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Abstract

We propose a multi-slice acquisition with orthogonally alternating phase encoding (PE)
direction and subsequent joint calibrationless reconstruction for accelerated multiple
individual 2D slices or multi-slice 2D Cartesian MRI. Specifically, multi-slice multi-
channel data are first acquired with random or uniform PE undersampling while
orthogonally alternating PE direction among adjacent slices. They are then jointly
reconstructed through a recently developed low-rank multi-slice Hankel tensor
completion (MS-HTC) approach. The proposed acquisition and reconstruction strategy
was evaluated with human brain MR data. It effectively suppressed aliasing artifacts
even at high acceleration factor, outperforming the existing MS-HTC approach where
PE direction is the same among adjacent slices. More importantly, the new strategy
worked robustly with uniform undersampling or random undersampling without any
consecutive central k-space lines. In summary, our proposed multi-slice MRI strategy
exploits both coil sensitivity and image content similarities across adjacent slices.
Orthogonally alternating PE direction among slices substantially facilitates low-rank
completion process and improves image reconstruction quality. This new strategy is
applicable to uniform and random PE undersampling. It can be easily implemented in
practice for multiple individual 2D slices Cartesian parallel imaging without any coil

sensitivity calibration.



Introduction

In conventional multiple individual 2D slices or multi-slice 2D Cartesian MRI, a series
of 2D slices are acquired for a 3D coverage. Here parallel imaging often accelerates
single-slice data acquisition by skipping phase encoding (PE) steps in a uniform
undersampling pattern. Such undersampling can be easily implemented in practice but
causes image domain aliasing that manifests as highly coherent replicas of original
image contents. Typical parallel imaging reconstruction methods use coil sensitivity
information obtained from extra calibration scans' or exploit linear dependency of k-

space from sufficient autocalibration signals (ACSs)>>.

Recently, low-rank matrix completion has been adopted to exploit low-rank property
in structured k-space data for calibrationless reconstruction*®. For example, in
simultaneous autocalibrating and k-space estimation (SAKE)*, single-slice multi-
channel k-space data are organized into a block-wise Hankel structured matrix, and the
reconstruction is then formulated as a low-rank constraint optimization problem. 1D or
2D random undersampling, in contrast to uniform undersampling, is commonly adopted
in these methods because it can introduce incoherency, allowing the aliasing to appear
in noise-like pattern’. However, for 2D Cartesian MRI, 1D random undersampling

enables the aliasing to spread along PE direction only.

Clinical multiple individual 2D slices MR data exhibit strong correlations because coil
sensitivity maps vary smoothly and anatomical structures of the scanned subject often
change slowly along slice direction. Multiple individual 2D slices acquisition or multi-
slice 2D acquisition also potentially offers the flexibility of acquiring different slices
with different sampling patterns, through which dedicated sampling schemes can be
designed to explore the correlations in multi-slice data. For example, such flexibility
has been incorporated with traditional parallel imaging reconstruction methods. With
the assumption of adjacent slices sharing similar coil sensitivity maps, ACSs can be
acquired from few evenly spread slices, and coil sensitivity maps for other slices are
then obtained from adjacent slices through interpolation'®. Alternatively, in z-
GRAPPA'?, each slice is acquired with one PE line shifted from its position in previous
slice. Thus ACS acquisition is avoided because the k-space lines from adjacent slices

can be combined to form a block of fully sampled data for calibration. In addition, since
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adjacent multi-slice images often share similar image contents' ~“, one can acquire

adjacent slices with different undersampling factors and then estimate missing k-space

data of a highly undersampled slice by interpolating data from neighboring slices'""!.

The aforementioned sampling schemes have been incorporated with compressed
sensing (CS) reconstruction in few preliminary studies to further explore correlations
in multi-slice data. A CS based method has been presented for jointly reconstructing
multi-slice data by applying a sparsifying transform to both x-y and y-z planes'>'®. In
particular, 1D random undersampling patterns are independently generated for different
slices, thus allowing sparsity exploitation in two dimensions. However, 1D random
undersampling pattern adopted in this method, as well as in other low-rank based
calibrationless reconstruction methods, is non-adaptive because the optimal pattern that
maximizes the incoherency depends on acquisition parameters (e.g., acceleration factor

or matrix size)!”!%.

In our recent study, we developed a method of joint reconstruction of undersampled
multi-slice data through a multi-slice Hankel tensor completion (MS-HTC)
framework'®. The method can effectively reconstruct multi-slice data that are acquired
with 2D spiral undersampling patterns varying among adjacent slices. It can also
reconstruct undersampled Cartesian multi-slice data acquired with different 1D random
PE undersampling patterns (including few consecutive central k-space lines) among
slices. Cartesian multi-slice MRI is valuable in clinical settings as it presently
constitutes the bulk of the 2D imaging protocols**??, In this study, we aim to further
advance this joint multi-slice approach for multiple individual 2D slices Cartesian MRI
by introducing orthogonal PE direction alternation among slices during data acquisition.
Specifically, multi-channel k-space data for each slice are randomly or uniformly
undersampled along PE direction, while the PE direction orthogonally alternates among
adjacent slices. Such multi-slice acquisition, together with MS-HTC reconstruction
framework, augments the overall incoherency and enables more effective utilization of
the coil sensitivity and image content similarities among adjacent slices. Furthermore,
this new strategy is applicable to uniform undersampling, thus offering more flexibility

in clinical MRI applications.



Methods

Multi-slice data acquisition with orthogonally alternating PE direction

An acquisition scheme with PE direction alternation is proposed for multiple individual
2D slices Cartesian MRI such that coil sensitivity and image content correlations in
multi-slice MR data can be more effectively explored in MS-HTC reconstruction to
achieve calibrationless reconstruction with high accelerations. As shown in Figure 1,
k-space data for each slice are randomly or uniformly undersampled along one PE
direction, while undersampled k-space data for the next adjacent slice are acquired with
PE along the orthogonal direction. On one hand, due to the relatively slow variation of
coil sensitivity maps and anatomical structures, the proposed acquisition scheme
enables each slice to utilize complementary information along its undersampling
direction from adjacent slices. On the other hand, the proposed acquisition scheme
allows aliasing from adjacent slices to spread along two different or orthogonal
directions, thus forcing them to be more incoherent and facilitating the low-rank tensor
completion process in the joint multi-slice reconstruction. Note that the proposed PE
direction alternation can be applied to both random and uniform undersampling. It can
be easily implemented in practice by simply swapping PE and frequency encoding (FE)

directions among adjacent slices.

Joint reconstruction using MS-HTC

The randomly or uniformly undersampled multi-slice data are jointly reconstructed
through low-rank Hankel tensor completion approach using our recently developed
MS-HTC framework!®. As shown in Figure 2, undersampled k-space data from each
slice are structured into a block-wise Hankel matrix. The Hankel matrices from multiple
adjacent slices are then concatenated along a third dimension, forming a third-order
multi-slice tensor (7). Higher-order singular value decomposition (HOSVD)?**** is then
employed to decompose tensor 7 by deriving a core tensor § and 3 orthogonal bases
U™ (n=1,2, and 3),

T=Sx,UDx,U? x, UG (1)

where x,, is the n-mode product of a tensor and a matrix. Here U™ is unitary matrix,



which is obtained by performing singular value decomposition (SVD) of the n-mode
unfolding matrix 7). A multilinear low-rank approximated tensor, denoted as I', is then
derived by rank truncation of the tensor 7. With the n-mode ranks of 7 known, the

recovery of multi-slice undersampled data (Y) is formulated as

argmin IDP~1(I') — Y2
X

St T~Sx, UDx, UD x, U® )

where D denotes the undersampling operator, and P’/ denotes the pseudo-inverse
operator that generates multi-slice k-space data (X) from approximated low-rank multi-

slice tensor (I').

The implementation of joint reconstruction is illustrated in Figure 2. For k-space data
of each slice, a block-wise Hankel matrix is constructed by sliding a multi-channel
window across the whole k-space. The 3™-order multi-slice tensor (7) is then formed
by concatenating Hankel matrices from multiple adjacent slices. The dimensions D, (n
=1, 2 and 3) of the multi-slice tensor T € CP1*P2*P3 corresponding to k-space samples
from different kernels, channels, and slices are termed as kernel, channel, and slice
dimensions, respectively. By stacking vectors of multi-slice tensor along its channel,
kernel and slice dimensions, unfolding matrices 7y;) € CP1*P2P3 T, € CP1P3*P2 and T3,
€ CP1D2%Ds can be obtained”, termed as 1-mode, 2-mode, and 3-mode unfolding
matrices, respectively. In this work, HOSVD is conducted by performing matrix SVD
and rank truncation on 7y;) and 7}2), through which the image content and coil sensitivity
similarities across adjacent slices can be exploited as demonstrated in our recent MS-
HTC study'. After low-rank tensor approximation and enforcing Hankel structural and
data consistency, the k-space data are updated. These steps are repeated iteratively until

convergence.

Evaluation by human brain imaging at 3T

In vivo experiments were performed on a Philips Achieva 3T scanner equipped with an
8-channel head coil. All experiments involving human subjects were approved by the

local institutional board and written information consents were obtained.

Fully sampled axial T2-weighted (T2w) and T1-weighted (T 1w) datasets were acquired



with FOV = 240x240 mm?, slice thickness/gap = 4/1 mm, matrix size = 240x240, and
slice number = 16. T2w dataset was acquired using 2D fast spin echo (FSE) sequence
with bandwidth = 59.04 kHz, echo train length (ETL) = 20 and TR/TE = 3000/113 m:s.
T1w dataset was acquired using 2D spin echo (SE) sequence with bandwidth = 49.68
kHz, TR/TE = 600/10 ms and flip angle = 70°. Each dataset was acquired twice with
PE in both left-right (LR) and anterior-posterior (AP) directions, from which one fully
sampled test dataset with alternating LR/AP PE direction for odd/even slice was

retrospectively synthesized.

Undersampled test datasets with various undersampling factors (Rs) and patterns were
then extracted accordingly in a retrospective manner for the proposed LR/AP PE
direction alternation or fixed LR PE direction. As shown in Figure S1, random 1D
Poisson disk undersampling pattern®> was independently generated for each slice with
(as in our recent study') or without extra 4 consecutive central k-space lines. For
uniform undersampling, the same sampling pattern was used for all slices. Given that
uniform undersampling with fixed LR PE direction can generate extremely coherent

26,27

aliasing®~’, complementary or interleaving uniform undersampling patterns among

slices (i.e., shifting by one line from slice to slice) were also generated and evaluated.

All undersampled datasets were jointly reconstructed with the MS-HTC framework.
Kernel size was set to 6x6 and target rank was optimized to achieve the best
reconstruction performance. Window-normalized rank* was 1.5/1.6 for 1-mode/2-mode
unfolding with 2-slice reconstruction. The MS-HTC iteration was terminated when the
update of k-space data estimation was lower than 0.1%o'°. Common spatial supports of
joint slices were estimated during low-rank completion iterations for evaluation.
Specifically, they were computed as sum of square images from null subspace basis,
which was extracted through rank truncation of the 2-mode unfolding matrix (2%,
Final reconstructed images were obtained by combining individual coil images using
the square root sum-of-squares (rSOS) method. Reference images were reconstructed
from fully sampled data. Residual error maps were calculated by subtracting
reconstructed images from reference images channel-by-channel and then combining
through rSOS. Peak signal-to-noise ratio (PSNR) and normalized root-mean-square
errors (NRMSEs) within the brain region were also measured to assess reconstruction

performance.



Image reconstruction algorithm and its evaluation were implemented using MatLab
(MathWorks, Natick, MA), and the source code can be obtained online
(https://github.com/loyalliu/MS-HTC2) or from the authors upon request.

Results

The joint 2-slice MS-HTC reconstruction results of 8-channel T2w data acquired with
and without PE direction alternation are shown in Figure 3. All datasets were randomly
or uniformly undersampled at R = 4. The undersampling patterns are depicted in Figure
S1. For each undersampled dataset, 2 slices were jointly reconstructed. The
corresponding phase images are shown in Figure S2. In general, the reconstruction
results of data randomly undersampled with alternating LR/AP PE direction exhibited
less aliasing artifacts than those of data randomly undersampled along LR PE direction.
In absence of extra 4 central k-space lines, PE direction alternation still enabled
successful reconstruction while fixed PE direction approach largely failed, leading to
~0.05 reduction of NRMSEs and ~6dB increase of PSNR. The improvement was more
significant when data were uniformly undersampled. With alternating PE direction,
artifacts arising from uniform undersampling were effectively suppressed, achieving
similar NRMSEs and PSNR as using random undersampling. In contrast, with fixed PE

direction, the coherent aliasing led to complete failure of joint reconstruction.

Figures 4 and 5 show the interim common spatial supports and reconstruction results
during the 15" joint reconstruction iteration when reconstructing the results in Figure
3. As shown in Figure 4, for both random and uniform undersampling, common 2-slice
spatial supports estimated from data with alternating PE direction became comparable
to those estimated from fully sampled reference data after only 15 iterations, while
those estimated from data with LR PE direction were less compact when compared to
reference. Meanwhile, undersampling with alternating PE direction, together with joint
reconstruction, allowed the overall aliasing to spread in both directions (see Figures SA
and 5B), including the aliasing leakage in two directions among slices (red arrows). In
contrast, undersampling along LR PE direction and joint reconstruction caused the
aliasing to spread along one direction only. The proposed acquisition with alternating

PE direction greatly facilitated the low-rank Hankel tensor completion process, yielding



faster computational convergence and smaller NRMSEs as shown in Figure 6.

The influence of slice number on joint multi-slice reconstruction for data acquired with
PE direction alternation is demonstrated in Figure 7. Eight-channel T2w data were
uniformly undersampled at R = 4. Multiple consecutive slices (slice number = 2, 3 and
4) were jointly reconstructed using MS-HTC. The results indicated that joint
reconstruction with more slices improved the reconstruction in terms of higher PSNR
and smaller NRMSEs. Figures S3 and S4 present the reconstruction results of 8-channel
T2w data at R = 3, and T1w data at R = 3 and 4, respectively. They again illustrated
that the proposed PE direction alternation strategy was effective and robust for
reconstructing uniformly undersampled multi-slice data, and the image quality could

be improved through increasing slice number of joint reconstruction.

Figure 8 shows the joint 2-slice reconstruction results of 8-channel T2w data with
different gaps between 2 jointly reconstructed slices (i.e., different extents of
similarities in coil sensitivity and image content among adjacent slices). Data were
uniformly undersampled at R = 4 with PE direction alternating among two slices. By
skipping one or two slices, the slice gap between jointly reconstructed slices was
increased substantially (i.e., from 1 mm to 6 and 11 mm, respectively). The
reconstruction error increased with slice gap due to reduced coil sensitivity and image

content similarities.

Discussion

A strategy of multi-slice acquisition with orthogonally alternating PE direction and
joint low-rank tensor completion reconstruction is presented here for calibrationless
multiple individual 2D slices or multi-slice 2D Cartesian MRI. We have demonstrated
that this strategy can effectively suppress aliasing artifacts, outperforming our recently
proposed approach!® that is based on MS-HTC reconstruction but without PE direction
alternation. When applied to 1D random PE undersampling, our new approach requires
no extra consecutive central k-space lines (i.e., no extra coil sensitivity information).
More importantly, it works robustly with uniform undersampling, where many existing
low-rank based calibrationless reconstruction methods are problematic due to the lack

of incoherency. Therefore, it can be easily incorporated into existing multi-slice



Cartesian MRI protocols such as 2D FSE-based protocols that are widely used in

clinical MRI at present time.

In multiple individual 2D slices or multi-slice 2D MRI, adjacent slices share similar
coil sensitivity maps due to slow variation of coil sensitivity along slice direction. From
parallel imaging point of view, such similarity allows coil sensitivity from one slice to
be estimated with ACSs from its adjacent slices'’. In addition, cross-sampled GRAPPA
has demonstrated that aliasing artifacts can be further reduced compared with
conventional GRAPPA by swapping PE and FE directions between ACSs and data
acquisition, especially when limited ACSs are available’>!. This can be explained as
that more accurate coil sensitivity estimation requires more ACSs along the
undersampled PE direction than the fully sampled FE direction, which can be readily
achieved by acquisition with alternating PE direction. This also indicates that, with our
proposed PE direction alternation and MS-HTC strategy, each slice can utilize
complementary calibration information along its undersampling direction from
adjacent slices, leading to more effective exploitation of coil sensitivity similarity

among adjacent slices.

Adjacent slices also share similar spatial support due to the smooth variation of object
contour along slice direction. As shown in Figure 4, for both random and uniform
undersampling, common spatial supports estimated from data with alternating PE
direction were more compact when compared with those estimated from data acquired
with LR PE direction. They approached those estimated from the fully sampled data
after only 15 iterations. This was because spatial support information provided by fully
sampled frequency encoding (FE) data at one slice could inherently constrain spatial
supports of adjacent slices with FE along the orthogonal directions. Note that low-rank
Hankel matrix can be more easily estimated when it is constructed from an image with
smaller spatial support’. Therefore, with the reduced common spatial supports, less
residual artifacts (Figure 3) and faster convergence (Figure 6) were achieved by the

proposed strategy.

Our recent work has indicated that the reconstruction performance of MS-HTC can be
significantly improved through increasing the incoherency of sampling pattern, as
demonstrated by multi-slice spiral acquisition and joint reconstruction'®. Multi-slice

spiral acquisition provides an excellent scenario where different 2D spiral



undersampling patterns can be applied to adjacent slices to significantly increase the
incoherency during MS-HTC reconstruction. However, spiral imaging is relatively
complex. It is more sensitive to hardware imperfections that cause blurring or distortion

on reconstructed images**>?

, and less adopted compared to multi-slice Cartesian
acquisition. Multiple individual 2D slices Cartesian MRI is more robust and widely
used in clinical settings. In this study, an acquisition scheme of orthogonally alternating
PE direction is proposed to significantly improve the overall incoherency across
different slices during MS-HTC reconstruction for multiple individual 2D slices
Cartesian MRI. The proposed combination of alternating PE direction acquisition and
joint MS-HTC reconstruction forces the overall aliasing to occur along two orthogonal
directions (Figure 5A), including the aliasing leakages among adjacent but structurally
different slices, creating multi-dimensionally incoherent aliasing patterns and thus
greatly facilitating the low-rank tensor completion process. This greatly improves the
MS-HTC reconstruction for random undersampling*®42°, Note that the MS-HTC can

be further improved for random undersampling by introducing additional

regularization®® to enforce the sparsity in transform domain.

Furthermore, low-rank matrix completion methods often fail to solve the ill-posed
problem when k-space data are uniformly undersampled (see Figure 3 for results from
uniformly undersampled T2W data with fixed LR PE direction). This is because
uniform undersampling generates artifacts that manifest as replicas of original image
contents, such that they will be equally likely to be considered as the solutions for
constraint optimization®’*"*%, Our proposed acquisition and reconstruction strategy
mitigated the coherence arising from uniform undersampling by spreading the aliasing
into two directions (Figure 5B), thus turning the optimization into a better-posed

problem.

The proposed joint reconstruction explores coil sensitivity and image content
similarities across adjacent slices. As shown in Figure 7 and Figures S3 and S4, the
reconstruction performance was robust for T2w FSE and T1w SE data undersampled
at different and high accelerations (R = 3 and 4). With increasing number of jointly
reconstructed slices, better reconstruction performance was achieved for both datasets.
This was because the multi-slice tensor became more rank-deficient with more jointly

reconstructed slices. The similarities between adjacent slices decreased when a larger



slice gap was employed, leading to degraded reconstruction results as expected (Figure
8). In practice, the number of jointly reconstructed slices can be experimentally
optimized. The joint reconstruction can also be procedurally incorporated with a sliding
window reconstruction strategy to better extract undersampled data from adjacent slices
with similar coil sensitivities and image contents, through which the correlations in

multi-slice data can be better utilized.

The performance of the proposed acquisition and reconstruction strategy also depends
on reconstruction parameters, such as kernel size and target rank. As shown in Figure
S5, increasing kernel size slightly improves reconstruction performance. However, a
larger kernel size greatly increases computation load*. In this perspective, the minimum
kernel size that can provide sufficient reconstruction accuracy should be adopted. The
selection of target rank is related to many practical factors (e.g., kernel size, the number
of jointly reconstructed slices and the similarities in multi-slice data). In this study, that
target rank was empirically determined to guarantee the optimal reconstruction results
(see reconstruction results with suboptimal target rank in Figure S6). In future studies,

automatic rank selection can be investigated.

Alternating PE direction among adjacent slices can introduce slight data inconsistency
among slices due to hardware imperfections, such as gradient delays, eddy current, and

field inhomogeneity®®*%!

. As shown in the reference phase images in Figure S2,
alternating PE direction could lead to minor phase difference, which was caused mostly
by the slight k-space center misalignment when changing PE direction in this case.
Nevertheless, for both random and uniform undersampling with alternating PE
direction, the aliasing artifacts were still effectively suppressed and the phase images
were well reconstructed despite such hardware related phase inconsistency among
adjacent slices. In practice, it is possible to implement correction methods to estimate
or calibrate, and then correct such minor but undesired data inconsistency for better
joint MS-HTC reconstruction performance, particularly for phase-sensitive MRI
applications. For example, by assuming slow variation of image phase change between
adjacent slices, such phase differences can be extracted and then compensated before

constructing the multi-slice tensor. Such correction can also be pursued in an iterative

manncr.

The data inconsistency among slices may also arise from the T2/T2* decay that can



introduce different k-space weightings to adjacent slices with the proposed acquisition
scheme. Figure 3 suggested that the proposed strategy could tolerate such inconsistency
for the T2w dataset acquired using 2D FSE sequence with ETL = 20 and matrix size =
240%240. With alternating PE direction, susceptibility induced off-resonance may also
cause image distortion along different directions and chemical shift artifacts may also
rotate to different directions. The aforementioned data inconsistency may become more
significant for echo planar imaging or gradient echo imaging with long TE, which needs

to be examined in future studies.

The acceleration of the proposed strategy can be limited for rectangular FOV
acquisition, where increasing the number of sampled PE steps for some slices may be
required. Another potential limitation is the application with a FOV smaller than the
object being imaged, where wrap-around artifacts can occur in PE direction using the
proposed acquisition. In addition, the proposed PE direction alternation can cause flow
or motion artifacts to spill in two directions, e.g., affecting the regions of diagnostic
interest. However, early study has demonstrated that, by acquiring two datasets with
alternating PE direction, artifacts due to subject motion or sequence property could be
significantly reduced with the assumption of the image contents from two datasets were

correlated but the artifacts were not>’

. Future study may examine the utilization of the
image content and support similarities among slices to reduce such motion or flow

artifacts.

We conducted the proposed joint reconstruction using a personal desktop computer
equipped with 4-core 15-6500 CPU and 16-GB RAM. For 8-channel T2w data acquired
with matrix size = 240x240 and undersampled at R = 4, the convergence of joint
reconstruction with kernel size = 6x6 took about 35, 50 and 60 minutes for 2-slice, 3-
slice and 4-slice reconstruction, respectively. Most of the reconstruction time was
consumed by the tensor decomposition, tensor construction and recovering k-space data
from the approximated tensor. Thus the reconstruction time will increase if larger
matrix size or kernel size is employed. To improve the computation efficiency, the joint
reconstruction can be potentially incorporated with efficient low-rank approximation

methods*>*

, image-space reconstruction by structured low-rank tensor estimation of
coil sensitivity and spatial support®’, or implemented with high-performance GPU-

based computing.



Conclusion

This study presents a multi-slice acquisition and joint reconstruction strategy for
accelerating multiple individual 2D slices or multi-slice 2D Cartesian MRI. It acquires
multi-slice undersampled data with orthogonally alternating PE direction among
adjacent slices and then jointly reconstructs all slices through low-rank Hankel tensor
completion. This new strategy not only exploits the coil sensitivity and image content
similarities across adjacent slices but also substantially augments incoherency, which
consequently facilitates the low-rank completion process and improves the MS-HTC
image reconstruction quality. Furthermore, this strategy works robustly with uniform
undersampling as well as random undersampling in absence of extra consecutive central
k-space lines. Thus it can be readily implemented in practice to enable multiple

individual 2D slices Cartesian parallel imaging without any coil sensitivity calibration.
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Figure Captions

Figure 1. The proposed acquisition scheme with orthogonally alternating PE direction
for multiple individual 2D slices Cartesian MRI. The green and red datasets represent
the slices acquired with phase encoding (PE) along left-right (LR) and anterior-
posterior (AP) directions, respectively. K-space data for each slice are randomly or
uniformly undersampled along one PE direction, while data for the next adjacent slice

are undersampled with PE along the orthogonal direction.

Figure 2. Illustration of the joint multi-slice Hankel tensor completion (MS-HTC)
reconstruction procedure of multiple individual 2D slices Cartesian undersampled data.
MS-HTC is applicable to reconstruction of multi-slice Cartesian data where PE
direction alternates or remains the same among slices. Within each iteration:
constructing Hankel matrix through a sliding window for each slice, and concatenating
multi-slice Hankel matrices to form a 3™-order tensor; decomposing the multi-slice
tensor by deriving a core tensor S and unitary matrices U”, U and U® using higher-
order singular value decomposition; low-rank approximation by performing singular
value decomposition and rank truncation on 1-mode and 2-mode unfolding matrices 771

and 7}2), and enforcing Hankel structural and data consistency.

Figure 3. Two-slice joint MS-HTC reconstruction results of undersampled T2w FSE
data (R = 4) with alternating LR/AP PE direction versus fixed LR PE direction among
2 slices. Datasets were acquired with an 8-channel head coil and slice thickness/gap =
4/1 mm. Reconstruction performance quantified in PSNR and NRMSEs are shown in
dB and percentages, respectively. (A) For random undersampling, sampling patterns
included 1D Poisson disk random patterns varying among 2 slices with or without extra
4 central k-space lines (see Figure S1). With the proposed PE direction alternation,
results generally exhibited less aliasing artifacts than those with fixed LR PE direction.
Without extra central k-space lines, alternating PE direction still enabled satisfactory
reconstruction. (B) For uniform undersampling with or without interleaving patterns in
2 slices (see Figure S1), strong aliasing artifacts were apparent with fixed LR PE

direction, but effectively suppressed by the proposed PE direction alternation.

Figure 4. Interim common spatial supports at the 15" iteration during reconstruction of

the 2-slice T2w image sets shown in Figure 3. For both random and uniform



undersampling, common spatial supports estimated from data with alternating PE
direction became more comparable to those from fully sampled data after only 15

iterations.

Figure 5. Interim image reconstruction results at the 15™ iteration during reconstruction
of the 2-slice T2w image sets shown in Figure 3. The proposed PE direction alternation
spread the overall aliasing in two directions during MS-HTC reconstruction, in contrast
to one direction in case of fixed LR PE direction, in both (A) random undersampling

and (B) uniform undersampling.

Figure 6. Convergence curves during the joint reconstruction of the 2-slice T2w image
sets in Figure 3. For all random and uniform undersampling patterns, the proposed PE
direction alternation led to faster convergence and smaller NRMSEs compared to fixed

PE direction.

Figure 7. Reconstruction of T2w FSE data with different number of jointly
reconstructed slices. Data were acquired with PE direction alternation, slice
thickness/gap = 4/1 mm, fixed uniform undersampling for all slices at R = 4, and an 8-
channel coil. Different number of slices (slice number = 2, 3 and 4) were jointly
reconstructed. The reconstruction performance improved with the increasing of slice

number. More results are shown in Figures S3 and S4.

Figure 8. Reconstruction of T2w FSE data with different slice gaps (slice gaps =1, 6
and 11 mm). Data were acquired with PE direction alternation, fixed uniform
undersampling for 2 slices and R = 4, and an 8-channel coil. Four slices were jointly
reconstructed, and only two slices are displayed. The extent of similarities in coil
sensitivity and image content among adjacent slices reduced with slice gap. This led to

slightly larger reconstruction errors as expected.
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