
 

 

Calibrationless Multi-Slice Cartesian MRI via Orthogonally 

Alternating Phase Encoding Direction and Joint Low-Rank Tensor 

Completion 

Yujiao Zhao1,2†, Zheyuan Yi1,2,3†, Yilong Liu1,2, 

Fei Chen3, Linfang Xiao1,2, Alex T. L. Leong1,2, and Ed X. Wu1,2* 

 

1Laboratory of Biomedical Imaging and Signal Processing, the University of Hong 

Kong, Hong Kong SAR, People’s Republic of China,  
2Department of Electrical and Electronic Engineering, the University of Hong Kong, 

Hong Kong SAR, People’s Republic of China,  
3Department of Electrical and Electronic Engineering, Southern University of Science 

and Technology, Shenzhen, People’s Republic of China 

 
*Correspondence to:  

Ed X. Wu, Ph.D. 

Department of Electrical and Electronic Engineering 

The University of Hong Kong, Hong Kong SAR, China 

Tel: (852) 3917-7096 

Fax: (852) 3917-8738 

Email: ewu@eee.hku.hk 
†These authors contributed equally to this work  

 

Short Running Title: Calibrationless Multi-slice Cartesian MRI 

Total Word Count: 3900 words in main text + 8 main figures + 6 supporting figures  

Keywords: Multi-slice, random undersampling, uniform undersampling, phase 

encoding direction alternation, low-rank tensor completion, calibrationless parallel 

imaging 

 
Zhao Y, Yi Z, Liu Y, Chen F, Xiao L, Leong ATL, Wu EX. Calibrationless multi-slice Cartesian 

MRI via orthogonally alternating phase encoding direction and joint low-rank tensor 

completion. NMR Biomed. 2022 Jul;35(7):e4695. doi: 10.1002/nbm.4695.  

mailto:ewu@eee.hku.hk


 

 

Abstract 

We propose a multi-slice acquisition with orthogonally alternating phase encoding (PE) 

direction and subsequent joint calibrationless reconstruction for accelerated multiple 

individual 2D slices or multi-slice 2D Cartesian MRI. Specifically, multi-slice multi-

channel data are first acquired with random or uniform PE undersampling while 

orthogonally alternating PE direction among adjacent slices. They are then jointly 

reconstructed through a recently developed low-rank multi-slice Hankel tensor 

completion (MS-HTC) approach. The proposed acquisition and reconstruction strategy 

was evaluated with human brain MR data. It effectively suppressed aliasing artifacts 

even at high acceleration factor, outperforming the existing MS-HTC approach where 

PE direction is the same among adjacent slices. More importantly, the new strategy 

worked robustly with uniform undersampling or random undersampling without any 

consecutive central k-space lines. In summary, our proposed multi-slice MRI strategy 

exploits both coil sensitivity and image content similarities across adjacent slices. 

Orthogonally alternating PE direction among slices substantially facilitates low-rank 

completion process and improves image reconstruction quality. This new strategy is 

applicable to uniform and random PE undersampling. It can be easily implemented in 

practice for multiple individual 2D slices Cartesian parallel imaging without any coil 

sensitivity calibration. 

 

  



 

 

Introduction 

In conventional multiple individual 2D slices or multi-slice 2D Cartesian MRI, a series 

of 2D slices are acquired for a 3D coverage. Here parallel imaging often accelerates 

single-slice data acquisition by skipping phase encoding (PE) steps in a uniform 

undersampling pattern. Such undersampling can be easily implemented in practice but 

causes image domain aliasing that manifests as highly coherent replicas of original 

image contents. Typical parallel imaging reconstruction methods use coil sensitivity 

information obtained from extra calibration scans1 or exploit linear dependency of k-

space from sufficient autocalibration signals (ACSs)2,3. 

Recently, low-rank matrix completion has been adopted to exploit low-rank property 

in structured k-space data for calibrationless reconstruction4-8. For example, in 

simultaneous autocalibrating and k-space estimation (SAKE)4, single-slice multi-

channel k-space data are organized into a block-wise Hankel structured matrix, and the 

reconstruction is then formulated as a low-rank constraint optimization problem. 1D or 

2D random undersampling, in contrast to uniform undersampling, is commonly adopted 

in these methods because it can introduce incoherency, allowing the aliasing to appear 

in noise-like pattern9. However, for 2D Cartesian MRI, 1D random undersampling 

enables the aliasing to spread along PE direction only.  

Clinical multiple individual 2D slices MR data exhibit strong correlations because coil 

sensitivity maps vary smoothly and anatomical structures of the scanned subject often 

change slowly along slice direction. Multiple individual 2D slices acquisition or multi-

slice 2D acquisition also potentially offers the flexibility of acquiring different slices 

with different sampling patterns, through which dedicated sampling schemes can be 

designed to explore the correlations in multi-slice data. For example, such flexibility 

has been incorporated with traditional parallel imaging reconstruction methods. With 

the assumption of adjacent slices sharing similar coil sensitivity maps, ACSs can be 

acquired from few evenly spread slices, and coil sensitivity maps for other slices are 

then obtained from adjacent slices through interpolation10. Alternatively, in z-

GRAPPA10, each slice is acquired with one PE line shifted from its position in previous 

slice. Thus ACS acquisition is avoided because the k-space lines from adjacent slices 

can be combined to form a block of fully sampled data for calibration. In addition, since 



 

 

adjacent multi-slice images often share similar image contents11-14, one can acquire 

adjacent slices with different undersampling factors and then estimate missing k-space 

data of a highly undersampled slice by interpolating data from neighboring slices11,12.  

The aforementioned sampling schemes have been incorporated with compressed 

sensing (CS) reconstruction in few preliminary studies to further explore correlations 

in multi-slice data. A CS based method has been presented for jointly reconstructing 

multi-slice data by applying a sparsifying transform to both x-y and y-z planes15,16. In 

particular, 1D random undersampling patterns are independently generated for different 

slices, thus allowing sparsity exploitation in two dimensions. However, 1D random 

undersampling pattern adopted in this method, as well as in other low-rank based 

calibrationless reconstruction methods, is non-adaptive because the optimal pattern that 

maximizes the incoherency depends on acquisition parameters (e.g., acceleration factor 

or matrix size)17,18.  

In our recent study, we developed a method of joint reconstruction of undersampled 

multi-slice data through a multi-slice Hankel tensor completion (MS-HTC) 

framework19. The method can effectively reconstruct multi-slice data that are acquired 

with 2D spiral undersampling patterns varying among adjacent slices. It can also 

reconstruct undersampled Cartesian multi-slice data acquired with different 1D random 

PE undersampling patterns (including few consecutive central k-space lines) among 

slices. Cartesian multi-slice MRI is valuable in clinical settings as it presently 

constitutes the bulk of the 2D imaging protocols20-22. In this study, we aim to further 

advance this joint multi-slice approach for multiple individual 2D slices Cartesian MRI 

by introducing orthogonal PE direction alternation among slices during data acquisition. 

Specifically, multi-channel k-space data for each slice are randomly or uniformly 

undersampled along PE direction, while the PE direction orthogonally alternates among 

adjacent slices. Such multi-slice acquisition, together with MS-HTC reconstruction 

framework, augments the overall incoherency and enables more effective utilization of 

the coil sensitivity and image content similarities among adjacent slices. Furthermore, 

this new strategy is applicable to uniform undersampling, thus offering more flexibility 

in clinical MRI applications.  

 



 

 

Methods 

Multi-slice data acquisition with orthogonally alternating PE direction 

An acquisition scheme with PE direction alternation is proposed for multiple individual 

2D slices Cartesian MRI such that coil sensitivity and image content correlations in 

multi-slice MR data can be more effectively explored in MS-HTC reconstruction to 

achieve calibrationless reconstruction with high accelerations. As shown in Figure 1, 

k-space data for each slice are randomly or uniformly undersampled along one PE 

direction, while undersampled k-space data for the next adjacent slice are acquired with 

PE along the orthogonal direction. On one hand, due to the relatively slow variation of 

coil sensitivity maps and anatomical structures, the proposed acquisition scheme 

enables each slice to utilize complementary information along its undersampling 

direction from adjacent slices. On the other hand, the proposed acquisition scheme 

allows aliasing from adjacent slices to spread along two different or orthogonal 

directions, thus forcing them to be more incoherent and facilitating the low-rank tensor 

completion process in the joint multi-slice reconstruction. Note that the proposed PE 

direction alternation can be applied to both random and uniform undersampling. It can 

be easily implemented in practice by simply swapping PE and frequency encoding (FE) 

directions among adjacent slices.  

Joint reconstruction using MS-HTC 

The randomly or uniformly undersampled multi-slice data are jointly reconstructed 

through low-rank Hankel tensor completion approach using our recently developed 

MS-HTC framework19. As shown in Figure 2, undersampled k-space data from each 

slice are structured into a block-wise Hankel matrix. The Hankel matrices from multiple 

adjacent slices are then concatenated along a third dimension, forming a third-order 

multi-slice tensor (T). Higher-order singular value decomposition (HOSVD)23,24 is then 

employed to decompose tensor T by deriving a core tensor S and 3 orthogonal bases 

U(n) (n = 1, 2, and 3),  

 𝑻𝑻 = 𝑺𝑺 ×1 𝑈𝑈(1) ×2 𝑈𝑈(2) ×3 𝑈𝑈(3) (1) 

where ×𝑛𝑛 is the n-mode product of a tensor and a matrix. Here U(n) is unitary matrix, 



 

 

which is obtained by performing singular value decomposition (SVD) of the n-mode 

unfolding matrix T(n). A multilinear low-rank approximated tensor, denoted as 𝜞𝜞, is then 

derived by rank truncation of the tensor T. With the n-mode ranks of T known, the 

recovery of multi-slice undersampled data (Y) is formulated as 

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑋𝑋

 ǁ𝐷𝐷𝑃𝑃−1(𝜞𝜞)− 𝑌𝑌ǁ𝐹𝐹2  

𝑠𝑠. 𝑡𝑡.  𝜞𝜞 ≈ 𝑺𝑺 ×1 𝑈𝑈(1) ×2 𝑈𝑈(2) ×3 𝑈𝑈(3) 

 

(2) 

where D denotes the undersampling operator, and P-1 denotes the pseudo-inverse 

operator that generates multi-slice k-space data (X) from approximated low-rank multi-

slice tensor (𝜞𝜞).    

The implementation of joint reconstruction is illustrated in Figure 2. For k-space data 

of each slice, a block-wise Hankel matrix is constructed by sliding a multi-channel 

window across the whole k-space. The 3rd-order multi-slice tensor (T) is then formed 

by concatenating Hankel matrices from multiple adjacent slices. The dimensions Dn (n 

= 1, 2 and 3) of the multi-slice tensor 𝑻𝑻 ∈ ℂ𝐷𝐷1×𝐷𝐷2×𝐷𝐷3 corresponding to k-space samples 

from different kernels, channels, and slices are termed as kernel, channel, and slice 

dimensions, respectively. By stacking vectors of multi-slice tensor along its channel, 

kernel and slice dimensions, unfolding matrices T(1) ∈ ℂ𝐷𝐷1×𝐷𝐷2𝐷𝐷3, T(2) ∈ ℂ𝐷𝐷1𝐷𝐷3×𝐷𝐷2 and T(3) 

∈ ℂ𝐷𝐷1𝐷𝐷2×𝐷𝐷3  can be obtained23, termed as 1-mode, 2-mode, and 3-mode unfolding 

matrices, respectively. In this work, HOSVD is conducted by performing matrix SVD 

and rank truncation on T(1) and T(2), through which the image content and coil sensitivity 

similarities across adjacent slices can be exploited as demonstrated in our recent MS-

HTC study19. After low-rank tensor approximation and enforcing Hankel structural and 

data consistency, the k-space data are updated. These steps are repeated iteratively until 

convergence. 

Evaluation by human brain imaging at 3T 

In vivo experiments were performed on a Philips Achieva 3T scanner equipped with an 

8-channel head coil. All experiments involving human subjects were approved by the 

local institutional board and written information consents were obtained.  

Fully sampled axial T2-weighted (T2w) and T1-weighted (T1w) datasets were acquired 



 

 

with FOV = 240×240 mm2, slice thickness/gap = 4/1 mm, matrix size = 240×240, and 

slice number = 16. T2w dataset was acquired using 2D fast spin echo (FSE) sequence 

with bandwidth = 59.04 kHz, echo train length (ETL) = 20 and TR/TE = 3000/113 ms. 

T1w dataset was acquired using 2D spin echo (SE) sequence with bandwidth = 49.68 

kHz, TR/TE = 600/10 ms and flip angle = 70°. Each dataset was acquired twice with 

PE in both left-right (LR) and anterior-posterior (AP) directions, from which one fully 

sampled test dataset with alternating LR/AP PE direction for odd/even slice was 

retrospectively synthesized.  

Undersampled test datasets with various undersampling factors (Rs) and patterns were 

then extracted accordingly in a retrospective manner for the proposed LR/AP PE 

direction alternation or fixed LR PE direction. As shown in Figure S1, random 1D 

Poisson disk undersampling pattern25 was independently generated for each slice with 

(as in our recent study19) or without extra 4 consecutive central k-space lines. For 

uniform undersampling, the same sampling pattern was used for all slices. Given that 

uniform undersampling with fixed LR PE direction can generate extremely coherent 

aliasing26,27, complementary or interleaving uniform undersampling patterns among 

slices (i.e., shifting by one line from slice to slice) were also generated and evaluated. 

All undersampled datasets were jointly reconstructed with the MS-HTC framework. 

Kernel size was set to 6×6 and target rank was optimized to achieve the best 

reconstruction performance. Window-normalized rank4 was 1.5/1.6 for 1-mode/2-mode 

unfolding with 2-slice reconstruction. The MS-HTC iteration was terminated when the 

update of k-space data estimation was lower than 0.1‰19. Common spatial supports of 

joint slices were estimated during low-rank completion iterations for evaluation. 

Specifically, they were computed as sum of square images from null subspace basis, 

which was extracted through rank truncation of the 2-mode unfolding matrix T(2)
28,29. 

Final reconstructed images were obtained by combining individual coil images using 

the square root sum-of-squares (rSOS) method. Reference images were reconstructed 

from fully sampled data. Residual error maps were calculated by subtracting 

reconstructed images from reference images channel-by-channel and then combining 

through rSOS. Peak signal-to-noise ratio (PSNR) and normalized root-mean-square 

errors (NRMSEs) within the brain region were also measured to assess reconstruction 

performance.  



 

 

Image reconstruction algorithm and its evaluation were implemented using MatLab 

(MathWorks, Natick, MA), and the source code can be obtained online 

(https://github.com/loyalliu/MS-HTC2) or from the authors upon request.  

 

Results 

The joint 2-slice MS-HTC reconstruction results of 8-channel T2w data acquired with 

and without PE direction alternation are shown in Figure 3. All datasets were randomly 

or uniformly undersampled at R = 4. The undersampling patterns are depicted in Figure 

S1. For each undersampled dataset, 2 slices were jointly reconstructed. The 

corresponding phase images are shown in Figure S2. In general, the reconstruction 

results of data randomly undersampled with alternating LR/AP PE direction exhibited 

less aliasing artifacts than those of data randomly undersampled along LR PE direction. 

In absence of extra 4 central k-space lines, PE direction alternation still enabled 

successful reconstruction while fixed PE direction approach largely failed, leading to 

~0.05 reduction of NRMSEs and ~6dB increase of PSNR. The improvement was more 

significant when data were uniformly undersampled. With alternating PE direction, 

artifacts arising from uniform undersampling were effectively suppressed, achieving 

similar NRMSEs and PSNR as using random undersampling. In contrast, with fixed PE 

direction, the coherent aliasing led to complete failure of joint reconstruction.   

Figures 4 and 5 show the interim common spatial supports and reconstruction results 

during the 15th joint reconstruction iteration when reconstructing the results in Figure 

3. As shown in Figure 4, for both random and uniform undersampling, common 2-slice 

spatial supports estimated from data with alternating PE direction became comparable 

to those estimated from fully sampled reference data after only 15 iterations, while 

those estimated from data with LR PE direction were less compact when compared to 

reference. Meanwhile, undersampling with alternating PE direction, together with joint 

reconstruction, allowed the overall aliasing to spread in both directions (see Figures 5A 

and 5B), including the aliasing leakage in two directions among slices (red arrows). In 

contrast, undersampling along LR PE direction and joint reconstruction caused the 

aliasing to spread along one direction only. The proposed acquisition with alternating 

PE direction greatly facilitated the low-rank Hankel tensor completion process, yielding 



 

 

faster computational convergence and smaller NRMSEs as shown in Figure 6. 

The influence of slice number on joint multi-slice reconstruction for data acquired with 

PE direction alternation is demonstrated in Figure 7. Eight-channel T2w data were 

uniformly undersampled at R = 4. Multiple consecutive slices (slice number = 2, 3 and 

4) were jointly reconstructed using MS-HTC. The results indicated that joint 

reconstruction with more slices improved the reconstruction in terms of higher PSNR 

and smaller NRMSEs. Figures S3 and S4 present the reconstruction results of 8-channel 

T2w data at R = 3, and T1w data at R = 3 and 4, respectively. They again illustrated 

that the proposed PE direction alternation strategy was effective and robust for 

reconstructing uniformly undersampled multi-slice data, and the image quality could 

be improved through increasing slice number of joint reconstruction. 

Figure 8 shows the joint 2-slice reconstruction results of 8-channel T2w data with 

different gaps between 2 jointly reconstructed slices (i.e., different extents of 

similarities in coil sensitivity and image content among adjacent slices). Data were 

uniformly undersampled at R = 4 with PE direction alternating among two slices. By 

skipping one or two slices, the slice gap between jointly reconstructed slices was 

increased substantially (i.e., from 1 mm to 6 and 11 mm, respectively). The 

reconstruction error increased with slice gap due to reduced coil sensitivity and image 

content similarities. 

 

Discussion 

A strategy of multi-slice acquisition with orthogonally alternating PE direction and 

joint low-rank tensor completion reconstruction is presented here for calibrationless 

multiple individual 2D slices or multi-slice 2D Cartesian MRI. We have demonstrated 

that this strategy can effectively suppress aliasing artifacts, outperforming our recently 

proposed approach19 that is based on MS-HTC reconstruction but without PE direction 

alternation. When applied to 1D random PE undersampling, our new approach requires 

no extra consecutive central k-space lines (i.e., no extra coil sensitivity information). 

More importantly, it works robustly with uniform undersampling, where many existing 

low-rank based calibrationless reconstruction methods are problematic due to the lack 

of incoherency. Therefore, it can be easily incorporated into existing multi-slice 



 

 

Cartesian MRI protocols such as 2D FSE-based protocols that are widely used in 

clinical MRI at present time.  

In multiple individual 2D slices or multi-slice 2D MRI, adjacent slices share similar 

coil sensitivity maps due to slow variation of coil sensitivity along slice direction. From 

parallel imaging point of view, such similarity allows coil sensitivity from one slice to 

be estimated with ACSs from its adjacent slices10. In addition, cross-sampled GRAPPA 

has demonstrated that aliasing artifacts can be further reduced compared with 

conventional GRAPPA by swapping PE and FE directions between ACSs and data 

acquisition, especially when limited ACSs are available30,31. This can be explained as 

that more accurate coil sensitivity estimation requires more ACSs along the 

undersampled PE direction than the fully sampled FE direction, which can be readily 

achieved by acquisition with alternating PE direction. This also indicates that, with our 

proposed PE direction alternation and MS-HTC strategy, each slice can utilize 

complementary calibration information along its undersampling direction from 

adjacent slices, leading to more effective exploitation of coil sensitivity similarity 

among adjacent slices. 

Adjacent slices also share similar spatial support due to the smooth variation of object 

contour along slice direction. As shown in Figure 4, for both random and uniform 

undersampling, common spatial supports estimated from data with alternating PE 

direction were more compact when compared with those estimated from data acquired 

with LR PE direction. They approached those estimated from the fully sampled data 

after only 15 iterations. This was because spatial support information provided by fully 

sampled frequency encoding (FE) data at one slice could inherently constrain spatial 

supports of adjacent slices with FE along the orthogonal directions. Note that low-rank 

Hankel matrix can be more easily estimated when it is constructed from an image with 

smaller spatial support5. Therefore, with the reduced common spatial supports, less 

residual artifacts (Figure 3) and faster convergence (Figure 6) were achieved by the 

proposed strategy. 

Our recent work has indicated that the reconstruction performance of MS-HTC can be 

significantly improved through increasing the incoherency of sampling pattern, as 

demonstrated by multi-slice spiral acquisition and joint reconstruction19. Multi-slice 

spiral acquisition provides an excellent scenario where different 2D spiral 



 

 

undersampling patterns can be applied to adjacent slices to significantly increase the 

incoherency during MS-HTC reconstruction. However, spiral imaging is relatively 

complex. It is more sensitive to hardware imperfections that cause blurring or distortion 

on reconstructed images32,33, and less adopted compared to multi-slice Cartesian 

acquisition. Multiple individual 2D slices Cartesian MRI is more robust and widely 

used in clinical settings. In this study, an acquisition scheme of orthogonally alternating 

PE direction is proposed to significantly improve the overall incoherency across 

different slices during MS-HTC reconstruction for multiple individual 2D slices 

Cartesian MRI. The proposed combination of alternating PE direction acquisition and 

joint MS-HTC reconstruction forces the overall aliasing to occur along two orthogonal 

directions (Figure 5A), including the aliasing leakages among adjacent but structurally 

different slices, creating multi-dimensionally incoherent aliasing patterns and thus 

greatly facilitating the low-rank tensor completion process. This greatly improves the 

MS-HTC reconstruction for random undersampling4,6,34,35. Note that the MS-HTC can 

be further improved for random undersampling by introducing additional 

regularization36 to enforce the sparsity in transform domain. 

Furthermore, low-rank matrix completion methods often fail to solve the ill-posed 

problem when k-space data are uniformly undersampled (see Figure 3 for results from 

uniformly undersampled T2W data with fixed LR PE direction). This is because 

uniform undersampling generates artifacts that manifest as replicas of original image 

contents, such that they will be equally likely to be considered as the solutions for 

constraint optimization27,37,38. Our proposed acquisition and reconstruction strategy 

mitigated the coherence arising from uniform undersampling by spreading the aliasing 

into two directions (Figure 5B), thus turning the optimization into a better-posed 

problem.  

The proposed joint reconstruction explores coil sensitivity and image content 

similarities across adjacent slices. As shown in Figure 7 and Figures S3 and S4, the 

reconstruction performance was robust for T2w FSE and T1w SE data undersampled 

at different and high accelerations (R = 3 and 4). With increasing number of jointly 

reconstructed slices, better reconstruction performance was achieved for both datasets. 

This was because the multi-slice tensor became more rank-deficient with more jointly 

reconstructed slices. The similarities between adjacent slices decreased when a larger 



 

 

slice gap was employed, leading to degraded reconstruction results as expected (Figure 

8). In practice, the number of jointly reconstructed slices can be experimentally 

optimized. The joint reconstruction can also be procedurally incorporated with a sliding 

window reconstruction strategy to better extract undersampled data from adjacent slices 

with similar coil sensitivities and image contents, through which the correlations in 

multi-slice data can be better utilized.   

The performance of the proposed acquisition and reconstruction strategy also depends 

on reconstruction parameters, such as kernel size and target rank. As shown in Figure 

S5, increasing kernel size slightly improves reconstruction performance. However, a 

larger kernel size greatly increases computation load4. In this perspective, the minimum 

kernel size that can provide sufficient reconstruction accuracy should be adopted. The 

selection of target rank is related to many practical factors (e.g., kernel size, the number 

of jointly reconstructed slices and the similarities in multi-slice data). In this study, that 

target rank was empirically determined to guarantee the optimal reconstruction results 

(see reconstruction results with suboptimal target rank in Figure S6). In future studies, 

automatic rank selection can be investigated.  

Alternating PE direction among adjacent slices can introduce slight data inconsistency 

among slices due to hardware imperfections, such as gradient delays, eddy current, and 

field inhomogeneity30,39-41. As shown in the reference phase images in Figure S2, 

alternating PE direction could lead to minor phase difference, which was caused mostly 

by the slight k-space center misalignment when changing PE direction in this case. 

Nevertheless, for both random and uniform undersampling with alternating PE 

direction, the aliasing artifacts were still effectively suppressed and the phase images 

were well reconstructed despite such hardware related phase inconsistency among 

adjacent slices. In practice, it is possible to implement correction methods to estimate 

or calibrate, and then correct such minor but undesired data inconsistency for better 

joint MS-HTC reconstruction performance, particularly for phase-sensitive MRI 

applications. For example, by assuming slow variation of image phase change between 

adjacent slices, such phase differences can be extracted and then compensated before 

constructing the multi-slice tensor. Such correction can also be pursued in an iterative 

manner. 

The data inconsistency among slices may also arise from the T2/T2* decay that can 



 

 

introduce different k-space weightings to adjacent slices with the proposed acquisition 

scheme. Figure 3 suggested that the proposed strategy could tolerate such inconsistency 

for the T2w dataset acquired using 2D FSE sequence with ETL = 20 and matrix size = 

240×240. With alternating PE direction, susceptibility induced off-resonance may also 

cause image distortion along different directions and chemical shift artifacts may also 

rotate to different directions. The aforementioned data inconsistency may become more 

significant for echo planar imaging or gradient echo imaging with long TE, which needs 

to be examined in future studies.  

The acceleration of the proposed strategy can be limited for rectangular FOV 

acquisition, where increasing the number of sampled PE steps for some slices may be 

required. Another potential limitation is the application with a FOV smaller than the 

object being imaged, where wrap-around artifacts can occur in PE direction using the 

proposed acquisition. In addition, the proposed PE direction alternation can cause flow 

or motion artifacts to spill in two directions, e.g., affecting the regions of diagnostic 

interest. However, early study has demonstrated that, by acquiring two datasets with 

alternating PE direction, artifacts due to subject motion or sequence property could be 

significantly reduced with the assumption of the image contents from two datasets were 

correlated but the artifacts were not39. Future study may examine the utilization of the 

image content and support similarities among slices to reduce such motion or flow 

artifacts.   

We conducted the proposed joint reconstruction using a personal desktop computer 

equipped with 4-core i5-6500 CPU and 16-GB RAM. For 8-channel T2w data acquired 

with matrix size = 240×240 and undersampled at R = 4, the convergence of joint 

reconstruction with kernel size = 6×6 took about 35, 50 and 60 minutes for 2-slice, 3-

slice and 4-slice reconstruction, respectively. Most of the reconstruction time was 

consumed by the tensor decomposition, tensor construction and recovering k-space data 

from the approximated tensor. Thus the reconstruction time will increase if larger 

matrix size or kernel size is employed. To improve the computation efficiency, the joint 

reconstruction can be potentially incorporated with efficient low-rank approximation 

methods42,43, image-space reconstruction by structured low-rank tensor estimation of 

coil sensitivity and spatial support29, or implemented with high-performance GPU-

based computing. 



 

 

 

Conclusion 

This study presents a multi-slice acquisition and joint reconstruction strategy for 

accelerating multiple individual 2D slices or multi-slice 2D Cartesian MRI. It acquires 

multi-slice undersampled data with orthogonally alternating PE direction among 

adjacent slices and then jointly reconstructs all slices through low-rank Hankel tensor 

completion. This new strategy not only exploits the coil sensitivity and image content 

similarities across adjacent slices but also substantially augments incoherency, which 

consequently facilitates the low-rank completion process and improves the MS-HTC 

image reconstruction quality. Furthermore, this strategy works robustly with uniform 

undersampling as well as random undersampling in absence of extra consecutive central 

k-space lines. Thus it can be readily implemented in practice to enable multiple 

individual 2D slices Cartesian parallel imaging without any coil sensitivity calibration. 
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Figure Captions 

Figure 1. The proposed acquisition scheme with orthogonally alternating PE direction 

for multiple individual 2D slices Cartesian MRI. The green and red datasets represent 

the slices acquired with phase encoding (PE) along left-right (LR) and anterior-

posterior (AP) directions, respectively. K-space data for each slice are randomly or 

uniformly undersampled along one PE direction, while data for the next adjacent slice 

are undersampled with PE along the orthogonal direction. 

Figure 2. Illustration of the joint multi-slice Hankel tensor completion (MS-HTC) 

reconstruction procedure of multiple individual 2D slices Cartesian undersampled data. 

MS-HTC is applicable to reconstruction of multi-slice Cartesian data where PE 

direction alternates or remains the same among slices. Within each iteration: 

constructing Hankel matrix through a sliding window for each slice, and concatenating 

multi-slice Hankel matrices to form a 3rd-order tensor; decomposing the multi-slice 

tensor by deriving a core tensor S and unitary matrices U(1), U(2) and U(3) using higher-

order singular value decomposition; low-rank approximation by performing singular 

value decomposition and rank truncation on 1-mode and 2-mode unfolding matrices T(1) 

and T(2), and enforcing Hankel structural and data consistency.  

Figure 3. Two-slice joint MS-HTC reconstruction results of undersampled T2w FSE 

data (R = 4) with alternating LR/AP PE direction versus fixed LR PE direction among 

2 slices. Datasets were acquired with an 8-channel head coil and slice thickness/gap = 

4/1 mm. Reconstruction performance quantified in PSNR and NRMSEs are shown in 

dB and percentages, respectively.  (A) For random undersampling, sampling patterns 

included 1D Poisson disk random patterns varying among 2 slices with or without extra 

4 central k-space lines (see Figure S1). With the proposed PE direction alternation, 

results generally exhibited less aliasing artifacts than those with fixed LR PE direction. 

Without extra central k-space lines, alternating PE direction still enabled satisfactory 

reconstruction. (B) For uniform undersampling with or without interleaving patterns in 

2 slices (see Figure S1), strong aliasing artifacts were apparent with fixed LR PE 

direction, but effectively suppressed by the proposed PE direction alternation.   

Figure 4. Interim common spatial supports at the 15th iteration during reconstruction of 

the 2-slice T2w image sets shown in Figure 3. For both random and uniform 



 

 

undersampling, common spatial supports estimated from data with alternating PE 

direction became more comparable to those from fully sampled data after only 15 

iterations.  

Figure 5. Interim image reconstruction results at the 15th iteration during reconstruction 

of the 2-slice T2w image sets shown in Figure 3. The proposed PE direction alternation 

spread the overall aliasing in two directions during MS-HTC reconstruction, in contrast 

to one direction in case of fixed LR PE direction, in both (A) random undersampling 

and (B) uniform undersampling. 

Figure 6. Convergence curves during the joint reconstruction of the 2-slice T2w image 

sets in Figure 3. For all random and uniform undersampling patterns, the proposed PE 

direction alternation led to faster convergence and smaller NRMSEs compared to fixed 

PE direction. 

Figure 7. Reconstruction of T2w FSE data with different number of jointly 

reconstructed slices. Data were acquired with PE direction alternation, slice 

thickness/gap = 4/1 mm, fixed uniform undersampling for all slices at R = 4, and an 8-

channel coil. Different number of slices (slice number = 2, 3 and 4) were jointly 

reconstructed. The reconstruction performance improved with the increasing of slice 

number. More results are shown in Figures S3 and S4.  

Figure 8. Reconstruction of T2w FSE data with different slice gaps (slice gaps = 1, 6 

and 11 mm). Data were acquired with PE direction alternation, fixed uniform 

undersampling for 2 slices and R = 4, and an 8-channel coil.  Four slices were jointly 

reconstructed, and only two slices are displayed. The extent of similarities in coil 

sensitivity and image content among adjacent slices reduced with slice gap. This led to 

slightly larger reconstruction errors as expected. 
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