,θ )(t) λl λu

Ali–Mikhail–Haq (A) [0, 1) (1− θ )/(et − θ ) 0 2− 21/β

Clayton (C) (0,∞) (1+ t)−1/θ 2−1/(θβ) 2− 21/β

Frank (F) (0,∞) − log{1−(1−e−θ )e−t }
θ

0 2− 21/β

Gumbel (G) [1,∞) e−t
1/θ

0 2− 21/(θβ)

Joe (J) [1,∞) 1− (1− e−t )1/θ 0 2− 21/(θβ)

Fig. 1. (a) A tree-like representation of Cψ1,ψ2 (u1, u2, u3) = Cψ1 {u1, Cψ2 (u2, u3)}. (b) An undirected tree (V, E), V = {1, . . . , 5}, E =
{1, 5}, {2, 4}, {3, 4}, {4, 5}} derived for the tree in Fig. 1a. (c) Our representation of C(V,E,Ψ )(u1, u2, u3) = CΨ [5]{u1, CΨ [4](u2, u3)}, where Ψ [4] =
(a4,θ4,β4) , and Ψ [5] = ψ(a5,θ5,β5) and (V, E) is given by Fig. 1b.

Note that the Gumbel family has generator ψ(G,θ ) = e−t
1/θ

, so OP Gumbel copulas are simply Gumbel copulas with
arameter θβ instead of θ since

ψ(G,θ,β)(t) = ψ(G,θ )(t1/β ) = e−(t
1/β )1/θ

= e−t
1/(θβ)
= ψ(G,θβ),

here θ ∈ [1,∞). For this reason, this family is not further considered for studying the properties of the OP
ransformation.

Appendix B.1 summarizes the impact of the OP transformation on three measures of association: Kendall’s tau,
he lower- and the upper-tail dependence coefficient. This includes a proposition for computing the tail dependence
oefficients under regular variation. An efficient strategy for sampling OPACs is recalled in Appendix B.2 and feasibility of
wo OPAC estimators is studied via simulations in Appendix B.3.

. The nested case

.1. Hierarchical Archimedean copulas

To construct a hierarchical Archimedean copula (HAC), one replaces some arguments of an AC by other (H)ACs, see Joe
1997, pp. 87). One also needs to verify that a proper copula results from such a construction, typically by verifying
sufficient nesting condition. For example, given two 2-ACs Cψ1 and Cψ2 , a 3-variate HAC, denoted by Cψ1,ψ2 , can be
onstructed via

Cψ1,ψ2 (u1, u2, u3) = Cψ1{u1, Cψ2 (u2, u3)}; (3)

ee Fig. 1a for a tree representation of such a construction.
Using the language of graph theory, an undirected tree (V, E) related to this representation can be derived by

numerating all of its nodes. Here, V is a set of nodes {1, . . . ,m}, m ∈ N, and E ⊂ V × V . For example, in Fig. 1b,
V = {1, . . . , 5} and E = {{1, 5}, {2, 4}, {3, 4}, {4, 5}}. The leaves {1, 2, 3} correspond to the HAC variables u1, u2 and
3, whereas the non-leaf nodes {4, 5}, called forks, correspond to the ACs (uniquely determined by the corresponding
enerators) nested in Cψ1,ψ2 . When deriving a particular (undirected) tree for the tree representation in Fig. 1a, we assume
hat

1. the leaves 1, 2 and 3 in Fig. 1b correspond to u1, u2 and u3 in Fig. 1a, respectively, and that
2. the fork indices 4 and 5 are set arbitrarily (we could have also derived an undirected tree with fork indices 4 and

5 switched). In order to enumerate the forks uniquely, we set them according to the corresponding Kendall’s tau,
meaning that the root, which has always the lowest Kendall’s tau, is numbered by m, the node with the second
lowest Kendall’s tau by m− 1, etc.
3



J. Górecki, M. Hofert and O. Okhrin Computational Statistics and Data Analysis 155 (2021) 107109
As each fork corresponds to a generator, we represent this relationship using a labeling function Ψ , which maps the forks
to the corresponding generators. In our example,

Ψ [4] = ψ2 and Ψ [5] = ψ1. (4)

Using this notation, (3) can be rewritten as

CΨ [5]{u1, CΨ [4](u2, u3)}. (5)

Observe that the indices of the arguments of the inner copula CΨ [4] correspond to the set of children of fork 4, i.e., to
{2, 3}, and the indices of the arguments of the copula CΨ [5] correspond to the set of children of fork 5, i.e., to {1, 4}
where the number 4 represents the copula CΨ [4](u2, u3). This implies that one can express Cψ1,ψ2 (u1, u2, u3) in terms of
the triplet (V, E,Ψ ). Following this observation, we denote a HAC in an arbitrary dimension by C(V,E,Ψ ); see also Definition
3.1 in Górecki et al. (2017b). Finally, let Ψ [i] = ψ(ai,θi,βi), i ∈ {4, 5} be two OPAC generators. The graphical representation
depicted in Fig. 1c fully determines the parametric HAC C(V,E,Ψ ) = Cψ1,ψ2 given by (3) and (4), i.e., its structure, the
families of its generators and its parameters.

To guarantee that a proper copula results from nesting ACs, we will use the sufficient nesting condition (SNC) proposed
by Joe (1997, pp. 87) and McNeil (2008). It states that if for all parent–child pairs of forks (i, j) appearing in a nested
construction C(V,E,Ψ ) the first derivative of the composition Ψ [i]−1 ◦ Ψ [j] is c.m., then C(V,E,Ψ ) is a copula. This SNC has
three important practical advantages, which are that (1) its expression in terms of the corresponding parameters is known
in most cases, (2) this expression does not depend on the copula dimension d for all pairs for which it is known, and,
most importantly, (3) efficient sampling strategies based on a stochastic representation for HACs satisfying the SNC are
known; see, for example, Hofert (2012). Note that there also exists a weaker sufficient condition, see Rezapour (2015),
which however lacks those three advantages and is thus of limited practical use.

3.2. Constructing and sampling HOPACs

Starting with a simple trivariate nested copula structure, e.g., the one depicted in Fig. 1, we can sample from it according
to the algorithm proposed by McNeil (2008). Note that one can easily apply the same strategy to the general d-variate
HAC (d-HAC) case with d ≥ 3. This sampling algorithm, extends the one of Marshall and Olkin (1988) for ACs, and, here,
requires to sample the two following random variables:

1. V1 ∼ LS−1[ψ̊1] and
2. V12 ∼ LS−1[exp(−V1ψ̊

−1
1 ◦ ψ̊2)],

where the rings emphasize that the generators are OP transformed, say ψ̊1 = ψ(a1,θ1,β1) and ψ̊2 = ψ(a2,θ2,β2), where a1
and a2 are labels of c.m. families of one-parameter generators, θ1 ∈ Θa1 , θ2 ∈ Θa2 and β1, β2 ≥ 1.

A strategy for sampling from V1 has been recalled in Appendix B.2. It is important to note that V1 > 0 with probability
1 as a result of Bernstein’s Theorem (Bernstein, 1929) and the fact that ψ̊1 is a c.m. generator.

To sample from V12 with Laplace–Stieltjes transform ψ̊12, consider that for all t ∈ [0,∞),

ψ̊12(t; V1) : = exp[−V1ψ̊
−1
1 {ψ̊2(t)}]

= exp[−V1ψ
−1
(a1,θ1,β1)

{ψ(a2,θ2,β2)(t)}]

= exp[−V1(ψ−1(a1,θ1)
{ψ(a2,θ2)(t

1
β2 )})β1 ] (6)

= exp
[
−V1

{
− log

(
exp[−ψ−1(a1,θ1)

{ψ(a2,θ2)(t
1
β2 )}]β1

)}]
= ψ̄1[− log{ψ̄12(t

1
β2 )}; V1], (7)

where ψ̄1(t; V1) := exp(−V1tβ1 ) and ψ̄12(t) := exp[−ψ−1(a1,θ1)
{ψ(a2,θ2)(t)}]. Note that V1 acts as a parameter for ψ̊12. The

following proposition provides an explicit way to sample from V12.

Proposition 1. Let β1 = 1 and [ψ−1(a1,θ1)
{ψ(a2,θ2)}]

′ be c.m. Then ψ̊12(t; V1) = exp[−V1ψ
−1
(a1,θ1,β1)

{ψ(a2,θ2,β2)(t)}] is c.m. for all
β2 ∈ [1,∞), t ∈ [0,∞) and V1 ∈ (0,∞), and

V12 := SV̆ β212 ∼ LS−1[ψ̊12],

where S ∼ S(1/β2, 1, cosβ2 ( π
2β2

), 1{β2=1}; 1) and V̆12 ∼ LS−1[(ψ̄12)V1 ].

Proof. β1 = 1 implies that ψ̄1 is c.m. As − log{ψ̄12(t)} = ψ−1(a1,θ1)
{ψ(a2,θ2)(t)}, the assumptions and Proposition 2.1.5 (5)

from Hofert (2010) imply that (ψ̄12)V1 is c.m. for all V1 > 0. For the special case V1 = 1, Theorem 1 with β = β2 further
implies that also ψ̄ (t

1
β2 ) is c.m. With Proposition 2.1.5 (5) from Hofert (2010), the first derivative of ψ−1 {ψ (t

1
β2 )}
12 (a1,θ1) (a2,θ2)

4
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is also c.m. Finally, as ψ̄1 and [− log{ψ̄12(t
1
β2 )}]′ are c.m., Proposition 2.1.5 (2) from Hofert (2010) implies that also ψ̊12 is

c.m.
Further, starting from (6) and with β1 = 1, ψ̊12(t; V1) can be rewritten as

ψ̊12(t; V1) = ψ̄12(t
1
β2 )V1 . (8)

Denoting by V̆12 a random variable distributed according to LS−1[(ψ̄12)V1 ] and applying Theorem 1 with ψ(t) = ψ̄12(t)V1
and β = β2 based on (8) establishes the proof. □

Proposition 1 implies that:

1. Any OP family (β2 ≥ 1) can be nested into a non-OP family (β1 = 1) just under the one-parameter SNC, i.e., if
[ψ−1(a1,θ1)

{ψ(a2,θ2)}]
′ is c.m., which simplifies to θ1 ≤ θ2 for many families when a1 = a2; see the second column of

Table 2.3 in Hofert (2010). To the best of our knowledge, this nesting case has not been considered in the literature.
2. Know-how of sampling LS−1[exp(−V1ψ̊

−1
1 ◦ ψ̊2)], under β1 = 1, can be fully translated to know-how of sampling

its non-OP transformed version, i.e., LS−1[(ψ̄12)V1 ], which is known for many families; see the third column of Table
2.3 in Hofert (2010). Also note that free implementations of sampling algorithms for LS−1[(ψ̄12)V1 ] are available,
e.g., in the R package copula (Hofert et al., 2017) or in the HACopula toolbox for MATLAB and Octave (Górecki
et al., 2020).

For β1 > 1, ψ̄1 is not a c.m. generator and thus Proposition 1 does not provide a nesting condition. However, if a1 = a2
and θ1 = θ2, then

ψ̊12(t; V1) = exp
(
−V1[ψ

−1
(a1,θ1)
{ψ(a1,θ1)(t

1
β2 )}]β1

)
= exp(−V1t

β1
β2 ),

which is a Gumbel generator (with inverse Laplace–Stieltjes transform S(β1/β2, 1, {cos(
β1
β2

π
2 )V1}

β2
β1 , V11{β1/β2=1}; 1))

rovided that β1 ≤ β2; see Hofert (2011).
Hence, we currently know of the following two scenarios in which the SNC holds and thus a proper HOPAC of the form

ψ̊1
{u1, Cψ̊2

(u2, u3)} results:

1. if β1 = 1, then [ψ−1(a1,θ1)
{ψ(a2,θ2)}]

′ is c.m and β2 ≥ β1, or
2. if β1 > 1, then a1 = a2, θ1 = θ2 and β2 ≥ β1.

As mentioned above, these constraints can easily be translated to the general nesting case just by validating them for
every parent–child pair of nodes in the nested copula structure.

Let us now consider the case when a1 = a2 and the condition on [ψ−1(a1,θ1)
{ψ(a2,θ2)}]

′ to be c.m. simplifies to θ1 ≤ θ2.
onstruction of HOPACs under the SNC is then similar to one-parameter HACs, where the parameters θi involved need to
e increasing as one goes further down in a branch of the copula structure, as is shown in the following proposition.

roposition 2. Let a be a one-parameter c.m. Archimedean family such that the condition for [ψ−1(a,θ1)
{ψ(a,θ2)}]

′ being c.m. holds
f and only if θ1 ≤ θ2 for all θ1, θ2 ∈ Θa. Also, let (V, E) be an undirected tree with d leaves and f forks and Ψ [i] = ψ(a,θi,βi),
i ∈ Θa, βi ≥ 1 for i ∈ {d+ 1, . . . , d+ f }. If for each pair of forks (parent, child) in (V, E) it either holds that

(R1) if βparent = 1, then θchild ≥ θparent and βchild ≥ βparent , or

(R2) if βparent > 1, then θchild = θparent and βchild ≥ βparent , (9)

hen C(V,E,Ψ ) is a HOPAC.

roof. As follows from McNeil (2008), if {Ψ [parent]−1(Ψ [child])}′ is c.m. for each pair of forks (parent, child) in (V, E),
hen C(V,E,Ψ ) is a copula. As generators Ψ [i], i ∈ {d + 1, . . . , d + f } are OP generators, if C(V,E,Ψ ) is a copula, then
(V,E,Ψ ) is a HOPAC. We thus show that, given an arbitrary pair of forks (parent, child) in (V, E), if either R1 or R2 holds,

then [ψ−1(a,θparent ,βparent ){ψ(a,θchild,βchild)}]
′ is c.m. As the proof for R1 uses the argument of the proof for R2, the ordering is

eversed.

R2) Let βparent > 1 and θchild = θparent and βchild ≥ βparent . As ψ−1(a,θparent ,βparent ){ψ(a,θchild,βchild)(t)} = ψ−1(a,θparent )

{ψ(a,θchild)(t
1

βchild )}βparent = t
βparent
βchild and βparent

βchild
∈ (0, 1], considering that (ts)′ = sts−1 is c.m. for all s ∈ (0, 1), the

proof is established.
R1) Let βparent = 1. Then, under R1, two cases can be distinguished. (1) θchild = θparent and βchild ≥ βparent . Considering

that βparent
βchild

=
1

βchild
∈ (0, 1], the same argument as for R2 can be used. (2) θchild ≥ θparent and βchild ≥ βparent . Let

Vparent ∼ LS−1[ψ(a,θparent )] and consider that Vparent > 0 probability 1; see Bernstein’s Theorem (Bernstein, 1929)
and use the fact that ψ is a c.m. generator. Applying Proposition 1 with a = a = a, β = 1, β = β ,
(a,θparent ) 1 2 1 2 child

5
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t

Fig. 2. (left) A 6-variate Clayton HOPAC satisfying the SNC. If β = 1 then the value of β is omitted (forks 10 and 11). (right) A pairwise plot of
1000 observations from this HOPAC, including the pairwise dependence measures λu , τ and λl computed from the HOPAC.

θ1 = θparent and θ2 = θchild yields that exp[−Vparentψ
−1
(a,θparent ){ψ(a,θchild,βchild)(t)}] is c.m. for all βchild ≥ 1, t ∈ [0,∞) and

Vparent ∈ (0,∞). Using 2.1.5 (5) from Hofert (2010) implies that {− log(exp[ψ−1(a,θparent ){ψ(a,θchild,βchild)(t)}])}
′
= [ψ−1(a,θparent )

{ψ(a,θchild,βchild)(t)}]
′ is c.m. for all βchild ≥ 1 and t ∈ [0,∞). □

Hence, in a HOPAC structure, the parameters also have to increase but one can choose which one of them. Let us
illustrate this with the model depicted on the left-hand side of Fig. 2. One can observe that θ or β increases as one goes
down in a branch of the copula structure. More precisely, if βparent = 1, then θchild ≥ θparent and of course βchild ≥ βparent ,
see, e.g., the pair of forks (10, 8) or (11, 9). This new flexible case is enabled by Proposition 1. Or, if βparent > 1 then θchild
is fixed to θparent ’s value and only β increases as one goes down in a branch, as the pair of forks (9, 7) indicates. This
case has already been used in Hofert and Scherer (2011). For completeness, let us mention that the pair of forks (11, 10)
represents nesting of two one-parameter ACs.

Remark 1. Before we move on to estimation, let us briefly remark that Archimax copulas with (hierarchical) logistic
stable tail dependence functions are indeed also (H)OPACs.

Archimax copulas, see Capéraà et al. (2000) and Charpentier et al. (2014), are copulas of the form

C(u) = ψ[ℓ{ψ−1(u1), . . . , ψ−1(ud)}], u ∈ [0, 1]d, (10)

where ψ is an Archimedean generator and ℓ : [0,∞)d → [0,∞) is a stable tail dependence function; see Ressel (2013)
and Charpentier et al. (2014) for a characterization of stable tail dependence functions. Logistic stable tail dependence
functions are given by ℓ(x) = ℓβ (x) =

(∑d
j=1 x

β

j

)1/β , x ∈ [0,∞)d, β ∈ [1,∞), and the resulting Archimax copulas (10)
can immediately be identified as OPACs. Similarly, hierarchical logistic stable tail dependence functions are given by nested
logistic stable tail dependence functions, for example

ℓ(x) = ℓβ0 (ℓβ1 (x1), . . . , ℓβS (xS)) =
( S∑

s=1

( ds∑
j=1

xβssj

) β0
βs

) 1
β0
,

where x = (x1, . . . , xS) ∈ [0,∞)d and β0, . . . , βS ∈ [1,∞) for which the resulting Archimax copula (10) can easily
be shown to be a HOPAC. As such, our findings about (H)OPACs will also apply to Archimax copulas with (hierarchical)
logistic stable tail dependence functions, one of the most tractable and thus widely used stable tail dependence functions
of Archimax copulas.

3.3. Estimating HOPACs

In this section, we develop estimators under the SNC for HOPACs under restrictions R1 and R2 given by (9),
i.e., assuming the same one-parameter AC family a for all generators and that the condition on [ψ−1(a,θparent ){ψ(a,θchild)}]

′

o be c.m. can be simplified to θparent ≤ θchild.
The literature provides different HAC estimation methods; see Okhrin et al. (2013a) or Górecki et al. (2016, 2017b) for

those concerning estimation of both structure and parameters. However, as already mentioned in Section 1, all of them
only consider HACs involving just one-parameter ACs. On the one hand, these methods cannot be directly used for HOPAC
estimation, on the other hand they serve as a natural starting point for the development of such estimators.
6
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(a) A HOPAC model built under the para-
metric SNC in the form βparent ≤ βchild, if 
θparent = θchild. 

β β
θ θ

(b) A sample of n = 1000 observations from
the HOPAC of Figure 3a. Note that τnij denotes
the pairwise Kendall’s tau for observations of 
(Ui, Uj).

Fig. 3. An example for the Bottom-Up estimator.

In general, three ingredients are necessary to get a HAC estimated, (1) its structure, (2) the AC families and (3) their
parameters. (1) typically encompasses a kind of agglomerative clustering, where the structure finally results from
clustering of variables under concern according to some measure of similarity between pairs of the variables, e.g., accord-
ing to Kendall’s tau. As, in contrast to Okhrin et al. (2013a), the structure estimator in Górecki et al. (2016, 2017b) does not
require any assumptions on the family of the nested ACs, it is immediately feasible also for HOPAC estimation. Moreover,
there exist theoretical justifications for this estimator. Given a HAC, Okhrin et al. (2013b) show that its structure can be
uniquely recovered from all its bivariate margins, and Theorem 2 in Górecki et al. (2017a) shows that this identification
is possible just from all pairwise Kendall’s taus, so the Kendall’s tau matrix. Also, Corollary 6.2 in Górecki et al. (2017b)
implies that, given any input Kendall’s tau matrix, the estimator returns a tree in which Kendall’s tau increases when going
from the root down towards the leaves. As addressed there in Section 6.2, this follows from the fact that the clustering
method implemented by the estimator always produces amonotonic dendrogram (Batagelj, 1981). Finally, as this estimator,
ormalized by Algorithm 1 in Górecki et al. (2017b) and recalled in Algorithm 1 here, showed the best results in the ratio
f successfully estimated true HAC structures on the basis of simulation studies, see Górecki et al. (2016) or Uyttendaele
2017), we adopt it to our HOPAC estimation approach.

To estimate the families, the mentioned references provide two different approaches. The one used in Okhrin et al.
2013a) and Górecki et al. (2016) arbitrarily assumes the same family for all nested ACs, whereas then one in Górecki et al.
2017b) involves an extra model selection step that chooses for each AC the best fitting family out of some predetermined
ool of families, and thus allows the families in the estimated HAC to differ. The first approach substantially simplifies
he parametric constraints following from the SNC (to the condition θparent ≤ θchild in most cases), whereas latter requires
n extensive analysis of the input family pool as not all families can be mixed together or since the parameter ranges of
he families in the pool have to be adjusted before the estimation process. Hence, when the OP transformation comes
nto play (which makes the estimation process substantially more complex even under the assumption of the same
amily for all nested ACs), the approach allowing for different nested families becomes computationally challenging. In
his work, we thus focus on the case of having the same family for all ACs nested in a HOPAC. Note that this case can
till cover estimation of HACs with one-parameter ACs from different families, for example, the families of Clayton, 12
nd 14, as stated in Section 1, where the latter two family numbers correspond to the notation used in Nelsen (2006,
p. 116–119).
For parameter estimation, we use a mixture of existing step-wise procedures. This follows from the existence of a

lose relationship between bivariate margins of a HAC and the location of ACs nested in this HAC. To clarify, according
o Proposition 3 in Górecki et al. (2016), given two random variables Ui and Uj from the vector (U1, . . . ,Ud) distributed
according to a d-variate HAC, the copula of (Ui,Uj) is the AC allocated in the HAC structure at the fork where the two
branches (from each of the leaves i and j to the root) meet for the first time. This AC (fork) is called youngest common
ancestor of leaves i and j. In Fig. 3a, the youngest common ancestor of leaves 1 and 2 is fork 5 (AC CΨ [5]), whereas for
leaves 1 and 3 it is fork 7 (AC CΨ [7]). It follows that the parameters of this copula can be estimated from the observations
of U and U only. To this end, we use the AC maximum-likelihood (ML) estimator as in Okhrin et al. (2013a). There are
i j

7
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often multiple pairs with the same youngest common ancestor, which we utilize by estimating the parameter(s) of the
youngest common ancestor from the observations of all pairs of random variables corresponding to this ancestor, and then
averaging these estimates; aggregation by mean performed best in a simulation study involving the mean, maximum and
minimum aggregation statistics implemented in Step 2 of Algorithm 3 in Górecki et al. (2016).

The concept of our HOPAC estimation approach is summarized in Algorithm 2, which requires two inputs: (1) a one-
parameter Archimedean family a, e.g., from Table 1, and (2) realizations u = (uij) ∈ [0, 1]n×d of the pseudo-observations
(Uij)

j∈{1,...,d}
i∈{1,...,n} given by

Uij =
n

n+ 1
F̂n,j(Xij) =

Rij

n+ 1
, (11)

here F̂n,j denotes the empirical distribution function corresponding to the jth margin, Rij denotes the rank of Xij among
X1j, . . . , Xnj, and (Xi1, . . . , Xid), i ∈ {1, . . . , n} are i.i.d. random vectors distributed according to a joint distribution function
with continuous margins Fj, j ∈ {1, . . . , d}, and a HOPAC C . The algorithm returns a HOPAC from family a with estimated
structure and parameters.

As an example, let C be the Clayton HOPAC from Fig. 3a, with d = 4, and let (ūij)
j∈{1,...,4}
i∈{1,..,n} be a sample from it; see

Fig. 3b. Now assume C to be unknown and let us estimate it based on the pseudo-observations (uij)
j∈{1,...,4}
i∈{1,..,n} of (ūij)

j∈{1,...,4}
i∈{1,..,n} .

Note that in practice, we mostly do not observe ūij but rather the pseudo-observations uij.
The algorithm estimates the structure in its first two steps using Algorithm 1, which returns a binary tree (V̂, Ê) and

stimates τ̂5, τ̂6 and τ̂7 of the Kendall’s tau corresponding to each fork in that tree; see Fig. 4a. As described before, the
amilies of nested ACs are assumed to be from some pool of available families, e.g., a pool implemented by the software
oolbox we use. Such an assumption implies that the user, when deciding which family suits best for the considered data,
hould repeat the whole estimation process for each of the available families and then perform some extra evaluation
f their fit. For simplicity, assume that the Clayton family was selected for all the nested ACs. Recall that the HOPAC
stimates will be built based on the SNC under R1 and R2 stated in Proposition 2. Let us consider two possible estimators
nder R1 and R2 following the concept in Algorithm 2.

.3.1. Bottom-Up estimator
The idea of the Bottom-Up estimator lies in traversing through the forks in the estimated structure in the way that

ne starts at the bottom of the structure and then continues up until the root is reached, similar to Okhrin et al. (2013a)
nd Górecki et al. (2016, 2017b). One way to achieve this utilizes Kendall’s tau estimates returned by Algorithm 1, starting
ith the fork with the highest value, then processing the fork with the second highest value, etc., until one gets to the

ork with the lowest value, the root.

Algorithm 1 HACs structure estimation (Górecki et al., 2017b, Algorithm 1)

Input:
1) (τ nij ) – the sample version of a Kendall’s tau matrix

he estimation:
1. V̂ := {1, ..., 2d− 1}, Ê := ∅, I := {1, ..., d}
(recall that ↓ (i) = {i} for i ∈ {1, ..., d}, where ↓ (i) denotes the set of all descendant leaves of the fork i for
i ∈ {d+ 1, ..., 2d− 1})
for k = 1, ..., d− 1 do

2. find two nodes from I to join, i.e,
(i, j) := argmax

ĩ<j̃, ĩ∈I, j̃∈I
avg((τ n

˜̃i˜̃j
)
(˜̃i,˜̃j)∈↓(ĩ)×↓(j̃)

)

3. let the children of the fork d+ k (denoted by ∧(d+ k)) be the set {i, j},
i.e., Ê := Ê ∪ {{i, d+ k}, {j, d+ k}}, which implies that ∧(d+ k) = {i, j}
and ↓ (d+ k) =↓ (i)∪ ↓ (j)

4. remove the nodes i and j from the clustering process (as they have been
already joined) and add the fork d+ k to be considered for joining in
the following steps, i.e.,
I := I ∪ {d+ k}\{i, j}

5. estimate the Kendall’s tau corresponding to the fork d+ k, i.e.,
τ̂d+k := avg((τ n

ĩ̃j
)(ĩ,j̃)∈↓(i)×↓(j))

end for

utput:
(V̂, Ê, (τ̂k)2d−1d+1 )
8
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Algorithm 2 The HOPAC estimation concept
1: compute the matrix of pairwise Kendall’s tau (τij) from u
2: estimate the structure using Algorithm 1 with (τij)
3: for each fork k in the structure do
4: for each pair of leaves (ik, jk) in the structure such that k is the youngest common ancestor of ik and jk do
5: use ML to estimate the OPAC parameters θ and β based on (um,ik , um,jk ), m = 1, ..., n
6: end for
7: aggregate the estimated θs and βs by computing their means θ̂k and β̂k
8: let Cψ(a,θ̂k,β̂k)

be the OPAC estimate corresponding to the fork k in the estimated HOPAC structure
9: end for

In Fig. 3a, fork 5 corresponds to the bottom of the structure. As it is the youngest common ancestor of leaves u1 and
u2, we compute the ML estimator for θ5 and β5 according to (15):

(θ̂5, β̂5) = argmax
(θ∈ΘC,β∈[1,∞))

n∑
i=1

log cψ(C,θ,β) (ui1, ui2). (12)

As node 6 is the youngest common ancestor of u3 and u4, the corresponding parameters θ6 and β6 can be estimated
according to (12) with ui1 and ui2 being replaced by ui3 and ui4, respectively. The estimated parameters are shown in
ig. 4b. Having the bottom level estimated, we continue to the upper levels until we reach to the root. Here the SNC
omes into play.
As θ̂5 ̸= θ̂6, it is clear that R2 is violated because it is impossible to satisfy both θ̂7 = θ̂5 and θ̂7 = θ̂6 for our example.

he restriction R2 was, however, a constraint under which the model was built; see Fig. 3a. It follows that turning to
estriction R1 prevents a good fit for node 7, as R1 requires that β̂7 = 1 and that θ̂7 has to be trimmed to the closest
alue allowed by R1, i.e., to 0.844; see Fig. 4c. A sample of 1000 observations from this HOPAC estimate is shown in
ig. 4d. It is evident that choosing R1 instead of R2 substantially affects the fit; compare the distributions of the pairs
U1,U3), (U2,U3), (U2,U4) and (U1,U4) shown in Fig. 3b (which correspond to the true HOPAC) with the corresponding
nes from the estimated model in Fig. 4d. A way to cope with this problem could be to test if the parameters θ of the
hildren are all equal to some aggregated value like their mean. With m children of a given fork, this would however
equire additional

(m
2

)
tests (and there is also the problem of multiple testing), making the computation substantially

ore involved. An efficient solution requiring at most one test for each fork is presented in the following section.

.3.2. Top-Down estimator
A solution to those problems consists of reversing the way in which the structure is traversed during the estimation,

eaning starting at the root of the copula structure and then using the depth-first approach to go through all forks. This
pproach already appeared in connection to other hierarchical copula structures; see Zhu et al. (2016) or recently Cossette
t al. (2019). Before considering our example with the Top-Down estimator, we first present it in terms of pseudo-code

in Algorithm 3.
Let u = (uij) ∈ [0, 1]n×d be realizations of (Uij)

j∈{1,...,d}
i∈{1,...,n} given by (11). As for the Bottom-Up estimator, these are first

used to estimate the copula structure (V̂, Ê) with Algorithm 1 based on the matrix of pairwise sample versions of Kendall’s
tau.

Estimation of the parameters is then performed by calling the function TopDown{u, a, (V̂, Ê), 2d− 1,Θa, [1,∞), βR}
presented in Algorithm 3, where a is an Archimedean family; 2d − 1 denotes the root in the binary tree (V̂, Ê); Θa (see
Table 1) and [1,∞) are ranges for the parameters θ and β of the OPAC estimate CΨ̂ [2d−1] corresponding to the root; and
βR ∈ [1,∞) is an upper bound for accepting βparent = 1 in R1. Recall that descendants of a given node refer to the set of
the children of that node, the children of these children, etc.

Several aspects of Algorithm 3 are worth being addressed:

• The function TopDown recursively goes through all the forks of the tree (V̂, Ê) in the depth-first search manner, which
can be seen from steps 2, 4, 13 and 14. It is also important to note that the tree (V̂, Ê) estimated via Algorithm 1
is binary. This restriction is, however, not an issue since a multivariate AC can be represented by a nested binary-
structured AC with the same generator. Moreover, for accessing non-binary structures, several collapsing approaches
have been proposed; see Segers and Uyttendaele (2014), Górecki et al. (2017b, Section 6.1) or Uyttendaele (2017).
• The assumption of i < j in Step 4 is without loss of generality as in all remaining steps of the algorithm exchanging

i and j does not affect the results.
• According to Remark 2 in Górecki et al. (2017a), all pairs from the Cartesian product of li and lj defined in Steps 5 and

6 have the same youngest common ancestor k. It follows from Proposition 3 in Górecki et al. (2016) that bivariate
margins corresponding to these pairs share the same copula, which motivates the mean aggregated ML estimator

used in Step 7. Note that such an aggregation approach in a one-parameter version has already been successfully

9
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(a) The binary tree (n,e) and estimates of
Kendall’s tau (τ

5
, τ

6
, τ

7
) for the sample from

Figure 3b. 

(b) An update of the estimate from Figure 4a
after assuming the Clayton family and estimating
the bottom-level using ML estimation.

τ τ τ

(c) A final update of the estimate from 
Figure 4b after estimating the root under R 1.

(d) A sample of n = 1000 observations from the 
HOPAC in Figure 4c.

Fig. 4. Evolution of a HOPAC model during Bottom-Up estimation. Note that the values in bold show what has been updated compared to a previous
model.

used in Algorithm 3 in Górecki et al. (2016), see Step 2 therein. Also note that the viability of such an aggregation
approach is studied in Section 4.
• As the result of the argmax in Step 7 is the vector of two components (θĩ̃j, βĩ̃j), all the operators to its left (the two

sums and the division) are considered component-wise.
• The sets li and lj are always disjoint, which follows from the fact that node i and node j do not lie at the same branch

of (V̂, Ê). This fact avoids that the same pair appears twice (first as (i, j) and then as (j, i)) in the first two sums in
Step 7.
• The if statement in Step 8 decides which one of the restrictions R1 and R2 applies for the children i and j of node

k at the recursive Steps 13 and 14. As the parameters θ̂ and β̂ are estimated by ML, we have asymptotic normality
and the variances of these estimates. As θchild appearing in R2 is not yet available (it is estimated in further steps
that depend on the decision made in Step 8), it is thus convenient to test for R1 as it requires only the value of
βparent . In practice, however, testing the hypothesis βparent = 1 would slow down the computations, therefore we
decided to only check whether β̂ lies in the prescribed interval [1, βR]. The involved parameter βR also allows us
to emphasize one of the restrictions — we emphasize R1 with larger values of βR, whereas R2 with smaller ones.
In the following, we use βR = 1.05 as it turned out to provide a convenient balance between R1 and R2.
• The output-triplet (V̂, Ê, Ψ̂ ) contains the structure in (V̂, Ê), the family and the parameters of the generators in Ψ̂

of the HOPAC estimate.
10
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Algorithm 3 The Top-Down HOPAC estimator

Inputs:
u = (uij) ∈ [0, 1]n×d : realizations of (Uij)

j∈{1,...,d}
i∈{1,...,n} given by (11)

a : a one-parameter Archimedean family, e.g., from Table 1
(V̂, Ê) : a binary tree (copula structure)
k ∈ {d+ 1, ..., 2d− 1} : a fork to estimate its parameters
rθ ⊂ R : a range for parameter θ
rβ ⊆ [1,∞) : a range for parameter β
βR ∈ [1,∞) : an upper bound for accepting βparent = 1 in R1

utput:
(V̂, Ê, Ψ̂ )

unction TopDown{u, a, (V̂, Ê), k, rθ , rβ , βR}
1: if k ∈ {1, ..., d} then
2: return – k is a leaf, so stop the recursion
3: end if
4: {i, j} ← the children of k in (V̂, Ê) – assume i < j
5: li ← the set of descendant leaves of i if i is a fork, otherwise li ← {i}
6: lj ← analogous to li (by replacing i by j)
7: perform MLE #li#lj-times and aggregate the resulting parameter estimates (component-wise) by mean, i.e.,

(θ̂ , β̂)← 1
#li#lj

∑̃
i∈li

∑̃
j∈lj

argmax
(θĩ̃j,βĩ̃j)∈Θa×[1,∞)

n∑
m=1

log cψ(a,θĩ̃j,βĩ̃j)
(umĩ, umj̃)

8: if β̂ ∈ [1, βR] then
9: r̃θ ← rθ ∩ [θ̂ ,∞) and r̃β ← rβ – apply restriction R1 for the children

10: else
11: r̃θ ← [θ̂ , θ̂ ] and r̃β ← [β̂,∞) – apply restriction R2 for the children
2: end if
3: TopDown{u, a, (V̂, Ê), i, r̃θ , r̃β , βR} – depth-first traversing
4: TopDown{u, a, (V̂, Ê), j, r̃θ , r̃β , βR} – depth-first traversing
5: Ψ̂ [k] ← ψ(a,θ̂ ,β̂) – store the estimated parameters to the output

To illustrate the HOPAC estimation with the Top-Down approach, let u = (uij)
j∈{1,...,d}
i∈{1,..,n} be the pseudo-observations of

the sample from Fig. 3b, i.e., d = 4 and n = 1000. To estimate the structure, apply Algorithm 1, resulting in the tree
(V̂, Ê) = ({1, . . . , 7}, {{1, 5}, {2, 5}, {3, 6}, {4, 6}, {5, 7}, {6, 7}}), which corresponds to the tree depicted in Fig. 3a. Let a
e again the Clayton family, and recall that ΘC = (0,∞); see Table 1. Finally, to obtain the parameter estimates, call
opDown(u, C, (V̂, Ê), 7,ΘC, [1,∞), 1.05).
In Step 4, i ← 5 and j ← 6. In the next two steps, l5 ← {1, 2} and l6 ← {3, 4}. Step 7 computes the argmax

for (ĩ, j̃) ∈ ((1, 3), (2, 3), (1, 4), (2, 4)). The four pairs of (θĩ̃j, βĩ̃j) are (0.99, 3.106), (0.94, 3.124), (1.07, 3.006) and (0.976,
3.095). Using the component-wise mean results in (θ̂ , β̂)← (0.994, 3.083). In the next step (as β̂ > βR) the restriction
R2 is applied, resulting in rθ ← [0.994, 0.994] and rβ ← [3.083,∞).

As the recursive Steps 13 and 14 involve the estimation of bivariate OPACs for forks 5 and 6 (li ← {i} and lj ← {j}
in both of the nested calls of TopDown), we just show the results of Step 15, which are Ψ̂ [5] ← ψ(C,0.994,5.145) and
Ψ̂ [6] ← ψ(C,0.994,4.858). Finally, Step 15 results in Ψ̂ [7] ← ψ(C,0.994,3.083). The resulting estimated HOPAC C(V̂,Ê,Ψ̂ ) is depicted
in Fig. 5a. We observe that the parameters are relatively close to the true parameters (shown in Fig. 3a), particularly in
comparison to the Bottom-Up approach, for β of fork 7. This is further reflected via distributions of samples from these
HOPACs; compare the distributions and particularly the strength of the correlation in the pairs (U1,U3), (U2,U3), (U2,U4)
and (U1,U4) shown in Figs. 3b, 4c and 5b corresponding to the true copula, the Bottom-Up and Top-Down estimate,
respectively. In contrast to the Bottom-Up estimate, the Top-Down estimate closely follows the true distribution.

It is clear that the arbitrary assumption of the Clayton family needs extra attention. As suggested above, an extra
criterion should be used to evaluate feasibility of such an assumption. To this end, the goodness-of-fit test statistic Sn
used in the estimator defined in (16) can be used; see Genest et al. (2009). Evaluating this statistic for the sample from
Fig. 3b and the Top-Down HOPAC estimate shown in Fig. 5a, we obtain Sn = 0.0148. For a = A we get Sn = 0.0148, for a =
F we observe Sn = 0.0694 and for a = J we receive Sn = 0.1516. It is not surprising that Sn for the true family is minimal.
What might be surprising is that the minimum is also obtained for the Ali–Mikhail–Haq family. However, looking at page
117 in Nelsen (2006), Table 4.1 shows that for θ = 1 the copulas from Clayton and Ali–Mikhail–Haq (there denoted 4.2.1
11
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(a) A HOPAC estimate from sample in Figure 3b
under assumption of Clayton family.

(b) A sample of n = 1000 observations from the
HOPAC in Figure 5a.

(c) A HOPAC estimate from the sample in Fig-
ure 3b based on the Ali-Mikhail-Haq family.
Note that the values shown are rounded to 3 dig-
its, hence, e.g., even if all θs are < 1, the rounded
values can be 1.000.

θ

Fig. 5. Top-Down estimates.

nd 4.2.3, respectively) are both equal to C(u, v) = uv/(u+ v − uv). Looking further at the resulting Top-Down estimate
or Ali–Mikhail–Haq shown in Fig. 5c, and considering that the parameters θ for both families are relatively close to 1,
his result rather confirms that the presented framework works correctly.

. Simulation study

To evaluate the HOPAC estimator presented in Section 3.3.2, N = 500 repetitions of the following routine is performed
or each of the families Ali–Mikhail–Haq, Clayton, Frank and Joe. This routine first randomly generates a HOPAC model,
hen samples from it, computes several estimates based on the sample, and finally measures certain types of discrepancy
etween the model and the estimate, and eventually between the sample and the estimate. More precisely, the setup is
s follows:

1. Given a dimension d ∈ {5, 10, 20}, randomly generate a correlation matrix of size d× d according to an algorithm
based on computing a lower triangular matrix from angles sampled from the distribution scaled from sink(x);
see Makalic and Schmidt (2018).

2. This matrix is then passed to Algorithm 1, which returns a binary tree with d leaves that serves as the structure of
the randomly generated HOPAC model. The algorithm also returns the estimates τ̂d+1, . . . , τ̂2d−1 corresponding to
the forks in that tree, which are used, in the next step, to generate the parameters of the HOPAC model.
12
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Fig. 6. Three randomly generated HOPAC models.

3. The forks in the structure are traversed depth-first starting from the root (k = 2d − 1) and for each given fork
k ∈ {d+ 1, . . . , 2d− 1}, the parameters θ and β are set as follows:

(a) if the parent’s β is 1 (assumed true for the root), then the fork’s β is set equal to 1, i.e., to the case
corresponding to R1, with probability of 50%. Hence, if β is 1, the parameter θ is just adjusted in a way
that Kendall’s tau of this fork remains equal to τ̂k. For the case corresponding to R2 (the remaining 50%), the
parameter θ is first generated randomly and then β is adjusted to keep Kendall’s tau equal to τ̂k.

(b) if the parent’s β is greater than 1, then the fork’s θ is set equal to the parent’s θ and the fork’s β is adjusted
to keep Kendall’s tau equal to τ̂k.

For examples, see Fig. 6.
4. Assume the same family a ∈ {A, C, F, J} for each OPAC nested in the HOPAC model and sample from it with sizes

n ∈ {200, 400, . . . , 1000}.
5. Based on these samples, compute realizations of the following estimators:

(a) The OPAC estimator (denoted OPAC) defined by

1(d
2

) d∑
i=1

d∑
j=i+1

argmax
(θij,βij)∈Θa×[1,∞)

n∑
m=1

log cψ(a,θij,βij)
(umi, umj). (13)

We include this estimator in our study in order to show to which level OPACs are (un)able to fit HOPACs,
in other words to assess, how important the presence of hierarchy/structure in the copula model is. Also
note that accessing the density cψ can be challenging due to the need of differentiating the cumulative
distribution function d-times. The estimator given by (13) is thus used instead of the standard (non-
aggregated) generalization of (15). It is, however, worth noting here that this simple (OPAC) estimator shows
an excellent improvement/complexity trade-off in the tail-dependence modeling application reported in
Section 5, which hints at feasibility of such an aggregation approach in general.

(b) The HAC estimator (HAC) based on one-parameter generators given by Algorithm 3, where the OP transfor-
mation is avoided simply by setting the input argument rβ equal to [1, 1]. Note that this estimator is included
in our study in order to stress the importance of having the OP transformation in the copula model.
13
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(c) The HOPAC Top-Down estimator (HOPAC-miss-fam) given in Algorithm 3 with misspecified family a in order
to study the robustness of the estimator against family misspecification. The input a of Algorithm 3 is set C
if the true family is A (shortly C instead A), F instead C, J instead F and finally A instead J. Note that all the
other estimators assume the true family for the input a.

(d) The HOPAC Top-Down estimator (HOPAC-indep-lkh) given in Algorithm 3 with the OPAC ML estimator in
Step 7 being replaced by an alternative estimator given by

argmax
(θ,β)∈Θa×[1,∞)

n∑
m=1

∑
ĩ∈li

∑
j̃∈lj

log cψ(a,θ,β) (umĩ, umj̃),

which approaches the aggregation via assuming independence of the pairs (Uĩ,Uj̃) and thus considering sums
of their log-likelihoods, which allows one to perform the argmax optimization only once.

(e) The HOPAC Top-Down ML estimator (HOPAC) given exactly according to Algorithm 3.

6. For each sample (eventually replaced by the model) and estimator, evaluate the following six measures concerning
their discrepancy in the distribution, Kendall’s tau, upper-tail dependence coefficient and parameters. These
measures can be divided into the following two groups:

(i) True versus estimate. This group includes the three measures given at the top of Figs. 7 and 8, where (θi, βi),
τi and λui correspond to the fork i in the copula model whereas (θ̂i, β̂i), τ̂i and λ̂ui correspond to the fork i in
the copula estimate; the lower-tail dependence coefficient is not considered as it equals 0 for all families
considered except Clayton, see Table 1. As the first measure (left columns) involves comparison based on the
parameter θ , which shares different scale for different families, the HOPAC-miss-fam estimator is removed
there. Note that these measures require that the structure of the model and the estimate match and are thus
evaluated only for the HOPAC models. To generate N = 500 estimates matching the true structure, a new
sample according to the model is generated in each out of N = 500 repetitions until the structure returned by
Algorithm 1 equals the true structure. The ratio of true structures returned out of N = 500 trials is depicted
in Fig. 11a.

(ii) Sample versus estimate. This group includes the three measures given at the top of Figs. 9 and 10, where
Ĉ and Cn denote the estimated and empirical copulas, respectively, τ̂ij and λ̂uij denote the Kendall’s tau and
upper-tail dependence coefficient corresponding to the youngest common ancestor of leaves i and j in the
estimated structure, respectively, τ nij denotes the sample version of Kendall’s tau corresponding to variables Ui

and Uj, and λ
u,n,1%
ij denotes the non-parametric estimate of the upper-tail dependence coefficient for variables

Ui and Uj at the level k/n = 0.01 according to (13) in Schmidt and Stadtmüller (2006), where k is fixed so
that k/n = 0.01. Note that for larger values of k/n, we have observed in some cases that the estimator
produces a bias oriented towards the values estimated by the HOPAC-miss-fam estimator, resulting for some
families in undesirable behavior of the measure in which the HOPAC-miss-fam estimator outperformed the
(true-family-based) HOPAC estimator. The results are presented using the log-scale.

t can be observed that:

• As n increases, all measures decrease (converge to 0) for all HOPAC estimators.
• The estimators HOPAC and HOPAC-indep-lkh show lowest means and standard errors in most of the cases. The

results for these two estimators are the most similar among all considered ones; we observe only slightly larger
variances in parameter estimation (left columns, true versus estimate) for HOPAC-indep-lkh.
• The estimators without hierarchy (OPAC) or with no OP transformation available (HAC) are unable to model HOPAC

data, as is clear from Figs. 9 and 10.
• All the previous observations do not depend on the underlying family.
• Misspecification of the family (reflected by the HOPAC-miss-fam estimator) mostly provides results that are, on the

one hand, slightly worse than those of the HOPAC estimator, but on the other hand better than the results for the
OPAC and the HAC estimator.
• As already mentioned in Remark 1, Archimax copulas with (hierarchical) logistic stable tail dependence functions

are also (H)OPACs. As such, our findings immediately apply to such type of tractable Archimax copulas.

The quality of the structure estimator (Algorithm 1) is also evaluated, see Fig. 11. Note that each bar in Fig. 11a shows
he value N/m×100, where m is the number of sampling repetitions until N = 500 true structures have been recovered.
s such, an equal-or-not criterion is too strict as it does not take into account how much the estimated structure differs
rom the true structure. An extra proportional criterion based on a trivariate decomposition of the full structure according
o Segers and Uyttendaele (2014) is also evaluated, see Fig. 11b. There, each bar shows the value r/m×100 for r =

∑m
i=1 rj,

here rj is the ratio expressing how close is the estimated structure to the true one (1 if and only if these two are equal)
omputed as follows:

1. Decompose the true structure to
(d
3

)
trivariate true structures according to Segers and Uyttendaele (2014).

Analogously for the estimated structure.
14
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Fig. 7. Realizations of the true versus estimate measures for Ali–Mikhail–Haq and Clayton copulas estimated by HOPAC-miss-fam, HOPAC-indep-lkh
nd HOPAC.

2. Compare each trivariate true structure to the corresponding trivariate estimated structure and compute how many
times these two match, say s ∈ {0, . . . ,

(d
3

)
}.

3. rj = s/
(d
3

)
.

ote that such a criterion has already been used, e.g., in Uyttendaele (2017). As can be observed, the ratio of estimated
rue structures is:

• Independent of the true family used for sampling.
• Increasing with n.
15
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Fig. 8. Realizations of the true versus estimate measures for Frank and Joe copulas estimated by HOPAC-miss-fam, HOPAC-indep-lkh and HOPAC.

• Converging to 100 (in n); this convergence is slower as d increases. The impact of increasing d is substantially lower
for the proportional equal-or-not criterion.

Finally note that other classes of copulas, e.g., elliptical or vine (Czado, 2010; Joe and Kurowicka, 2011), could be
included in this simulation study. These were, however, not included as:

1. It follows directly from their theoretical construction that radially symmetric elliptical copulas cannot fit asymmet-
ric HOPACs;
16
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Fig. 9. Realizations of the sample versus estimate measures for Ali–Mikhail–Haq and Clayton copulas estimated by OPAC, HAC, HOPAC-miss-fam,
HOPAC-indep-lkh and HOPAC.

2. For vine copulas, realizations of the ‘‘sample versus estimate’’ measures require either the cumulative distribution
function (Ĉ), which is computationally demanding already for d = 5, or to access all bivariate margins (to get τ̂ij or
λ̂uij), which is, in general, not possible.

evertheless, these two important classes of copulas are included as benchmarks in the application reported in Section 5,
here they are compared to HOPACs in their ability of tail dependence modeling.
17
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Fig. 10. Realizations of the sample versus estimate measures for Frank and Joe copulas estimated by OPAC, HAC, HOPAC-miss-fam, HOPAC-indep-lkh
and HOPAC.

5. Empirical study

Value-at-Risk (VaR) is an important risk measure in quantitative risk management. In this section, we consider two
different datasets of daily stock prices downloaded from Alpha Vantage.1 The first one contains the five time series of
stock prices of ADI (Analog Devices, Inc.), AVB (Avalonbay Communities Inc.), EQR (Equity Residential), LLY (Eli Lilly and

1 www.alphavantage.co.
18
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A
a

(a) Equal-or-not criterion for the full structure. (b) Proportional equal-or-not criterion based
on a trivariate decomposition of the full
structure (Segers and Uyttendaele, 2014).

Fig. 11. The y-axis shows the ratio of estimated true structures according to a selected criterion.

Fig. 12. Partial autocorrelation function of the Zj,t (first row) and Z2
j,t (second row) from the GARCH(1, 1) models fitted to the last half of a year of

the considered time period for the five-dimensional portfolio.

Company) and TXN (Texas Instruments Inc.). It is important here that the clustering of the companies is given by their
industry sector: ADI and TXN belong to the high-tech industry, AVB and EQR to the real estate industry and LLY to the
pharmaceutical industry. Therefore, we would expect that the structure of the HOPAC or HAC used in the study will
resemble these groupings and thus that the copula structure will play an important role. The second dataset contains the
first 10 time series of daily stock prices from the S&P500 according to their market capitalization. For both datasets we
use the time span 2002-02-01–2019-02-01.

The negative profit-and-loss random variable of the portfolio is defined as Lt+1 =
∑d

j=1 bjPj,t (1 − eRj,t+1 ), where Pj,t
and Rj,t are the price and log-return respectively of asset j at time point t , d is the dimension of the portfolio (5 for the
first dataset, 10 for the second). Weights of the assets in the portfolio are denoted by bj, j = 1, . . . , d, with

∑d
j=1 bj = 1.

s the study aims at proving the general power of the HOPAC model and not the comparison between different portfolio
llocation schemes we consider only the equally weighted portfolio bj = 1/d, j = 1, . . . , d, advocated by DeMiguel

et al. (2009). Let FL denote the distribution function of Lt+1. This leads to VaR(α) = F−1L (α) as VaR of the portfolio at
level α. We focus on α = {0.95, 0.99} in this study. The distribution function FL is estimated by simulating paths of
the asset returns from the underlying multivariate process estimated in a rolling window fashion on windows of widths
w = {126, 252, 504}. This corresponds to half a year, one year and two years of data. The underlying temporal dependency
is modeled by marginal GARCH(1, 1) models (deGARCHing) with t-distributed innovations:

Rj,t = µj,t + σj,tZj,t with σ 2
j,t = ωj + αjσ

2
j,t−1 + βj(Rj,t−1 − µj,t−1)2,

and ω > 0, αj ≥ 0, βj ≥ 0, αj+βj < 1. Partial autocorrelation functions computed for the (squared) standardized residuals
of the GARCH(1, 1) models for the five-dimensional portfolio on the last 126 points from the dataset are provided in
Fig. 12. They indicate that most of the temporal dependence has been removed and the standardized residuals can be
considered stationary. It seems difficult to provide a more in-depth analysis and selection of the time series models as
they are applied on each moving window. Afterwards, various copula models are estimated from the pseudo observations
of the standardized residuals Z , t = 1, . . . , T = 4279, j = 1, . . . , d. Thus, the estimated V̂aR (α) at a given time
j,t t,w

19
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Fig. 13. Comparison of the models on the basis of |α̂t − α| for d = {5, 10}, α = {0.95, 0.99}, w = {126, 252, 504}. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)

oint t , window width w and level α is computed as follows: (a) we estimate the GARCH(1, 1) for all univariate marginal
ime series of log-returns in the time interval (t − w − 1, t − 1]; (b) extract standardized residuals, build their pseudo-
bservations and estimate the copula; (c) simulate a sample of size n = 1000 from the estimated copula, plug them into
he estimated GARCH equation in order to obtain 1000 predictions of log-returns for the time point t and compute the
orresponding 1000 predictions of negative profit-and-loss realizations; and (d) compute empirical quantiles at level α of
he 1000 predicted negative profit-and-loss realizations. The number of the simulated trajectories, n = 1000, should be
ufficient, as it leads to ten exceedances on average for our most extreme case of α = 0.99. Furthermore, the evaluation
f each model is made on the basis of the VaR violation ratio in the rolling window approach with the window width
eing 500 forecasts and a step of five days to allow for some uncertainty quantification

α̂t =
1

500

t+499∑
s=t

1{Ls>V̂aRs,w (α)},

where t ∈ {505, 510, 515, . . . , 3780}, i.e., 656 values. The closer α̂t is to the theoretical level α, the better the model.
e thus compare the absolute deviations |α̂t − α| for the different models. We also considered various tests in the spirit
f Kupiec (1995) but as they did not give any new insights visible from pure deviations we decided not to present them
n the paper.

All in all, our study considers 20 models: ACs, OPACs, HACs and HOPACs for the families of Ali–Mikhail–Haq, Clayton,
rank and Joe; Gaussian and t-copulas; R-Vine copulas, see Coblenz (2019), and the quantile-based historical estimator
denoted ‘‘Historical’’) which is computed directly on the true profit-and-loss variates without any underlying time-series
odel.
The results are summed up in Fig. 13, where the first two columns of panels correspond to the five-dimensional

ortfolio and the second two columns to the 10-dimensional portfolio. For each portfolio the first column depicts the
esults for α = 0.95 and the second for α = 0.99. The rows show the results for the different moving window
idths w = {126, 252, 504}. Each panel represents box-plots of the deviations |α̂t − α| for all the models. In each
anel we have, separated by the vertical dotted lines, five groups of box-plots: 1. Benchmark models, 2. Ali–Mikhail–
aq, 3. Clayton, 4. Frank and 5. Joe families. Box-plots in each group are ordered in decreasing order based on their
edian values. The benchmark models in the first four box-plots in each panel are Historical (brown), Gaussian (violet),
(orange) and vine (navy) models. Red, green, blue and black box-plots represent the AC, HAC, OPAC and HOPAC models,
espectively. Numbers on the top of each panel show the top-five ranks of the 20 models according to the average
f |α̂t − α|, t ∈ {505, 510, 515, . . . , 3780} for each model in the corresponding panel and the color of this number
orresponds to the respective box-plot.
We clearly see from Fig. 13 that the OPAC and HOPAC estimators outperform all the remaining estimators in almost

ll cases, almost independently of the type of the generator family. Moreover, this implies that the OP transformation
onsistently improves the non-OP (H)AC estimators. In particular, the OP transformation is crucial for families that are
nable to model upper-tail dependence, such as Ali–Mikhail–Haq, Clayton or Frank, or stronger forms of concordance
e.g., Ali–Mikhail–Haq). For the Joe family, we observe good and robust results also for the non-OP estimators. The
20
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Fig. 14. All structures of the hierarchical models obtained for w = 504. The most often found one (left) with averaged Kendall’s tau (standard
deviation) over all the models with this structure, second most often (middle) and the least frequent (right).

Fig. 15. Normalized violations of all the models considered for the five-dimensional portfolio with w = 252.

P-based estimators more frequently outperform the benchmark estimators for bigger αs, e.g. there is no benchmark
odel in the top-five ranking for α = 0.99. An improvement given by considering hierarchies (i.e., from OPAC to HOPAC)

s observed mainly for d = 10 which may be explained by the fact that it becomes more important to model hierarchies
n higher dimensions.

Structures of the hierarchical models fully support the industry clustering. There were only three structures for the
ive-dimensional portfolio found across all the windows with w = 504 and they are depicted in Fig. 14 according to their
requency order. The parameters provided in the structures are the averaged Kendall’s tau values corresponding to each
ode over all the cases of the particular structure with the empirical standard deviations in parentheses. In all the three
tructures, ADI and TXN from the high-tech industry are together, AVB and EQR from the real estate industry are always
oined and LLY from the pharmaceutical industry is connected slightly differently, but always separately from the other
roups. Almost identical results are obtained for w = 126 and w = 252. For the 10-dimensional portfolio results are
imilar with a larger set of structures due to the higher dimensionality. Surprisingly, for d = 5 where the stocks possess
trong hierarchical dependency structure and α = 0.95, exchangeable OPACs provide better results than HOPACs. For the
C-based estimators, no substantial influence of the size of the time window (w) is observed which can be explained by
he relative robustness of these models over time.

In-line with the findings from Figs. 13–14 we investigated the number of violations. In Fig. 15, we present violations
or the five-dimensional portfolio normalized over all the models with the rolling window width w = 252. Note that the
esult for the 10-dimensional portfolio is very similar. All the models share comparably big violations around the global
21
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Fig. 16. Contour plots of the bivariate marginal densities of a random vector (X1, X2, X3) with N(0, 1) margins and varying (across columns)
li–Mikhail–Haq copulas. Note that τ and λu denote the corresponding pairwise Kendall’s tau and upper-tail dependence coefficient, respectively.

inancial crisis of 2008 and hit of the financial markets due to the earthquake and tsunamis in Japan in 2011. HAC and AC
odels show in general more violations not only during but also around the critical time periods. Similar to Fig. 13, all

he models based on the Joe family have only few outliers and only in the economically critical times as 2008 and 2011.

. Conclusion

We demonstrated the improvements OP transformations can bring to exchangeable ACs and hierarchical ACs. For
he exchangeable case, a simplified way to compute the tail dependence coefficients was proposed. Also, the statistical
roperties of two feasible OPAC estimators were investigated by simulation. Furthermore, a new construction method,
n efficient sampling strategy and an estimator were provided for HOPACs, including a simulation study confirming the
easibility of the proposed estimator. Excellent abilities of the (H)OPAC models were finally demonstrated in an application
rom risk management.

Note that there also exist other, more general transformations for ACs, e.g., the tilted OP transformation given by
˚ (t) = ψ{(cβ + t)1/β − c}, where c ∈ [0,∞), see Hofert (2011), or the regularly varying transformed generator, where
he transform is given by a whole function, see Bernardino and Rulliére (2016). Their interpretation and tractability is,
owever, less clear, and the same applies to the hierarchical case. Also, all presented results based on Algorithm 3 use
he same value 1.05 for βR, based on which the decision between restrictions R1 and R2 is made. This issue, however,
eeds more attention as it is not yet clear how much wrongly accepting R1 or alternatively R2 affects the overall fit of
he HOPAC. The asymptotic treatment of the presented estimators is also an interesting topic for future research.
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ppendix A. Motivation

To illustrate the flexibility of the AC-based models, Fig. 16 shows contour plots of bivariate marginal densities of
rivariate examples of ACs, OPACs, HACs and HOPACs based on Ali–Mikhail–Haq copulas with N(0, 1) margins.
22
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In the first column, the parameter of the trivariate Ali–Mikhail–Haq copula is chosen such that Kendall’s tau of all
ivariate margins is 0.3. Such a choice provides a good fit in the model’s body if we observe Kendall’s tau close to this
alue in data of interest. Following the nature of Ali–Mikhail–Haq copulas, the dependence is clearly tail-asymmetric since
or small joint values (found in the bottom-left corners of each contour plot) it is stronger than for large values (top-right
orners). However, if we observe stronger dependence for large values in our data, Ali–Mikhail–Haq copulas do not allow
o adjust to such a situation and thus leave to be discarded for modeling purposes. Involving the OP transformation,
his adjustment is possible, as illustrated in the second column, where the extra parameter allows one to fine-tune the
pper-tail dependence coefficient, e.g., to 0.3, while still keeping the same value of Kendall’s tau. This allows one to
uild dependence models that fit well both in the body and tail, and, as we demonstrate in Section 5, just this transition
rom ACs to OPACs alone can already yield substantial improvements in tail-dependence modeling for risk management
pplications.
In contrast to ACs and OPACs (which are exchangeable and thus all their multivariate margins are the same), HACs

nd HOPACs provide asymmetry in the bivariate margins. For example, it can be seen from the last two columns that the
argin corresponding to (X2, X3) differs (in τ ) from the remaining two. Moreover, as Ali–Mikhail–Haq ACs are limited in
to [0, 1/3), the OP transformation allows one to attain any τ ∈ [0, 1), which makes (H)OPACs based on this family more
uitable for modeling purposes. An Ali–Mikhail–Haq OPAC with τ ≥ 1/3 is, e.g., the bivariate margin corresponding to
(X2, X3) in the fourth column. Similarly, as Ali–Mikhail–Haq ACs are tail independent, i.e., λu = 0 for all parameter values,
heir OP transformation can attain all λu in [0, 1), which is illustrated by the same example. This extended flexibility in
ail dependence modeling enabled the Ali–Mikhail–Haq HOPACs to gain the best results in several scenarios out of all
opula models considered in a risk management application provided in Section 5.
Finally, note that an OP transformation establishes a connection between several one-parameter AC families from

he list in Nelsen (2006, pp. 116–119). For example, the three families denoted 4.2.1 (Clayton), 4.2.12 and 4.2.14 are
pecial cases of the OP Clayton family. To have these families in a single HAC, it was necessary to develop sampling
nd estimation strategies allowing to nest different families, which was done in Hofert (2011) and Górecki et al. (2017b),
espectively. With regard to OP transformations, sampling and estimation of HACs involving these different one-parameter
amilies can be addressed by considering hierarchical models involving just one but OP-transformed AC family, i.e., Clayton
OPACs.

ppendix B. Dependence measures, sampling and estimation of outer power Archimedean copulas

.1. Dependence measures of outer power Archimedean copulas

As can be observed from Fig. 16, the OP transformation can have an impact on measures of association such as Kendall’s
au (e.g., reaching beyond 1

3 for the Ali–Mikhail–Haq family) or the tail dependence coefficients (reaching λu > 0 for
he upper-tail independent Ali–Mikhail–Haq family). We now consider these measures of association in more detail for
PACs.
Given a one-parameter 2-AC Cψ(a,θ ) , there exists a functional relationship between the parameter θ and Kendall’s tau

hich can sometimes be expressed in closed form, e.g., τ(C)(θ ) = θ/(θ + 2) for the Clayton family. This relationship can
asily be extended to OPACs. As follows from Proposition 3.7 in Hofert (2011), given a 2-OPAC Cψ(a,θ,β) , its corresponding
endall’s tau τ(a)(θ, β) is

τ(a)(θ, β) = 1− {1− τ(a)(θ )}/β; (14)

n particular τ(a)(θ, β) ≥ τ(a)(θ ). We thus see how Kendall’s tau of Ali–Mikhail–Haq copulas can cover the whole [0, 1),
while τ(A)(θ ) only covers

[
0, 1

3

)
. A similar result can be derived for the coefficients of tail dependence λl(C) and λu(C) of

2-AC C under additional assumptions on ψ(a,θ ) (or ψ ′(a,θ )) such as regular variation.

roposition 3. Let ψ be a generator of a 2-AC Cψ and ψβ (t) = ψ(t
1
β ) for all t ∈ [0,∞) and β ∈ [1,∞). Then:

1. If ψ is regularly varying at infinity with index α∞ ∈ R, i.e., limt→∞
ψ(ct)
ψ(t) = cα∞ for all c ∈ (0,∞), then λl(Cψβ ) = 2

α∞
β .

2. If ψ ′ is regularly varying at zero with index α0 ∈ R, i.e., limt↓0
ψ ′(ct)
ψ ′(t) = cα0 for all c ∈ (0,∞) then λu(Cψβ ) = 2−2

α0+1
β .

roof.

1. Using (2.11) from Hofert (2010), λl(Cψβ ) = limt→∞
ψβ (2t)
ψβ (t)

= limt→∞
ψ(21/β t1/β )
ψ(t1/β )

= lims→∞
ψ(21/β s)
ψ(s) , where s = t1/β .

If ψ is regularly varying at infinity with index α∞, c = 21/β establishes the proof.
2. Using (2.12) from Hofert (2010), λu(Cψβ ) = 2 − 2 limt↓0

1−ψβ (2t)
1−ψβ (t)

= 2 − limt↓0
1−ψ(21/β t1/β )

ψ(t1/β )
= 2 − lims↓0

1−ψ(21/β s)
1−ψ(s) ,

where s = t1/β . Applying l’Hôpital’s rule, 2− lims↓0
1−ψ(21/β s)

1−ψ(s) = 2− 21/β lims↓0
ψ ′(21/β s)
ψ ′(s) . If ψ ′ is regularly varying at

zero with index α , using c = 21/β implies that 2− 21/β lim ψ ′(21/β s)
= 2− 21/β (21/β )α0 = 2− 2

α0+1
β . □
0 s↓0 ψ ′(s)
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Fig. 17. Attainable pairs of τ and λu for four OPAC families.

(a) Ali-Mikhail-Haq. (b) Clayton.

(c) Frank. (d) Joe.

Fig. 18. Samples from OPACs Cψ(a,θ,β) with n = 500.

Having the index α∞ (α0) for a one-parameter family, Proposition 3 often provides λl and λu for its OP family. It
an easily be verified that α∞ = −θ−1 for a = C, whereas ψ(a,θ ) is not regularly varying at ∞ for a ∈ {A, F, J}, and that
0 = 1 for a ∈ {A, C, F}, whereas α0 = θ

−1
−1 for a = J; see also the last two columns of Table 1. These two columns also

eveal that β influences λu for all listed families, whereas λl only for the Clayton family. From this point of view, β plays
n important role particularly for upper-tail dependence modeling. Given a bivariate OPAC Cψ(a,θ,β) and also considering
ts Kendall’s tau via (14), an interesting question is if, given (τ , λ ) ∈ [0, 1]2, there exist values of θ and β such that
u

24



J. Górecki, M. Hofert and O. Okhrin Computational Statistics and Data Analysis 155 (2021) 107109

β

τ

w
o
o
t

f
O

B

(

V

(a) Ali-Mikhail-Haq.

(b) Clayton.

Fig. 19. Results of the simulation study for the estimators ML and Sn of the Archimedean families A and C. The black line in each plot shows θ0 ,
0 or τa(θ0, β0), respectively.

(a)(θ, β) = τ and λu(Cψ(a,θ,β) ) = λu. Fig. 17 visually highlights the pairs of τ and λu for which such θ and β exist, so
hich τ and λu are attainable. We observe a larger region of attainable pairs for the upper-tail independent AC families
f Ali–Mikhail–Haq, Clayton and Frank; for the Joe family, λu > 0 even with β = 1. Hence, fixing τ to a desired value in
rder to obtain a good fit in an OPAC’s body, the most flexibility in the upper tail is provided by, somewhat unexpected,
he upper-tail independent AC families.

Finally note that all measures of association considered are monotone with respect to β , which, for λl and λu, follows
rom Proposition 3.7 in Hofert (2011). This is also clearly visible in Fig. 18, where samples of size n = 500 from a bivariate
PAC with different values of θ and β are shown for each of our working families considered.

.2. Sampling from OPACs

The samples in Fig. 18 were obtained using the Marshall–Olkin algorithm together with Theorem 3.6 from Hofert
2011); for the sake of completeness, we recall the latter below as it is needed later in Section 3.2. Note that LS−1[ψ]
denotes the inverse Laplace–Stieltjes transform of ψ .

Theorem 1 (Hofert, 2011). Let β ∈ [1,∞), ψ be a c.m. generator and ψβ be its OP transformation given by (2). Then
˚ := SV β ∼ F̊ := LS−1[ψ ], where V ∼ LS−1[ψ] and S ∼ S{1/β, 1, cosβ (π/2β), 1 ; 1} (1/β-stable distribution).
β {β=1}
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(a) Frank.

(b) Joe.

Fig. 20. Results of the simulation study for the estimators ML and Sn of the Archimedean families A and C. The black line in each plot shows θ0 ,
0 or τa(θ0, β0), respectively.

As sampling from S is a standard routine, sampling from an OPAC only requires a sampling strategy for LS−1[ψ], which
s known for many one-parameter AC families; see Hofert (2010, Table 2.1).

.3. Estimating OPACs

For the one-parameter case, two AC estimators are particularly popular, the 1) maximum likelihood (ML) estimator and
he 2) Kendall’s tau inverse estimator; see Genest and Rivest (1993). The latter can be viewed as a method-of-moments-
ike estimator and is statistically not as efficient as ML. In contrast, the ML estimator naturally extends to any parameter
imension and is also feasible for estimating OPACs. To complement this estimator, we also consider a distance-based
stimator (based on the goodness-of-fit test statistic Sn of Genest and Favre (2007)) in what follows.
The ML estimator for the parameters θ and β of a d-OPAC Cψ(a,θ,β) with family a is defined by

(θ̂ML, β̂ML) = argmax
(θ∈Θa,β≥1)

n∑
i=1

log cψ(a,θ,β) (ui), (15)

nd a distance-based estimator

(θ̂Sn , β̂Sn ) = argmin
n∑
{Cψ(a,θ,β) (ui)− Cn(ui)}2, (16)
(θ∈Θa,β≥1) i=1
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B

where cψ(a,θ,β) is the density of Cψ(a,θ,β) , Cn(u) = 1
n

∑n
i=1 1{ui≤u} is the empirical copula of a sample of (pseudo-)observations

ui = (ui1, . . . , uid) ∈ [0, 1]d, i ∈ {1, . . . , n}, and n ∈ N for all u = (u1, . . . , ud) ∈ [0, 1]d.
In the following simulation study we compare these two estimators, where all estimates are replicated N = 1000

times for sample sizes n = 200, 400, . . . , 1000, and 6 OPAC models Cψ(a,θ0,β0)
with

• θ0 chosen such that τ(a)(θ0) ∈ {0.1, 0.2}, and
• given θ0, β0 is set such that τ(a)(θ0, β0) ∈ {0.25, 0.5, 0.75}.

ased on the results for a ∈ {A, C, F, J} shown in Figs. 19 and 20, we conclude that:

1. Both estimators converge to the true values (θ0 and β0) with increasing n;
2. The ML estimator is unbiased and more efficient than Sn, which is expected from classical statistical estimation

theory;
3. The standard errors of θ̂ and β̂ increase with τ(a)(θ0, β0), whereas for τ(a)(θ̂ , β̂) they decrease; and
4. Conclusions 1.-3. are independent of the family a considered.

To summarize, both estimators are viable for OPAC estimation. We thus use these estimators also for HOPAC estimation
considered in Sections 3.3 and 4.
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