
Invent. math. (2021) 225:299–345
https://doi.org/10.1007/s00222-021-01033-5

Homological branching law for
(GLn+1(F),GLn(F)): projectivity and
indecomposability

Kei Yuen Chan1

Received: 20 December 2019 / Accepted: 1 January 2021 /
Published online: 15 February 2021
© The Author(s) 2021

Abstract Let F be a non-Archimedean local field. This paper studies
homological properties of irreducible smooth representations restricted from
GLn+1(F) to GLn(F). A main result shows that each Bernstein component
of an irreducible smooth representation of GLn+1(F) restricted to GLn(F)

is indecomposable. We also classify all irreducible representations which are
projective when restricting from GLn+1(F) to GLn(F). A main tool of our
study is a notion of left and right derivatives, extending some previous work
joint with Gordan Savin. As a by-product, we also determine the branching
law in the opposite direction.

1 Introduction

1.1
Let F be a non-Archimedean local field. Let Gn = GLn(F). Let Alg(Gn) be
the category of smooth representations of Gn . This paper is a sequel of [15] in
studying homological properties of smooth representations of Gn+1 restricted
to Gn , which is originally motivated from the study of D. Prasad in his ICM
proceeding [28]. In [15], we show that for generic representations π and π ′ of
Gn+1 and Gn respectively, the higher Ext-groups

ExtiGn
(π, π ′) = 0, for i ≥ 1,
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300 K. Y. Chan

which was previously conjectured in [28]. This result gives a hope that there
is an explicit homological branching law, generalizing the multiplicity one
theorem [2,31] and the local Gan–Gross–Prasad conjectures [17,18].

Themain techniques in [15] are utilizing Hecke algebra structure developed
in [13,14] and simultaneously applying left and right Bernstein–Zelevinsky
derivatives, based on the classical approach of using Bernstein–Zelevinsky
filtration on representations of Gn+1 restricted to Gn [27,28]. We shall extend
these methods further, in combination of other things, to obtain new results in
this paper.

In [15], we showed that an essentially square-integrable representation π of
Gn+1 is projective when restricted to Gn . However, those representations do
not account for all irreducible representations whose restriction is projective.
The first goal of the paper is to classify such representations:

Theorem 1.1 (=Theorem 3.7) Let π be an irreducible smooth representation
of Gn+1. Then π |Gn is projective if and only if

(1) π is essentially square-integrable, or
(2) n + 1 is even, and π ∼= ρ1 × ρ2 for some cuspidal representations ρ1, ρ2

of G(n+1)/2.

There are also recent studies of the projectivity under restriction in other set-
tings [1,16,22].

It is a well-known result that an irreducible representation of a reductive
group G is projective (modulo center) if and only if it is supercuspidal, giving
a tight connection between homological algebra and harmonic analysis. The
classification theorem above for (Gn+1,Gn) suggests that one may still expect
such connection in a relative setting. It would be interesting to see the interplay
of our studywith the harmonic analysis study in the relativeLanglands program
[30].

A main step in our classification is the following projectivity criteria:

Theorem 1.2 (=Theorem 3.3) Let π be an irreducible smooth representation
of Gn+1. Then π |Gn is projective if and only if the following two conditions
hold:

(1) π is generic; and
(2) HomGn (π |Gn , ω) = 0 for any irreducible non-generic representation ω of

Gn.

Theorem 1.2 turns the projectivity problem into a Hom-branching problem
and is a consequence of two results: (1) the Euler-Poincaré pairing formula of
D. Prasad [28] and (2) the Hecke algebra argument used in [15] by G. Savin
and the author. Roughly speaking, (1) is used to show non-projectivity while
(2) is used to show projectivity.
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Projectivity and indecomposability 301

The second part of the paper studies indecomposability of a restricted repre-
sentation. It is clear that an irreducible representation (except one-dimensional
ones) restricted from Gn+1 to Gn cannot be indecomposable as it has more
than one non-zero Bernstein components. However, the Hecke algebra realiza-
tion in [13,15] of the projective representations in Theorem 1.1 immediately
implies that each Bernstein component of those restricted representation is
indecomposable. This is a motivation of our study in general case, and pre-
cisely we prove:

Theorem 1.3 (=Theorem 6.1) Let π be an irreducible representation of
Gn+1. Then for each Bernstein component τ of π |Gn , any two non-zero Gn-
submodules of τ have non-zero intersection.

As a consequence, we have:

Corollary 1.4 Let π be an irreducible smooth representation of Gn+1. Then
any Bernstein component of π |Gn is indecomposable.

In Sect. 6.2, we explain how to determine which Bernstein component of
π |Gn is non-zero in terms of Zelevinsky segments, and hence Theorem 1.3
essentially parametrizes the indecomposable components of π |Gn .

For a mirabolic subgroup Mn of Gn+1, it is known [35] that π |Mn is inde-
composable for an irreducible representation π of Gn+1. The approach in [35]
uses the Bernstein–Zelevinsky filtration of π to Mn and that the bottom piece
of the filtration is irreducible. We prove that the Bernstein component of a
bottom piece is indecomposable as a Gn-module, and then make use of left
and right derivatives, developed and used to prove main results in [15]. The
key fact is that left and right derivatives of an irreducible representation are
asymmetric. We nowmake more precise the meaning of ‘asymmetric’. We say
that an integer i is the level of an irreducible representation π of Gn if the left
derivative π(i) is the highest derivative of π .

Theorem 1.5 (=Theorem 6.2) Let π be an irreducible smooth representation
of Gn. Let ν(g) = |det(g)|F . Suppose i is not the level ofπ . Then ν1/2 ·π(i) and
ν−1/2 · (i)π have no isomorphic irreducible quotients whenever ν1/2 ·π(i) and
ν−1/2 · (i)π are non-zero. The statement also holds if one replaces quotients
by submodules.

We remark that ν1/2 · π(i) and ν−1/2 · (i)π are shifted derivatives in the sense
of [4], which have been used in loc. cit. to study unitary representations of Gn .

As a by-product of Theorem1.5,we give a complete answer to the branching
law in another direction:

Theorem 1.6 (=Corollary 7.7) Let π1, π2 be smooth irreducible representa-
tions of Gn+1 and Gn respectively. Then

HomGn (π2, π1|Gn ) �= 0
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302 K. Y. Chan

if and only if both π1 and π2 are one-dimensional and π2 ∼= π1|Gn .

Computing the structure of a derivative of an arbitrary representation is a
difficult question in general. Our approach is to approximate the information of
derivatives of irreducible ones by some parabolically induced modules, whose
derivatives can be computed via geometric lemma. On the other hand, the
Speh representations behave more symmetrically for left and right derivatives,
which motivates our proof to involve Speh representations.

Another key ingredient in proving Theorem 1.3 is a study on the submodule
structure between left and right Bernstein–Zelevinsky inductions. We explain
in Sect. 5 how the submodule structure of an induced module can be partly
reflected from themodulewhich induced from (seeProposition 5.6 for a precise
statement). The study relies on the Hecke algebra structure of the Gelfand–
Graev representation.

A related question to Theorem 1.3 is that the Bernstein–Zelevinsky induc-
tion functor preserves indecomposability at the level of each Bernstein
component, which is shown in Theorem 8.3. This is in contrast with that the
(usual) parabolic induction does not preserve indecomposability in general. In
[12], we study some special situations of the parabolic induction that one can
obtain certain indecomposability-preserving results, which have applications
to the local nontempered Gan–Gross–Prasad conjectures [18].

1.2 Organization of the paper

Section 2 studies derivatives of generic representations, which simplifies some
computations for Theorem 1.1. The results also give some guiding examples
in the study of this paper and [15].

Section 3 firstly proves a criteria for an irreducible representation to be
projective under restriction, and then apply this criteria to give a classification
of such class of modules.

Section 4 discusses some results on Gelfand–Graev representations such
as their indecomposability while Sect. 5 develops a theory of the submodule
relation between left and right Bernstein–Zelevinsky inductions.

Section 6 proves a main result on the indecomposability of an irreducible
representation under restriction, which uses results in Sect. 5 and the asym-
metric property of derivatives proved in Sect. 7.

Section 8 proves that the Bernstein–Zelevinsky induction preserves inde-
composability. This partly generalizes Sect. 5.

In the first appendix, we explain how an irreducible representation appears
as the unique submodule of a product of some Speh representations. In the
second appendix, we provide some preliminaries on module theory.
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Projectivity and indecomposability 303

2 Bernstein–Zelevinsky derivatives of generic representations

2.1 Notations

Let Gn = GLn(F). All representations in this paper are smooth and over
C, and we usually omit the adjective ’smooth’. Let Irr(Gn) be the set of all
irreducible representations of Gn and let Irr = �nIrr(Gn). For an admissible
representationω ∈ Alg(Gn), denote by JH(ω) the set of (isomorphism classes
of) irreducible composition factors of ω. For π ∈ Alg(Gn), let π∨ be the
smooth dual of π .

Let ρ be an (irreducible) cuspidal representation of Gl . Let a, b ∈ C with
b− a ∈ Z≥0. We have a Zelevinsky segment � = [νaρ, νbρ], which we may
simply call a segment. Denote a(�) = νaρ and b(�) = νbρ. The relative
length of � is defined as b − a + 1 and the absolute length of � is defined
as l(b − a + 1). We can truncate � from each side to obtain two segments of
absolute length r(b − a):

−� = [νa+1ρ, . . . , νbρ] and �− = [νaρ, . . . , νb−1ρ].

Moreover, if we perform the truncation k-times, the resulting segments will be
denotedby (kl)� and�(kl).We remark that the conventionhere is different from
the previous paper [15] for convenience later. If i is not an integer divisible
by l, then we set �(i) and (i)� to be empty sets. We also denote �∨ =
[ν−bρ∨, ν−aρ∨]. For a singleton segment [ρ, ρ], we abbreviate as [ρ]. For
π ∈ Alg(Gl), define n(π) = l. For c ∈ C and a segment � = [νaρ, νbρ],
define νc� = [νa+cρ, νb+cρ].

For a Zelevinsky segment �, define 〈�〉 and St(�) to be the (unique) irre-
ducible submodule and quotient of νaρ × . . . × νbρ respectively. We have

St(�)∨ ∼= St(�∨) and 〈�〉∨ ∼= 〈�∨〉.

For two cuspidal representations ρ1, ρ2 of Gm , we say that ρ1 precedes ρ2,
denoted by ρ1 < ρ2, if νcρ1 ∼= ρ2 for some c ∈ Z>0. We say two segments
� and �′ are linked if � �⊂ �, � �⊂ �′ and � ∪ �′ is still a segment. We say
that a segment � precedes �′, denoted by � < �′, if b(�) precedes b(�′);
and � and �′ are linked. If � does not precede �′, write � �< �′.

A multisegment is a multiset of finite numbers of segments. Let Mult be
the set of multisegments. Let m = {�1, . . . , �r } ∈ Mult. We relabel the
segments in m such that for i < j , �i does not precede � j . The modules
defined below are independent of the labeling (up to isomorphisms) [35].
Define ζ(m) = 〈�1〉 × . . . × 〈�r 〉. Denote by 〈m〉 the unique irreducible
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304 K. Y. Chan

submodule of ζ(m).1 Similarly, define λ(m) = St(�1)× . . .×St(�r ). Denote
by St(m) the unique quotient of λ(m). Both notions 〈m〉 and St(m) give a
classification of irreducible smooth representations of Gn ([35, Proposition
6.1], also see [24]) i.e. both the maps

m → 〈m〉, and m → St(m)

determinebijections fromMult to Irr. For example,whenm = {[ν−1/2], [ν1/2]},
〈m〉 is the Steinberg representation and St(m) is the trivial representation. The
two notions 〈m〉 and St(m) are related by the so-called Aubert-Zelevinsky
duality, and Mœglin-Waldspurger algorithm.

We shall use the following results several times (see [35, Theorems 1.9, 4.2
and 9.7]): if two segments �, �′ are not linked, then

〈�〉 × 〈�′〉 ∼= 〈�′〉 × 〈�〉, (2.1)

St(�) × St(�′) ∼= St(�′) × St(�). (2.2)

Let π ∈ Irr(Gn). Then π is a subquotient of ρ1× . . .×ρr for some cuspidal
representations ρi of Gni . The multiset (ρ1, . . . , ρr ), denoted by csupp(π), is
called the cuspidal support of π . We also set

csuppZ(π) = {
νcρ : ρ ∈ csupp(π), c ∈ Z

}
,

which is regarded as a set (rather than a multiset).

2.2 Derivatives and Bernstein–Zelevinsky inductions

Let Un (resp. U−
n ) be the group of unipotent upper (resp. lower) triangular

matrices in Gn . For i ≤ n, let Pi be the parabolic subgroup of Gn containing
the block diagonal matrices diag(g1, g2) (g1 ∈ Gi , g2 ∈ Gn−i ) and the upper
triangular matrices. Let Pi = Mi Ni with the Levi Mi and the unipotent Ni .
Let N−

i be the opposite unipotent subgroup of Ni . Let ν : Gn → C given by
ν(g) = |det(g)|F . Let

Rn−i =
{(

g x
0 u

)
∈ Gn : g ∈ GLn−i (F), u ∈ Ui , x ∈ Matn−i,i (F)

}
.

Let R−
n−i be the transpose of Rn−i .

We shall use Ind for normalized induction and ind for normalized induction
with compact support. Letψi be a character onUi given byψi (u) = ψ(u1,2+

1 In [35], the notion of preceding is defined for a(�) instead of b(�). Our notion of preceding
gives the same classification due to (2.1).
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Projectivity and indecomposability 305

. . . + ui−1,i ), where ψ is a nondegenerate character on F and uk,k+1 is the
value in the (k, k + 1)-entry of u. For τ ∈ Irr(Gn−i ), we extend trivially
the Gn−i × Ui -representation τ � ψi to a Rn−i -representation. This defines
functors from Alg(Gn−i ) to Alg(Gn) given by

π → IndGn
Rn−i

π � ψi , and π → indGn
Rn−i

π � ψi ,

both of which will be called (right) Bernstein–Zelevinsky inductions. Simi-
larly, one has left Bernstein–Zelevinsky inductions by using R−

n−i instead of
Rn−i .
Let π ∈ Alg(Gn). Following [15], define π(i) to be the left adjoint functor

of IndGn
Rn−i

π � ψi . Let θn : Gn → Gn given by θn(g) = g−T , the inverse
transpose of g. Define the left derivative

(i)π := θn−i (θn(π)(i)), (2.3)

which is left adjoint to IndGn

R−
n−i

π � ψ ′
i , where ψ ′

i (u) = ψi (uT ) for u ∈ U−
i .

The level of an admissible representation π is the largest integer i∗ such that
π(i∗) �= 0 and π( j) = 0 for all j > i∗. It follows from (2.3) that if i∗ is the
level of π , then (i∗)π �= 0 and ( j)π = 0 for all j > i∗. When i∗ is the level for
π , we shall call π(i∗) and (i∗)π to be the highest right and left derivatives of π

respectively, where we usually drop the term of left and right if no confusion.
We now define the shifted derivatives as follow: for any i ,

π [i] = ν1/2 · π(i), and [i]π = ν−1/2 · (i)π.

For the details of Bernstein–Zelevinsky filtrations, see [15].
The following result [7, Corollary 4.6] will be used several times, which is

a consequence of the geometric lemma: for πk ∈ Alg(Gnk ) (k = 1, . . . , r ),
for any i ,

(π1 × . . . × πr )
(i)

admits a filtration whose successive quotients isomorphic to

(π1)
(i1) × . . . × (πr )

(i1), (2.4)

where i1, . . . , ir run for all integers satisfying i1 + . . . + ir = i .
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306 K. Y. Chan

2.3 On computing derivatives

Let �i = indGi
Ui

ψi be the Gelfand–Graev representation. Using inductions by
stages, we have that

indGn
Rn−i

π � ψi
∼= π × indGi

Ui
ψi = π × �i .

Let ẇ0 ∈ Gn whose antidiagonal entries are 1 and other entries are 0. By the
left translation of ẇ0 on ind

Gn

R−
n−i

π � ψi , we have that

indGn

R−
n−i

π � ψi
∼=

(
indGi

Ui
ψi

)
× π = �i × π.

Since the right derivative is left adjoint to IndGn
Rn−i

, we consequently have:

π(i) ∼= (πNi )Ui ,ψi ,

where Ui is regarded as the subgroup Gn−i × Gi via the embedding g →
diag(1, g). We shall use the later expression when computing derivatives in
Sect. 3.2. We also have an analogous expression for left derivatives.

We shall often use the following lemma:

Lemma 2.1 Let π ∈ Alg(Gn+1) and let π ′ be an admissible representation
of Gn. Suppose there exists i such that the following conditions hold:

HomGn+1−i (π
[i], (i−1)π ′) �= 0;

and

ExtkGn+1− j
(π [ j], ( j−1)π ′)) = 0

for all j = 1, . . . , i − 1 and all k. Then HomGn (π, π ′) �= 0.

Proof The Bernstein–Zelevinsky filtration of π gives that there exists

0 ⊂ πn ⊂ . . . ⊂ π0 = π

such that πi−1/πi
∼= indGn

Rn−i+1
π [i] � ψi . Now, by the second adjointness

property of derivatives [15, Lemma 2.2], we have

ExtkGn
(indGn

Rn− j+1
π [ j] � ψ j−1, π

′) ∼= ExtkGn− j+1
(π [ j], ( j−1)π ′) = 0
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Projectivity and indecomposability 307

for all k and j . Now a long exact sequence argument gives that

dim HomGn (π, π ′) ≥ dim HomGn (ind
Gn
Rn+1−i

π [i] � ψi−1, π
′) (2.5)

= dim HomGn+1−i (π
[i], (i−1)π ′) �= 0. (2.6)

��

2.4 Subrepresentation of a standard representation

Lemma 2.2 Let m ∈ Mult. Suppose all segments in m are singletons i.e. of
relative length 1. Then λ(m) has unique irreducible submodule and quotient.
Moreover, the unique irreducible submodule is generic.

Proof By definitions, λ(m) = ζ(m) and hence has unique submodule and
quotient. Since all segments in m are singletons, the submodule is generic
[35]. ��

It is known (see [21]2) that λ(m) always has a generic representation as
the unique submodule. We shall prove a slightly stronger statement, using
Zelevinsky theory:

Proposition 2.3 Let m ∈ Mult. Then λ(m) can be embedded to λ(m′) for
some m′ ∈ Mult whose segments are singletons. In particular, λ(m) has a
unique irreducible submodule and moreover, the submodule is generic.

Proof Let ρ be a cuspidal representation in m such that for any cuspidal rep-
resentation ρ′ inm, ρ �< ρ′. Let � be a segment inmwith the shortest relative
length among all segments �′ in m with b(�′) ∼= ρ.

By definition of λ(m), we have that

λ(m) ∼= St(�) × λ(m\ {�}).

On the other hand, we have that

St(�) ↪→ b(�) × St(�−).

Thus we have that

λ(m) ↪→ b(�) × St(�−) × λ(m\ {�}) (2.7)
∼= b(�) × λ(m\ {�} + �−) (2.8)

2 The author would like to thank D. Prasad for mentioning this reference in a discussion.
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We now explain the last isomorphism (2.8), and it suffices to show

λ(m\ {�} + �−) ∼= St(�−) × λ(m\ {�}).

To this end, we write m = {�, �1, . . . , �k, �k+1, . . . , �s} such that

b(�) ∼= b(�1) ∼= . . . ∼= b(�k)

and b(� j ) � b(�) for j ≥ k + 1. Then we have that

St(�−) × λ(m\ {�}) ∼=St(�−) × St(�1) × . . . × St(�s)

∼=St(�1) × . . . × St(�k) × St(�−)

× St(�k+1) × . . . × St(�s)

∼=λ(m\ {�} + �−)

where the second isomorphism follows from applying (2.2) few times. Here
we need to use our choice of�, which guarantees that�− and� j are unlinked
for j = 1, . . . , k.

Now λ(m\ {�} + �−) embeds to λ(m′) by induction for some m′ ∈ Mult
with all segments to be singletons. Thus this gives that b(�)×λ(m\ {�}+�−)

embeds to b(�) × λ(m′) ∼= λ(m′ + b(�)), and so does λ(m) by (2.7).
The second assertion follows from Lemma 2.2. ��

2.5 Derivatives of generic representations

Recall that the socle (resp. cosocle) of an admissible representation π of Gn
is the maximal semisimple submodule (resp. quotient) of π .

Lemma 2.4 Let π ∈ Irr(Gn). Then the cosocle of π(i) (resp. (i)π ) is isomor-
phic to the socle of π(i) (resp. (i)π ).

Proof It follows from that for an irreducible Gn-representation π ,

(i)π ∼= θn−i (θn(π)(i)) ∼= θn−i ((π
∨)(i)) ∼= θn−i ((

(i)π)∨)

and the fact [6] that θn−i (τ ) ∼= τ∨ for any irreducible Gn−i -representation τ .
The last isomorphism follows from [15, Lemma 2.2]. ��
Proposition 2.5 Let π ∈ Irr(Gn+1). Both socle and cosocle of π(i) (and (i)π )
are multiplicity-free.
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Projectivity and indecomposability 309

Proof Let π0 be an irreducible quotient of π(i). Let π1 be a cuspidal repre-
sentation of Gi−1 which is not in cuppZ(π0). Then, by comparing cuspidal
supports,

Ext jGn+1−k
(π [k], (k−1)(π0 × π1)) = 0

for all j and k < i . With a long exact sequence argument using Bernstein–
Zelevinsky filtration (similar to the proof of Lemma 2.1), we have that

dim HomGn (π, π0 × π1) ≥ dim HomGn+1−i (π
[i], (i−1)(π0 × π1))

Now one applies the geometric lemma to obtain a filtration on (i−1)(π0 ×π1),
and then by comparing cuspidal supports, the only possible layer that can
contribute the above non-zero Hom is π0. Hence,

dim HomGn (π, π0 × π1) ≥ dim HomGn+1−i (π
[i], π0).

The first dimension is at most one by [2] and so is the second dimension. This
implies the cosocle statement by Lemma 2.1 and the socle statement follows
from Lemma 2.4. ��

A representation π of Gn is called generic if π(n) �= 0. The Zelevinsky
classification of irreducible generic representations is in [35], that is, St(m) is
generic if and only if any two segments inm are unlinked.With Proposition 2.5,
the following result essentially gives a combinatorial description on the socle
and cosocle of the derivatives of a generic representation.

Corollary 2.6 Let π ∈ Irr(Gn+1) be generic. Then any simple quotient and
submodule of π(i) (resp. (i)π ) is generic.

Proof By Lemma 2.4, it suffices to prove the statement for quotient. Let m =
{�1, . . . , �r } be the Zelevinsky segment m such that

π ∼= St(m) = λ(m) = St(�1) × . . . × St(�r ).

Since any two segments inm are unlinked, we can label in any order and so we
shall assume that for i < j , b(� j ) does not precede b(�i ). Then geometric
lemma (2.4) produces a filtration on π(i) whose successive subquotient is
isomorphic to

St((i1)�1) × . . . × St((ir )�r ),

where i1 + . . . + ir = i . The last module is isomorphic to λ(m′)∨, where

m′ =
{
((i1)�1)

∨, . . . , ((ir )�r )
∨}

.
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If π ′ is a simple quotient of π(i), then π ′ is a simple quotient of one successive
subquotient in the filtration, or in other words, π ′ is a simple submodule of
λ(m′) for a multisegment m′. Now the result follows from Proposition 2.3. ��
Remark 2.7 One can formulate the corresponding statement of Proposition 2.5
for affineHecke algebra level by using the sign projectivemodule in [13]. Then
it might be interesting to ask for an analogue result for affine Hecke algebras
over fields of positive characteristics.

Here we give a consequence to branching law (c.f. [12,18,19]):

Corollary 2.8 Let π ∈ Irr(Gn+1) be generic. Let π ′ ∈ Irr(Gn) and let m ∈
Mult with π ′ ∼= 〈m〉. If HomGn (π, 〈m〉) �= 0, then each segment in m has
relative length at most 2.

Proof Writem = {�1, . . . , �r } such that�i does not precede� j if i < j . Let
π0 = 〈m〉. By using the Bernstein–Zelevinsky filtration, HomGn (π, π0) �= 0
implies that

HomGn+1−i (π
[i]
1 , (i−1)π0) �= 0

for some i ≥ 1 [15] (c.f. Lemma 2.1). Hence Corollary 2.6 implies that (i−1)π0
is generic for some i ≥ 1. Since

π0 ↪→ ζ(m)

we have (i−1)π0 ↪→ (i−1)ζ(m) and so (i−1)ζ(m) has a generic composition
factor.On the other hand, geometric lemmagives that (i−1)π0 admits a filtration
whose successive quotients are isomorphic to (i1)〈�1〉 × . . . × (ir )〈�r 〉 where
i1, . . . , ir run for all sums equal to i − 1. Then at least one such quotient is
non-degenerate and so in that quotient, all (ik)〈�k〉 are cuspidal. Following
from the derivatives on 〈�〉, � can have at most of relative length 2. ��

Another consequence is on the indecomposability of derivatives of generic
representations.

Corollary 2.9 Let π ∈ Irr(Gn+1) be generic. Then the projections of π(i)

and (i)π to any cuspidal support component have unique simple quotient and
submodule. In particular, the projections of π(i) and (i)π to any cuspidal
support component are indecomposable.

Proof For a fixed cuspidal support, there is a unique (up to isomorphism)
irreducible smooth generic representation. Now the result follows from Propo-
sition 2.5 and Corollary 2.6. ��
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The analogous statement is not true in general if one replaces an irreducible
generic representation by an arbitrary irreducible representation. We give an
example below.

Example 2.10 Let m = {[1, ν], [ν−1, 1], [1], [ν−1, ν]}. We note that

〈m〉 = 〈[1, ν], [ν−1, 1]〉 × 〈[1]〉 × 〈[ν−1, ν]〉.
We compute the components of 〈m〉(2), at the cuspidal support{
ν−1, ν−1, 1, 1, 1, ν

}
. In this case, there are four composition factors whose

Zelevinsky multisegments are:

m1 = {[1], [ν−1], [1], [ν−1, ν]} , m2 = {[1, ν], [ν−1], [1], [ν−1, 1]}

m3 = {[1, ν], [ν−1, 1], [ν−1, 1]} (multiplicity 2)

Note that the socle and cosocle coincide by Lemma 2.4. Note 〈m1〉 and 〈m3〉
are in socle (and so cosocle). 〈m2〉 cannot be a submodule or quotient. Thus
the only possible structure is two indecomposable modules. One of them has
composition factors of 〈m3〉 (with multiplicity 2) and 〈m2〉. Another one is a
simple module isomorphic to 〈m1〉.

3 Projectivity

3.1 Projectivity criteria

We need the following formula of D. Prasad:

Theorem 3.1 [28] Let π1 and π2 be admissible representations ofGLn+1(F)

and GLn(F) respectively. Then

∑

i∈Z

(−1)idim ExtiGn
(π1, π2) = dim Wh(π1) · dim Wh(π2),

whereWh(π1) = π
(n+1)
1 andWh(π2) = π

(n)
2 .

Lemma 3.2 Let π ∈ Irr(Gn+1). If π(i) has a non-generic irreducible sub-
module or quotient for some i , then there exists a non-generic representation
π ′ of Gn such that HomGn (π, π ′) �= 0. The statement still holds if we replace
π(i) by (i)π .

Proof By Lemma 2.4, it suffices just to consider that π(i) has a non-generic
irreducible quotient, say λ. Now let

π ′ = (ν1/2λ) × τ,
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where τ is a cuspidal representation such that τ is not an unramified twist of a
cuspidal representation appearing in any segment in m. Here m is a multiseg-
ment with π ∼= 〈m〉. Now

ExtkGn+1− j
(π [ j], ( j−1)π ′) = 0

for j < n(τ ) and any k since τ is in csupp(( j−1)π ′) whenever it is nonzero
while τ /∈ csupp(π [ j]). Moreover, (n(τ )−1)π ′ has a simple quotient isomorphic
to ν1/2λ. This checks the Hom and Ext conditions in Lemma 2.1 and hence
proves the lemma. The proof for (i)π is almost identical with switching left
and right derivatives in suitable places. ��
Theorem 3.3 Let π ∈ Irr(Gn+1). Then the following conditions are equiva-
lent:

(1) π |Gn is projective
(2) π is generic and any irreducible quotient of π |Gn is generic.

Proof For (2) implying (1), it is proved in [15]. We now consider π is projec-
tive. All higher Exts vanish and so EP(π, π ′) = dim HomGn (π, π ′) for any
irreducible π ′ of Gn . If π ′ is an irreducible quotient of π , then EP(π, π ′) �= 0
and hence π is generic by Theorem 3.1. But Theorem 3.1 also implies π ′ is
generic. This proves (1) implying (2). ��

3.2 Classification

Definition 3.4 We say that an irreducible representation π of Gn+1 is rela-
tively projective if either one of the following conditions holds:

(i) π is essentially square-integrable;
(ii) π is isomorphic to π1 × π2 for some irreducible cuspidal representations

π1, π2 of G(n+1)/2 with π1 � ν±1π2.

In particular, a relatively-projective representation is generic. The condition
π1 � ν±1π2 is in fact automatic from π being irreducible.

We can formulate the conditions (i) and (ii) combinatorially as follows. Let
π ∼= St(m) for a multisegment m = {�1, . . . , �r }. Then (i) is equivalent to
r = 1; and (ii) is equivalent to that r = 2, and �1 and �2 are not linked, and
the relative lengths of �1 and �2 are both 1.

Lemma 3.5 Let π ∈ Irr(Gn+1) be not relatively projective. Then there exists
an irreducible non-generic representationπ ′ of Gn such thatHomGn (π, π ′) �=
0.

Proof It suffices to construct an irreducible non-generic representation π ′ sat-
isfying the Hom and Ext properties in Lemma 2.1.
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Let m = {�1, . . . , �r } be a multisegment such that π ∼= St(m). We divide
into few cases.

Case 1 r ≥ 3; or when r = 2, each segment has relative length at least 2;
or when r = 2, �1 ∩ �2 = ∅. We choose a segment �′ in m with the shortest
absolute length. Now we choose a maximal segment � inm with the property
that �′ ⊂ �. By genericity, ν−1a(�) /∈ �k for any �k ∈ m. Let

m′ = {
ν1/2�, [ν−1/2a(�)], [τ ]} ,

where τ is a cuspidal representation so that St(m′) is a representation of Gn
and τ is not an unramified twist of any cuspidal representation appearing in a
segment of m. To make sense of the construction, it needs the choices and the
assumptions on this case. Let k = n(a(�)), l = n(τ ). Let

π ′ = St(m′).

Now as for i < k+l+1, either ν−1/2a(�) or τ appears in the cuspidal support
of (i−1)π , but not in that of ν1/2π(i),

Ext jGn+1−i
(ν1/2 · π(i), (i−1)π ′) = 0

and all j . By Corollary 2.6, ν1/2 · π(k+l+1) has a simple generic quotient
isomorphic to ν1/2St(−�). On the other hand, a submodule structure of (k+l)π ′
can be computed as follows:

0 �=HomGn (λ(m′),St(m′)) (3.9)
∼=HomGn−k−l×Gk+l (St(ν

1/2 · −�) � (ν−1/2a(�) × τ),St(m′)N−
k+l

),

(3.10)

Here the non-zeroness comes from the fact that St(m′) is the unique quotient of
λ(m′), and the isomorphism follows from Frobenius reciprocity. Since taking
the derivative is an exact functor, we have that St(ν1/2 · −�) is a subrepresen-
tation of (k+l)St(m′) (see Sect. 2.3). Thus we have

HomGn−k−l (π
[k+l+1], (k+l)π ′) �= 0.

Case 2 r = 2 with �1 ∩ �2 �= ∅ and one segment having relative length 1
(and not both having relative length 1 by the definition of relatively-projective
type). By switching the labeling on segments if necessary, we assume that
�1 ⊂ �2. Let p and let l be the absolute and relative length of�2 respectively.
Let

m′ =
{
[ν1/2a(�1)], [ν3/2−la(�1), ν

−1/2a(�1)], [τ ]
}

, π ′ = St(m′),
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where τ is a cuspidal representation of Gk (here k is possibly zero) so that
St(m′) is a Gn-representation. Note that π ′ is non-generic. By Corollary 2.6
and geometric lemma, a simple quotient ν1/2 ·π(p) is isomorphic to ν1/2a(�1).
Similar computation as in (3.9) gives that a simple module of (p−1)π ′ is iso-
morphic to ν1/2a(�1). This implies the non-vanishing Hom between those
two Gn+1−p-representations.

We now prove the vanishing Ext-groups in order to apply Lemma 2.1. Now
applying the Bernstein–Zelevinsky derivatives ( j = 1, . . . , p − 1), unless
a(�1) ∼= b(�2), we have that ν3/2−la(�1) is a cuspidal support for ( j−1)π ′
whenever ( j−1)π ′ is nonzero and is not a cuspidal support for ν1/2π( j). It
remains to consider a(�1) ∼= b(�2). We can similarly consider the cuspidal
support for ν−1/2a(�1) and ν1/2a(�1) to make conclusion. ��
Lemma 3.6 Let π ∈ Irr(Gn+1). If π is (generic) relatively projective, then
π |Gn is projective.

Proof When π is essentially square-integrable, it is proved in [15]. We now
assume that π is in the case (2) of Definition 3.4. It is equivalent to prove the
condition (2) in Theorem 3.3. Let π ′ ∈ Irr(Gn) with HomGn (π, π ′) �= 0. We
have to show that π ′ is generic. Note that the only non-zero derivative of π(i)

can occur when i = n + 1 and n+1
2 .

Case 1 HomG(n+1)/2(π
[(n+1)/2], ((n−1)/2)π ′) �= 0. For (1), let

π = ρ1 × ρ2

for some cuspidal representations ρ1, ρ2 of G(n+1)/2 with ρ1 � ν±1ρ2, and

m′ = {
�′

1, . . . , �
′
s

}
for π ′ ∼= St(m′).

By a simple count on dimensions, we must have �′
k

∼= ν1/2ρ1 or ∼= ν1/2ρ2 for
some k. Using dimensions again, we have for l �= k, [ρ1] and [ρ2] are unlinked
to �′

l and so

π ′ ∼= (ν1/2 · ρr ) × St(m′\ {�k}),
for r = 1 or 2. Then

((n−1)/2)π ′ ∼= ν1/2 · ρr ,

which implies

((n−1)/2)St(m′\ {
�′

k

}
) �= 0.

Thus St(m′\ {
�′

k

}
) is generic and so is π ′.
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Case 2 HomG(n+1)/2(π
[(n+1)/2], (n−1)/2π ′) = 0. We must have

HomGn+1−i (π
[n+1], (n)π ′) �= 0

and so (n)π ′ �= 0. Hence π ′ is generic. ��
We now achieve the classification of irreducible representations which are

projective when restricted from Gn+1 to Gn:

Theorem 3.7 Let π ∈ Irr(Gn+1). Then π |Gn is projective if and only if π is
relatively projective in Definition 3.4.

Proof The if direction is proved in Lemma 3.6. The only if direction follows
from Lemma 3.5 and Theorem 3.1. ��

One advantage for such classification is that those restricted representations
admit a more explicit realization as shown in [15]:

Theorem 3.8 Let π, π ′ ∈ Irr(Gn+1). If π and π ′ are relatively projective,
then π |Gn

∼= π ′|Gn . In particular, π |Gn is isomorphic to the Gelfand–Graev
representation indGn

Un
ψn.

Proof This follows from that π and π ′ are projective in Alg(Gn) and [15]. ��

4 Gelfand–Graev representations and affine Hecke algebras

Several insights come from the affine Hecke algebra realization of Gelfand–
Graev representations. We shall first recall those results.

4.1 Affine Hecke algebras

Definition 4.1 The affine Hecke algebra Hl(q) of type A is an associative
algebra overC generated by θ1, . . . , θl and Tw (w ∈ Sl) satisfying the relations:

(1) θiθ j = θ jθi ;
(2) Tskθk − θk+1Tsk = (q − 1)θk , where q is a certain prime power and sk is

the transposition between the numbers k and k + 1;
(3) Tskθi = θi Tsk , where i �= k, k + 1
(4) (Tsk − q)(Tsk + 1) = 0;
(5) Tsk Tsk+1Tsk = Tsk+1Tsk Tsk+1 .

Let Al(q) be the (commutative) subalgebra generated by θ1, . . . , θl . Let
HW,l(q) be the subalgebra generated by Ts1, . . . , Tsl−1 . Let sgn be the 1-
dimensionalHW,l(q)-module characterized by Tsk acting by −1.
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It is known from [25, Proposition 3.11] that the center Zl of Hl(q) has a

basis
{
zM = ∑

w∈Sl θ
iw(1)
1 . . . θ

iw(l)
l

}

M
, where M = (i1, . . . , il) runs for all

l-tuples in Z
l/Sl .

Bernstein decomposition asserts that

R(Gn) ∼=
∏

s∈B(Gn)

Rs(Gn),

whereR(Gn) is the category of smooth Gn-representations,B(Gn) is the set
of inertial equivalence classes of Gn and Rs(Gn) is the full subcategory of
R(Gn) associated to s (see [10]). For a smooth representation π of Gn , define
πs to be the projection of π to the component Rs(Gn).

For each s ∈ B(Gn), [9] and [10] associate with a compact group Ks and
a finite-dimensional representation τ of Ks, such that the convolution algebra

H(Ks, τ ) := {
f : Gn → End(τ∨) : f (k1gk2) = τ∨(k1) ◦ f (g) ◦ τ∨(k2) for k1, k2 ∈ Ks

}

is isomorphic to the productHn1(q1)⊗ . . .⊗Hnr (qr ) of affine Hecke algebra
of type A, denoted by Hs. For a smooth representation π of Gn , the algebra
H(Ks, τ ) acts naturally on the spaceHomKs(τ, π) ∼= (τ∨⊗π)Ks . This defines
an equivalence of categories:

Rs(Gn) ∼= category of Hs-modules . (4.11)

By abuse notation, we shall identify HomKs(τ, π) with πs under (4.11) and
consider πs asHs-module.

Let As = An1(q1) ⊗ . . . ⊗ Anr (qr ). Let HW,s = HW,n1(q1) ⊗ . . . ⊗
HW,nr (qr ). Let

sgns = sgn � . . . � sgn

as anHW,s-module. Note that in [13], we proved when s is a simply type, but
the generalization to all types follows from [10] and a simple generalization
of [13, Theorem 2.1]. The center ofHs is equal to Z1 ⊗ . . . ⊗Zr , where each
Zk is the center ofHnk (qk).

Recall that �n = indGn
Un

ψn . We may simply write � for �n if there is no
confusion.

Theorem 4.2 [13] For any s ∈ B(Gn), the Bernstein component of the
Gelfand–Graev representation �s is isomorphic toHs ⊗HW,s sgns.

Using Theorem 4.2, we have that �s is isomorphic to As, as As-module.
This observation has the following consequence:
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Lemma 4.3 For any s ∈ B(Gn), any two non-zero submodules of �s have
non-zero intersections. In particular, �s is indecomposable.

We remark that for general quas-split groupG, the indecomposability of�s

can be deduced from results of [8], which show that endomorphism algebra of
�s is isomorphic to the Bernstein center at the corresponding (indecompos-
able) Bernstein block Rs(G).

We shall also need:

Lemma 4.4 Fix s ∈ B(Gn). Let J be a maximal ideal in Zs that annihilates
an irreducible module in Rs(Gn). Let π be a non-zero submodule of �s. Let
π̂ be the J -adic completion of π . Then π̂ �= 0.

Proof Note that As is an integral domain and is finitely-generated over Zs.
Hence, by Krull’s intersection theorem, ∩kJ kAs = 0. Thus ∩kJ kπ = 0.
This implies that π/J kπ �= 0 for some k. Hence π̂ �= 0. ��

4.2 Jacquet functors on Gelfand–Graev representations

Lemma 4.5 Let P = LN be the parabolic subgroup containing upper trian-
gular matrices and block-diagonal matrices diag(g1, . . . , gr ) with gk ∈ Gik ,
where i1 + . . . + ir = n. Then (�n)N ∼= �i1 � . . . � �ir .

Proof Let w be a permutation matrix in Gn . Then w(N ) ∩ Un contains a
unipotent subgroup

{
In + tuk,k+1 : t ∈ F

}
for some k if and only if w(N ) �⊂

U−
n . Here uk,k+1 is a matrix with (k, k + 1)-entry 1 and other entries 0. For

any such w, it gives that PwB is the same unique open orbit in Gn . Now the
geometric lemma in [7, Theorem 5.2] gives the lemma. ��

5 Submodule structure of Bernstein–Zelevinsky layers

5.1 Inertial equivalence classes

Wegivemore discussions on inertial equivalence classes, relating the parabolic
induction. See, for example, [10]. An inertial equivalence class s of Gn can be
represented by a pair [Gm1×. . .×Gmr , ρ1�. . .�ρr ], wherem1+. . .+mr = n
and each ρk is a cuspidal Gmk -representation. Two pairs

[Gm1 × . . . × Gmr , ρ1 � . . . � ρr ], [Gm′
1
× . . . × Gm′

s
, ρ′

1 � . . . � ρ′
s]

represent the same inertial equivalence class if and only if r = s and there
exists a permutation σ ∈ Sr such that

Gm1 = Gm′
σ(1)

, . . . ,Gmr = Gm′
σ(r)
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and

ρ1 ∼= χ1 ⊗ ρ′
σ(1), . . . , ρr

∼= χr ⊗ ρ′
σ(r)

for some unramified character χk of Gmk (k = 1, . . . , r ).
Let

s1 = [Gm1 × . . . × Gmr , ρ1 � . . . � ρr ] ∈ B(Gn1),

s2 = [Gm′
1
× . . . × Gm′

s
, ρ′

1 � . . . � ρ′
s] ∈ B(Gn2).

Then π1 × π2 lies in Rs(Gn1+n2), where

s = [Gm1 × . . . × Gmr × Gm′
1
× . . . × Gm′

s
, ρ1 � . . . � ρr � ρ′

1 � . . . � ρ′
s]

From this, one deduces the following lemma:

Lemma 5.1 Let π1 ∈ Rs(Gn1) for some s ∈ B(Gn1) and let π2 ∈ Alg(Gn2).
Fix t ∈ B(Gn1+n2)with (π1×π2)t �= 0. There exists a unique s′ ∈ B(Gn1+n2)

such that π1 × (π2)s′ ∼= (π1 × π2)t.

5.2 Bernstein center

The Bernstein center of a category R is defined as the endomorphism ring
of the identity functor in R. Denote by Zn the Bernstein center of R(Gn).
For s ∈ B(Gn), denote by Zs the Bernstein center of Rs(Gn), which is a
finitely-generated commutative algebra [3, Theorem 2.13]. Explicitly, for

s = [Gn1 × . . . × Gnk , ρ1 � . . . � ρk] ∈ B(Gn),

set, the Bernstein variety, to be

Xs = (C×)k/Ws,

where each copy ofC
× comes from the group of unramified characters ofGnp

and Ws is the subgroup of NG(M)/M , where M = Gn1 × . . . × Gnk , which
stabilizes ρ1 � . . . � ρk , and Ws permutes the factors in (C×)k via its action
on M . Here NG(M) is the normalizer of M in G. According to [3],

Zs
∼= C[Xs],

and we also have

Zn
∼=

∏

s∈B(Gn)

Zs.
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It follows from [3, Corollaire 3.4] that for any maximal ideal J of Zn and
any finitely-generated π of Gn , π/J (π) is admissible. For more properties of
the Bernstein center, see, e.g. [3,5,8,20].

For a maximal ideal J in Zn and π ∈ Alg(Gn), define π̂ to be the J -adic
completion of π i.e. the inverse limit

π̂ = limi π/(J iπ),

which has a natural G-module structure from π . The notion π̂ depends on J ,
and it should be clear from the context. Note thatJ comes from somemaximal
ideal in Zs for some unique s ∈ B(Gn) and this gives that

π̂ ∈ Rs(Gn)

Lemma 5.2 Let ω ∈ Alg(Gn1) be admissible with n1 �= 0. Fix τ ∈
Irr(Gn1+n2) such that csupp(ω) ∩ csupp(τ ) = ∅. Let π = ω × �n2 and
π ′ = �n2 × ω. Let J be the maximal ideal in Zn1+n2 which annihilates τ .
Then

(1) π̂ = 0; and
(2) π̂ ′ = 0.

Proof We only prove (1) and a proof for (2) is similar. Each Bernstein com-
ponent of � is finitely generated [8]. Thus π/J (π) is admissible [3] and
is annihilated by J . If π/J (π) is non-zero, then π has a subquotient with
irreducible composition factors isomorphic to τ ′ with csupp(τ ′) = csupp(τ )

[3, Proposition 2.11, Theorem 2.13]. However, using Jacquet functor, one
shows that the cuspidal support of any irreducible subquotients of ω × �n2
has non-zero intersection with csupp(ω). This gives a contradiction. Hence
π/J (π) = 0 and so π̂ = 0. ��

5.3 Intersection properties of Bernstein–Zelevinsky layers

The main tool of this section is the exactness of Jacquet functor.

Lemma 5.3 For i �= j , let ω, τ be an admissible Gn−i -representation and
Gn− j -representation respectively. There is no non-zero isomorphic submodule

of indGn
Rn−i

ω � ψi and ind
Gn

R−
n− j

τ � ψ j .

Proof We only prove for i > j and the case for j < i is similar. Suppose
there exists a non-zero isomorphic submodule λ of ω × �i and � j × τ . By
Frobenius reciprocity on λ ↪→ ω × �i ,

λNi �= 0. (5.12)
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We have that (indGn
Rn−i

ω ⊗ ψi )Ni admits a filtration, from geometric lemma
[7, Theorem 5.2], that successive quotients take the form

(ω′ × �k) � (ω′′ × �i−k). (5.13)

Similarly, (indGn

R−
n−i

τ � ψ j )Ni admits a filtration that successive quotients take

the form

(�l × τ ′) � (� j−l × τ ′′), (5.14)

where τ ′ is an admissible Gn−i−l-representation and τ ′′ is an admissi-
ble Gi− j+l representation. Since Jacquet functor is exact, it reduces, by
Lemma 10.3 and (5.12), to see that there is no submodule for

(�l × τ ′) � (� j−l × τ ′′), and (ω′ × �k) � (ω′′ × �i−k).

for all k, l.
In the case that k = 0 and l = j ; or k = n− i and l = 0, a certain element in

the Bernstein center annihilates ω′′ or ω′, but not on �i or �n−i respectively
(by [8]). Now to prove other cases, we notice that either k > l or i − k > j − l
(which happens when l ≥ k). In the first case, we apply Nk ⊂ Gn−i on the first
factor, and in the second case, apply Ni−k on the second factor. Then repeat the
process and the process terminates as each process the value on i decreases. ��

A special case of Lemma 5.3 is that i = 0 and j = n ≥ 1. In such case,
Lemma 5.3 says that the Gelfand–Graev representation �n does not admit an
irreducible submodule. We also remark that the last fact also holds for a more
general quasi-split connected reductive group with a non-compact center,3

which can be deduced from a combination of Ext-duality (see [11,26,29]) and
the projectivity of a Gelfand–Graev representation (see [13]).

For convenience, an admissible representation π of Gn is said to be uni-
form if all its composition factors have the same cuspidal support. We shall set
csupp(π) = csupp(π ′) for any irreducible π ′ ∈ JH(π). It is well-known that
any admissible representation can be written as direct sum of uniform repre-
sentations. For a uniform representation π of Gn , we associate the maximal
ideal Jπ in Zn such that some power of Jπ annihilates π .

Lemma 5.4 Let ω ∈ Alg(Gn−i ) be uniform. Let τ ∈ Irr(Gi ) such that
csupp(τ ) ∩ csupp(ω) = ∅. Set I = Jω ⊗ 1 + 1 ⊗ Jτ in Zn−i ⊗ Zi . Then, as
Gn−i × Gi-representations,

̂(ω × �i )Ni = ω � �̂i .

3 The author would like to thank the referee for pointing out that.
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(Here ̂(ω × �i )Ni is the I-adic completion for the Gn−i × Gi-representation
(ω × �i )Ni . The �̂i is the Jτ -adic completion of �i .)

Proof We have observed that (ω × �i )Ni admits a filtration with successive
quotients in (5.13). We now apply the I-adic completion on each subquotients
in the form of (5.13). By using Lemma 5.2 and the condition that csupp(τ ) ∩
csupp(ω) = ∅, the only successive quotient which is non-zero after taking the
I-adic completion is the factor ω � �i . Since I-adic completion is exact on
finitely-generated Gn−i × Gi -representations, we obtain that

̂(ω × �i )Ni
∼= ω � �̂i .

We make two remarks on the above proof:

• In order to get finitely-generated modules, one has to consider each Bern-
stein component of ω × �i and those successive quotients.

• To show the exactness on the I-adic completion, one can pass to the Hecke
algebra so that a finitely-generatedGn−i ×Gi -representation will give rise
a corresponding Hecke algebra module which is finitely-generated over
Zn−i ⊗ Zi . ��

Lemma 5.5 Keep using the notation in the previous lemma.We also have that

̂(�i × ω)Ni
∼= ω � �̂i .

Proof The proof is the same as that of Lemma 5.4 except that we use the
filtration (5.14) instead of (5.13). ��
Proposition 5.6 Let ω1, ω2 ∈ Alg(Gn−i ) be admissible and non-zero. If
indGn

Rn−i
ω1 � ψi and indGn

R−
n−i

ω2 � ψi have isomorphic non-zero submodules,

then ω1 and ω2 have isomorphic non-zero submodules.

Proof Let 0 �= π ∈ Alg(Gn) such that

π
ι1

↪→ ω1 × �i , and π
ι2

↪→ �i × ω2.

We nowwriteω1 as direct sum of uniform representations λ1, . . . , λk . Then
ω1 × �i admits a filtration whose successive quotients of the form λr × �i .
By Lemma 10.2, we have that

π ′ ↪→ λr × �i (5.15)

for some r and some non-zero submodule π ′ of π . It suffices to show that
λr and ω2 share an isomorphic irreducible submodule. To this end, now set
I = Jλr ⊗1+1⊗Jτ , where τ ∈ Irr(Gi ) satisfies csupp(λr )∩csupp(τ ) = ∅.
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Frobenius reciprocity gives a non-zero map from π ′
Ni

to λr ��i and so the
image is a non-zero submodule of λr ��i , which is still non-zero after taking
I-adic completion by Lemma 4.4. As taking I-adic completion is exact, we
have that π̂ ′

Ni �= 0.
Now taking exact functors on π ′ ↪→ �i × ω2, we obtain:

0 �= π̂ ′
Ni

↪→ ̂(�i × ω2)Ni
(5.16)

Nowwe regard π̂ ′
Ni
asGn−i -submodule via the embedding g → diag(g, Ii ).

Using (5.15) and Lemma 5.4, any Gn−i -submodule of π̂ ′
Ni

is a submodule of

λr . Similarly, using (5.16) and Lemma 5.5, any Gn−i -submodule of π̂ ′
Ni

is a
submodule of ω2. This concludes that λr and ω2 share isomorphic irreducible
Gn−i -submodules. ��

5.4 Strong indecomposability

We first prove a preparation lemma.

Lemma 5.7 Let π1, π2, π be in Alg(Gn) such that π1 ↪→ π and π2 ↪→ π .
Let N = Ni for some i . Then (π1 ∩ π2)N ∼= (π1)N ∩ (π2)N . Here the later
intersection is taken in πN .

Proof We have the natural projection p : π1 ∩ π2 → πN as linear spaces.
Since the image of the projection lies in both (π1)N and (π2)N , the projection
factors through the embedding (π1)N ∩ (π2)N to πN . Now taking the Jacquet
functor on p gives an isomorphism from (π1 ∩ π2)N onto (π1 ∩ π2)N ⊂ πN .
Thus the map from (π1)N ∩ (π2)N to (π1 ∩ π2)N is also surjective. ��

We shall prove a weak version on the strong indecomposability of the
Bernstein–Zelevinsky induction. The stronger version of Lemma 5.8 is to only
assume the embedding on either left or right Bernstein–Zelevinsky induction.
Proving such statement requires more work and we will not do it here. Some
special cases can be more easily achieved by using Theorem 6.1 below. In
Sect. 8, we shall prove a variation, which says that the Bernstein–Zelevinsky
induction preserves indecomposability (but not strong indecomposability).

Lemma 5.8 Letω ∈ Irr(Gn−i ). Let s ∈ B(Gn). Suppose there exists non-zero
π1, π2 ∈ Alg(Gn) with the following embeddings:

π1 ↪→ (ω × �i )s, π2 ↪→ (ω × �i )s

and

π1 ↪→ (�i × ω)s, π2 ↪→ (�i × ω)s.
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Then the images of the embeddings of π1 and π2 in (ω × �i )s have non-
zero intersections. Similarly, the images of the embeddings of π1 and π2 in
(�i × ω)s have non-zero intersections.

Proof We shall prove the latter statement. The former statement can be proved
similarly. We shall identify πk (k = 1, 2) with the image of the embedding of
πk in (�i × ω)s.

Let τ ∈ Irr(Gi ) with csupp(τ ) ∩ csupp(ω) = ∅. Set I = Jω ⊗ 1+ 1⊗Jτ .
Using a similar argument to the one in the proof of Proposition 5.6 (which
uses Frobenius reciprocity and Lemma 4.4), we have that

(̂π1)Ni �= 0 (5.17)

(We recall that we need the embedding fromπ1 toω×�i to prove the non-zero
part.)

On the other hand, as observed in Proposition 5.6, among all the successive
quotients in the filtration of (�i × ω)Ni of the form (5.15), the only one that
does not vanish after taking I-adic completion is ω � �i .

Moreover, the successive quotient ω � �i lies in the bottom layer of (�i ×
ω)Ni [7, Theorem 5.2]. Thus, the non-vanishing (5.17) implies that (π1)Ni ∩
(ω � �i ) �= 0. Moreover, the Bernstein component s uniquely determines a
t ∈ B(Gi ) such that (π1)Ni ∩ (ω � (�i )t) �= 0 (c.f. Lemma 5.1).

Similarly, we have that (π2)Ni ∩ (ω � (�i )t) �= 0. Thus since ω � (�i )t is
strongly indecomposable Gn−i × Gi -representation (by Lemma 4.3 and ω is
irreducible), we have that

(π1)Ni ∩ (π2)Ni �= 0.

By Lemma 5.7, (π1 ∩ π2)Ni �= 0 and so π1 ∩ π2 �= 0. ��

6 Indecomposability of restricted representations

6.1 Indecomposability of restriction

We now prove our main result:

Theorem 6.1 Let π ∈ Irr(Gn+1). Then for each s ∈ R(Gn), πs is strongly
indecomposable whenever it is nonzero i.e. for any two non-zero submodules
τ, τ ′ of πs, τ ∩ τ ′ �= 0.

Proof There exists a Bernstein–Zelevinsky Gn-filtration on π with

πn ⊂ πn−1 ⊂ . . . ⊂ π1 ⊂ π0 = π (6.18)
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such that

πi/πi+1 ∼= indGn
Rn−i

π [i+1] � ψi . (6.19)

We also have a Gn-filtration on π with

nπ ⊂ n−1π ⊂ . . . ⊂ 1π ⊂ 0π = π (6.20)

such that

iπ/i+1π ∼= indGn

R−
n−i

[i+1]π � ψi . (6.21)

Let i∗ be the level of π . For s ∈ B(Gn) such that πs �= 0, we also have
(πi∗−1)s �= 0 (see Sect. 6.2 for the detail). For notation simplicity, we set
τ = (πi∗−1)s and τ ′ = (i∗−1π)s, both regarded as subspaces of π .

Let ω and γ be two non-zero submodules of πs.
Claim ω ∩ τ �= 0.
Proof of the Claim Suppose not. Then, the natural projection gives an injection

ω ↪→ πs/τ (6.22)

By Lemma 5.3, there is no isomorphic submodules between πs/τ and τ ′.
This implies ω ∩ τ ′ = 0. Hence, we also have an injection:

ω ↪→ πs/τ
′ (6.23)

By (6.18), (6.20), (6.22), (6.23) and Lemma 10.3, there exists a Gn-
representation which is isomorphic to submodules of

(π [ j] × � j−1)s, and (�k−1 × [k]π)s

for some j, k < i∗. By Lemma 5.3 again, we must have j = k. However,
Proposition 5.6 contradicts to the following Theorem 6.2 below (whose proof
does not depend on this result). This proves the claim.

Since ω is an arbitrary submodule of π , we also have γ ∩ τ �= 0. Now we
refine our Gn-modules and set:

0 �= ω′ = ω ∩ τ ⊂ πs, 0 �= γ ′ = γ ∩ τ ⊂ πs.

Now using similar argument as above, we also have that

ω′ ∩ τ ′ �= 0, γ ′ ∩ τ ′ �= 0.
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Now we further refine our Gn-modules and set

ω′′ = ω′ ∩ τ ′ ⊂ πs, γ ′′ = γ ′ ∩ τ ′ ⊂ πs.

Now ω′′ and γ ′′ have desired embeddings as in Lemma 5.8. Hence Lemma 5.8
implies that ω′′ ∩ γ ′′ �= 0 and so we have ω ∩ γ �= 0 as desired. ��

We remark that one can use Theorem 6.1 to show that for ω ∈ Irr(Gm) and
for i large enough (e.g. i ≥ m), (ω×�i )s (resp. (�i ×ω)s) are strongly inde-
composable for any s ∈ B(Gm+i ) (c.f. Lemma 5.8). This is done by realizing
ω × �i (resp. �i × ω) as the bottom layer of the Bernstein–Zelevinsky filtra-
tion of some irreducible module π ofGm+i+1 and then embed the submodules
of ω × �i (resp. �i × ω) to π .

Theorem 6.2 Let π ∈ Irr(Gn+1). If i is not the level of π , then π [i] and
[i]π do not have an isomorphic irreducible quotient, and also do not have an
isomorphic irreducible submodule whenever the two derivatives are not zero.

The proof of Theorem 6.2 will be carried out in Sect. 7. Note that the
converse of the above theorem is also true, which follows directly from the
well-known highest derivative due to Zelevinsky [35, Theorem 8.1].

6.2 Non-zero Bernstein components

Let π ∈ Irr(Gn+1). In order to give an explicit parametrization of indecom-
posable components of π |Gn , we also have to determine when πs �= 0 for
s ∈ B(Gn). Indeed this can be done as follows. Write π ∼= 〈m〉 for a mul-
tisegment m = {�1, . . . , �k}. Let π ′ be the (right) highest derivative of π .
Then we obtain a multiset

csupp(π ′) = (ρ1, . . . , ρp).

This multiset determines a cuspidalGk1 × . . .×Gkp -representation ρ1� . . .�
ρp. Nowwepick positive integers kp+1, . . . , kq such that k1+. . .+kq = n, and
pick cuspidal representations ρp+1, . . . , ρq of Gkp+1, . . . ,Gkq respectively.
Then for the inertial equivalence class

s = [Gk1 × . . . × Gkq , ρ1 � . . . � ρq ],

wehave thatπs �= 0,which follows from that the bottomBernstein–Zelevinsky
layer (π [i∗] × �i∗−1)s ⊂ πs is non-zero. Here i∗ is the level of π .

Indeed for any s ∈ B(Gn) with πs �= 0, s arises in the above way. To see
this, we need the following lemma:
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Lemma 6.3 Let π ∈ Irr(Gn+1). Let i∗ be the level of π . Then, for any i ≤ i∗
with π [i] �= 0 and for any ω ∈ JH(π [i]), csupp(π [i∗]) ⊂ csupp(ω) (counting
multiplicities).

Proof Let m ∈ Mult such that π ∼= 〈m〉. Now by definition, we have that

〈m〉 ↪→ ζ(m)

and so 〈m〉[i] ↪→ ζ(m)[i].
For any segment �, set �[0] = ν1/2� and set �[−] = ν1/2�−. We also set

m = {�1, . . . , �k} and set
M = {{

�#
1, . . . , �

#
k

} : # = [0], [−]} .

Now the geometric lemma gives a filtration on ζ(m)[i] whose successive quo-
tients are isomorphic to ζ(n) for some n ∈ M (see Lemma 7.3 below). Since
〈m〉[i] ↪→ ζ(m)[i] as discussed before, any ω ∈ JH(〈m〉[i]) is a composi-
tion factor of ζ(n) for some n ∈ M. Hence, csupp(ω) = ∪�∈n� (counting
multiplicities).

On the other hand, π [i∗] = 〈
{
�

[−]
1 , . . . , �

[−]
k

}
〉. Hence csupp(π [i∗]) ⊂

csupp(ω) for any ω ∈ JH(π [i]). ��
Nowwe go back to consider that s ∈ B(Gn)withπs �= 0. By theBernstein–

Zelevinsky filtration,

πs �= 0 ⇒ (π [i] × �i−1)s �= 0

for some i ≤ i∗. Now, as a similar manner to what we did for the bottom
layer above, we could determine (abstractly) all possible s′ ∈ B(Gn) with
(π [i] × �i−1)s′ �= 0. Then by Lemma 6.3, one sees that,

(π [i] × �i−1)s �= 0 ⇒ (π [i∗] � �i∗−1)s �= 0.

Remark 6.4 We use notations in Sect. 5.2. Fix s ∈ B(Gn). Let π ∈ Irr(Gn+1)

with πs �= 0. We consider the set of points σ ∈ Xs such that the corre-
sponding maximal ideal J σ satisfies π/J σπ �= 0. The above discussion with
Lemma 4.4 gives a description on such set, and in particular, such set forms
an irreducible closed subvariety in Xs.

Indeed, for any submodule π ′ of π |Gn , the analogous set for π ′ defines
precisely the same variety asπ |Gn . This can be seen by refining to a submodule
ω of π ′ that embeds to the bottom layer π [i∗] × �i∗−1 (as what we saw in the
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proof of Theorem 6.1). Then one shows, as in the proof of Proposition 5.6,
that ωNi∗−1/IωNi∗−1 �= 0 for any ideal I of the form Jπ [i∗] ⊗ 1 + 1 ⊗ Jτ .
(Here τ ∈ Irr(Gi∗−1) without any conditions.)

6.3 Indecomposability of Zelevinsky induced modules

Let m ∈ Mult. In [7], it is shown that the restriction of ζ(m) to the mirabolic
subgroup is strongly indecomposable. One may expect the following conjec-
ture, which is a stronger statement of Theorem 6.1:

Conjecture 6.5 Let m ∈ Mult with sum of absolute lengths of all its seg-
ments equal to n + 1. Then any Bernstein component of ζ(m)|Gn is strongly
indecomposable.

A variation of the above conjecture is to replace ζ(m) in Conjecture 6.5 by
λ(m). However, it is not true in general for the smooth dual ζ(m)∨|Gn . An
example is m = {[ν−1/2], [ν1/2]}. In this case, the short exact sequence:

0 → 〈�〉 → ζ(m)∨|G1 → St(�) → 0,

where � = [ν−1/2, ν1/2], gives a split sequence since St(�)|G1 is projective
(see Theorem 3.7). Hence the Iwahori component of ζ(m)∨|G1 is not inde-
composable.

7 Asymmetric property of left and right derivatives

We are going to prove Theorem 6.2 in this section. The idea lies in two simple
cases. The first one is a generic representation. Since an irreducible generic
representation is isomorphic to λ(m) ∼= St(m) for m ∈ Mult (with the prop-
erty that any two segments in m are unlinked), a simple counting on cuspidal
supports of derivatives can show Theorem 6.2 for that case. The second one is
an irreducible representationwhose Zelevinskymultisegment has all segments
with relative length strictly greater than 1. In such case, one can narrow down
the possibility of irreducible submodules of the derivatives via the embed-
ding 〈m〉(i) ↪→ ζ(m)(i) and (i)〈m〉 ↪→ (i)ζ(m), and use geometric lemma to
compute the possible submodules of derivatives of ζ(m)(i) and (i)ζ(m). The
combination of these two cases seems to require some extra work. The strat-
egy is to use Speh representations, which can be viewed as a generalization
of generalized Steinberg representations, and then apply Lemma 9.4 to obtain
information on submodules.
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7.1 Union–intersection operation

Let m = {�1, . . . , �r }. For two segments � and �′ in m which are linked,
the process of replacing � and �′ by � ∩ �′ and � ∪ �′ is called the
union–intersection process. It follows from [35, Chapter 7] that the Zelevinsky
multisegment of any irreducible composition factor in

〈�1〉 × . . . × 〈�r 〉
can be obtained by a chain of intersection-union process. For a positive integer
l, define N (m, l) to be the number of segments in m with relative length l.

Lemma 7.1 Let k ≥ 1. Letm0,m1, . . .mk ∈ Mult such that for i = 1, . . . , k,
each mi is obtained from mi−1 by one-step of union–intersection operation.
Suppose �i , �

′
i are two segments in mi−1 involved in the union–intersection

operation to obtain mi . Let li be the relative length of �i ∪ �′
i . Then there

exists l such that l ≥ li for all i , and

N (mk, l) > N (m0, l)

and, for any l ′ > l,

N (mk, l
′) ≥ N (m0, l

′).

Proof We shall prove inductively on k. The basic case that k = 1 can be
proved by a similar argument that will be used to prove the inductive case, and
so we omit the details. We assume the targeted statement is true for X ≥ 1
number of union–intersection operations. Let mX+1 be a new multisegment
obtained fromm0 by X +1 number of union–intersection operations. Then we
have amultisegmentmX obtained fromm0 by X number of union–intersection
operations andmX+1 is obtained frommX byoneunion–intersectionoperation.

By inductive hypothesis, we can find a positive number lX such that

N (mX , lX ) > N (m0, lX ),

and for any l ′ > lX ,

N (mX , l ′) ≥ N (m0, l
′).

Now let �i , � j be the segments in mX involved in the union–intersection
operation to obtain mX+1. In particular, �i and � j are linked. Let l0 be the
relative length of �i ∪ � j . If l0 ≥ lX , set l = l0, and otherwise set l = lX .
Now it is straightforward to check that such l satisfies the required properties.

��
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7.2 Speh multisegments

Definition 7.2 Let � be a segment. Let

m(m, �) =
{
ν−(m−1)/2�, ν1−(m−1)/2�, . . . , ν(m−1)/2�

}
.

We shall call m(m, �) to be a Speh multisegment. Define

u(m, �) = 〈m(m, �)〉,

which will be called a Speh representation. In the literature, it is sometimes
called an essentially Speh representation, reflecting that it is not necessarily
unitary. Denote by L(m(m, �)) the relative length of �.

We similarly define

ur (m, i,�) = 〈ν−(m−1)/2�−, . . . , ν−(m−2i+1)/2�−, ν−(m−2i−1)/2�, . . . , ν(m−1)/2�〉,

and

ul(m, i,�) = 〈ν−(m−1)/2�, . . . , , ν(m−2i−1)/2�, ν(m−2i+1)/2(−�), . . . , ν(m−1)/2(−�)〉.

Let l = n(ρ). It follows from [23,33] (also see [13]) that

u(m, �)(li) ∼= ur (m, i, �), (7.24)

and u(m, �)(k) is zero if l does not divide k. Applying (2.3), we have that

(li)u(m, �) ∼= ul(m, i, �), (7.25)

and (k)u(m, �) = 0 if l does not divide k.

7.3 Notations for multisegments

For a multisegment m = {�1, . . . , �r }, define

m(i1,...,ir ) =
{
�

(i1)
1 , . . . , �(ir )

r

}
, m(i) =

{
m(i1,...,ir ) : i1 + . . . + ir = i

}
,

(i1,...,ir )m =
{

(i1)�1, . . . ,
(ir )�r

}
, (i)m =

{
(i1,...,ir )m : i1 + . . . + ir = i

}
.

We shall need the following lemma:
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Lemma 7.3 Let m ∈ Mult. Then ζ(m)(i) (resp. (i)ζ(m)) admits a filtration
whose successive subquotients are isomorphic to ζ(n) for some n ∈ m(i)

(resp. n ∈ (i)m).

Proof Write m = {�1, . . . , �r }. We shall assume that for i < j , b(�i ) �<
b(� j ) and if b(�i ) ∼= b(� j ), then a(� j ) < a(�i ). By definition,

ζ(m) ∼= 〈�1〉 × . . . × 〈�r 〉.

By (2.4), we have that ζ(m)(i) admits a filtration whose successive quotients
are:

〈�1〉(i1) × . . . × 〈�r 〉(ir )

for i1 + . . .+ ir = i . Now the lemma follows from that the product 〈�1〉(i1) ×
. . . × 〈�r 〉(ir ) is isomorphic to ζ(n) for n =

{
�

(i1)
1 , . . . , �

(ir )
r

}
. We remark

that in order to check the isomorphism, we have to use (2.1) and our choice of
labelling for m. ��

7.4 Proof of Theorem 6.2

By Lemma 2.6, it suffices to prove the statement for submodules of the deriva-
tives.

Letm be the Zelevinsky multisegment with π ∼= 〈m〉. We shall assume that
any cuspidal representation in each segment of m is an unramified twist of a
fixed cuspidal representation ρ, i.e.

csupp(〈m〉) ⊂ {
νcρ : c ∈ C

}
.

We shall prove Theorem 6.2 for such π . The general case follows from this by
writing an irreducible representation as a product of irreducible representations
of such specific form.
Step 1: First approximation using Lemma 7.3 Let π ′ be a common isomor-
phic irreducible quotient of π [i] and [i]π . (Here we assume that π [i] and [i]π
are non-zero.) Recall that we have that

π ↪→ ζ(m).

Since taking derivatives is an exact functor, ν1/2 ·π(i) embeds to ν1/2 · ζ(m)(i)

and so does π ′.
By Lemma 7.3, there is a filtration on ζ(m)(i) given by ζ(m(i1,...,ir )) for

i1+. . .+ir = i , where ik = 0 or n(ρ). Thenπ ′ is isomorphic to the unique sub-
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module of ν1/2ζ(m(i ′1,...,i ′r )) for some (i ′1, . . . , i ′r ) and so π ′ ∼= ν1/2〈m(i ′1,...,i ′r )〉.
Similarly, π ′ is isomorphic to ν−1/2〈( j ′1,..., j ′r )m〉 for some j ′1 + . . . + j ′r = i .

Suppose i is not the level of π . Then there exists at least one i ′k = 0 and at
least one j ′k = 0. Among all those segment �k with either i ′k = 0 or j ′k = 0,
we shall choose �k∗ to have the largest relative (and absolute) length. Denote
the relative length of �k∗ by L .
Step 2: Second approximation using Lemma 9.4

We write m as the sum of Speh multisegments

m = m′
1 + . . . + m′

s (7.26)

satisfying properties in Proposition 9.3.
Let

m1, . . . ,mr

be all the Speh multisegments appearing in the sum (7.26) such that L(mk) =
L . For each mk , write mk = m(mk, �k) and define b(mk) = ν(mk−1)/2b(�k).
We shall label mk in the way that b(mk) �< b(ml) for k < l. Furthermore, the
labelling satisfies the properties that

(♦) for any mp and p < q, mp + � is not a Speh multisegment for any
� ∈ mq .

(♦♦) if mp ∩ mq �= ∅ and p ≤ q, then mq ⊂ mp.

Let n1 be the collection of all segments �′ in m\(m1 + . . . + mr ) which
satisfies either (1) b(m1) < b(�′) or (2) b(m1) ∼= b(�′). Define inductively
that nk is the collection of all segments�′ inm\(m1+. . .+mr +n1+. . . nk−1)

that satisfies the property that either (1) b(mk) < b(�′), or (2) b(mk) ∼= b(�′).
(It is possible that some nk is empty.)

By Lemma 9.4, we have a series of embeddings:

〈m〉 ↪→ζ(n1) × 〈m1〉 × . . . ζ(nr ) × 〈mr 〉 × ζ(nr+1)

↪→ . . .

↪→ζ(n1) × 〈m1〉 × ζ(n2) × 〈m2〉 × ζ(n3 + . . . + nr + m3 + mr + nr+1)

↪→ζ(n1) × 〈m1〉 × ζ(n2 + . . . + nr + m2 + mr + nr+1)

↪→ζ(n1 + . . . nr+1 + m1 + . . . + mr ) = ζ(m)
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For simplicity, define, for k ≥ 0,

λk = ζ(n1) × 〈m1〉 × . . . × ζ(nk) × 〈mk〉 × ζ(nk+1 + . . .

+ nr+1 + mk+1 + . . . + mr )

Step 3: Approximation on right derivatives Then for each k, we again have
an embedding:

π ′ ↪→ ν1/2 · π(i) ↪→ ν1/2 · λ
(i)
k .

As λk is a product of representations, we again have a filtration on λ
(i)
k by

(2.4). This gives that π ′ embeds to a successive quotient of the filtration:

π ′ ↪→ ν1/2 · (ζ(n1)
(pk1) × 〈m1〉(qk1 ) × . . . × ζ(nk)

(pkk ) × 〈mk〉(qkk ) × ζ(ok+1)
(sk ))

with pk1 + . . . + pkk + qk1 + . . . + qkk + sk = i ,

ok+1 = nk+1 + . . . + nr+1 + mk+1 + . . . + mr .

Lemma 7.4 (1) ik = 0 for some �k in m with relative length L (see the choice of L
in Step 1).

(2) Following above notations, there exists a k′ ≥ 1 such that at least one of qk
′

l is not
equal to the level of 〈ml〉.

Remark 7.5 Similarly, we have jk = 0 for some �k in m with relative length L .

Proof We first assume (1) to prove (2). It suffices to show that when k′ = r , at least
one of qk

′
l is not equal to the level of 〈ml〉. Suppose not. Let 〈mi 〉− be the highest

derivative of 〈mi 〉. Then we obtain an embedding:

π ′ ↪→ ν1/2 · (ζ(n1)
(pk1) × 〈m1〉− × . . . × ζ(nr )

(pkr ) × 〈mr 〉− × ζ(nr+1)
(sr )).

Now set m−
i to be the multisegment such that 〈m−

i 〉 ∼= 〈mi 〉−. By definitions, m−
i is

still a Speh multisegment. Now, by Lemma 7.3, we have that

π ′ ↪→ ν1/2 · (ζ (̃n1) × 〈m−
1 〉 × . . . × ζ (̃nr ) × 〈m−

r 〉 × ζ (̃nr+1)),

where ña ∈ n
(pki )
a . From the construction of na , we can check that those ñi satisfies

the conditions in Lemma 9.4. Hence, by Lemma 9.4,

π ′ ∼= ν1/2 · 〈̃n1 + m−
1 + . . . + ñk + m−

k + ñk+1〉.

Now we write na = {
�a,1, . . . ,�a,r(a)

}
for each a. Then we have that

ña =
{
�

(pa,1)

a,1 , . . . ,�
(pa,r(a))

a,r(a)

}
,
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where each pa,k = 0 or n(ρ).
Claim For any segment �a,k with relative length at least L + 1, pa,k = n(ρ).
Proof of Claim Recall that we also have π ′ ∼= ν1/2 · 〈m(i1,...,ir )〉 in Step 1. Hence,

m(i1,...,ir ) = ñ1 + m−
1 + . . . + ñk + m−

k + ñk+1. (7.27)

Let L∗∗ be the largest relative length among all the relative length of segments in m.
If L∗∗ = L , then there is nothing to prove (for the claim). We assume L∗∗ > L . In
such case, there is no segment in m(i1,...,ir ) has relative length L∗∗. This implies that
all segments �a,k with relative length L∗∗ have pa,k = n(ρ). With the use of (7.27)
and

m = n1 + m−
1 + . . . + nk + m−

k + nk+1,

we can proceed to the length L∗∗ − 1 in a similar fashion. Inductively, we obtain the
claim.

Now we go back to the proof of the lemma. By using the claim (and the definitions
of mi ),

N (̃n1 + m−
1 + . . . + ñk + m−

k + ñk+1, L) = N (m, L + 1).

On the other hand,

N (m(i1,...,ir ), L) ≥ N (m, L + 1) + 1

by using the hypothesis in the lemma. However,m = ñ1+m−
1 + . . .+ ñk +m−

k + ñk+1
and this gives a contradiction. This proves (2) modulo (1).

It remains to prove (1). From our choice of L , either

N (( j1,..., jr )m, L) ≥ N (m, L + 1) + 1

or

N (m(i1,...,ir ), L) ≥ N (m, L + 1) + 1.

however, since ν1/2 · m(i1,...,ir ) ∼= ν−1/2 · ( j1,..., jr )m, we have that

N (m(i1,...,ir ), L) = N (( j1,..., jr )m, L).

Thus, we must have that N (m(i1,...,ir ), L) ≥ N (m, L + 1) + 1. But this forces (1). ��
Now let k̄ be the smallest number such that at least one of qk̄l is not equal to the

level of 〈ml〉. Now we shall denote such l by l∗, and so k̄ ≥ l∗.
We use similar strategy to further consider the filtrations on each na by geometric

lemma. For that we write, for each a,

na = {
�a,1, . . . , �a,r(a)

}

123



334 K. Y. Chan

and

ok̄+1 =
{
�k̄+1,1, . . . ,�k̄+1,r(k̄+1)

}
.

Here r(a) is an index counting the number of segments in na depending on a.
Then we again have an embedding

π ′ ↪→ ν1/2 · (ζ (̃n1) × 〈m1〉(qk̄1 ) × . . . × ζ (̃nk̄) × 〈mk̄〉(q
k̄
k̄
) × ζ(ok̄+1)

(sk̄ )),

where, for a = 1, . . . , k̄,

ña =
{
�

(pa,1)

a,1 , . . . ,�
(pa,r(a))

a,r(a)

}
∈ n

(pk̄a)
a

with pa,1 + . . . + pa,r(a) = pk̄a and each pa,b = 0 or n(ρ), and

õk̄+1 =
{
�

(pk̄+1,1)

k̄+1,1
, . . . ,�

(pk̄+1,r(k̄+1))

k̄+1,r(k̄+1)

}
∈ o

(sk̄ )

k̄+1

with pk̄+1,1 + . . . + pk̄+1,r(k̄+1) = sk̄ , with each pk̄+1,b = 0 or n(ρ).
Step 4: Computing some indexes pa,b and approximating the number of special
segments by union–intersection operations We claim (*) that if �a,b has a relative
length at least L+1, then pa,b = n(ρ). This is indeed similar to the proof of Lemma7.4
and the main difference is that we do not have an analogous form of (7.27) (since we
cannot apply Lemma 9.4). Instead, we can obtain this from Lemma 7.1 (and its proof
of Lemma 7.1).

Now from our choice of k̄, we have that 〈ml∗〉(qk̄l∗ ) is not a Speh representation. We
can write

ml∗ =
{
ν−x+1�∗, . . . , ν−1�∗,�∗}

for a certain �∗ with relative length L and some x . By (♦), ν�∗ /∈ ml for any l ≥ l∗
from our labelling on ml . Rephrasing the statement, we get the following statement:

(∗∗) ν1/2�∗ /∈ ν−1/2ml for any l ≥ l∗.

Now with (*), we have that π ′ is a composition factor of ζ(m′′′), where m′′′ is some
multisegment containing all the segments �− (counting multiplicities) with � in m
that has relative length at least L + 1 and containing an additional segment ν1/2�∗

(from 〈ml∗〉(qk̄l∗ ) by Sect. 7.2), and we shall call the former segments (i.e. the segment
in the form of �−) to be special for convenience.

We can apply the intersection-union process to obtain the Zelevinsky multisegment
for π ′ from m′′′. However in each step of the process, any one of the two segments
involved in the intersection-union cannot be special. Otherwise, by Lemma 7.1, there
exists l ≥ L + 1 such that the number of segments in the resulting multisegment with
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relative length l is more than the number of segments inm(i1,...,ir ). (Here we also used
that L(m(i1,...,ir ), l) = L(m′′′, l) for any l ≥ L + 1.) Hence we obtain the following:

(***) the number of segments � in ν1/2 · m(i1,...,ir ) such that ν1/2�∗ ⊂ � is at
least equal to one plus the number special segments in m′′′ satisfying the same
property

Step 5: Approximation on left derivatives Now we come to the final part of the
proof. We now consider ν−1/2 · (i)π . Following the strategy for right derivatives, we
have that for each k

π ′ ↪→ ν−1/2 · (i)π ↪→ ν−1/2 · (i)λk .

This gives that π ′

π ′ ↪→ ν−1/2 · ((u
k
1)ζ(n1) × (vk1 )〈m1〉 × . . . × (ukk )ζ(nk) × (vkk )ζ(mk) × (wk )ζ(ok+1))

with uk1 + . . . + ukk + vk1 + . . . + vkk + wk = i . Let k̃ be the smallest integer such

that at least one of vk̃l is not equal to the level of 〈ml〉. (For the existence of k̃, see
Lemma 7.4.) We shall denote such l by l̃.
Step 6: the case that k̃ ≥ k̄ and determining the number of special segments

We firstly consider the case that k̃ ≥ k̄. We abbreviate vp = vk̄−1
p . Similar to right

derivatives, we have that

π ′ ↪→ ν−1/2 · ζ (̂n1) × (v1)〈m1〉 × . . . × ζ (̂nk̄−1) × (vk̄−1)〈mk̄−1〉 × (wk̄−1)ζ (̂ok̄),

where

n̂a =
{

(ua,1)�a,1, . . . ,
(ua,r(a))�a,r(a)

}
.

with ua,1 + . . . + ua,r(a) = uk̄−1
a and each ua,b = 0 or n(ρ). Since we assume that

k̃ ≥ k̄, we have that (vl )〈ml〉 is a highest derivative for any l ≤ k̄ − 1 and so is a Speh
representation, and we can apply Lemma 9.4(1). Hence the unique subrepresentation
of

ν−1/2 · ζ (̂n1) × (v1)〈m1〉 × . . . × ζ (̂nk̄−1) × (vk̄−1)〈mk̄−1〉 × ζ (̂ok̄)

is isomorphic to

ν−1/2 · 〈̂n1 + m̂1 + . . . + ñk̄−1 + m̂k̄−1 + ôk̄〉, (7.28)

where 〈m̂l〉 = (vl )〈ml〉. Similar to (*) for right derivatives (but the proof could be
easier here), we obtain the analogous statement for those n̂a . Now if

� ∈ ν−1/2(̂n1 + m̂1 + . . . + ñk̄−1 + m̂k̄−1 + ôk)
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such that � = ν1/2�∗, then we must have that � = ν−1/2 · −�0 or ν−1/2 · �0 for
some segment�0 inm. For the latter case to happen, we must have that�0 ∈ ml ⊂ ok̄
with l ≥ k̄ ≥ l∗, but, by (**), the possibility � = ν−1/2�0 cannot happen. Thus we
must have that � is a special in the same sense as the discussion in right derivatives.
This concludes the following:

(****) The number of segments � in ν−1/2(̂n1 + m̂1 + . . .+ ñk̄−1 + m̂k̄−1 + ôk̄)

with the property that ν1/2�∗ ⊂ � is equal to the number of special segments
satisfying the same property.

Now the above statement contradicts to (***) since both Zelevinsky multisegments
give an irreducible representation isomorphic to π ′.

Remark 7.6 The isomorphism (7.28) is a key to obtain the equality in (****), in
contrast with the inequality in (***).

Step 7: the case that k̄ > k̃ Now the way to get contradiction in the case k̄ ≥ k̃ is
similar by interchanging the role of left and right derivatives. We remark that to prove
the analogue of (**), one uses (�). And to obtain the similar isomorphism as (7.28),
one needs to use Lemma 9.4(2). We can argue similarly to get an analogue of (***)
and (****). Hence the only possibility that ν1/2 · π(i) and so ν−1/2 · (i)π have an
isomorphic irreducible quotient only if i is the level for π . This completes the proof
of Theorem 6.2.

7.5 Branching law in opposite direction

Here is another consequence of the asymmetric property on the Hom-branching law
in another direction:

Corollary 7.7 Let π ′ ∈ Irr(Gn). Let π ∈ Irr(Gn+1).

(1) Suppose π is not 1-dimensional. Then

HomGn (π
′, π |Gn ) = 0.

(2) Suppose π is 1-dimensional. Then

HomGn (π
′, π |Gn ) �= 0

if and only if π ′ is also 1-dimensional and π ′ = π |Gn .

Proof The second statement is trivial. We consider the first one. Since π is not one-
dimensional, the level of π is not 1 by Zelevinsky classification. By Theorem 6.2 and
Proposition 2.5, π [1] and [1]π have no common irreducible submodule if π(1) �= 0
and (1)π �= 0. Then at least one of

HomGn (π
′, π [1]) = 0 or HomGn (π

′, [1]π) = 0.
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On the other hand, we have that for all i ≥ 2, by Frobenius reciprocity,

HomGn (π
′, indGn

Rn−i+1
π [i] � ψi−1) ∼= HomGn+1−i×Gi−1(π

′
Ni−1

, π [i] � �i−1),

and

HomGn (π
′, indGn

R−
n−i+1

[i]π � ψi−1) ∼= HomGi−1×Gn+1−i (π
′
Nn+1−i

,�i−1 � [i]π)

However, in the last two equalities, the Hom in the right hand side is always zero (see
Lemma 5.3). Now applying a Bernstein–Zelevinsky filtration to obtain the corollary.

��

8 Preserving indecomposability of Bernstein–Zelevinsky induction

We shall use the following criteria of indecomposable representations:

Lemma 8.1 Let G be a connected reductive p-adic group. Let π be a smooth rep-
resentation of G. The only idempotents in EndG(π) are 0 and the identity (up to
automorphism) if and only if π is indecomposable.

Proof Ifπ is not indecomposable, then any projection to a direct summandgives a non-
identity idempotent. On the other hand, if σ ∈ EndG(π) is a non-identity idempotent
(i.e. σ(π) �= π ), then π ∼= im(σ ) ⊕ im(1 − σ). ��
Lemma 8.2 Set � = �k . Let s ∈ B(Gk). Then (k)(�s) ∼= Zs, where Zs is the
Bernstein center of Rs(Gk).

Proof We have

(k)(�s) ∼= HomC(C, (k)(�s)) ∼= HomGk (�,�s) ∼= EndGk (�s),

where the second isomorphism follows from the second adjointness theorem in [15],
and the third isomorphism follows from the Bernstein decomposition. Now the lemma
follows from that the final endomorphism is isomorphic to Zs by [8]. ��
Theorem 8.3 Letπ be an admissible indecomposable smooth representation of Gn−i .
For each s ∈ B(Gn), the Bernstein component (indGn

Rn−i
π � ψi )s is indecomposable

whenever it is nonzero.

Proof We first prove the following:

Lemma 8.4 Let π ∈ Alg(Gn−i ) be admissible. Then, as algebras,

EndGn (ind
Gn
Rn−i

π � ψi ) ∼= EndGn−i (π) ⊗ Zi ,

where Zi = ∏
s∈B(Gi )

Zs is the Bernstein center.
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Proof Let s1, s2 ∈ B(Gn−i ). Let π1, π2 be two admissible Gn−i representations in
Rs1(Gn−i ) and Rs2(Gn−i ) respectively. Then

HomGn (ind
Gn
Rn−i

π1 � ψi , ind
Gn
Rn−i

π2 � ψi )

∼=
∏

s∈R(Gn)

HomGn (ind
Gn
Rn−i

π1 � ψi , (ind
Gn
Rn−i

π2 � ψi )s)

∼=
∏

s∈R(Gn)

HomGn (π1,
(i)(indGn

Rn−i
π2 � ψi )s) [16, Lemma 2.4]

∼=
∏

u∈R(Gi )

HomGn−i (π1,
(i)(π2 × (�i )u))

We remark that in order to apply the second adjointness theorem [15, Lemma 2.4],
we need to get the first isomorphism. For the third isomorphisms, see discussions in
Sect. 5.1.

Now we apply the geometric lemma on (i)(π2 × (�i )u) and we obtain a filtration
on (i)(π2 × (�i )u) whose successive quotients are of the form

( j)(π2) × (k)((�i )u),

where j + k = i . Using Lemma 5.3,

HomGn−i (π1,
( j)(π2) × (k)((�i )u)) = 0

unless j = 0 and k = i . Combining the above isomorphisms, we now have

HomGn (ind
Gn
Rn−i

π1 � ψi , ind
Gn
Rn−i

π2 � ψi )

∼=
∏

u∈B(Gi )

HomGn−i (π1, π2 ⊗ (i)((�i )u))

∼=
∏

u∈B(Gi )

HomGn−i (π1, π2 ⊗ Zu)

∼=
∏

u∈B(Gi )

HomGn−i (π1, π2) ⊗ Zu

∼= HomGn−i (π1, π2) ⊗ Z

We remark that the third and last isomorphisms require the admissibility of π1 and
π2. The second isomorphism follows from Lemma 8.2. One further traces the above
isomorphisms to see that they give an isomorphism preserving the algebra structure.
Now we specialize to π1 = π2 = π and we obtain the lemma when each of π1, π2
lying in one Bernstein component.

The general case follows by writing π = ⊕sπs. ��
Now the theorem follows from Lemmas 8.1 and 8.3 since the right hand side has

only 0 and 1 as idempotents if and only if the left hand side does. ��
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Let Mn be the mirabolic subgroup in Gn+1, that is the subgroup containing all
matriceswith the last rowof the form (0, . . . , 0, 1).Wehave the following consequence
restricted fromMn toGn . HereGn is viewed as the subgroup ofMn via the embedding
g → diag(g, 1).

Corollary 8.5 Let π be an irreducible smooth representation of Mn. Then for any
s ∈ B(Gn), πs is indecomposable.

Proof This follows from [7, Corollary 3.5] and Theorem 8.3. ��

9 Appendix: Speh representation approximation

9.1 Two lemmas

Some studies on parabolic induction can be found in [24,32,34].We give a proof of the
following specific cases, using the theory of derivatives. We use notations in Sect. 7.2.

Lemma 9.1 Let m ∈ Z. Let � = [νaρ, νbρ]. If �′ = [νkρ, νlρ] such that

−m − 1

2
+ a ≤ k ≤ l ≤ m − 1

2
+ b,

then

u(m,�) × 〈�′〉 ∼= 〈�′〉 × u(m,�),

and is irreducible.

Proof When −(m − 1)/2+ a − k /∈ Z, this case is easier by using (2.1) and we omit
the details. We now consider −(m − 1)/2 + a − k ∈ Z.

The statement is not difficult when � is a singleton [ρ] because

u(m,�) ∼= St([ν−(m−1)/2ρ, ν(m−1)/2ρ])

and St(�′) × 〈�′′〉 ∼= 〈�′′〉 × St(�′) whenever �′′ ⊂ �′. (Indeed, one can also
prove the latter fact by similar arguments as below by noting that the Zelevinsky
multisegment of any simple composition factor in St(�′) × 〈�′′〉 contains a segment
�̃ with b(�̃) ∼= b(�′) and at least one segment �̂ with b(�̂) ∼= b(�′′).)

We now assume � is not a singleton. We consider two cases:

(1) Case 1: l = b + m−1
2 . Suppose τ is a composition factor of a(m,�) × 〈�′〉

with the associated Zelevinsky multisegment m. Then we know that at least two

segments �1,�2 in m takes the form b(�1) ∼= b(�2) ∼= ν
m−1
2 +bρ. If τ (i∗) is

the highest derivative of τ , then we know that the cuspidal support of τ (i∗) does

not contain ν
m−1
2 ρ. We also have that τ (i∗) is a composition factor of (u(m,�)×

〈�〉)(i∗). The only possibility is that i∗ = m + 1 i.e (u(m,�) × 〈�′〉)(i∗) =
u(m,�−)×〈(�′)−〉, which the latter one is irreducible by induction. This proves
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the lemma. Since taking derivative is an exact functor,we have that u(m,�)×〈�′〉
is irreducible. Using the Gelfand–Kazhdan involution [6, Section 7], we have that
〈�′〉 × u(m,�) ∼= u(m,�) × 〈�′〉.

(2) Case 2: l < b+ m−1
2 . The argument is similar. Again suppose τ is a composition

factor of u(m,�) × 〈�′〉. Using an argument similar to above, we have that the
level of τ is eitherm+1 orm. However, if the level of τ ism, then τ (m) would be
u(m,�−)×〈�′〉, which is irreducible by induction. Then it would imply that the
number of segments in Zelevinsky multisegment of τ (m) ism and contradicts that
the number of segments for the Zelevinsky multisegment of the highest derivative
of an irreducible representation π must be at most that for π . Hence, the level
of τ must be m + 1. Now repeating a similar argument as in (1) and using the
induction, we obtain the statements. ��

Lemma 9.2 Let � be a segment. Then

u(m,�−) × ν(m−1)/2〈�〉 ∼= ν(m−1)/2〈�〉 × u(m,�−)

is irreducible.

Proof The statement is clear if � is a singleton. For the general case, we note by
simple counting that the Zelevinsky multisegment of any composition factor must
contain a segment �1 with b(�1) ∼= ν(m−1)/2b(�) and at least one segment �2 with
b(�2) ∼= ν(m−1)/2b(�−). Then one proves the statement by a similar argument using
the highest derivative as in the previous lemma. ��

9.2 Speh representation approximation

For a Speh multisegment

m =
{
�, ν−1�, . . . , ν−k�

}
,

define b(m) = b(�).

Proposition 9.3 Let m = {�1, . . . ,�k}. Then there exists Speh multisegments
m1, . . . ,mr satisfying the following properties:

(1) m = m1 + . . . + mr ;
(2) For each Speh multisegment mi and any j > i , there is no segment � in mi such

that m j + {�} is a Speh multisegment;
(3) 〈m〉 is the unique submodule of 〈m1〉 × . . . × 〈mr 〉;
(4) b(mi ) �< b(m j ) if i < j ;
(5) if mi ∩ m j �= ∅ and i ≤ j , then m j ⊂ mi .

Proof Weshall label the segmentsm in theway that for i < j , either (i)b(�i ) �< b(� j )

and (ii) if b(�i ) = b(� j ), then a(�i ) �< a(� j ). Let � = �1. Let k be the largest
integer (k ≥ 0) such that �, ν−1�, . . . , ν−k� are segments in m. We claim that

〈m〉 ↪→ 〈m′〉 × 〈m\m′〉 (9.29)
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and moreover 〈m〉 is the unique submodule of 〈m′〉× 〈m\m′〉. By induction, the claim
proves (1) and (3), and the remaining ones follow from the inductive construction.

We now prove the claim. We shall prove by induction that for i = 0, . . . , k,

〈m〉 ↪→ 〈mi 〉 × ζ(m\mi ) ↪→ ζ(m),

where mi = {
�, ν−1�, . . . , ν−i�

}
. When i = 0 the statement is clear from

the definition. Now suppose that we have the inductive statement for i . To prove
the statement for i + 1. We now set n to be the collection of all segments �′ in
m such that b(�′) = b(�), ν−1b(�), . . . , ν−i b(�) and ν−i a(�) proceeds a(�′).
We also set n̄ to be the collection of all segments �′ in m such that b(�′) =
b(�), ν−1b(�), . . . , ν−i b(�) and a(�′) precedes ν−i−1a(�). By using (2.1) sev-
eral times, we have that ζ(n) × ζ(n̄) ∼= ζ(n̄ + n) and

ζ(m\mi ) ∼= ζ(n) × ζ(n̄) × ζ(m\(n + n̄ + mi )). (9.30)

Fromour construction (and i �= k), we have that ν−i−1� is a segment inm\(n+n̄+mi )

and

ζ(m\(n + n̄ + mi )) = 〈ν−i−1�〉 × ζ(m\(n + n̄ + mi+1))

On the other hand

〈mi 〉 × ζ(n) × ζ(n̄) × 〈ν−i−1�〉 (9.31)
∼= ζ(n) × 〈mi 〉 × ζ(n̄) × 〈ν−i−1�〉 (9.32)
∼= ζ(n) × 〈mi 〉 × 〈ν−i−1�〉 × ζ(n̄) (9.33)
←↩ ζ(n) × 〈mi+1〉 × ζ(n̄) (9.34)
∼= 〈mi+1〉 × ζ(n) × ζ(n̄) (9.35)

The first and last isomorphisms follow from Lemma 9.3. The injectivity in the forth
line comes from the uniqueness of submodule in ζ(mi+1). The second isomorphism
follows from again by (2.1). Combining (9.30), the above series of isomorphisms and
the inductive case, we have:

ζ(m) ←↩ 〈mi+1〉 × ζ(n) × ζ(n̄) × ζ(m\(n + n̄ + mi+1)).

This gives the desired injectivity by using the uniqueness of submodule of ζ(m) and
proves the claim. ��

We shall need a variation which is more flexible in our application.

Lemma 9.4 Letm = m(m,�) be a Speh multisegment. Let n1 be a Zelevinsky multi-
segment such that for any segment�′ in n1 satisfying b(�) < b(�′) or b(�) ∼= b(�′).
Let n2 be a Zelevinskymultisegment such that for any segment�′ in n2 satisfying either
one of the following properties:

123



342 K. Y. Chan

(1) b(�) �< b(�′); or
(2) b(�) �< b(�′), or if b(�) < b(�′), then (�′)− = �.

Then

〈n1 + m + n2〉 ↪→ ζ(n1) × 〈m〉 × ζ(n2) ↪→ ζ(n1 + m + n2).

In particular, ζ(n1)×〈m〉×ζ(n2) has unique submodule isomorphic to 〈n1+m+n2〉.
Remark 9.5 Case (2) covers case (1). But for the purpose of clarity of an argument
used in Sect. 7.4, we divide into two cases. We also recall that the case b(�) �< b(�′)
includes the possibility b(�) ∼= b(�′).

Proof For all cases, we have that

ζ(n1) × ζ(m + n2) ∼= ζ(n1 + m + n2).

Using (9.29) for (1) we obtain the lemma. For (2), let n′ be all the segments in n2 with
the property that (�′)− ∼= �. Then we have that

ζ(n′) × ζ(m) × ζ(n2\n′) ↪→ ζ(n′) × ζ((m + n2)\n′) ↪→ ζ(m + n2).

By Lemma 9.2, we have that

ζ(n′) × ζ(m) × ζ(n2\n′) ∼= ζ(m) × ζ(n′) × ζ(n2\n′) ∼= ζ(m) × ζ(n2),

which proves the lemma. ��

10 Appendix

Let G be a connected reductive group over a non-Archimedean local field.

Lemma 10.1 Let π be a smooth representation of G. Let π admits a filtration

0 = π ′
0 ⊂ π ′

1 ⊂ . . . ⊂ π ′
r = π

Suppose π admits an irreducible subquotient τ . Let πk = π ′
k/π

′
k−1 for k = 1, . . . , r .

Then there exists s such that πs contains an irreducible subquotient isomorphic to τ .

Proof Let λ1, λ2 be submodules of π such that λ2/λ1 = τ . Now we have a filtration
on λp (p = 1, 2):

0 ⊂ (π ′
1 ∩ λp) ⊂ (π ′

2 ∩ λp) ⊂ . . . ⊂ (π ′
r ∩ λp) = λp.

Now λ2/λ1 admits a filtration

0 ⊂ γ1 ⊂ γ2 ⊂ . . . ⊂ γr ,
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where γk = (π ′
k ∩ λ2)/(π

′
k ∩ λ1) and so

γk+1/γk ∼= (π ′
k+1 ∩ λ2)/(π

′
k+1 ∩ λ1)

(π ′
k ∩ λ2)/(π

′
k ∩ λ1)

.

This implies π ′
k+1 ∩ λ2 and so π ′

k+1 has irreducible subquotient isomorphic to τ . ��
Lemma 10.2 Let π be a non-zero smooth representation of G. Let τ be a non-zero
G-submodule of π . Suppose π admits a filtration on

0 = π0 ⊂ π1 ⊂ . . . ⊂ πr = π.

Then there exists a non-zero G-submodule τ ′ of τ such that

τ ′ ↪→ πk+1/πk .

for some k.

Proof Let k be the smallest positive integer such that

τ ∩ πk �= 0.

Define τ ′ = τ ∩ πk . The non-zero G-submodule τ ′ embeds to πk/πk−1 as desired. ��
Lemma 10.3 Let 0 �= π ∈ Alg(G). Suppose π admits two G-filtrations:

0 = π0 ⊂ π1 ⊂ π2 ⊂ . . . ⊂ πr = π

and

0 = π ′
0 ⊂ π ′

1 ⊂ π ′
2 ⊂ . . . ⊂ π ′

s = π.

Then there exists a non-zero τ ∈ Alg(G) such that for some i, j ,

τ ↪→ πi+1/πi , τ ↪→ π ′
j+1/π

′
j .

Proof When π1 �= 0, we consider the smallest integer k such that π1 ∩ π ′
k �= 0. The

general case is similar. ��
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34. Tadić, M.: On the reducibility points beyond the ends of complementary series of p-adic
general linear groups. J. Lie Theory 25(1), 147–183 (2015)

35. Zelevinsky,A.: Induced representations of reductive p-adic groups II.Ann. Sci. EcoleNorm.
Sup. 13, 154–210 (1980)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

123

http://arxiv.org/abs/1911.02783
http://arxiv.org/abs/1808.02640
http://arxiv.org/abs/1711.10562

	Homological branching law for (GLn+1(F), GLn(F)): projectivity and indecomposability
	Abstract
	1 Introduction
	1.2 Organization of the paper

	2 Bernstein–Zelevinsky derivatives of generic representations
	2.1 Notations
	2.2 Derivatives and Bernstein–Zelevinsky inductions
	2.3 On computing derivatives
	2.4 Subrepresentation of a standard representation
	2.5 Derivatives of generic representations

	3 Projectivity 
	3.1 Projectivity criteria
	3.2 Classification

	4 Gelfand–Graev representations and affine Hecke algebras
	4.1 Affine Hecke algebras
	4.2 Jacquet functors on Gelfand–Graev representations

	5 Submodule structure of Bernstein–Zelevinsky layers
	5.1 Inertial equivalence classes
	5.2 Bernstein center
	5.3 Intersection properties of Bernstein–Zelevinsky layers
	5.4 Strong indecomposability

	6 Indecomposability of restricted representations
	6.1 Indecomposability of restriction
	6.2 Non-zero Bernstein components
	6.3 Indecomposability of Zelevinsky induced modules

	7 Asymmetric property of left and right derivatives
	7.1 Union–intersection operation
	7.2 Speh multisegments
	7.3 Notations for multisegments
	7.4 Proof of Theorem 6.2
	7.5 Branching law in opposite direction

	8 Preserving indecomposability of Bernstein–Zelevinsky induction
	9 Appendix: Speh representation approximation
	9.1 Two lemmas
	9.2 Speh representation approximation

	10 Appendix
	Acknowledgements
	References




