
Interval Observer-based Fault-tolerant Control for A Class of Positive
Markov Jump Systems

Xiaoqi Songa, James Lama,b, Bohao Zhua, Chenchen Fana,∗

aDepartment of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong
bHKU Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen 518057, China

Abstract

The problem of fault-tolerant controller design for positive Markov jump systems subject to interval un-

certainties and time-varying actuator faults is investigated in this paper. First, focusing on the actuator faults

and assuming that the stochastic stability of the system is a prerequisite, an interval observer is developed to

achieve the upper and lower estimates of the system state and actuator faults simultaneously. First, the stochastic

stability of the system is assumed to be a prerequisite. Focusing on the actuator faults, an interval observer is

developed to achieve the upper and lower estimates of the system state and actuator faults simultaneously. Then,

a joint design of the interval observer and a state-estimate feedback controller is considered. By utilizing the ob-

tained interval estimates, the controller is constructed to achieve a satisfactory performance and fault tolerance.

Owing to positivity, the entire observer and controller design is formulated in terms of linear programming.

Effectiveness of the proposed approach is demonstrated through simulation results.

Keywords: fault-tolerant control, interval observer, linear programming, L1-gain performance, Markov jump

system, positive system

1. Introduction

Intrinsically nonnegative variables are extensively present in real life. Positive system is an appropriate

model to describe a family of systems whose state always resides in the nonnegative orthant. Increasing attention

has been paid to positive systems for their theoretical and practical importance. Typical applications range

from population dynamics in biology, pricing in economics, to congestion control in communication [37, 38].

More recent studies have also tried to explain the transmission of the ongoing COVID-19 in terms of positive

systems [34]. Theoretical advantages of the positive feature have also contributed to many remarkable results

on positive systems, such as simplification on characterization of stability and less conservative conditions for

system stabilization [14, 28, 29, 35]. There are two main reasons for the recently increasing attention on positive
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systems: theoretical advantages of positive feature, such as simplification on characterization of stability and

performance [14, 28, 29, 35], and wide applications in various fields, including population dynamics in biology,

pricing in economics, and congestion control in communication [37, 38].

For a positive system, random jumps may occur due to various external causes, such as abrupt environmental

changes for biotic population, unpredictable events in product pricing, random equipment failures over informa-

tion communication. Generally speaking, markov Markov jump systems are a kind of stochastic hybrid systems

which are suited for representing system dynamics in the form of random jumps among subsystems [6, 33, 36].

There are various external causes of random jumps in the above mentioned positive system, such as abrupt en-

vironmental changes for biotic population, unpredictable events in product pricing, random equipment failures

over information communication. Therefore, by capturing the nonnegative state variables and stochastic fac-

tors, positive Markov jump systems (PMJSs) can be regarded as a unified modeling for many practical systems.

Among the existing research results on PMJSs, two important issues in control theory, namely, stability criteria

and performance evaluation, have been mainly studied. Concerning the stochastic stability issue of PMJSs, the

notion of exponential mean stability is introduced and its relationship with different stability notions has been

clarified in [3]. In addition, for PMJSs in continuous and discrete time, necessary and sufficient conditions are

derived to guarantee the stochastic stability in the mean sense [20]. the mean stability is guaranteed through

the derived necessary and sufficient conditions in [20]. Apart from stochastic stability analysis, to deal with the

disturbance input of PMJSs, some specific measures have been investigated. The l1-gain performance has been

analyzed and a positive l1-gain filter has been developed by employing the linear programming (LP) approach

[49]. Taking time-delay factor into consideration, the L∞-gain and L1-gain performance indices have been es-

tablished with necessary and sufficient condition provided in [26] and [50], respectively. Some basic analytical

results of PMJSs have also been reported in the above works. For PMJSs of which only the sign structures of the

subsystem matrices and mode transitions are feasible, the concept of sign-stability is introduced and is proved to

be equivalent to the standard notions of stochastic stability in the structural framework [7]. Stochastic stability

analysis for PMJSs with partially known transition rates [10] and for positive 2-D Markov jump systems [11]

have also been extensively investigated. However, there are still many open control issues to be studied for in

study of PMJSs.

Failures and faults in different system components are often encountered in dynamic systems, and the oc-

currence of unexpected faults in actuators and sensors may lead to instability or severely degraded performance.

Therefore, reliability is an important issue in systems engineering to which serious attention should be paid. In

order to attenuate the effects of system component failures, fault estimation is a prerequisite to design a func-

tional controller that is capable of tolerating faults [15, 18]. To estimate the fault effectively, there are various

representative results. The multi-constrained fault estimate estimation observer approach has been developed

for continuous-time and discrete-time systems in [47]. Combined with the descriptor approach, static observer

Static observer [16], adaptive observer [46], sliding mode observer [45] and interval observer [19, 43] according
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to the descriptor approach have been constructed to estimate different component faults. Among these differ-

ent observer structures, interval observer is most suitable for state estimation of positive systems, which could

explicitly define an interval within which the state lies [5]. As pointed out in [41, 42], the use of interval ob-

server techniques allows the estimator to obtain the set of admissible values of system state at all times. In case

of bounded parameter uncertainties or disturbances, these techniques could considerably simplify the design

of a robust observer by using available information without any additional assumptions. It has therefore been

widely adopted for a variety of positive systems, including interval systems with input or time delay [17, 25],

LPV systems [8], switched systems [13], and Markov jump systems [4]. As a practical observer design strategy,

interval observers have been applied to a wide range of areas such as chemical/biochemical processes [2], circuit

systems [21, 32], and vehicle dynamics [22].

Following the remarkable development in interval observers, interval observer-based fault estimation could

be achieved by resorting to positive systems theory and different augmentation approaches [39, 40, 48]. Interval

observer-based fault estimation have also been considered by resorting to positive systems theory and different

augmentation approaches [39, 40, 48]. It has been shown that in fault detection, the interval observer approach

Taking advantage of the estimated intervals, such a fault estimator could determine the minimum detectable

fault, which contributes to the decision of a triggering limit for fault alarm detection [30]. Moreover, for the

purpose of control, interval observers provide more possibilities in practical implementation or transient perfor-

mance improvement. Note that by applying the techniques of interval observers, a wide spectrum of uncertain

systems could be stabilized [12, 44]. It has also been shown in [24] that the interval observer-based control

strategies enable an on-line calculation of accurate bounds on the given trajectories comparing with the Luen-

berger observer-based ones. Besides, it is demonstrated in [5] that by exploiting the positive nature of the error

dynamics, such observers will contribute to a more tractable design of peak-to-peak controllers. Therefore,

the interval observer-based control strategies are widely applicable to many disciplines of engineering, espe-

cially for systems with bounded uncertainties and systems with bounding requirements. Typical applications

include interval observer-based tracking control of quadrotors (to guarantee more robustness under bounded

model uncertainties) [1], and interval observer-based control of thermo-fluidic systems (to prevent overshooting

safety-critical temperature bounds) [23].

Motivated by the above, the idea of interval observer-based control is generalized for PMJSs with uncer-

tainties and actuator faults in this work. An interval observer is first designed for the dynamic estimation of

bounds on the system state as well as actuator faults in a positive Markov jump system. Based on the obtained

observer, a fault-tolerant control (FTC) scheme is proposed to guarantee the stochastic stability and L1-gain

performance of the closed-loop system. Finally, the observer and controller are developed using linear pro-

gramming. An illustrative example is also presented. Compared with the interval observer designs for systems

with bounded uncertainties [8, 13], the presence of unbounded and time-varying actuator faults makes it non-

trivial to design an interval observer. Therefore, a system transformation is applied to decouple the unbounded
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variables, after which the system state and actuator faults could be estimated simultaneously. It should also

be noted that, different from the previous work on interval observer-based controller design in [24] where the

controller and the observer are separately designed, a joint design of them is adopted in this work to compensate

for the time-varying actuator faults online. However, new challenge arises as both nonnegativity and stochastic

stability are required when simultaneously searching for observer gains and controller gains. To cope with this,

a new construction of the controller is proposed for positive system which, compared with the commonly used

iteration approaches in controller design [9, 39], could simplify the computation with conditions in terms of

LP and avoid any iteration process. To conclude, as a significant extension of studies on positive Markov jump

system, the main contributions of this work are as follows.

1) Focusing on actuator faults, an interval observer is designed by utilizing the nonnegativity of positive sys-

tems. The considered faults may be unbounded, while the estimator is able to encapsulate the system state

and actuator faults at all times.

2) By simultaneously providing the interval estimates of both the system state and actuator faults, a fault-

tolerant controller utilizing both the state and actuator faults estimates is designed to improve the reliability

of PMJSs.

3) A systematic construction of the controller is proposed with conditions derived in terms of LP, that leads to

more convenient implementation for analysis and parameter computation.

The structure of the work is given as follows. In Section II, some preliminaries including system description

are provided. The main results of designing the positive interval observer-based fault tolerant controller are

shown in Section III. Simulation results are given in Section IV to verify the proposed techniques and Section

V presents the conclusions.

Notation: Denote Rn, Rn+, and Rn++ as the set of n-dimensional vectors with real, nonnegative, and strictly

positive components, respectively. Rn×m, Rn×m+ , and Rn×m++ is the set of all n×m real matrices, nonnegative

matrices, and strictly positive matrices, respectively. For a matrix A ∈ Rn×m, A[i, j] denotes its (i, j)th entry.

A � 0, A � 0, A ≺ 0, A � 0, means mean that all its entries are positive, nonnegative, negative and

nonpositive, respectively. For matrices A, B, C ∈ Rn×m, A ∈ [B,C] indicates that B � A � C. A† denotes

the Moore–Penrose inverse of A. A square matrix M ∈ Rn×n is called Metzler if all its off-diagonal elements

are nonnegative. The space of all the vector-valued Lebesgue functions defined on [0,+∞) with finite L1-norm

is denoted by L1[0,+∞). In is the n× n identity matrix and 0m×n is the m× n zero matrix. 1n is the n× 1

vector of all ones. The mathematical expectation is denoted by E{·} and P{·} denotes the probability of an

event. For a vector v ∈ Rn, v[j] denotes its jth element and ‖v‖∞ = max
j=1,2,...,n

{|v[j]|}. Besides, vmin denotes

the minimal element in the vector v and v+
min denotes its minimal nonzero element. Given a set of vectors

vi ∈ Rn, i = 1, 2, . . . , N ,
N

vec
i=1
{vi} = [vT

1 v
T
2 · · · vT

N ]T.
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2. Preliminaries and Problem Formulation

Consider a positive Markov jump linear system with actuator faults as follows:ẋ(t) = A(σ(t))x(t) +B(σ(t))(u(t) + f(t)) +Bw(σ(t))w(t),

y(t) = C(σ(t))x(t),

(1)

where x(t) ∈ Rnx , u(t) ∈ Rnu and y(t) ∈ Rny represent the system state, control input and measurement

output, respectively, and x(0) � 0; f(t) ∈ Rnu is the actuator fault vector, whose components are not sign

definite (that is, they may take positive or negative values); w(t) ∈ Rnw
+ is the external disturbance, which is an

arbitrary signal in L1[0,+∞). The Markov stochastic process {σ(t)}, t ≥ 0, is time homogeneous with state

space defined by N = {1, 2, . . . , N}. The transition probabilities over the process are determined by

P{σ(t+ ∆t) = j | σ(t) = i} =

πij∆t+ o(∆t) j 6= i,

1 + πii∆t+ o(∆t) j = i,

(2)

where ∆t > 0 is a small time increment, o(∆t) is an infinitesimal of higher order with respect to ∆t,

lim∆t→0+
o(∆t)

∆t = 0; πij ≥ 0 (i, j ∈ N and i 6= j) and πii = −
∑N
j=1,j 6=i πij . Define Π = (πij) ∈ RN×N ,

i, j ∈ N as generator matrix of {σ(t)}, which governs the evolution of the Markov stochastic process. For

simplicity, the matrices A(σ(t)), B(σ(t)), Bw(σ(t)) and C(σ(t)) are represented by Ai, Bi, Bwi and Ci, re-

spectively, for each σ(t) = i, i ∈ N . The positive Markov jump system is subject to interval uncertainties,

in which Ai is an unknown constant matrix satisfying Ai ∈ [Ai, Ai], i ∈ N , where Ai ∈ Rnx×nx is Met-

zler; Bi, Bwi and Ci are known with Bi ∈ Rnx×nu
+ , Bwi ∈ Rnx×nw

+ , Ci ∈ Rny×nx

+ . Suppose that f(t) is

unknown, but it is differentiable up to the M -th (M ≥ 1) order and its M -th derivative is assumed to satisfy

δ(t) � f (M)(t) � δ(t) for some δ(t), δ(t) ∈ L1[0,+∞). One can see that the considered time-varying fault

may be unbounded, which could cover a wide range of possible actuator faults.

Definition 1. System (1) with f(t) = 0 (fault-free case) is a positive Markov jump system if for all σ(0) ∈ N ,

x(0) � 0, u(t) � 0, and w(t) � 0, the system state x(t) � 0 and the output y(t) � 0 for t > 0.

Lemma 1. [14] System (1) with f(t) = 0 (fault-free case) is positive if and only if Ai is Metzer, Bi � 0,

Bwi � 0, and Ci � 0.

In this work, Ai is uncertain but it is constant and always belongs to the interval uncertain domain [Ai, Ai].

Since Ai is a Metzer matrix, Bi, Bwi and Ci are known nonnegative matrices, the PMJS (1) with f(t) = 0 is

positive.

In the presence of unbounded actuator faults and interval parameter uncertainties, one may find it hard

to design conventional Luenberger observers for system (1). Our first goal is to develop a group of interval

observers to generate both the upper and lower boundary of the system state as well as actuator faults. Further
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considering that the plant may fail under unbounded actuator faults, our next phase is to develop an FTC scheme

by utilizing the obtained interval estimates.

Results on stochastic stability for PMJS (1) without faults (f(t) = 0) taking into account are first given as

follows.

Definition 2. [3, 50] PMJS (1) with w(t) = 0, u(t) = 0 is mean stable if for any σ(0) ∈ N and x(0) � 0,

lim
t→∞

E{x(t)} = 0. (3)

Lemma 2. [3, 50] PMJS (1) with w(t) = 0, u(t) = 0 is mean stable if and only if there exist strictly positive

vectors pi, i ∈ N , such that

pT
iAi +

N∑
i=1

πijp
T
j ≺ 0. (4)

3. Interval Observer-based Fault-tolerant Control

3.1. State and fault simultaneous observer design

We will present an interval observer to estimate the system state x(t) and actuator fault f(t) simultaneously

with the known input u(t) and measurement output y(t). Note that here the mean stability of the system is a

prerequisite for the construction of the interval observer; neither state-estimate feedback nor fault-compensated

control is applied.

Denoting ξm(t) = f (M−m)(t), m = 1, 2, . . . ,M , and xξ(t) = [xT(t), ξT
1 (t), ξT

2 (t), . . . , ξT
M (t)]T, an aug-

mented system can be constructed based on PMJS (1):ẋξ(t) = Aixξ(t) + Biu(t) + Bwiw(t) + Wff
(M)(t),

y(t) = Cixξ(t),
(5)

where

Ai =



Ai 0 · · · 0 Bi

0 0 · · · 0 0

0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0


, Bi =



Bi

0

0
...

0


, Bwi =



Bwi

0

0
...

0


, Wf =



0

I

0
...

0


, Ci =



CT
i

0

0
...

0



T

. (6)

According to (5), both of the system state and derivatives of the fault signal are merged into a state vector

of the augmented system. We then proceed to develop an interval observer for (5) in the form of
˙̌ν(t) = Ǧiν̌(t) + ŤiBiu(t) + Ȟiy(t) + Wfδ(t),

x̌ξ(t) = ν̌(t) + Ľiy(t),

(7)
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
˙̂ν(t) = Ĝiν̂(t) + T̂iBiu(t) + Ĥiy(t) + Wfδ(t),

x̂ξ(t) = ν̂(t) + L̂iy(t),

(8)

with ν̌(t), ν̂(t) ∈ Rne , ne = nx+Mnu ; and x̌ξ(t) = [x̌T(t), ξ̌T
1 (t), ξ̌T

2 (t), . . . , ξ̌T
M (t)]T ∈ Rne , being the lower-

bounding estimate of xξ(t) and x̂ξ(t) = [x̂T(t), ξ̂T
1 (t), ξ̂T

2 (t), . . . , ξ̂T
M (t)]T ∈ Rne , being the upper-bounding

estimate of xξ(t); Ǧi, Ǧi, Ťi, T̂i ∈ Rne×ne , Ȟi, Ĥi, Ľi, L̂i ∈ Rne×ny , are observer matrices to be designed.

Obviously, the lower- and upper-bounding estimates of the system state x(t) and f(t) could be obtained from

x̌ξ(t) and x̂ξ(t), respectively, for which f̌(t) = ξ̌M (t) and f̂(t) = ξ̂M (t). It is worth noting that by introducing

v̌(t) and v̂(t) into design of the interval observer, the derivative term of the output y(t) is avoided, which eases

control system synthesis.

Definition 3. System (7) and system (8) form an interval observer for system (1) if for any x̌ξ(0) � xξ(0) �

x̂ξ(0), and x(0) � 0, u(t) � 0, w(t) � 0, the inequality x̌ξ(t) � xξ(t) � x̂ξ(t) holds for all t > 0.

Remark 1. According to Definition 3, the underlying idea is to guarantee that the estimation errors, namely,

the lower-bounding estimation error (xξ(t)− x̌ξ(t)) and upper-bounding estimation error (x̂ξ(t)− xξ(t)), are

nonnegative for all t > 0, that is, the corresponding error dynamics should be positive systems. Therefore, the

interval observer is constructed in such a way that both stochastic stability and positivity of the error dynamics

can be guaranteed.

With all the previous elements, the problem to be solved is formulated as follows.

Problem IOPMJS (Interval Observer of Positive Markov Jump System). For a positive Markov jump system

(1), find an observer composed of (7) and (8) such that

1. when x̌ξ(0) � xξ(0) � x̂ξ(0), the estimation errors (xξ(t) − x̌ξ(t)) � 0, (x̂ξ(t) − xξ(t)) � 0 for any

Ai ∈ [Ai, Ai], i ∈ N , t > 0;

2. lim
t→∞

E{xξ(t)− x̌ξ(t)} = 0, and lim
t→∞

E{x̂ξ(t)− xξ(t)} = 0.

Before proceeding, we denote

J1 = [Inx
0nx×Mnu

]T, J2 = [0(M−1)nu×nx
I(M−1)nu

0(M−1)nu×nu
]T,

J3 = [0nu×(ne−nu) Inu
]T, S = [0(M−1)nu×(nx+nu) I(M−1)nu

]T.
(9)

Theorem 1. For system (1) with w(t) = 0, an interval observer composed of (7) and (8) exists if there exist

diagonal matrices P̌i, P̂i ∈ Rne×ne
+ with strictly positive diagonal elements, nonnegative matrices Ž+

i , Ž−i ,

Ẑ+
i , Ẑ−i ∈ Rne×ny

+ , matrices V̌i, V̂i ∈ Rne×nx , such thatΓli 0

0 Γui

 is Metzler, (10)
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[
Λli −Λ

u
i

]
� 0, (11)1

T
ne

(Γli +
N∑
j=1

πijP̌
T
j )

1T
ne

(Γui +
N∑
j=1

πijP̂
T
j )

 ≺ 0, (12)

with Ži = Ž+
i − Ž

−
i , Ẑi = Ẑ+

i − Ẑ
−
i , and

Λli = P̌iJ1Ai − Ž
+
i CiAi + Ž−i CiAi − V̌i,

Λ
u
i = P̂iJ1Ai − Ẑ+

i CiAi + Ẑ−i CiAi − V̂i,

Γli = V̌iJ
T
1 + P̌i(SJ

T
2 + J1BiJ

T
3 )− ŽiCiBiJT

3 ,

Γui = V̂iJ
T
1 + P̂i(SJ

T
2 + J1BiJ

T
3 )− ẐiCiBiJT

3 .

(13)

The interval observer matrix parameters are given by

Ľi = P̌−1
i Ži, L̂i = P̂−1

i Ẑi, (14)

Ǧi = ǦiJ
T
1 + SJT

2 + (I − ĽiCi)J1BiJT
3 , (15)

Ĝi = ĜiJ
T
1 + SJT

2 + (I − L̂iCi)J1BiJT
3 , (16)

with

Ǧi = P̌−1
i V̌i, Ĝi = P̂−1

i V̂i, (17)

and

Ȟi = ǦiĽi, Ťi = I − ĽiCi, (18)

Ĥi = ĜiL̂i, T̂i = I − L̂iCi. (19)

Proof. Denote ě(t) = xξ(t)− x̌ξ(t), and ê(t) = x̂ξ(t)− xξ(t), one has

ě(t) = xξ(t)− x̌ξ(t) = xξ(t)− ν̌(t)− ĽiCixξ(t) = (I − ĽiCi)xξ(t)− ν̌(t), (20)

ê(t) = x̂ξ(t)− xξ(t) = ν̂(t) + L̂iCixξ(t)− xξ(t) = ν̂(t) + (L̂iCi − I)xξ(t). (21)

For the lower-bounding estimation error ě(t), we obtain from (5) and (7) that

˙̌e(t) = (I − ĽiCi)Aixξ(t)− ȞiCixξ(t)− Ǧiν̌(t) + (I − ĽiCi − Ťi)Biu(t)

+ (I − ĽiCi)Bwiw(t) + Wf (f (M)(t)− δ(t))

= [(I − ĽiCi)Ai − Ǧi(I − ĽiCi)− ȞiCi]xξ(t) + Ǧiě(t) (22)

+ (I − ĽiCi − Ťi)Biu(t) + (I − ĽiCi)Bwiw(t) + Wf (f (M)(t)− δ(t)).

When selecting Ȟi and Ťi as in (18) and Ǧi in (15), the lower-bounding estimation error dynamic equation in

(22) reduces to

˙̌e(t) =(J1Ai − ĽiCiAi − Ǧi)x(t) + Ǧiě(t) + (I − ĽiCi)Bwiw(t)
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+ Wf (f (M)(t)− δ(t)). (23)

Similarly, when selecting Ĥi and T̂i as in (19) and Ĝi in (16), the upper-bounding estimation error dynamic

equation is

˙̂e(t) =(L̂iCiAi − J1Ai + Ĝi)x(t) + Ĝiê(t) + (L̂iCi − I)Bwiw(t)

+ Wf (δ(t)− f (M)(t)). (24)

It follows from (10) that with diagonal matrices P̌i, P̂i ∈ Rne×ne
+ , P̌−1

i Γli and P̂−1
i Γui are Metzler matrices.

Based on the definitions of Γli and Γui in (13), as well as the definitions in (14) and (17), one obtains that Ǧi, Ĝi

are Metzler. Provided that Ai ∈ [Ai, Ai], Ci � 0, the inequalities

(Ž+
i − Ž

−
i )CiAi � Ž+

i CiAi − Ž
−
i CiAi, (25)

Ẑ+
i CiAi − Ẑ

−
i CiAi � (Ẑ+

i − Ẑ
−
i )CiAi, (26)

always hold with nonnegative Ž+
i , Ž−i , Ẑ+

i and Ẑ−i , (11) implies that

P̌iJ1Ai − (Ž+
i − Ž

−
i )CiAi − V̌i � 0, (27)

(Ẑ+
i − Ẑ

−
i )CiAi − P̂iJ1Ai + V̂i � 0. (28)

Substitution of (14) and (17) into (27) and (28) yields

J1Ai − ĽiCiAi − Ǧi � 0, (29)

L̂iCiAi − J1Ai + Ĝi � 0. (30)

It is then straightforward to show that with w(t) = 0, if (10) and (11) are satisfied, then ě(t) � 0, ê(t) � 0

when ě(0) � 0, ê(0) � 0. With the stochastic stability of x(t) being a prerequisite, the convergence to zero of

the expectation of ě(t) and ê(t) is guaranteed under condition (12) based on Lemma 2. �

Remark 2. In Theorem 1, we deal with the case with w(t) = 0. When w(t) 6= 0, based on Lemma 1 as well as

the estimation error dynamic equations (23) and (24), an interval observer composed of (7) and (8) exists for

system (1) if the conditions in Theorem 1 are satisfied and the inequality[
P̌iJ1Bwi − ŽiCiBwi ẐiCiBwi − P̂iJ1Bwi

]
� 0, (31)

holds, which guarantees that

(I − ĽiCi)Bwi � 0, (32)

(L̂iCi − I)Bwi � 0. (33)
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3.2. Fault-tolerant controller design

Actuator faults can cause operation failure of a control system. Moreover, different from previous studies

on fault estimation for positive systems [27, 31], where actuator or sensor fault is assumed to be nonnegative,

in this work a general class of actuator fault is considered, whose components are not sign definite. Thus the

positivity of closed-loop system would not necessarily be preserved in the occurrence of the considered case of

actuator fault. Our second goal is then to develop a state-estimate feedback control scheme in which an interval

observer and a fault-tolerant controller are jointly designed in the L1 sense. The positive Markov jump system is

expected to be positive, mean stable, and satisfies satisfy a prescribed L1-gain performance under the obtained

controller.

Utilizing the interval estimates of the system state as well as the actuator faults, a fault-tolerant controller is

constructed as

u(t) = Ǩix̌(t) + K̂ix̂(t) + Ǩfif̌(t) + K̂fif̂(t), (34)

where Ǩi, K̂i, Ǩfi, K̂fi ∈ Rnu×nx , are controller gains to be designed. Applying the fault-tolerant controller

(34) to system (1) yields

ẋ(t) = Aix(t) +Bi(Ǩix̌(t) + K̂ix̂(t) + Ǩfif̌(t) + K̂fif̂(t)) +Bif(t) +Bwiw(t)

= (Ai +BiǨi +BiK̂i)x(t)−BiǨi(x(t)− x̌(t)) +BiK̂i(x̂(t)− x(t))

+ (Bi +BiǨfi +BiK̂fi)f(t)−BiǨfi(f(t)− f̌(t)) +BiK̂fi(f̂(t)− f(t)) +Bwiw(t). (35)

Choose Ǩfi = −B†iBiKfi and K̂fi = B†iBi(Kfi − I), where Kfi ∈ Rnu×nu is the new controller gain to be

determined later, we have

Bi(I + Ǩfi + K̂fi) = 0 (36)

and

ẋ(t) = (Ai +Bi(Ǩi + K̂i))x(t)−BiǨiJ
T
1 ě(t) +BiK̂iJ

T
1 ê(t)

+BiKfiJ
T
3 ě(t) +Bi(Kfi − I)JT

3 ê(t) +Bwiw(t). (37)

If we further denoteX (t) = [xT(t), ěT(t), êT(t)]T ∈ RnX , where nX = 3nx+2Mnu, and ω(t) = [wT(t), (f (M)(t)−

δ(t))T, (δ(t)− f (M)(t))T]T, it is obtained that

Ẋ (t) =


Ai +Bi(Ǩi + K̂i) −Bi(ǨiJ

T
1 −KfiJ

T
3 ) Bi(K̂iJ

T
1 + (Kfi − I)JT

3 )

J1Ai − ĽiCiAi − Ǧi Ǧi 0

L̂iCiAi − J1Ai + Ĝi 0 Ĝi

X (t)

+


Bwi 0 0

(I − ĽiCi)Bwi Wf 0

(L̂iCi − I)Bwi 0 Wf




w(t)

f (M)(t)− δ(t)

δ(t)− f (M)(t)


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, AiX (t) +Wiω(t). (38)

Remark 3. According to (37) and (38), the actuator fault can be compensated through the introduction of

Ǩfif̌(t) and K̂fif̂(t) into the control law, whilst Ǩi, K̂i and Kfi are to be designed together with the interval

observer to guarantee the positivity as well as the mean stability of the dynamic system in (38).

To measure the L1-gain, we introduce a controlled output as follows:

z(t) = Czix(t) + Ěiě(t) + Êiê(t) , CiX (t), (39)

with Ci = [Czi Ěi Êi], where Czi, Ěi and Êi are nonnegative matrices which are chosen a priori.

Noticed that in the augmented system (38), ω ∈ L1[0,+∞), we can state the observer-based fault-tolerant

control problem as follows.

Problem IOFTCPMJS (Interval Observer-based Fault-tolerant Control of Positive Markov Jump System). For

a positive Markov jump system (1), find an interval observer of the form (7)–(8) and control strategy (34) such

that

1. the augmented system (38) is positive;

2. the augmented system (38) is stochastically stable in the mean sense;

3. L1-gain from the disturbance ω(t) to the reference output z(t) is no greater than a certain level γ.

Lemma 3. [50] Given a PMJS in the form of (38) and γ > 0, the system is mean stable and satisfies ‖z‖L1 ≤

γ‖ω‖L1 if and only if there exist vectors pi � 0, i = 1, 2, . . . , N , such that

pT
iAi +

N∑
j=1

πijp
T
j + 1TCi ≺ 0, (40)

pT
iWi − γ1T ≺ 0. (41)

Before proceeding, it is worth noting that for a nonnegative matrix Bi, i ∈ N , if it does not have a zero

row, there always exists an invertible matrix Qi ∈ Rnu×nu , such that BiQi ∈ Rnx×nu
++ . Let

Ψi , BiQi � 0. (42)

Denote ψi,j ∈ Rnx
++, j = 1, 2, . . . , nu, as the jth column of Ψi. Based on the prespecified matrices Qi and Ψi,

we have the following theorem with conditions guaranteeing positivity, mean stability, and L1-gain performance

of the augmented system (38).
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Theorem 2. For positive Markov jump system (1) such that (42) holds, by utilizing an interval observer com-

posed of (7) and (8), a fault-tolerant controller given by (34) exists such that for any Ai ∈ [Ai, Ai], the aug-

mented system (38) is positive, mean stable and satisfies ‖z‖L1 ≤ γ‖ω‖L1 with a given γ > 0, if there exist

diagonal matrices P̌i, P̂i ∈ Rne×ne
+ with strictly positive diagonal elements, nonnegative matrices Ž+

i , Ž−i ,

Ẑ+
i , Ẑ−i ∈ Rne×ny

+ , matrices V̌i, V̂i ∈ Rne×nx , strictly positive vectors pxi ∈ Rnx++, nonnegative vectors ǔ+
i,j ,

ǔ−i,j , û
+
i,j , û

−
i,j ∈ Rnx

+ , and u+
fi,j , u

−
fi,j ∈ Rnu

+ , for i = 1, 2, . . . , N , j = 1, 2, . . . , nu, such thatΓli 0

0 Γui

 is Metzler, (43)

[
Λli −Λ

u
i

]
� 0, (44)[

P̌iJ1Bwi − ŽiCiBwi ẐiCiBwi − P̂iJ1Bwi
]
� 0, (45)

pT
xi1nxAi +

nu∑
j=1

ψi,j

[
(ǔ+
i,j + û+

i,j)
T

ψ4i,j
−

(ǔ−i,j + û−i,j)
T

ψ5i,j

]
is Metzler, (46)

−
nu∑
j=1

ψi,j

(
ǔ+T
i,j

ψ5i,j
−
ǔ−T
i,j

ψ4i,j

)
JT
1 +

nu∑
j=1

ψi,j

(
u+T
fi,j

ψ4i,j
−
u−T
fi,j

ψ5i,j

)
JT
3 � 0, (47)

nu∑
j=1

ψi,j

(
û+T
i,j

ψ4i,j
−
û−T
i,j

ψ5i,j

)
JT
1 +

nu∑
j=1

ψi,j

(
u+T
fi,j

ψ4i,j
−
u−T
fi,j

ψ5i,j

)
JT
3 − pT

xi1nxBiJ
T
3 � 0, (48)


pT
xiAi +

nu∑
j=1

(ǔi,j + ûi,j)
T + 1T

ne
(Λ

l
i − Λui ) + 1T

nx

N∑
j=1

πijP
T
j1 + 1T

ny
Czi

−
nu∑
j=1

(ǔT
i,jJ

T
1 + uT

fi,jJ
T
3 ) + 1T

ne
(Γli +

N∑
j=1

πijP
T
j2) + 1T

ny
Ěi

nu∑
j=1

(ûT
i,jJ

T
1 + uT

fi,jJ
T
3 )− pT

xiBiJ
T
3 + 1T

ne
(Γui +

N∑
j=1

πijP
T
j3) + 1T

ny
Êi


≺ 0, (49)

[
Ωi1 − γ1T

nw
Ωi2 − γ1T

nu
Ωi3 − γ1T

nu

]
≺ 0, (50)

where ψ4i,j = ‖ψi,j‖∞, ψ5i,j = ψi,jmin; ǔi,j = ǔ+
i,j − ǔ

−
i,j , ûi,j = û+

i,j − û
−
i,j , ufi,j = u+

fi,j − u
−
fi,j , and

Ži = Ž+
i − Ž

−
i , Ẑi = Ẑ+

i − Ẑ
−
i ;

Λli = P̌iJ1Ai − Ž
+
i CiAi + Ž−i CiAi − V̌i,

Λ
l
i = P̌iJ1Ai − Ž+

i CiAi + Ž−i CiAi − V̌i,

Λui = P̂iJ1Ai − Ẑ
+
i CiAi + Ẑ−i CiAi − V̂i,

Λ
u
i = P̂iJ1Ai − Ẑ+

i CiAi + Ẑ−i CiAi − V̂i,

Γli = V̌iJ
T
1 + P̌i(SJ

T
2 + J1BiJ

T
3 )− ŽiCiBiJT

3 ,

Γui = V̂iJ
T
1 + P̂i(SJ

T
2 + J1BiJ

T
3 )− ẐiCiBiJT

3 ,

(51)

and

Ωi1 = pT
xiBwi + 1T

ne
[(P̌i − P̂i)J1 − (Ži − Ẑi)Ci]Bwi,

Ωi2 = 1T
ne
P̌iWf ,

Ωi3 = 1T
ne
P̂iWf .

(52)
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The interval observer matrix parameters Ǧi, Ľi, Ȟi, Ťi, Ĝi, L̂i, Ĥi, T̂i are given as in Theorem 1 while the

controller matrix parameters are designed as

Ǩi = QiŘi, K̂i = QiR̂i, Kfi = QiRfi, (53)

with Ři, R̂i, and Rfi given by

Ři =
nuvec
j=1

{
ǔT
i,j

pT
xiψi,j

}
, R̂i =

nuvec
j=1

{
ûT
i,j

pT
xiψi,j

}
, (54)

Rfi =
nuvec
j=1

{
uT
fi,j

pT
xiψi,j

}
. (55)

Proof. According to Theorem 1 and Remark 2, conditions (43)–(45) ensure that Ǧi, Ĝi are Metzler matrices,

J1Ai − ĽiCiAi − Ǧi � 0, L̂iCiAi − J1Ai + Ĝi � 0, (I − ĽiCi)Bwi � 0, and (L̂iCi − I)Bwi � 0. Based

on the structures of Ǩi, K̂i and Kfi in (53), and matrices Ři, R̂i and Rfi given by (54)–(55), we have

BiǨi =

nu∑
j=1

ψi,j(ǔ
+
i,j − ǔ

−
i,j)

T

pT
xiψi,j

, BiK̂i =

nu∑
j=1

ψi,j(û
+
i,j − û

−
i,j)

T

pT
xiψi,j

, BiKfi =

nu∑
j=1

ψi,j(u
+
fi,j − u

−
fi,j)

T

pT
xiψi,j

. (56)

Provided that ψ4i,j return the maximal and ψ5i,j the minimal element of ψi,j , it always holds that

1

ψ4i,j
≤ pT

xi1nx

pT
xiψi,j

≤ 1

ψ5i,j
. (57)

It follows from the above that for any Ai ∈ [Ai, Ai],

pT
xi1nx(Ai +Bi(Ǩi + K̂i)) � pT

xi1nxAi +

nu∑
j=1

ψi,j

[
(ǔ+
i,j + û+

i,j)
T

ψ4i,j
−

(ǔ−i,j + û−i,j)
T

ψ5i,j

]
,

−pT
xi1nxBi(ǨiJ

T
1 −KfiJ

T
3 ) � −

nu∑
j=1

ψi,j

(
ǔ+T
i,j

ψ5i,j
−
ǔ−T
i,j

ψ4i,j

)
JT
1 +

nu∑
j=1

ψi,j

(
u+T
fi,j

ψ4i,j
−
u−T
fi,j

ψ5i,j

)
JT
3 , (58)

pT
xi1nxBi(K̂iJ

T
1 + (Kfi − I)JT

3 ) �
nu∑
j=1

ψi,j

(
û+T
i,j

ψ4i,j
−
û−T
i,j

ψ5i,j

)
JT
1 +

nu∑
j=1

ψi,j

(
u+T
fi,j

ψ4i,j
−
u−T
fi,j

ψ5i,j

)
JT
3 − pT

xi1nxBiJ
T
3 .

which implies that the matrix (Ai + Bi(Ǩi + K̂i)) is Metzler , −Bi(ǨiJ
T
1 − KfiJ

T
3 ) � 0, and Bi(K̂iJ

T
1 +

(Kfi − I)JT
3 ) � 0 under conditions (46)–(48), respectively. This completes the proof for positivity of the

augmented system (38).

For diagonal matrices P̌i and P̂i, the vectors p̌i = P̌i1, and p̂i = P̂i1 return strictly positive vectors of the

main diagonal elements of these matrices respectively. Also, notice that

pT
xiBiǨi =

nu∑
j=1

(ǔ+
i,j − ǔ

−
i,j)

T, pT
xiBiK̂i =

nu∑
j=1

(û+
i,j − û

−
i,j)

T. (59)

Defining pT
i = [pT

xi p̌T
i p̂T

i ], we obtain from (49) that

pT
i


Ai +Bi(Ǩi + K̂i) −Bi(ǨiJ

T
1 −KfiJ

T
3 ) Bi(K̂iJ

T
1 + (Kfi − I)JT

3 )

J1Ai − Ľ+
i CiAi + Ľ−i CiAi − Ǧi Ǧi 0

L̂+
i CiAi − L̂

−
i CiAi − J1Ai + Ĝi 0 Ĝi


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+

M∑
j=1

πijp
T
j + 1T[Czi Ěi Êi] ≺ 0, (60)

with Ľ+
i = P̌−1

i Ž+
i , Ľ−i = P̌−1

i Ž−i , L̂+
i = P̂−1

i Ẑ+
i , L̂−i = P̂−1

i Ẑ−i ; which indicates that

pT
iAi +

N∑
j=1

πijp
T
j + 1TCi ≺ 0, (61)

when Ai � Ai � Ai. Together with the condition in (50), we can conclude that system (38) is positive, mean

stable and satisfies ‖z‖L1
≤ γ‖ω‖L1

based on Definition 1 and Lemma 3. �

Remark 4. In order to guarantee positivity of the system (1) under the observer-based fault-tolerant controller,

conditions (46)–(48) are presented, which are obtained based on the inequalities in (57) and (58). It is noted

that the conditions (46)–(48) introduce conservatism in view of the difference between ψi,j and ψ5i,j , as well as

that between ψi,j and ψ4i,j . Therefore, one may reduce the conservatism by designing the invertible matrix Qi

such that the difference between ψ5i,j and ψ4i,j , ∀i ∈ N , j = 1, 2, . . . , nu, is reduced as much as possible.

For a positive Markov jump system (1) in which Bi has no zero row, Theorem 2 provides a computationally

efficient solution to the interval observer-based fault-tolerant controller design problem. It is noted that if Bi

has a zero row, it is impossible to find a matrix Qi such that BiQi is strictly positive, and the inequality in (57)

will not hold. It thus fails to guarantee the specific structures of the matrices (that is, Ai +Bi(Ǩi + K̂i) should

be Metzler while −Bi(ǨiJ
T
1 + KfiJ

T
3 ) and Bi(K̂iJ

T
1 + (Kfi − I)JT

3 ) should be nonnegative) by exploiting

conditions in (46)–(48).

In the case thatBĩ 6= 0 butBĩ[r̃, 1] = Bĩ[r̃, 2] = . . . = Bĩ[r̃, nu] = 0, for some ĩ ∈ N , r̃ ∈ {1, 2, . . . , nx},

there always exists an invertible matrix Qĩ ∈ Rnu×nu , such that

Φĩ , BĩQĩ (62)

satisfying Φĩ[r, c] > 0, ∀r 6= r̃. Denote φĩ,j ∈ Rnx
+ , j = 1, 2, . . . , nu, as the jth column of Φĩ. Then the

following proposition can be obtained based on Theorem 2.

Proposition 1. For positive Markov jump system (1) such that (62) holds for i = ĩ and (42) holds for i ∈
N , i 6= ĩ, by utilizing an interval observer composed of (7) and (8), a fault-tolerant controller given by

(34) exists such that for any Ai ∈ [Ai, Ai], the augmented system (38) is positive, mean stable and satisfies

‖z‖L1
≤ γ‖ω‖L1

with a given γ > 0, if there exist diagonal matrices P̌i, P̂i ∈ Rne×ne
+ with strictly positive

diagonal elements, nonnegative matrices Ž+
i , Ž−i , Ẑ+

i , Ẑ−i ∈ Rne×ny

+ , matrices V̌i, V̂i ∈ Rne×nx , strictly

positive vectors pxi ∈ Rnx++, nonnegative vectors ǔ+
i,j , ǔ

−
i,j , û

+
i,j , û

−
i,j ∈ Rnx

+ , and u+
fi,j , u

−
fi,j ∈ Rnu

+ , for

i = 1, 2, . . . , N , j = 1, 2, . . . , nu, such that conditions in (43)–(50) are satisfied for i 6= ĩ; for i = ĩ, conditions

in (43)–(45), (49)–(50) are satisfied, and the following conditions are satisfied:

pT
xĩρ(r̃)Aĩ +

nu∑
j=1

φĩ,j

[
(ǔ+

ĩ,j
+ û+

ĩ,j
)T

φ4
ĩ,j

−
(ǔ−
ĩ,j

+ û−
ĩ,j

)T

φ5
ĩ,j,r̃

]
is Metzler, (63)
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−
nu∑
j=1

φĩ,j

(
ǔ+T
ĩ,j

φ5
ĩ,j,r̃

−
ǔ−T
ĩ,j

φ4
ĩ,j

)
JT
1 +

nu∑
j=1

φĩ,j

(
u+T
fĩ,j

φ4
ĩ,j

−
u−T
fĩ,j

φ5
ĩ,j,r̃

)
JT
3 � 0, (64)

nu∑
j=1

φĩ,j

(
û+T
ĩ,j

φ4
ĩ,j

−
û−T
ĩ,j

φ5
ĩ,j,r̃

)
JT
1 +

nu∑
j=1

φĩ,j

(
u+T
fĩ,j

φ4
ĩ,j

−
u−T
fĩ,j

φ5
ĩ,j,r̃

)
JT
3 − pT

xĩρ(r̃)nxBĩJ
T
3 � 0, (65)

where ρ(r̃) ∈ Rnx has its r̃-th element zero and the other elements one; φ4
ĩ,j

= ‖φĩ,j‖∞, φ5
ĩ,j,r̃

= φ+

ĩ,jmin
. The

observer matrices and controller matrix are given as in Theorem 2.

The proof of Proposition 1 is similar to that of Theorem 2 and is omitted here.

4. Illustrative Example

Consider a third-order positive Markov jump linear system of form (1) with σ(t) ∈ N = {1, 2} and the

following system matrices:

A1 =


−2.5± 0.2 0 1.5

0 −3.3± 0.1 1.2± 0.2

0.7 1.1± 0.05 −4± 0.15

 , B1 =


1.2 0.8

0.5 0

0 1

 ,

A2 =


−3.8± 0.12 0.2 0.4± 0.11

0.5± 0.2 −3.95± 0.2 0.3± 0.02

0.35 0.55 −4± 0.9

 , B2 =


1 2

1.5 0.5

0 0

 ,
Bw1 = Bw2 =

[
0.1 0.1 0.1

]T
, C1 =

[
0.9 0.8 1.3

]
, C2 =

[
0.6 1.2 1

]
.

The generator matrix is given as

Π =

−3.9 3.9

1.4 −1.4

 .
The reference output is given with Cz1 = C1, Cz2 = C2, and Ě1 = Ě2 =

[
1 0.8 0.9 0.8 1

]
,

Ê1 = Ê2 =
[
0.5 0.8 0.6 0.6 0.8

]
. Initial conditions are set as x(0) =

[
1.3 1.5 2

]
and w(t) =

1.5e−
1
2 | sin(0.5π(t− 0.5))|.

The actuator fault is unknown in controller design but its first-order derivative f (1) is supposed to be bounded

by [δ(t), δ(t)], with δ(t) = [−2e−
t
6 , 0.01e−

t
2 ]T, δ(t) = [2e−

t
6 , 0.1e−

t
6 ]T. In other words, the designed interval

observer-based FTC scheme could handle a large class of faults whose rate of change is within [δ(t), δ(t)].

Suppose that

f(t) =

0.32− 0.04e−
t
4 (sin 2t+ 8 cos 2t)

0.2− 0.2e−
t
5

 .
Obviously,  −2e−

t
6

0.01e−
t
2

 � f (1)(t) =

0.65e−
t
4 sin 2t

0.04e−
t
5

 �
 2e−

t
6

0.1e−
t
6

 .
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According to Remark 4, Q1 is selected to reduce the difference between ψ41,j and ψ51,j , j = 1, 2, as much as

possible. A possible solution is to parametrize Q1 as

Q1 =
[
q1,1 q1,2

]
+ εI,

where q1,1, q1,2 ∈ R2, and ε > 0. It is noted that for any matrix [q1,1, q1,2], there always exists a sufficiently

small constant ε > 0 such that Q1 is invertible. Based on the parametrization, Q1 is designed by solving the

following optimization problems:

min
q1,1

(‖B1q1,1‖∞ − (B1q1,1)min) s.t. (B1q1,1)min ≥ (b1,1)+
min,

min
q1,2

(‖B1q1,2‖∞ − (B1q1,2)min) s.t. (B1q1,2)min ≥ (b1,2)+
min,

where b1,1, b1,2 ∈ R3 are the first and second columns of B1, respectively. One may consider the selection

of Q2 in a similar way. However, since there is a zero row in B2, Q2 is designed by solving the problems as

follows:

min
q2,1

(
‖B̃2q2,1‖∞ − (B̃2q2,1)min

)
s.t. (B̃2q2,1)min ≥ (b2,1)+

min,

min
q2,2

(
‖B̃2q2,2‖∞ − (B̃2q2,2)min

)
s.t. (B̃2q2,2)min ≥ (b2,2)+

min,

where B̃2 =

 1 2

1.5 0.5

, b2,1, b2,2 ∈ R3 are the first and second columns of B̃2, respectively. Q2 =

[q2,1 q2,2] + εI . One then obtains

Q1 =

 1 1.6

0.5 0.8

+ 0.001I, Q2 =

0.6 0.3

0.2 0.1

+ 0.001I.

For a prescribed γ = 0.82, an interval observer composed of (7) and (8) is then constructed based on

Theorem 2 and Proposition 1, with observer matrices given by

Ǧ1 =



−2.7 0 1.5

0 −3.4 1

0.7 1.05 −4.15

0 0 0

0 0 0


, Ľ1 =



0

−0.0593

−0.0044

0

0


,

Ĝ1 =



−2.3 0 1.5

0 −3.2 1.4

0.7 1.15 −3.85

0 0 0

0 0 0


, L̂1 =



0

−0.1351

−0.4095

0

0


,
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Ǧ2 =



−1.9008 0 0.9337

0 −0.0004 0

0 0.3203 −0.0005

0 0 0

0 0 0


, Ľ2 =



−0.0464

−0.0638

−0.1258

0

0


,

Ĝ2 =



−3.7332 0 0.3842

0.5648 −4.2585 0

0.2038 0 −3.4461

0 0 0

0 0 0


, L̂2 =



−0.0522

−0.1328

−0.1336

0

0


.

The fault-tolerant controller in (34) has the following parameters:

Ǩ1 =

−0.0021 −0.0074 −0.4251

0 −0.0109 −0.2125

 , K̂1 =

0.7257 0.7219 0.1397

0.3629 0.3682 0.0699

× 10−3,

Ǩ2 =

−0.0071 0.0018 −0.0718

0 −0.0076 −0.0023

 , K̂2 =

−0.1794 −0.12 −0.1674

−0.0604 −0.04 −0.0564

 .
As for Ǩf1, Ǩf2, K̂f1, and K̂f2, we have Kf1 and Kf2 as follows:

Kf1 =

1.5330 2.8411

0.7665 1.4490

 , Kf2 =

0.0217 1.2914

0.0077 0.0018

 .
One can compute

Ǩf1 = −B†1B1Kf1 =

−1.5330 −2.8411

−0.7665 −1.4490

 , K̂f1 = B†1B1(Kf1 − I) =

0.5330 2.8411

0.7665 0.4490

 ,
Ǩf2 = −B†2B2Kf2 =

−0.0217 −1.2914

−0.0077 −0.0018

 , K̂f2 = B†2B2(Kf2 − I) =

−0.9783 1.2914

0.0077 −0.9982

 .
The simulation of the mode sequence is shown in Figure 1. Based on the designed controller, the system

state components x1, x2, and x3 are shown in Figures 2, 3, and 4, respectively. Corresponding interval estimates

obtained from the interval observer are also provided in the figures. Figure 5 shows the time-varying actuator

fault f(t) and its estimates. It can be seen that As indicated by the figures, the system state and actuator fault

can be encapsulated at all times and the convergence of estimation errors is achieved with the obtained interval

observer. The designed fault-tolerant controller is also proved to be capable of stabilizing the system under

actuator faults.
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Figure 1: Markov jump process
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Figure 2: Trajectory of x1 with interval estimates
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Figure 3: Trajectory of x2 with interval estimates
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Figure 4: Trajectory of x3 with interval estimates
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Figure 5: Trajectory of actuator fault with interval estimates

5. Conclusion

In this work, positive Markov jump systems subject to interval uncertainties and actuator faults have been

considered. An interval observer design approach has been developed to provide guaranteed intervals for the

system state and faults. Based on the interval observer framework, a linear programming approach has been

proposed for the computation of the observer and controller to guarantee the stochastic stability and disturbance

attenuation through L1-gain performance. The effectiveness of the observer-based fault-tolerant scheme has

been illustrated via a numerical example. For future developments, the influence of the observer gains and

controller gains on the closed-loop performance will be further analyzed. New extensions will also be carried

out on positive multi-agent systems subject to component faults by using the idea of interval observers.

Acknowledgment

The work was partially supported by GRF 17201820 and the National Natural Science Foundation of China

(NSFC) under Grant 61973259.

References

[1] Abadi, A., El Amraoui, A., Mekki, H., and Ramdani, N. Guaranteed trajectory tracking control based on

interval observer for quadrotors. International Journal of Control, 93(11):2743–2759, 2020.
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