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In vivo fluorescence/luminescence imaging in the near-infrared-IIb (NIR-IIb, 1,500 to
1,700 nm) window under <1,000 nm excitation can afford subcentimeter imaging
depth without any tissue autofluorescence, promising high-precision intraoperative
navigation in the clinic. Here, we developed a compact imager for concurrent visible
photographic and NIR-II (1,000 to 3,000 nm) fluorescence imaging for preclinical
image-guided surgery. Biocompatible erbium-based rare-earth nanoparticles (ErNPs)
with bright down-conversion luminescence in the NIR-IIb window were conjugated to
TRC105 antibody for molecular imaging of CD105 angiogenesis markers in 4T1
murine breast tumors. Under a ∼940 ± 38 nm light-emitting diode (LED) excitation,
NIR-IIb imaging of 1,500- to 1,700-nm emission afforded noninvasive tumor–to–nor-
mal tissue (T/NT) signal ratios of ∼40 before surgery and an ultrahigh intraoperative
tumor-to-muscle (T/M) ratio of ∼300, resolving tumor margin unambiguously without
interfering background signal from surrounding healthy tissues. High-resolution imag-
ing resolved small numbers of residual cancer cells during surgery, allowing thorough
and nonexcessive tumor removal at the few-cell level. NIR-IIb molecular imaging
afforded 10-times-higher and 100-times-higher T/NT and T/M ratios, respectively,
than imaging with IRDye800CW-TRC105 in the ∼900- to 1,300-nm range. The
vastly improved resolution of tumor margin and diminished background open a para-
digm of molecular imaging-guided surgery.

short-wave infrared j fluorescence imaging j image-guided surgery j molecular imaging j NIR-IIb
imaging

Surgical removal of tumor has been performed to combat cancer in conjunction with
chemotherapy, radiation therapy, hormone therapy, and immunotherapy. For over a
century, surgeons have relied on visual feedback and experience to identify margins
between malignant and healthy tissues, with the caveats of leaving cancerous residues
or removing heathy tissues excessively (1). Tumor residues appeared in 8 to 70% of
cases of radical prostatectomies, pancreaticoduodenectomies, breast cancer, and high-
grade glioma excision (2–4), leading to local cancer recurrence. MRI, CT, or X-rays are
used to improve preoperative imaging (early detection, surgical planning, etc.) but are
not applicable to real-time intraoperative navigation (2). Ultrasonography can be used
to guide surgery, but surgical manipulation causes artifacts and decreases the image
quality (5). Further, thus far, no imaging modality exists for spatially resolving and
removing tumor at the few-cell level.
Near-infrared (NIR) fluorescence imaging has been used for preclinical and clinical

intraoperative navigation with real-time and high-spatial-resolution capabilities. The
US Food and Drug Administration (FDA) approved the NIR-I (700 to 1,000 nm) flu-
orophore indocyanine green (ICG) for clinical use, and a similar dye, IRDye800CW,
was used in human clinical trials for tumor or sentinel lymph nodes localization (6, 7),
metastasectomy (8), and coronary angiography (9). Molecular fluorescence imaging
using targeted contrast agents (2) such as IRDye800CW bio-conjugated to bevacizu-
mab has been used to image human tumors overexpressing vascular endothelial growth
factor (10). NIR-I imaging in the 800- to 900-nm window with such probes afforded
tumor–to–normal tissue (T/NT) ratio of 1.1 to 7.0 (8, 10–13), limited by high back-
ground signals due to nonspecific binding or uptake of the probes by normal tissues
(12), light scattering, and autofluorescence (14). Much higher T/NT ratios are desired
in order to prevent ambiguity in tumor margin and enable more precise tumor resec-
tion. Such capability could revolutionize oncological surgery (3).
Since 2009, fluorescence imaging in the NIR-II window (1,000 to 3,000 nm) (15,

16) has been explored for preclinical and clinical imaging to afford deeper penetration
depth, lower background, and higher resolution than NIR-I imaging, taking advantage
of reduced light scattering and diminished tissue autofluorescence at long wavelengths
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(11, 15, 17–26). Various probes with emission in the NIR-II
window have been developed, including small organic mole-
cules (17, 18), carbon nanotubes (15, 27, 28), quantum dots
(16, 19, 20), and rare-earth down-conversion nanoparticles
(21–23). These probes led to in vivo one-photon wide-field
(14, 15, 20, 27–30), confocal (16, 19), light sheet (24), and
structured illumination (25) fluorescence imaging at sub-
centimeter depths in whole-body or microscopy modes with
down to single-cell resolution, facilitating investigations of
mouse models of cardiovascular and brain diseases and cancer
models including immunotherapy (20, 21, 28, 31, 32).
NIR-II imaging-guided tumor resection is promising to

improve T/NT and tumor margin determination, allowing
more precise tumor resection. Thus far, preclinical imaging in
the 1,000- to 1,300-nm range has demonstrated T/NT ratios
of 4 to 15 before surgery and intraoperative tumor-to-muscle
(T/M) or peripheral tissue signal ratios of 4 to 13 by using
organic fluorophores (26, 30, 31, 33, 34) or Nd-based down-
conversion nanoparticles conjugated to targeting ligands (35,
36). Conventional NIR-I ICG and IRDye800CW dyes exhib-
ited fluorescence emission tails in the short-wavelength region
of the NIR-II window (1,000 to 1,300 nm) (37) and were uti-
lized for intraoperative NIR-II imaging in preclinical and clini-
cal trials (1, 2, 6, 10, 11). It was shown that the T/NT ratios in
the 1,000- to 1,300-nm window were ∼2 times of those in the
NIR-I window with ICG, affording a higher tumor-detection
rate (11). On the other hand, in vivo imaging in the NIR-IIb
(1,500 to 1,700 nm) subwindow (19, 21, 27, 38, 39) demon-
strated the highest image clarity (16) due to further suppressed
light scattering and tissue autofluorescence (14). For example,
molecular imaging of PD-L1 (programmed cell death ligand-1)
in CT26 tumors in the 1,200- to 1,400-nm range afforded a
T/NT ratio of ∼9.5 using molecular fluorophore (31), higher
than in the NIR-I window (T/NT ∼2 to 3) (40), and drasti-
cally increased to T/NT ∼40 in the NIR-IIb window using
PD-L1 antibody conjugated to bright rare-earth down-conversion
nanoparticles (21, 41). However, imaging-guided tumor-resection
surgery in NIR-IIb has not been reported thus far.
Here, we developed a compact imager for simultaneous pho-

tographic imaging in the visible and fluorescence imaging in
the NIR-I and NIR-II windows for intraoperative navigation of
mouse tumor models under room light. We conjugated bio-
compatible erbium-based rare-earth nanoparticles (ErNPs) (21,
38) to TRC105 chimeric antibody for specific binding and
molecular imaging of CD105 on tumor vasculatures (42, 43),
affording a T/NT ratio of ∼40 by imaging luminescence from
ErNPs in the 1,500- to 1,700-nm NIR-IIb range under a 940-
nm light-emitting diode (LED) at 30 mW/cm2. During intrao-
perative surgery, ultra-high T/M ratios of ∼300 were obtained,
allowing precise tumor margin determination and cancer cell
removal down to the few-cell level.

Results

A Visible Photographic and NIR-I/NIR-II Fluorescence Imager.
We built a portable imager by integrating a color camera for
visible photography and a water-cooled indium gallium arse-
nide (InGaAs) camera for 900- to 1,700-nm fluorescence imag-
ing (Fig. 1A and Materials and Methods). The two cameras used
two imaging paths separated by a dichroic mirror and shared
the same imaging lens sets to facilitate overlay of photographic
and fluorescence images in real time. An 808-nm laser or a
940-nm LED (full width at half maximum [FWHM] ∼76 nm;
Fig. 1C, shaded curve) was used as excitation for the

fluorescence channel for IRDye800CW or ErNPs. Room light
was used for illumination for colored photographic imaging
through a 750-nm short-pass filter to block excitation light
from the 808-nm laser or 940-nm LED. For concurrent photo-
graphic and NIR-I and NIR-II fluorescence imaging with
IRDye800CW, a dichroic mirror with an 800-nm edge was
used. A combination of a 900-nm long-pass filter and a 1,000-
nm short-pass filter were used for NIR-I fluorescence collection
in 900 to 1,000 nm, and a 1,100-nm long-pass filter and a
1,400-nm short-pass filter were employed for 1,100- to 1,400-
nm imaging of IRDye800CW tail emission. For concurrent
photographic and 1,500- to 1,700-nm imaging with ErNPs, a
dichroic mirror with a 993-nm edge and a 1,500-nm long-pass
filter were used for NIR-IIb fluorescence collection. A zoomable
lens set with continuously variable magnifications (22 × 18
mm2

–44 × 34 mm2) was used for large field-of-view (FOV)
imaging and can be switched to a higher-resolution mode with
a 5× objective (NA = 0.12, FOV: 5.8 × 4.7 mm2). During
imaging/surgery of mouse tumor, the room light was switched
on, and either an 808-nm laser or a 940-nm LED was selected
depending on the fluorescent probe. We used RGB (red, green,
blue) LED for room lighting and observed that this type of
room light had negligible influence on NIR-I and NIR-II fluo-
rescence imaging (SI Appendix, Fig. S1).

Molecular Imaging of Tumors. TRC105 is a humanized
clinical-stage monoclonal antibody to endoglin overexpressed
on proliferating endothelial cells that has shown to specifically
bind to vasculatures in human and murine tumors with high
endoglin expression (42, 44) and has been used to treat human
cancers (45, 46), murine CT26 colon tumor (47), and 4T1
breast tumor (48). It was also used in endoglin-based tumor
imaging in mouse models (49, 50). For molecular imaging of
angiogenesis in tumors, we conjugated TRC105 to a phase-I
clinical trial fluorophore IRDye800CW or ErNPs to form
IRDye800-antibody conjugate (IRDye800-TRC105) or
ErNPs-antibody conjugate (ErNPs-TRC105) exhibiting bright
down-conversion luminescence in the 1,500- to 1,700-nm
NIR-IIb window developed by our group (Fig. 1B and Materi-
als and Methods) (21, 38). The ErNPs were coated with three
cross-linked hydrophilic polymeric layers (P3 coating; SI
Appendix) to impart biocompatibility in physiological environ-
ments and biliary excretion in ∼2 wk without discernable toxic
effects to mice (21, 41). The hydrodynamic size of ErNPs with
P3 coating was ∼35.5 nm (21).

BALB/c mice were inoculated with 4T1 murine breast
tumors on the left or right hindlimb and injected intravenously
(i.v.) with IRDye800-TRC105 (∼36 μg IRDye800CW per
mouse) or ErNPs-TRC105 conjugates (typically ∼2 mg ErNPs
per mouse; down to 0.2 mg) through the tail vein. Whole-body
fluorescence molecular imaging over time (Fig. 2A) was per-
formed for mice injected with IRDye800-TRC105 i.v. under
an 808-nm laser excitation at ∼50 mW/cm2 in the NIR-I (900
to 1,000 nm; Fig. 2 A, Left) and 1,100- to 1,400-nm ranges
(Fig. 2 A, Middle). Like ICG, IRDye800CW exhibited an
emission tail into the NIR-II window (51). However, emission
almost diminished >1,300 nm, and NIR-II imaging with these
dyes effectively detected 1,100- to 1,300-nm fluorescence using
a 1,100-nm long-pass filter. With ErNPs-TRC105, 1,500- to
1,700-nm NIR-IIb molecular imaging of mice was excited by a
940-nm LED at 30 mW/cm2.

Ten minutes post-injection (p.i.), IRDye800-TRC105 signal
was observed all over mouse body (blood circulation half-time
∼0.6 h; SI Appendix, Fig. S2), while ErNPs-TRC105 were
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mainly circulating in the blood vessels (Fig. 2A and SI
Appendix, Fig. S3) with a blood circulation half-time of ∼4 h.
Over time, fluorescence signal in the 4T1 tumor increased for
both IRDye800-TRC105 and ErNPs-TRC105, suggesting
binding to the overexpressed CD105 on tumor vasculatures
(52, 53). At 24 h p.i., mice injected with ErNPs-TRC105
showed a high tumor NIR-IIb emission signal with a low back-
ground signal over the body (5 ms exposure time), in contrast
to the high background body signal for mice injected with
IRDye800-TRC105 (Fig. 2B). A high T/NT ratio of ∼40 was
observed with ErNPs-TRC105, significantly (P ≤ 0.001 based
on Tukey’s test, n = 9) higher than those with IRDye800-
TRC105 (n = 8) recorded in the 900- to 1,000-nm NIR-I
(T/NT ∼4.4) and 1,100- to 1,300-nm NIR-II (T/NT ∼5.9)
windows (Fig. 2C). For mice injected with free ErNPs without
antibody, we observed much lower T/NT ratios of ∼10 (SI
Appendix, Fig. S4) due to passive uptake through the enhanced
permeability and retention (EPR) effect (54). Zeta potential
values for free ErNPs and ErNPs-TRC105 were ∼11.6 mV
and ∼6.3 mV, respectively.
To further demonstrate highly specific tumor targeting, we

reduced the i.v. injection dose of ErNPs-TRC105 by an order
of magnitude (to ∼0.2 mg ErNPs per mouse) and still obtained
excellent molecular imaging of CD105 in 4T1 tumors with a
similar T/NT ratio of ∼40 at 24 h p.i. (Fig. 2C; 200-ms expo-
sure time). Fluorescence intensity of ErNPs-TRC105 in major
organs, such as liver and spleen, gradually decreased over 2 wk,

and ex vivo NIR-IIb imaging of the major organs 2 wk p.i.
detected negligible 1,500- to 1,700-nm emission, suggesting
complete excretion of the contrast agents (SI Appendix, Figs. S5
and S6). Further histological results showed similar structures
of major organs to healthy untreated control mice at 2 wk p.i.
(SI Appendix, Fig. S7), without any discernable toxic effects
caused by the ErNPs-TRC105 conjugates.

Intraoperative Navigation of Tumor Resection in Various
Optical Windows. We performed image-guided surgery at 24 h p.i.
for mice injected with IRDye800-TRC105 and ErNPs-TRC105
when the 4T1 tumors inoculated on mouse hindlimb reached
∼4 to 8 mm. The fluorescence intensity of IRDye800CW in the
1,100- to 1,400-nm NIR-II window was weaker than that in the
NIR-I window, requiring a 10-times-longer exposure time for
NIR-II molecular imaging (20 ms vs. 2 ms). For targeted NIR-
IIb imaging of 4T1 tumor with ErNPs-TRC105 (2 mg ErNPs
per mouse), an exposure time of ∼2 ms was used, allowing real-
time intraoperative imaging at ∼83 frames per second (fps). For
color photographic imaging in the visible, the frame rate relied
on room light intensity and was set to ∼25 fps.

For imaging-guided surgery with IRDye800-TRC105, we
first removed the skin covering the 4T1 tumor to expose the
tumor and surrounding tissues (Fig. 3A, steps 1 and 2, and
Movie S1). Imaging of IRDye800-TRC105 in both the NIR-I
and the NIR-II windows observed substantial nonspecific body
signals from the skin and tissues surrounding the tumor,

Fig. 1. The compact imager and contrast agent designed for image-guided surgery in the NIR-IIb window. (A) A photograph and a schematic of portable
imager for simultaneous color and NIR-II imaging. A water-cooled NIR-II InGaAs camera and a color silicon camera were used in this imager. The front lens
of the portable imager can be switched to an objective to realize high-resolution and magnification imaging. (B) Schematic design of NIR-IIb contrast agents
by conjugating core-shell ErNPs with TRC105 antibody. A hydrophilic polymeric cross-linked network (P3 coating) was coated on the ErNPs to impart biocom-
patibility. The mass ratio of ErNPs and TRC105 antibody used in conjugation was ∼6.7, and the estimated antibody per particle was ∼1:2.5, assuming 50%
conjugation efficiency. (C) Absorbance and emission spectra of P3-coated ErNPs and emission spectrum of the 940-nm LED.
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despite lower background in the NIR-II window than in NIR-I
(Fig. 3 A and B). After skin removal, the underlying tumor and
surrounding muscle showed T/M ratios of ∼2.5 and ∼3.6 in
the NIR-I and NIR-II windows, respectively (Fig. 3C), slightly
lower than T/NT ratios with the intact skin before surgery
(NIR-I: T/NT = ∼4.4, NIR-II: T/NT = ∼5.9; Fig. 2C). The
tumor margin was discerned over the background, but contrast
was low (see two images of different magnification in step 2 of
Fig. 3A). After the main tumor was removed, the tumor bed, sur-
rounding skin, and muscle tissues still showed high background
fluorescence emission, making it difficult to discern tumor resi-
dues with high confidence (step 3 in Fig. 3A and Movie S2).
Next, we performed imaging-guided 4T1 tumor resection

surgery in the 1,500- to 1,700-nm NIR-IIb window using
ErNPs-TRC105 as the tumor-targeting probe 24 h p.i. Visible
photographic and NIR-IIb luminescence images of the 4T1
tumor overlaid very well (step 1 in Fig. 4A), with a T/NT ∼40
(Fig. 2C). After resecting the skin covering the tumor and
surrounding tissues (Movie S3), we observed the ErNPs-
TRC105-targeted tumor lesion exhibited much stronger NIR-
IIb fluorescence than the peripheral muscles with a T/M ∼300

(step 2 in Fig. 4A and Movies S4 and S5), significantly (P ≤
0.001, n = 5, Tukey’s test; SI Appendix, Fig. S8) higher com-
pared to the T/M of ∼4 to 6 afforded by IRDye800-TRC105-
based (n = 6) NIR-I and NIR-II imaging (Step 2 in Fig. 3A).
The higher T/M ratio of ∼300 (Fig. 4C) than T/NT ∼40
(Fig. 2C) upon skin removal suggested skin uptake of the
ErNPs-TRC105 probes to an extent. NIR-IIb imaging of the
ErNPs-TRC105 probes detected bright signals in the tumor
with much sharper signal changes (to near zero) at the edge of
the tumor (Fig. 4B) than NIR-I and NIR-II imaging of
IRDye800-TRC105, greatly improving tumor margin assess-
ment (see images recorded in step 2 in Fig. 4A at two different
magnifications). Sometimes, we observed stronger signal of
ErNPs-TRC105 in the peritumoral region than in the middle
area of the tumor (Fig. 4A), but this was not always the case (SI
Appendix, Fig. S9). The distribution of ErNPs-TRC105 in the
tumor reflected the spatial distribution of endoglin overex-
pressed on proliferating endothelial cells in the 3D structures of
tumor vasculatures, which appeared to be highly variable
between tumors and mice. After tumor removal, we sliced the
tumor to make thin sections for hematoxylin and eosin (H&E)
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emission of IRDye800-TRC105 was collected in the NIR-I (900 to 1,000 nm) and NIR-II (1,100 to 1,400 nm) windows and excited by an 808-nm laser. ErNPs-
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staining/photographic imaging and NIR-IIb fluorescence imaging
of the same regions near the tumor–normal tissue boundaries (see
Fig. 4D and SI Appendix, Fig. S10 for details). Overlaying the H&E
and NIR-IIb images showed that ErNPs-TRC105 signals were,
indeed, detected in H&E-stained tumor regions and rarely in nor-
mal tissue regions (Fig. 4D and SI Appendix, Fig. S10).
Upon removing the bulk of the tumor guided by NIR-IIb

imaging (step 3 in Fig. 4A), we used the highest magnification

of the zoomable lens set (by adjusting the zoomable lens set to
reach a FOV of ∼22 × 18 mm2) to examine any residual fluo-
rescence signal associated with leftover tumor lesions (Fig. 5A).
For resected 4T1 tumor residues labeled by ErNPs-TRC105
imaged in NIR-IIb, we sometimes observed small bright
fluorescence spots in the NIR-IIb window well above the
∼0 background (Fig. 5A). We then switched to the high-
resolution mode equipped with a 5× objective (NA = 0.12) for
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NIR-IIb molecular imaging and observed small tumor residues
containing thousands of cells (∼400 μm × 850 μm in size in
Fig. 5C), resolving down to tens of microns features on the
order of several cancer cell dimensions (∼38 μm features in
Fig. 5 A–D). Guided by such imaging, we excised the NIR-IIb
emitting small residue lesions labeled by ErNPs-TRC105
(Movie S6) until no ErNPs-TRC105 signal was observed in the
original tumor area (Fig. 5E), completing surgical removal of
tumor down to the cellular level. For resected 4T1 tumor resi-
dues labeled by IRDye800-TRC105 imaged in the NIR-I and
NIR-II windows, we observed only featureless background
signals under high-resolution mode (SI Appendix, Fig. S11) and
were unable to identify and remove small residual tumor lesions.

Discussion

NIR imaging-guided surgery has attracted much attention due
to the potential of revolutionizing oncological cancer surgery
(1). Preclinical and clinical trials have been pursued using

biocompatible fluorophores (ICG-like dyes, IRDye800CW,
and ZW800) and FDA-approved instruments (1, 2, 12, 55,
56). An example is IRDye800CW-based molecular imaging in
both preclinical and clinical settings, with a caveat of peripheral
tissues around tumor showing strong background signals, lead-
ing to low tumor-to-background ratios <5 and blurred tumor
margin (13, 57–59) and consistent with our current finding
with IRDye800-TRC105 (Fig. 3). NIR-II imaging has shown
improved penetration depth and lower background due to sup-
pressed light scattering and tissue autofluorescence. Indeed, by
utilizing the tail emission of ICG-like dyes in the NIR-II win-
dow, clinical trials were performed in the short-wavelength
range (∼1,000 to 1,300 nm) of the NIR-II window for
∼2× improved T/NT ratio (37), in addition to preclinical
NIR-II imaging-guided tumor resection and sentinel lymph
node mapping (26, 35, 60, 61). Despite this progress, we found
that improvements to T/NT ∼5.9 and T/M ∼3.6 with the
ICG-like IRDye800CW were insufficient to eliminate nonspe-
cific background signal or boost tumor margin resolution (Fig. 3).
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With the targeted NIR-IIb probes of ErNPs-TRC105, 1 to 2
orders of improvements were afforded (T/NT ratios of ∼40 and
T/M ∼300; Figs. 2 and 4), allowing for unambiguous tumor mar-
gin identification and thorough tumor removal down to the few-
cell level (Figs. 4 and 5).

In general, in vivo fluorescence imaging in the 1,000- to
1,700-nm window can improve tissue penetration depth, sig-
nal-to-background ratio, and spatial resolution over the tradi-
tional 800- to 900-nm NIR-I window. However, we believe
that imaging only in the 1,500- to 1,700-nm NIR-IIb
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Fig. 5. Residual tumor fragments’ precise removal navigated by our portable imager with high magnification and resolution. (A) Color and NIR-IIb imaging
of the surgery area after tumor removal observed by the highest magnification of the zoomable lens set with a FOV of 22 × 18 mm2. When the 4T1 tumor
size reached ∼4 to 8 mm (typically 3 to 6 d after inoculation), ErNPs-TRC105 was injected i.v. The surgery was performed 24 h p.i. (B) High-magnification
imaging resolved a small residual tumor fragment after main tumor removal, performed by replacing the front lens of zoomable lens with a 5× objective
(NA = 0.12, FOV: 5.8 × 4.7 mm2). (C) High-magnification imaging of the rectangular highlighted region in B. (D) A normalized intensity profile along the dotted
line in C revealing structures with a feature size of 38 μm. (E) Low-magnification imaging of surgery area using zoomable lens set with a FOV of 44 × 34 mm2

after tumor removal under high-resolution view.
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subwindow represents a true breakthrough since light scattering
is minimized and tissue autofluorescence reduces to zero (i.e.,
noise level) due to a vast Stoke’s shift from <1,000-nm excita-
tion (19, 21, 27, 38). Our current work again confirmed these
findings, observing noise level background signals on healthy
tissues free of any ErNP probes. Any NIR-IIb emission should
be from the engineered probes intended for specific tumor tar-
geting. In this regard, the precision of NIR-IIb imaging-guided
surgery will also hinge on the efficiency and specificity of tar-
geting ligands on the probes in order to achieve ∼100% label-
ing of cancerous tissues without mislabeling. High T/NT (>30
to 40) and T/M ratios (>100) are desired and could be assuring
of targeting efficacy.
The ErNPs-TRC105 probes exhibited negligible nonspecific

uptake by healthy tissues in vivo due to the stealth nature of
the cross-linked P3 hydrophilic polymer coating on the ErNPs
(41). The P3-coated ErNPs conjugated to TRC105 antibody
circulated in the blood vasculatures with a blood circulation
half-time of ∼4 h, allowing continuous binding of the ErNPs
specifically to CD105 overexpressed on tumor. In contrast,
IRDye800-TRC105 was observed all over the body 10 min p.i.
with a shorter blood circulation half-time of ∼0.6 h and strong
body background fluorescence even after skin removal due to
nonspecific binding or uptake of the dye-antibody complexes
by normal tissues (12).
The highly cross-linked nature of P3 polymeric coating on

nanoparticles imparted high biocompatibility of various NIR-II
imaging probes—including quantum dots, ErNPs, and mag-
netic particles—preventing the functionalization layer on nano-
particles from detaching in vivo (41). The P3-coated ErNPs
were fully excreted from the body within 2 wk of i.v. injection
without causing toxic side effects shown here and previously
(21), making these down-conversion NIR-IIb probes promising
for clinical translation. It was encouraging that the 1/10 dose of
ErNPs-TRC105 at the ∼8 mg/kg level allowed for excellent
molecular imaging of tumor with a T/NT ratio ∼40 at 24
h p.i. Such a dose was reasonably low, considering the 0.5 to
1.6 mg/kg doses typically used for the much lower molar mass
IRDye800CW (57, 58).
For future clinical translation, it is important to build imag-

ing systems for visible photographic and NIR-II fluorescence/
luminescence imaging for imaging guided surgery, especially in
the presence of bright room light. We designed a compact
imager to detect the range of 400 to 1,700 nm using a widely
available silicon complementary metal–oxide–semiconductor
camera (color photographic imaging) and an InGaAs camera
(NIR-II imaging) with a high quantum efficiency of >80% in
the NIR-IIb window capable of high detection sensitivity for
NIR-IIb labels such as ErNPs. The two cameras shared the
same lens sets for overlaying colored photographic and NIR-II
images in real time, facilitating intraoperative navigation during
surgery. We found it highly useful to image at variable magnifi-
cations to span the centimeter-to-submillimeter scales and to
guide tumor resection down to a few cells without leaving resi-
dues while preventing overcutting. It was also interesting that
we found that among various lighting conditions tested, a par-
ticular type of room lighting based on RGB-LED (Materials
and Methods) allowed excellent visual inspections and visible
photographic imaging during surgery, without giving discern-
ible background signals in the NIR-IIb range to degrade fluo-
rescence/luminescence imaging. This is important to meet a
requirement for potential clinic use of optical imaging-guided
surgery. Previous NIR-I fluorescence imaging required room
lighting to be dimmed or switched off or transient lighting

methods switching from fluorescence collection to room light-
ing at a high frequency (3, 11).

Fluorescence imaging has been explored for surgical naviga-
tion for many years. The ultra-high signal-to-background con-
trast enabled by molecular imaging in the NIR-IIb 1,500- to
1,700-nm window can afford orders-of-magnitude-higher abil-
ity in distinguishing malignant and healthy tissues than previ-
ous approaches. It is foreseeable to scale up the biocompatible
rare-earth nanoparticles, identify the optimal targeting ligands
and conjugation chemistry, and develop clinically compatible
imaging systems. This could open a paradigm of molecular
imaging-guided surgery for clinical use.

Materials and Methods

Materials. The cubic-phase ErNPs with P3 coating used in this work were pre-
pared according to our previous work (21) with details provided in SI Appendix.
IRDye800CW NHS Ester was purchased from LI-COR. TRC105 was provided by
TRACON Pharmaceuticals. 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydro-
chloride (EDC) was purchased from Sigma-Aldrich.

Conjugation of TRC105 to IRDye800CW. IRDye 800CW was dissolved
in dimethyl sulfoxide at a concentration of 4 mg/mL. Nine microliters IRDye
800CW, 300 μg TRC105 (in 500 μL PBS buffer), and 100 μL dipotassium phos-
phate (1 M in water) were mixed with a dye-to-protein ratio of 18.7:1, and the
solution was shaken at room temperature in the dark for 3 h. The solution was
washed with a 10-k centrifugal filter five times to remove excess IRDye800CW
and then dispersed in 200 μL 1 × PBS solution for further injection. The dye-to-
antibody ratio in the final conjugate was ∼2.7:1, measured by the dye vendor’s
protocol (62).

Conjugation of TRC105 to P3-Coated ErNPs (ErNPs-TRC105). In total, 2
mg P3-coated ErNPs, TRC105 (300 μg), EDC (1.5 mg), and 800-μL 4-Morpholi-
neethanesulfonic acid [2-(N-Morpholino)ethanesulfonic acid hydrate] solution
(10 mM, pH = 11) were mixed and shaken at room temperature for 3 h. The
solution was first centrifuged at 4,400 rpm for 30 min to remove potential large
floccules. Then, the supernatant was washed by centrifuge filter (100 kDa) four
times and dispersed in 200 μL 1 × PBS solution for further use.

Imaging System for Intraoperative Navigation. Two cameras were inte-
grated in the compact imager. A silicon camera (# 33-981, Edmund Optics Inc.)
was used for color imaging, and a water-cooled InGaAs camera (Ninox 640 II,
Raptor Photonics) with spectral response in the window of 400 to 1,700 nm was
used for NIR-I or NIR-II imaging. The lens set for large FOV was composed of two
achromatic lenses (AC508-100-C, AC508-1000-C, Thorlabs). A 5× objective (NA
= 0.12, Leica N Plan) was used for high-resolution imaging. An 808-nm laser
(MDL-H-808, Changchun New Industries Tech. Co., Ltd.) and a 940-nm LED
(EFFI-RING-940-SD-P3, CCS America, Inc.) were used to excite NIR-I or NIR-II
dyes. The 940-nm LED was filtered by 1,250-nm short-pass filters (#84-657,
Edmund Optics Inc.) to make the excitation clean in the NIR-IIb window. An
RGB-based LED room light (EPANL LED Flat Panel, Lithonia Lighting) was used
for room lighting and as light source for color imaging. A 750-nm short-pass fil-
ter (FESH0750, Thorlabs) was applied before the color camera. Two dichroic mir-
rors (Di03-R785-t1, Di02-R980, Semrock) were selected to be used in our experi-
ments for visible and NIR-I imaging or visible and NIR-II imaging. A 900-nm
long-pass filter (FELH0900, Thorlabs) and a 1,000-nm short-pass filter
(FESH1000, Thorlabs) were used for NIR-I imaging. A 1,100-nm long-pass filter
(FELH1100, Thorlabs) and a 1,400-nm short-pass filter (#84-652, Edmund Optics
Inc.) were used for NIR-II imaging. A 1,500-nm long-pass filter (FELH1500, Thor-
labs) was used for NIR-IIb imaging.

Data Processing. The FWHM was measured in OriginLab 9.0. The SD and
mean were calculated by OriginLab 9.0. The Tukey’s test was performed in Ori-
ginLab (2021).

Mouse Handling and Tumor Inoculation. Mouse handling was approved by
Stanford University's administrative panel on Laboratory Animal Care. All experi-
ments were performed according to the NIH Guide for the Care and Use of
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Laboratory Animals (63). BALB/c female mice were purchased from Charles River.
Bedding, nesting material, food, and water were provided. The 6-wk-old BALB/c
mice were shaved using hair remover lotion (Nair, Softening Baby Oil) and inoc-
ulated with ∼1 million 4T1 cancer cells for single tumor on the left or right hin-
dlimb. Mice were randomly selected from cages for all experiments. During
shaving or imaging, all mice were anesthetized by a rodent anesthesia machine
with 2 L min�1 O2 gas mixed with 3% isoflurane.

In Vivo Wide-Field Fluorescence Imaging. For time-course imaging of mice
injected with 200-μL ErNPs-TRC105 (10 mg/mL) or 200-μL IRDye800-TRC105
(0.08 mg/mL), the NIR-I, NIR-II, and NIR-IIb wide-field fluorescence images were
recorded by a 2D water-cooled InGaAs camera (Ninox 640, Raptor Photonics)
working at �21°C. The fluorescence signal was collected by two achromatic
lenses to the camera after being filtered by corresponding filters, as discussed in
the previous content. An 808-nm and a 975-nm laser were used to excite
IRDye800-TRC105 and ErNPs-TRC105, respectively, with actual power intensity of
∼50 mW/cm2.

Image-Guided Surgery Using Portable Imager. The 200-μL ErNPs-TRC105
(10 mg/mL) or 200-μL IRDye800-TRC105 (0.08 mg/mL) were injected i.v. into

mice bearing 4T1 tumors as tumor size reached ∼4 to 8 mm (typically 3 to 6 d
after inoculation). Then, 24 h p.i., the surgery was performed with navigation
provided by portable imager in visible and NIR-I/NIR-II windows. Mice injected
with IRDye800-TRC105 were excited by an 808-nm laser with a power intensity
of ∼50 mW/cm2, and fluorescence was collected in the NIR-I (900 to 1,000 nm)
and NIR-II (1,100 to 1,400 nm) windows by selecting corresponding optical filter
combinations. NIR-IIb molecular imaging of mice injected with ErNPs-TRC105
was excited by a 940-nm LED with a power intensity of 30 mW/cm2. Room light
was used for color image. After surgery, the mice were euthanized.

Data Availability. All study data are included in the article and/or supporting
information.
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