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1 | INTRODUCTION

Positive systems, whose state is always in the nonnegative
orthant, have drawn increasing attention in recent decades.
Due to the positivity of the state, the systems feature a cou-
ple of advantages in theoretical research, including decrease of
the complexity of stability conditions [1} 2]], simplification of
the characterization for some input-output gains, like L - and
L, -gains, which were first considered in [3[], and reduction of
conservativeness of conditions for stability and input-output
gain analysis for some kinds of positive systems [4} 5], and
therefore have a wide range of applications in engineering
fields, including disease transmission [6]], networked fluid flow
[7]] and viral infection [8]].

OAbbreviations: ANA, anti-nuclear antibodies; APC, antigen-presenting
cells; IRF, interferon regulatory factor

This paper is concerned with the stability analysis and stabilization of periodic
piecewise positive systems. By constructing a time-scheduled co-positive Lyapunov
function with a time segmentation approach, an equivalent stability condition, deter-
mined via linear programming, for periodic piecewise positive systems is established.
Based on the asymptotic stability condition, the spectral radius characterization of
the state transition matrix is proposed. The relation between the spectral radius of the
state transition matrix and the convergent rate of the system is also revealed. An iter-
ative algorithm is developed to stabilize the system by decreasing the spectral radius

of the state transition matrix. Finally, numerical examples are given to illustrate the

Decay rate; Periodic piecewise systems; Positive systems; Stability; Stabilization

Different kinds of systems with positivities have been inves-
tigated, including Markov jump systems [9} [10, [11]], periodic
systems [12} |13]], singular systems [14,[15}116], switched sys-
tems 17, 118} |19} 120} 21} 22]], time-delay systems [23} 24} 25|
26l 27]], etc. For linear continuous time-invariant positive sys-
tems, the stability, L,- and L_-gain can be characterized by
the linear inequality. This represents a significant reduction of
the number of decision parameters for analyzing the stabil-
ity of positive systems when compared with the linear matrix
inequality approach for that of general linear systems. There-
fore, linear programming formulations, which are based on
linear co-positive Lyapunov functions, have been developed
to study stability and input-output gain of different kinds of
positive systems.

As a special kind of positive systems, periodic piecewise
positive systems have numerous applications, including traf-
fic systems [28] and medical treatments [29]. In previous
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work, the above applications were always modeled as posi-
tive switched systems, which can be found in [7]] and [30]. By
ignoring the inherent periodicity and fixed time interval of each
subsystem, the obtained results are more conservative for those
practical applications. By using periodic piecewise positive
systems for characterization, the obtained analytical results
will be sharper. In recent years, increasing attention has been
paid to periodic piecewise systems [31} |32} |33} 134} 35} [36],
which can be seen as a special kind of switched systems con-
sisting of several time-invariant subsystems [37]]. However, to
our best knowledge, few results have been reported on the
periodic piecewise positive systems due to the difficulties in
characterizing the equivalent stability condition and incorpo-
rating the positivity constraint in stabilization. Therefore, in
this paper, we are concerned with the stability and stabilization
of the periodic piecewise positive systems.

In order to analyze the stability condition and stabilization
of periodic piecewise positive systems, we should first review
the previous results for periodic piecewise systems. For peri-
odic piecewise systems, the existing results can be seen as the
extension of the results for switched systems under dwell time
constraint |38} [39]]. Since the switching order and the interval
of each subsystem are fixed, the applied Lyapunov function
changes from a subsystem-based one to a time-based one and
the number of LMIs (linear matrix inequalities) reduces signif-
icantly. Furthermore, due to the periodic property, for periodic
piecewise systems with time-delay, the initial states of the
systems can be determined and the control synthesis can be
achieved in forms of LMIs. Although extensive research efforts
have been focused on stability condition and control synthesis
of periodic piecewise systems, the conditions of the stability
and stabilization are still subject to some defects, which are
listed as follows:

e There are some drawbacks in obtaining linear condi-
tions for stability. For the stability condition of periodic
piecewise systems, a necessary and sufficient condition
can be characterized through the spectral radius of the
state transition matrix [31]]. However, such a condition is
nonlinear in the system matrix parameters. Hence, it is
hard to be applied to obtaining conditions for stabiliza-
tion and characterization of the input-output gain that
are linear in the system matrix parameters. To overcome
these difficulites, the authors in [31] applied a discontin-
uous Lyapunov function to obtain a sufficient stability
condition in terms of LMIs. In subsequent research
[32 133]], even though the authors proposed different
kinds of Lyapunov functions to decrease the conserva-
tiveness of the stability conditions characterized by the
system matrix, the necessity of the condition cannot be
guaranteed.

e [t is hard to strike a balance between the complexity of
the stabilization algorithm and the conservativeness of
the stability condition. When using a linear time-varying
Lyapunov function to characterize the stability condi-
tion, the applied Lyapunov function can be continuous
or discontinuous. For the discontinuous one, the stabil-
ity condition is less conservative. However, the number
of unknown parameters to be designed is large and
coupling between those parameters exists. When fixing
some unknown parameters of discontinuous Lyapunov
functions or applying continuous Lyapunov functions to
turn the stabilization problem into an LMI problem, the
conservativeness of the stability conditions increases.
Furthermore, for nonlinear Lyapunov function like the
one with the matrix polynomial approach [32], a similar
dilemma exists.

The above difficulties also exist in both periodic piecewise
positive systems and positive switched systems under dwell-
time constraint. In addition, as the positivity of the state should
be guaranteed, it will be of ever-increasing difficulty to design
controllers for the systems. Recently, some research on sta-
bility analysis and stabilization of linear continuous switched
positive systems under dwell-time constraint can be found in
[19, 140, 30, 41]. By analyzing the stability via co-positive or
diagonal Lyapunov function, some sufficient stability condi-
tions are provided. In the above-mentioned works, the posi-
tivity of the state is only applied to decreasing the number of
unknown parameters in the condition, and the conservative-
ness of the condition cannot be reduced when the system is
a positive system. In [30], even though the stability condition
becomes less conservative by dividing a co-positive Lyapunov
function into a number of pieces over a subsystem, the con-
dition is still a sufficient stability condition and is difficult to
be applied to stabilize the systems. Motivated by the chal-
lenging difficulties mentioned above, we endeavour to present
new results of the stability and stabilization of the periodic
piecewise positive systems.

In this paper, a time segmentation approach and a corre-
sponding time-scheduled co-positive Lyapunov function are
proposed. Based on the Lyapunov function, an equivalent
asymptotic stability condition is derived. Furthermore, based
on the established equivalent asymptotic stability condition,
the stabilization problem is solved by an iterative algorithm.
The main contributions of this paper are given as follows:

1) Stability: We construct a novel interpolation function of
the time-scheduled co-positive Lyapunov function, which
plays an important role in deriving the necessary and suffi-
cient stability condition of the periodic piecewise positive
systems in terms of the feasibility of some linear inequali-
ties.
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2) Spectral radius characterization: We show thatthe spec- 2 | PROBLEM FORMULATION AND
tral radius of the state transition matrix of the periodic PRELIMINARIES
piecewise positive systems can be estimated by linear
inequalities. With the increase of the number of inequal- Consider a periodic piecewise system given as
ities, the estimated spectral radius decreases and finally
x(1) = A@)x(1) + B(u(), ey

converges to the actual spectral radius.

3) Stabilization: The co-positive Lyapunov function that pro-
posed is continuous in each period. Compared with the
discontinuous Lyapunov function in previous results, the
number of designed parameters decreases and the complex-
ity of the control synthesis algorithm is reduced.

The rest of this paper is organized as follows. The definitions
of positivity and asymptotic stability of a periodic piecewise
positive system and some useful preliminaries are given in
Section 2. The stability, spectral radius characterization and
stabilization issues of the periodic piecewise positive systems
based on a time-scheduled co-positive Lyapunov function are
investigated in Section 3. Examples to illustrate the effective-
ness of the obtained results are presented in Section 4, and
Section V concludes the paper.

Notation: AT denotes the transpose of matrix A. T~ denotes
the left-hand limit of T'. v|;; denotes the j-th element of vec-
tor v. Ay;; denotes the i, j-th element of matrix A. 4,(A)
denotes the i-th largest eigenvalue of matrix A. p(A) =
max;_i, ., {M,-(A)l} denotes the spectral radius of matrix
A e R™. Hj"zh M;=M; M; --M,; denotes the product
of n matrices M i M Jpr e M i 1,, denotes the n-dimensional
column vector with each entry equals to 1. I, denotes the
n X n-dimensional identity matrix. N = {0,1,2,...}, and
Ny ={12,...}.R} (Rg’ 2 denotes the set of all n-dimensional
real vectors whose entries are positive (nonnegative), R
(R(';”i") denotes the set of all m X n real matrices whose entries
are positive (nonnegative). M"™" denotes the set of all n X n
Metzler matrices whose off-diagonal entries are nonnegative.
v > (>) 0 means v is a positive (nonnegative) vector and
satisfies v € R” <R8,+)' A > (=) 0 means A is a posi-

tive (nonnegative) matrix and satisfies A € R (RK?’).
For two vectors v; and v,, v; > (>)v, means v; — v, is
a positive (nonnegative) vectors. For two matrices A and B,
A > (>) B means A — B is a positive (nonnegative) matrix.
For a matrix A € R™", £p(A) = min_ 5, {(Al1,);}
(Lo(A) =min,_;, ,, {(171A])}), where |[A] = [lag;l].
and Lz(A) = L (AT). For a vector v € R", |lv]l, =
max,_; 5, {lvy|}. For a matrix A € R™™, ||All, =
supy,_=1 140l = ||IAlx 1, For a vector v € R",
loll, = X, lvyl. For a matrix A € R™™, ||A|l, =
supy,y, =1 140l = [[AT]| .

where x(f) € R"~ and u(t) € R" are the state vector and con-
trol input, respectively. A(f) = A(t+T,) and B(t) = B(t+T,)
for all + > 0, and Tp > 0 is the fundamental period. Further-
more, the time-varying matrices A(7), B(7) satisty A(t) = A
and B(r) = B,;, when 1 € [ti_lgg(i)_l, tw(i)) for any i €
{1,2,...,m}, where (6(1),6(2),...,0(m)) is a cyclic permu-
tation of (1,2,...,m) and 1y ;4,_; = O and ¢, ;,,, = T,. We
also define the time interval T, ;) =1, ;) — t;_y 5(;)—1- Accord-
ing to [42], when u(#) = 0, some basic definitions and lemmas
of system (T)) on positivity and stability are recalled.

Definition 1. (Positivity) A periodic piecewise system (1) is
said to be positive if for any initial state x(0) > O and any
cyclic permutation of (6(1), 6(2), ..., o(m)), its state x(¥) is in
the nonnegative orthant for all > 0.

Definition 2. (Stability) A periodic piecewise system (I)) is
said to be asymptotically stable if system (1) is Lyapunov sta-
ble and, for any nonnegative initial state, the state trajectory
x(t) asymptotically converges to zero.

Lemma 1. (Positivity and stability conditions)[42] Con-
sider a periodic piecewise positive system (I) with u() = 0.
the positivity and stability conditions are given below:

(i) System () is positive if and only if A, is Metzler for all
ief{l,2,...,m};

(ii) System (1)) is asymptotically stable if and only if [, e
is a Schur matrix.

Furthermore, some properties of general matrices, nonneg-
ative matrices and Metzler matrices which will be used in the
following are recalled.

Lemma 2. [43] For a Metzler matrix O € M"™", the following
statements are equivalent.

(i) Q is a Hurwitz matrix;

(ii) Q is invertible and O~ < 0;

(iii) There exists a vector p € R’} such that Op < 0.

RHXH

Lemma 3. [43] For a nonnegative matrix Q € g

properties are given as follows:

(1) O is a Schur matrix if and only if there exists a vector p €
IR’jr such that Qp < p.

(i1) For a scalar y € R, Q satisfies p(Q) < y if and only if there
exists a vector p € R} such that Op < yp.

some
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Lemma 4. Given a Metzler matrix Q € M™", when p(Q) <
1, (1, - Q)_1 exists and (1, — Q)"

Lemma 4 is a direct consequence of Lemma 2. The proof is
omitted here.

1. . .
1S a nonnegative matrix.

Lemma 5. [44] Given a matrix QME R™" and a scalar M €
N,, when M — oo, (In - %Q) — e,

In addition, some properties of co-norm and function L g(+)
(Lc(+)) are given as follows.

Lemma 6. [45] For a matrix O € R™" satistying ||Q||, <
I, the inequality (1+[0ll)" < |I,-O7|, <
(1-1llQll.)™" holds.

Lemma 7. For two nonnegative matrices Q € Rgﬁ and R €

Ré’:’_”, the following statements hold:

(1) LR(QOR) = LR(Q)L(R);
(i) L(QR) 2 L(Q)L(R).
Proof: Statement (i) is proved in the following:

I m

m
Lr(OR) = min Z 2 ey = M0 Z Z ik (k)1

j=1 k=1 k=1 j=1
i
= <z=r1n2mn 1; q[ik1> Lr(R)=LROD)LR(R). (2)
According to inequality (Z), we have
Lo(OR) = L(RTQY) > LR(RNLRQY) = L(Q)L(R)

holds, and statement (ii) is proved. [ |

Lemma 8. For a Metzler matrix Q € M™", when p(Q) < 1,
the following statements hold:

£ [(1,-0) "] 2 (1+12l.)7
i) £c [(1,-0)7"] 2 (1+11e1) ™.

Proof: Assume (1, — Q)_1 1, = v, and (1+ ||Q||m)_1 1, =

v,. According to Lemma4, v, > O and v, > 0, when p(Q) < 1.
Then the following two equations hold:

(I,-0)v, =1, 3)

(1+1Qlle) vy =1, )

Subtracting (3) from @), we have v; —Qu, —v,— |0l , v, = 0,

and hence v; — v, — Qu; + Quv, — Qv, — ||0||, v, = 0, which
gives

(1, = Q) (01 = v2) = Qva + 1Qll; - )

Since —Q1, < [|Q|l, 1,. equation (3) gi?/es v, — v, =
~1 Z L

(1,=0) (Q+1QllxI,) 1, (1 +11Qll,) " = 0. It implies

Lp [(In - Q)_1 > (1+ ||Q||°o)_l, which proves statement

(). The proof of statement (ii) is similar to statement (i), thus
omitted here. [ |

3 | MAIN RESULTS

3.1 | Stability Analysis

Based on the transition matrix of system (I)) and the properties
of nonnegative matrices and Metzler matrices, an equivalent
stability condition of system (I in terms of state transition
matrices is first discussed in this subsection. Theorem 1 below
gives several equivalent stability conditions for system (T).

Theorem 1. (Stability characterization via state transition
matrices) Consider periodic piecewise positive system ()
with u(?) = 0, the following statements are equivalent:

(i) System (T)) is asymptotically stable;

(ii) Matrix ], e*7i is a Schur matrix;

(iii) There exists a vector p € R’ such that ([T, e*7') p < p;
(iv) For any set of vectors v; € Ri‘, there exist a scalar k > 0
and a set of vector p,’. € R such that

/

eMTipl + kv, =pl. |, (6a)

(6b)

i=1,2,...,m,

/ /
Py <Py

Remark 1. Combining Lemma 1 and Lemma 3, one can find
that conditions (i), (ii) and (iii) are equivalent. The equivalence
of condition (iv) could be seen as an alternative way to revise
the sufficient condition of Theorem 2.1 in [46] to a necessary
and sufficient one, which has also been addressed in Remark
2.5 of [[12]. By introducing a set of strictly positive vectors v;,
one can always guarantee the strictly positivity of the set of
vectors p.

One can see that the asymptotic stability conditions always
contain matrix e”%i in Theorem 1. It is hard to use these con-
ditions to design a feedback controller of system (I directly.
By applying a time segmentation approach to each subsystems
and constructing a time-scheduled co-positive Lyapunov func-
tion, the asymptotic stability condition of system (I)) can be
solved via linear inequalities, and a sufficient condition is given
in Proposition 1.

Proposition 1. Given a scalar M € N_, periodic piecewise
positive system with u(f) = 0 is asymptotically stable if

. ny
there exist a set of vectors p;; € R,

i=12....,mj =
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1,2, ..., M, such that

M M

APyt = Py + Py <O, (7a)
M M

Alpij = Py + iy <0, (7b)

pi’M =pi+l,0’ i= 1,2...,m—1, (7C)

Pmm > P1ro- (7d)

Proposition 1 can be seen as an extension of Theorem 2 in
[42]] by applying time segmentation to the time interval of each
subsystem into M parts. It can also been found as one compu-
tational approach in [47]]. Thus, the proof of Proposition 1 is
omitted here.

In [30]], Xiang et al. extended their previous results for gen-
eral switched systems in [48]] to switched positive systems. It is
concluded that, for a Hurwitz Metzler matrix A € M"™", there
exist a sufficiently large M and a set of vectors p; € R’} such
that

ATp,  + = (pj—pi.y) <0, j=12,....M, (8

A'p,+ —(p;—p;_1) <0, j=12,....M, (9
hold, with p; = eAT(T_’f)pM + (T - tj) ¢, where t; = jT /M,
¢ > 0and AT¢ < 0. In the i-th subsystem, let A; — A and
pij = p;, one can find that inequalities @—@ are the same
as (8)—-(9). For periodic piecewise positive systems, the sub-
system may be unstable and matrix A; needs not be Hurwitz.
By relaxing the conditions in [30]], Lemma 9 will show that,
for any Metzler matrix A, one can find a sufficiently large M
such that conditions (8) and () hold and p, and p,, satisfy
po = e*' Tpy, + T, where ¢ > 0.

Lemma 9. Given a Metzler matrix A € M™" and a scalar
T > 0. For any vector p € Ri and scalar k > 0, there exist a
set of vectors p; € R, a vector v € R’} and sufficiently large
scalar M € N_ such that the following conditions hold:

M M .
ATppy = b+ op <0 =12, M, (10a)
M M L
Apj_?pj_l+?pj<0, j=12,....,.M, (10b)
po=e"Tp+ ko, (10¢)
Py =D (10d)

Proof. First, a set of vectors p; is defined as follows:

T .
pj:pj—l—'_ﬁ(pj? J:192,'--,M, (11)
Pu =D (12)
where ¢, = (= Ay )M+ (kq— ATp), Ay =

-1
(%AT - In) ,and ¢ < 0 is an arbitrary vector. We let
M satisfy M > Tp(A). According to Lemma 4, A,, exists

and satisfies 4,

tive matrix, [

< 0.

% Z;\il (_AM

Since —A,, is a full rank nonnega-
)[] g < 0, when ¢ < 0. Define

po = e*'Tp + kv. By substituting p, into —, we have

U=

=zl

Based on the property of matrix norm (Page 290 of [435]),

vector — [

inequality:

|

Elﬂ

> (-

=1

% Z;\il (_AM

1 T
-

M

— et Tp| - li (—AM)’] g (13

s

M

~

=1

)l] q in satisfies the following

(s

IA

I}

I=gllc 1,

(s8]

n-F)

(14)

According to Lemma 6, when M > T ||AT||oo > Tp(A), the
right-hand side of inequality (T4) gives

N, and M* > T ||AT||

IA

IA

—1 1
(=374 |
M oo

l
1
<—T> I-dlls 1,
ANEEIY

I=alle 1,

M
I=all 1,
1-— ||AT|| >

M
1
(T—T> I=dlle 1, s)
1- AT,

-M
Function (1 - % ||AT||°°> monotonically decreases for
M > T ||A"|, as M increases. Choose M* such that M* €

following inequality:

T
M

M
=1

1
oy
M

. When M > M*, satisfies the

M
> l=lles 1, = T8 pr- lI=glles 1,

(16)
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where &,,. = (l - Mi|

—M*
AT”w) . Inequality gives

an upper bound of vector — [% Zf\il (—AM)I q, a lower
bound of the vector is given in what follows. According to the
definition of £ z(-) and Lemma 7, one has

@, p; can be written as

M—j

Py =(=Au)" p- l% > (_AM)I] kq,

=1

where j € {1,2,..., M — 1}. Since —AM is a full rank non-

-T M N T M _ negative matrix, p; € Ri for all j € {0,1,...,M}. By
™ (—Am) az M Z Lg [(_AM) ] Lr=)1, substituting (TI)) and (I2) into the left hand side of inequality
= , 1;,1 (I0a), we have
-\
z Z [[“R <_AM)] L=, M (PM_l _PM) T
M S ATpy_y — -7 = ATp+ <1n - MAT> bum
M _ 1 .~

- ) {ER [<1 - LAT> 1] } Lr(=q)1,,. = ATp— Ay Ay (ATp — ka)

M5 M =kq <0. (19)
17) . Iy y

Furthermore, the relation between ATp -1~ 7Pt D, and

According to Lemma 8, the right-hand side of gives

M _ I
=Y {ER [(1 - Lam) 1] } La-al,
l=All 1
.
=1

> Tl
- T
1+L 4

Sk

lleo
M
] Lr(=9)1,. (18)

1+ jaT),,

-M

Function (1 + % ||AT||OO> monotonically decreases for
M > M* as M increases. The right-hand side of inequality
(18) gives

M
1 ]
— L | ot
T 14T R "
L+ T AT
M
. 1
>T lim { | ——— La(=)1, = TSL (-1,
M= LﬁnATnJ * -

where § = Tl According to || and 1i the sum of
_ﬁ(_AM)lq is bounded and satisfies

M

T N
0 < TL(=a)1, < == > (~Au) a2 Téy lI-glls 1,
1=1

According Lemma 5, for any Metzler matrix A and a scalar k,
there exists a scalar M** > M* such that
1 ~ M T
— =A™ = | o+ ToLa=a)1, > 0
holds for all M > M**. When M > M™*, v is bounded and
satisfies

0<0=<T&y =gl 1, + TSLR(—g)1,.

According to (T0c) and (T0d), p, and p,, are positive vectors.
Then the positivity of vector D), where j € {1,2,...,M — 1},
is proved in the following. According to equalities (IT) and

Aij_2—¥pj_2+¥pj_l Jforj € {2,3,..., M},areas follows:

ATp o - M (pa=ppm1) lAij_l M (Pj; - P,-)]

= (In — S AT) (=Ap) " (kq - ATp)
= (=Ay)"" (kg ~ ATp)
=0. (20)
Combining (I9) and (20),
ATp, | - ij_l + ij =kq<0 21

T T
holds for all j € {1,2,..., M}. By substituting and
into the left hand side of (I0b)), equation

M M
ATp——=pi 1+ —p;=A"p,—ATp,_ +kq

T T
= %AT@ +kq
holds for all j € {1,2,..., M}. For a given M > M**, AT¢,
satisfies
AT, = =5y ||kATq - (AT)2p“oo 1, 22)
AT, <5y |kATq _ (AT)zp”m 1, (23)

where j € {1,2,..., M}. Inequalities (22)) and (23] show that
function AT¢ ; is bounded and cannot go to infinity when M
goes to infinity. In other words, for any Metzler matrix A and
scalar k > 0, there exists a scalar M *** > M** such that

%EM* kATg = (AT)p|| 1, +kq <0

holds for all M > M***. Therefore, for a given g < 0, when
M > M**, inequality %ATd)j + kq < 0 holds for all j €
{1,2,...,M}. When M > M™***, there exist a set of vectors
p; € R} and a vector v € R’} such that condition (10) holds,
which proves Lemma 9. |



Zhu Bohao ET AL

| 7

Remark 2. According to (I3), the value of v is affected
by k, Ay, p and M. For any k, one can always let
1 ~ M T
F|(Au)" et
tor, by increasing M . Therefore, for any k, the value of v is less
than a certain positive vector. In other words, when k goes to

0, v will not go to infinity.

] p < A, where A is a given positive vec-

According to Lemma 9, we give the relation between a set of
positive vectors p; and a Metzler matrix A, when the number
of the vectors is sufficiently large. By substituting the relation
into Theorem 1, the necessity of condition (7) in Proposition 1
is proved when M is sufficiently large, and Theorem 2 is given.

Theorem 2. (Stability characterization via system matri-
ces) Given a periodic piecewise positive system (1)) with u(r) =
0. The system is asymptotically stable if and only if there exist
a sufficiently large M and a set of vectors p; ; € IRZX satisfying
condition (7), fori =1,2,...,m,and j = 1,2,... ., M

Proof. The sufficiency of condition (7) has been proved in
Proposition 1. The necessity of Theorem 2 is proved by con-
tradiction. We start by assuming that the periodic piecewise
positive systems (I)) with u(r) = 0 is asymptotically stable, and
there do not exist a set of vectors p, ; € R’ such that condi-
tion (7) holds for any M € N_. According to Lemma 9, there
exist a sufﬁciently large scalar M € N, and a set of vectors
pi; € IR such that hold and the vectors p;, and
Pim satlsfypmM p,p,o = e tp mtko, =12,

for any vector p € R/, + and any scalar k > 0, where v; sat-
isfies that 0 < v; < v; and v; is independent of k. Based on

the assumption, there do not exist a scalar k > 0 and a set of

/ ny
vectors p! € R_* such that
eA:nH—iT'"“-'pl/. + kv, =pl, i=12,....m  (24)
Py <P} (25)

where 0 < v; < v, p'] = Py = P> and p) = p,.s 0,
fori = 2,...,m + 1. When conditions @) and do not
hold, Theorem 1 indicates that p <H eMa-Tri= ) > 1 and

p (H,m:1 ) > 1. Since system is asymptotically stable,
the spectral radius of the state transition matrix []" e*7 is
less than 1. It contradicts the assumption and the necessity of
Theorem 2 is proved. [ |

3.2 | Spectral Radius Characterization

Thus far, the asymptotic stability of periodic piecewise pos-
itive systems has been investigated. In this subsection, the
spectral radius of the state transition matrix, which plays an
important role in characterizing the exponential stability and
designing iterative stabilization algorithm, is discussed. Based
on Theorem 2, two characterizations of the spectral radius of
the state transition matrix for the system (TJ) are given first.

Theorem 3. (Spectral radius characterization I) Given
periodic piecewise positive system with u(t) = 0.
The spectral radius of the state transition matrix satisfies
p (T, e*™) < y, where y € R, if and only if there exist
a sufficiently large M € N, and a set of vectors p; ; € Rix,

i=1,2,....mj=1,2,..., M, satisfying
M
Alp ;| — TP+ piy <0, (26a)
M
Alp, ;- TP+ iy <0, (26b)
Pim =DPiy1or i=12...,m—1, (26¢)
YPmm > Pro- (26d)

Proof. The proof of the necessity of Theorem 3 is similar to
that in the proof of Theorem 2, thus omitted here. For suffi-
ciency, by considering a time-scheduled co-positive Lyapunov

function
V(0 = x"(1)p(), (27

where

p(t) = a; ;(Op; ;_y + & ;(Dp; 5,

M T,
T (kT +1, 1+jﬁ’—r>

1

M
— a0 = o <t—kTp 1, -

i

“i.j(’) =

&i,j(t) =1 ﬂ) s

M

T.) with i =

1

when 1 € [kT iy + ST KT, 1, +
, M. The derlvatlve of the co-

1,2,...,mand j = 1,2,.
positive Lyapunov function is

xT()p(t) + xT()p(t)

T T T M M
x"OA] p(1) + x" (1) <_7,- Pijo1 ¥ T Pij

V(1)

M M
x'(1) [ai,j(t) (A,-TP;,‘,'—l - ?pi,j—l + ?Pi,j>

M
+ ?ip,,j .

Combining (Z8) with condition (26), the co-positive Lyapunov
function (27) satisfies

V (x((k+DT,)) <yV (x (kT,))

for all x(kTp) > 0 and x(kTp) # 0. According to system @),
the relation between x ((k + 1)T,,) and x (kT,) is

x((k+1T,) = [ e*"x (kT;,) .
i=1
Combining (29) and (30), inequality

T
lHe i 'x ] Pro < yxT(kTp)pLo

M
—Pij-1 (28)

-~ T
+a,~’j(t) <A’. pij— T

29)

(30)
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holds for all x(kT},) > 0 and x(kT,) # 0. Letting x(kT,) to be
a standard basis vector for R"~ successively yields

m T
<H eA"T"> P1o < 7P1o-

i=1

According to Lemma 3, the spectral radius of H eATi is less

than y. The sufficiency is proved. |

Theorem 4. (Spectral radius characterization II) Given
periodic piecewise positive system (1) with u(r) = 0.
The spectral radius of the state transition matrix satisfies
p (H,m . eAtT') < ey, where £ € R, if and only if there exist
a sufficiently large M € N, and a set of vectors p, ; € IR:’",

i=1,2,....m,j=1,2,..., M, satisfying
M
A;TPi,j—1 - ?pi,j—l + Tpi,j < —€p;;_1» (31a)
M M
A,-TPi,j - Tpi,j—l + ?pi,j < —€p; ;> (31b)
Pim =Dy i=12....m—1, (31c)
Pmm > Pro- (31d)

Proof. Inequality p (T], e*™) < o™

» (I—Lm=1 e(A,.+£1nx)Ti> < 1.Let A, = A, + €I, , according to

Theorem 2, p (H:" . eArT:) < 1 if and only if there exist a
sufficiently large M € N, and a set of vector pi; € RZX,

is equivalent to

i=12...,m,j=12,..., M, satisfying
N M
T
Aipij1— Fipi,j—l + Til’z,j <0, (32)
) M
T
Apij— fpi,j—l + Fil’z,j <0, (33)

and conditions (3Ic)—(31d). One can find (32)—(33) are equiv-

alent to (3Ta)—(3Tb), thus Theorem 4 is proved. [

Remark 3. For stability characterization and spectral radius
characterization, it indicates that there exists a sufficiently large
M such that the corresponding conditions hold. However, the
minimum value of M letting the conditions hold cannot be
determined by the theorems. Based on our simulation, one can
find that the error of the calculated spectral radius within 1%
when M > 32.

Remark 4. (Alternative spectral radius characterization)
According to Theorem 3 and Theorem 4, the condition (26) is
equivalent to condition (31). When introducing scalars y’ and
€’ simultaneously, the condition that there exist a set of vectors

pi; € Ri’, i=1,2,....m,j=1,2,..., M, such that
M M
A,-Tpi,j—l - 71’,’,,'_1 + Tp[,j < —6’19,;]_1, (34a)
1 1
M M
ATy = bijor + Py < =€y (34b)
1 1
Pim =Diy1p i=12...,m-1, (34c)
Y Pt > Pro (34d)

is still necessary and sufficient condition to charac-
terize the spectral radius of state transition matrix
(p(TT, erT) < y'e D), when the scalar M € N, is

sufficiently large.

According to Theorem 3 (resp. Theorem 4), when y = 1
(resp. € = 0), conditions in Theorem 3 (resp. Theorem 4)
reduce to the asymptotic stability conditions in Theorem 2.
When y < 1 or € > 0, the convergence rate can be analyzed
and exponential stability can be characterized based on the
above two theorems. Before giving the characterization of the
convergent rate, the definition of the A-exponential stability of
periodic piecewise positive systems is given.

Definition 3. (A-exponential stability) Periodic piecewise
positive system (1) with u(¢) = 0 is said to be A-exponentially
stable that the state of the system satisfies

Ix®Dll

for some constants k¥ > 1, A > 0.

<ke M |xO)l,. Vi>0, (35)

Based on Definition 3, the relation between the convergent
rate A and the spectral radius of the state transition matrix is
discussed.

Theorem 5. (1-exponential stability characterization)
Given periodic piecewise positive system (T)) with u(r) = 0,
the following conditions holds:

M) If p (TT, e*™) < e or [T, e

T is irreducible and

p (TI7, e* T) = e *, then the system is A-exponentially
stable;

(i) If the system is A-exponentially stable, then
p (T, e*™) < e=*» holds.

Proof. Since the cyclic permutation of (c(1),5(2), ..., c(m))
does not affect the spectral radius of matrix [], e#-07e0,

without loss of generality, we assume o (i) = i in the followmg
proofs.

Proof of (i): According to Lemma 3 and the Perron-Frobenius
Theorem, when p ([T, %) < e™*% or T[T, eA7 is irre-
ducible and p ([T, e*7) = e, there exists a vector p €

R’ such that (T]7, e*") p < e *rp. For system . ) with
initial state x(0) = p, one has

(36)

m k
x(kT,) = <HeA’T"> p=<ehp.

i=1
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Assume y = max,e[o.r, | [®(®)]| > where jr= .» M, satisfying
O(1) = oMt c [0,1‘1] , A Pije_i Tipi’j*_l + Tlp”j* <0, (38a)
i—1 M M
T, % % s«
o) = M) [Tt teftnt]. i=23...m APy~ T P T Tp <0, (38b)
=1 * % -
Pipy = Piprpr 1= ,2...,m—1, (38¢)
When t € [kT,, (k + DT, YDy gt > Pro- (38d)

Ix(0)lle = | @ = KT)x(kT,)]|
vy

< e AKT,) T,y ”x(kTp)“oo (37)

Combining inequality (36) with (37), one can obtain

o AT,

Ix®ll < v Pl »

whent € [
always find a posmve scalar - —=

,(K+ DT ] For any non-zero vector v, one can
Il guch that v < ””'l p. There-
fore, inequality ||x, ()|, < ||x2(t)||m holds, where x,(7) and
X, (t) are the states of system (1) with initial states x,(0) = v
and x,(0) = lo ll D, respectively. In other words, for any non-
negative 1n1t1af gondltlon x(0) = v, ||x(t)|| always satisfies
the inequality , where x = gp e Ty and system (1)) is A-
exponentially stable. This completes the proof.
Proof of (ii): It is proved by contraposition that, when
p (IT, e*™) = y > 7", the system is not A-exponentially
stable. Accordmg to Perron-Frobenius Theorem, we can find a
vector p’ € IR satlsfymg (H,m el ')p =yp. Let x(O)
p, x(kT,) = p Based on Definition 3, for system to
be A-exponentially stable, there must exist a positive scalar K
such that y* < ke ™, which indicates Inx > k (Iny + AT,).
Since (lny+/1Tp) > 0, whent - o0, k - o0 and Kk = oo.
Hence, a finite x does not exist. This completes the proof.
Based on Theorem 3 (resp. Theorem 4) and Theorem 5, lin-
ear inequalities can be applied to characterize the convergent
rate of the system. When the value of M in Theorem 3 (resp.
Theorem 4) goes to infinity, the estimated convergent rate of
the system will increase to the greatest one. However, it only
indicates that one can find a sufficiently large scalar M € N
to characterize the spectral radius of the state transition matrix
and the convergent rate of the system. It does not mean that
the infimum of y in (26d) monotonically decreases with the
increase of M. In order to explicitly demonstrate the effect of
M on the infimum of y in (26d), Theorem 6 is given.

Theorem 6. (Monotonicity of estimated spectral radius)
Given a periodic piecewise positive system (1)) with u(¢) = 0
and scalars M € N,y € Ry ,. When there exist a set of
vectors p;; € Ri‘ satisfying condition (26), for any scalar
p € N, there exist a set of vectors pij* € Ri‘, i=1,2,....m

Proof. When a set of vectors p; ; € R’f: satisfy condition (26),
let

pifs:ﬁ_ﬂﬂ plj 1+%P,Ja i=172""’m’ (39)
where j* = B =)+, j = 1,2,..., M,and f* = 0,1, ..., .

Equation (39) shows that p;;, = p, M and p}; = p;, for all
i = 1,2,...,m, and conditions (38c)—(38d) ) hold, obviously.
According to (39), we also have

M . M M 1
Tipi'j* - Tip"'j*_l T, ﬁP,, ﬂPi,j—l
M M
= ?pi,j - ?Pi,/‘—l’
where j* € {fG-D+ LG -D+2,....6j}, j =

,2,....,.M, andi = 1,2, ..., m. Furthermore, by substituting
@I) into (38a)) and (38D), respectlvely, one can derive
Ai pi,j*—l - Tipi’j*_l + Tp
p+1-p%( 1 M M
B -1 M M
+ T A,«Tl’i,j - Tpi,j—l + ?pi,j ) (40)
A D _Tp’f‘1+Tp
p-p M M
= T A:'rpi,j—l - ?pi,j—l + Tpi,j
LB (g M M
ﬁ A p]j ]-w’ pi,j—l + Tlp[’j ] (41)
where j* = G - D+ p*j = 1,2,...,M, and f* =
,2,..., p. Combining (26a)—(26b) with #0)-{ 1), conditions
(38a)—(38b) hold for i = 1,2,...,m, and j* = 1,2,..., M,
thus Theorem 6 is proved. [ |

Remark 5. According to Theorem 6, for given y and M, con-
dition (38) is sufficient conditions of those in (26). In other
words, the infimum of y with M is no larger than the one
with M. Theorem 6 gives a way to increase the value of M
and guarantees the decrease of the infimum of y.

3.3 | Controller Synthesis

In this subsection, a periodic piecewise state-feedback con-
trollers is introduced to stabilize system (I). By introducing a
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periodic piecewise constant state-feedback controller

u(?) = K(0)x(), 42)
where K(t) = K( + T,), and K(t) = K,; whent €
[t,-_lyg(i)_ 111 0()» the closed-loop system is given as

x(t) = (A(®) + BOK (@) x(2). (43)

Based on Theorem 2, a proposition to check whether the
system can be stabilized via the state-feedback controller (42)
is given as follows.

Proposition 2. Given a closed-loop periodic piecewise sys-
tem (43). The closed-loop system is positive and asymptoti-
cally stable if and only if there exists a sufficient large scalar
M e N, asetof vectors p,; € Ry, i = 1,2,...,m, j =
1,2,..., M, and a set of matrices K; € R, i=1,2,...,m,
satisfying

T M M
(4 +BK) piyot = = Pryer + Py <0, (44a)
T M M
(Ai + B,.Kl.) Pij = 7 Pijei + T Pij <0, (44b)
Pim =Diy1or i=12....m—1, (44c¢)
Pmm > P10 (44d)
A; + B,K;, € M"™>", (44e)

Remark 6. When choose controller gains that depend on both
i and j, the closed-loop systems turn into periodic piecewise
systems with time-varying subsystems. It is a completely dif-
ferent system from the one in Theorem 2, and the stability
criteria is inapplicable for such systems. Thus, an iterative
algorithm is proposed to design a piecewise constant control
matrix K(z) in our work.

As seen in Proposition 2, there are nonlinear terms
K'Blp,; ; and K'Blp, ;. It is not a convex problem and
Proposition 2 cannot be directly applied to designing the state-
feedback controller. An iterative algorithm is given to design
the controller. By replacing A; in (26a)-(26b) with A, + B,K,
the spectral radius of the closed-loop system (3)) can be char-
acterized based on Corollary 1. For fixed K; and a sufficiently
large M, we can obtain an estimated spectral radius of the
closed-loop state transition matrix and a set of p; ;. Then fix p; ;,
we can find a new set of K to reduce the value of y and renew
the closed-loop state transition matrix. Then by changing the
values of K; and p; ; iteratively, the estimated spectral radius of
the state transition matrix is monotonically decreasing. Based
on this idea, an algorithm of state-feedback controller design
for periodic piecewise positive, named Algorithm SPPPS, is
given as follows.

Algorithm SPPPS State-feedback controller design for peri-
odic piecewise positive systems

e Step 1. Set initial iteration label k = 1, tolerant  and
M. Set initial control matrices K;; = 0 for all i =
1,2,...,m.

e Step 2. For fixed Ky i = 1,2, ..., m, solve the fol-
lowing minimization problem for 7 subject to p; ;, i =
L2,....om,j=12,.... M,

OP1: Minimize 7 subject to

(AT + KL BT ) by + . <0,

(45a)
(AI.T + K;iaf) P+ w <0,  (45b)
P, >0, l (45¢)
Pim =Pipror 1=12....m—1, (45d)
VD > Pro- (45¢)
Lety, =7.

e Step 3. If y, < 1, then K, ; can be applied to stabilize
the system, otherwise go to Step 4.

e Step 4. For fixed pij» i = 1,2,....m,j =12,...,M,
solve the following optimization problem for € and
K ppi=12,...,m

OP2: Minimize € subject to

M (Pi,j _pi,j—l)
(AT + KL BT ) by + — 2 ey,
1
(46a)
M (P- i —Di ‘—1)
T T pT ij — Pij
(Ai + KB )pi,j t— = ep;»
1

(46b)

A;+ BK,, ; € M, (46c¢)

o Step 5.If k # 1 and (7,_, —7,) /7 < 7, a solution is
not found; else set k = k + 1 and go to Step 2.

Remark 7. Due to the number of the time-scheduled inter-
vals M being fixed, Algorithm SPPPS can only reach a local
minimum. With the increase of M, $ in Step 2 converges to
the spectral radius of the closed-loop transition matrix. M is
chosen based on the maximum eigenvalue and time interval
of each subsystem. If the controller cannot be found, one can
increase the value of M and apply Algorithm SPPPS again.

Remark 8. (Monotonicity of y(k)) The fixed vectors p; ; in
Step 4 satisfy conditions (@5d)-@5¢). Based on conditions
(46a)-(@6b) and Proposition 1, V' ((k + T,) < eTry V (kT,)
holds and the spectral radius of the closed-loop transition
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matrix is less than e*’»y,. Therefore, the & in OP2 is less than
or equal to 0. By solving OP2 in Step 4, one can guarantee that
7, in the algorithm is monotonically decreasing.

4 | ILLUSTRATIVE EXAMPLES

A periodic piecewise system with two subsystems is given as
follows:

x(t) = A(t)x(t) + B(t)u(?), 47
where
-1 1 03 1.7 14 12
A =|1204 08 ], A,=]05-051.1],
03 1.1 -0.1 03 0.5 0.6

B, =[070408], B,=[240209]",

and T} = 1, T, = 0.6. Since matrices A, and A, are Metzler,
the system is positive when u(#) = 0. The eigenvalues of
matrix eA2"2e41Tt are 16.0936, 0.5880 and 0.1545. According
to Lemma 1, p (e#2T2e471) > 1 and the system is unstable.
In what follows, a state-feedback controller is first designed.
Then, for the stable closed-loop system, the corresponding co-
positive Lyapunov function is constructed. Finally, the spectral
radius characterization is given and the A-exponential stabil-
ity is investigated. Main results obtained in this paper are
illustrated by numerical examples as follows:

o Stability and stabilization: A state-feedback controller
(@2) is designed based on Algorithm SPPPS. Let the ini-
tial controller K;; = 0 for i = 1,2 and set M to be
128. By using the algorithm, the state-feedback control
matrices K, ; and K, , converge to

037371 —03333]"
K =|-13699| , K,=|-05541|, @8
—0.4270 —0.4995

and y, converges to 0.7994, which indicates the closed-
loop system is stable. The trajectory of the state of the
closed-loop system with initial state x(0) = [11 1]T
are given in Figure 1. Even though the value of x;,(¢)
increases at the beginning, it finally converges to zero.
Figure 2 shows the trajectory of time-scheduled co-
positive Lyapunov function. Since the vector function
p(t)in satisfies inequalities (7c)—(7d) in Theorem 2,
in each period the co-positive Lyapunov function is con-
tinuous, and jump discontinuities only happen at time

KT,.

e Spectral radius characterization: Figure 3 shows the
relation between the value of estimated spectral radius
y and z, where M = 2%, When M = 1, 7y = 1.190,

(t) and a5(t)

(), x[2

......

FIGURE 2 The trajectory of a time-scheduled co-positive
Lyapunov function with M = 128

which means that the estimated spectral radius is larger
than 1 and the stability can not be checked by the time-
scheduled co-positive Lyapunov function with M = 1.
Only when M is larger than 2, we can find a set of vec-
tors p; ; satisfying condition (7). With the increasing of
z, ¥ is monotonically decreasing to

y=p <e(A2+B2K2)T2e(A1+B1K1)T1) = 0.79758,
which verifies Theorem 5 and Theorem 6.

e Convergent rate: In order to characterize the conver-
gent rate of system (#7) and verify the effectiveness of

Theorem 5, Figure 4 is given. The solid line denotes the

variation of function "M@= Based on inequality li

t
Injlx()ll o
t

in Definition 3, function satisfies

I x@ll _ In (< IxO)ll) _ Iny,
t - t Tp >
where y, = 47.1348, which is shown in Figure 4. The

largest convergent rate of the system is —l;—y = 0.14136,
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2 (M =2

FIGURE 3 Variation of § with z (M = 27)

FIGURE 4 Variation of w with time ¢

with the increase of time ¢, the value of % will

finally converges to it.

Stabilizing Effectiveness: One hundred randomly gen-
erated three-order single-input single-output stabilizable
periodic piecewise positive systems with two subsys-
tems are given. The time intervals of each subsystem
are the same and equal to 1. Metzler matrices A;, A,
and nonnegative matrices B;, B, are randomly gener-
ated. Table I demonstrates the effectiveness of different
algorithm by giving the number of systems that are
stabilized. It shows that with an increase of M, the
number of stabilized systems increases. Furthermore, a
comparison between Algorithm PPPSSCD in [42] and
Algorithm SPPPS is given. The result shows that the
performance of Algorithm PPPSSCD is a better than
Algorithm SPPPS with M = 1. When M is larger, the
performance of Algorithm SPPPS is better.

TABLE 1 Effectiveness of different algorithms

Algorithm Number of stabilized systems
PPPSSCD in [42] 14
SPPPS with M =1 12
SPPPS with M =2 22
SPPPS with M =4 52
SPPPS with M =8 95
S | CONCLUSION

In this paper, the stability condition of linear periodic piece-
wise positive systems has been discussed. In each time interval
of the systems, by utilizing time segmentation approach to par-
tition the co-positive Lyapunov function into a given number
of segments, a time-scheduled co-positive Lyapunov function
has been constructed. It is shown that the asymptotic stabil-
ity of the system can be checked by solving linear inequalities
if the number of segments is sufficiently large. Based on the
equivalent stability condition, the spectral radius of the state
transition matrix is characterized in two different ways. The
relation between spectral radius and exponential stability also
has been investigated. Furthermore, a state-feedback controller
has been designed, and the iterative algorithm has been con-
structed to minimize the spectral radius of the closed-loop state
transition matrix. Finally, numerical examples have been given
to illustrate the theoretical results.

References

[1] L. Farina and S. Rinaldi, Positive Linear Systems: Theory
and Applications. New York: Wiley-Interscience, 2000.

[2] Y. Ebihara, D. Peaucelle, and D. Arzelier, “LMI approach
to linear positive system analysis and synthesis,” Systems
& Control Letters, vol. 63, pp. 50-56, 2014.

[3] C. Briat, “Robust stability and stabilization of uncertain
linear positive systems via integral linear constraints: L -
gain and L -gain characterization,” International Jour-
nal of Robust and Nonlinear Control, vol. 23, no. 17, pp.
1932-1954, 2013.

[4] J. Shen and J. Lam, “L_ -gain analysis for positive sys-
tems with distributed delays,” Automatica, vol. 50, no. 1,
pp- 175-179, 2014.

[5] X. Liu, “Constrained control of positive systems with
delays,” IEEE Transactions on Automatic Control,
vol. 54, no. 7, pp. 1596-1600, 2009.



Zhu Bohao ET AL

| 13

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

M. Ait Rami, V. S. Bokharaie, O. Mason, and F. Wirth,
“Stability criteria for SIS epidemiological models under
switching policies,” Discrete and Continuous Dynamical
Systems-Series B, vol. 19, no. 9, pp. 2865-2887, 2014.

F. Blanchini, P. Colaneri, and M. E. Valcher, “Switched
positive linear systems,” Foundations and Trends in Sys-
tems and Control, vol. 2, no. 2, pp. 101-273, 2015.

E. Eisele and R. F. Siliciano, “Redefining the viral reser-
voirs that prevent HIV-1 eradication,” Immunity, vol. 37,
no. 3, pp. 377-388, 2012.

M. Ait Rami and J. Shamma, “Hybrid positive sys-
tems subject to markovian switching,” IFAC Proceedings
Volumes, vol. 42, no. 17, pp. 138-143, 2009.

J. Lian, S. Li, and J. Liu, “T-S fuzzy control of positive
Markov jump nonlinear systems,” IEEE Transactions on
Fuzzy Systems, vol. 26, no. 4, pp. 2374-2383, 2018.

M. Ait Rami, V. S. Bokharaie, O. Mason, and F. R. Wirth,
“Stability criteria for SIS epidemiological models under
switching policies,” Discrete And Continuous Dynamical
Systems Series B, vol. 19, pp. 2865-2887, 2014.

M. Ait Rami and D. Napp, “Discrete-time positive peri-
odic systems with state and control constraints,” IEEE
Transactions on Automatic Control, vol. 61, no. 1, pp.
234-239, 2015.

S. Z. Khong and A. Rantzer, “Diagonal Lyapunov func-
tions for positive linear time-varying systems,” in pro-
ceedings of Decision and Control (CDC), 2016 IEEE
55th Conference on. 1EEE, 2016, pp. 5269-5274.

Y. Cui, J. Shen, and Y. Chen, “Stability analysis for
positive singular systems with distributed delays,” Auto-
matica, vol. 94, pp. 170-177, 2018.

Y. Cui, J. Shen, Z. Feng, and Y. Chen, “Stability analysis
for positive singular systems with time-varying delays,”
IEEE Transactions on Automatic Control, vol. 63, no. 5,
pp- 1487-1494, 2018.

Y. Cui, Z. Feng, J. Shen, and Y. Chen, “L_-gain analysis
for positive singular time-delay systems,” Journal of the
Franklin Institute, vol. 354, no. 13, pp. 5162-5175,2017.

X. Zhao, L. Zhang, and P. Shi, “Stability of a class of
switched positive linear time-delay systems,” Interna-

tional Journal of Robust and Nonlinear Control, vol. 23,
no. 5, pp. 578-589, 2013.

E. Fornasini and M. E. Valcher, “Stability and stabiliz-
ability criteria for discrete-time positive switched sys-
tems,” IEEE Transactions on Automatic Control, vol. 57,
no. 5, pp. 1208-1221, 2012.

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

J. Zhang, R. Zhang, X. Cai, and X. Jia, “A novel approach
to control synthesis of positive switched systems,” IET
Control Theory & Applications, vol. 11, no. 18, pp.
3396-3403, 2017.

X. Liu and C. Dang, “Stability analysis of positive
switched linear systems with delays,” IEEE Transactions
on Automatic Control, vol. 56, no. 7, pp. 1684—1690,
2011.

J. Zhang, X. Zhao, R. Zhang, and Y. Chen, “Improved
controller design for uncertain positive systems and its
extension to uncertain positive switched systems,” Asian
Journal of Control, vol. 20, no. 1, pp. 159-173, 2018.

J. Zhang, L. Miao, and R. Tarek, ‘“Reliable actuator
fault control of positive switched systems with double
switchings,” Asian Journal of Control, 2020.

O. Mason, “Diagonal Riccati stability and positive time-
delay systems,” Systems & Control Letters, vol. 61, no. 1,
pp. 6-10, 2012.

L. Wu, J. Lam, Z. Shu, and B. Du, “On stability and sta-
bilizability of positive delay systems,” Asian Journal of
Control, vol. 11, no. 2, pp. 226-234, 2009.

M. Buslowicz, “Robust stability of positive continuous-
time linear systems with delays,” International Journal
of Applied Mathematics and Computer Science, vol. 20,
no. 4, pp. 665-670, 2010.

Z. Duan, 1. Ghous, B. Wang, and J. Shen, “Necessary
and sufficient stability criterion and stabilization for pos-
itive 2-D continuous-time systems with multiple delays,”
Asian Journal of Control, vol. 21, no. 3, pp. 1355-1366,
2019.

X. Liu and J. Lam, “Relationships between asymptotic
stability and exponential stability of positive delay sys-
tems,” International Journal of General Systems, vol. 42,
no. 2, pp. 224-238, 2013.

F. Blanchini, P. Colaneri, and M. E. Valcher, “Co-
positive Lyapunov functions for the stabilization of posi-
tive switched systems,” IEEE Transactions on Automatic
Control, vol. 57, no. 12, pp. 3038-3050, 2012.

E. Hernandez-Vargas, P. Colaneri, R. Middleton, and
F. Blanchini, “Discrete-time control for switched posi-
tive systems with application to mitigating viral escape,”
International Journal of Robust and Nonlinear Control,
vol. 21, no. 10, pp. 1093-1111, 2011.

W. Xiang, J. Lam, and J. Shen, “Stability analysis and
L,-gain characterization for switched positive systems



14

Zhu Bohao ET AL

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(39]

(40]

(41]

under dwell-time constraint,” Automatica, vol. 85, pp.
1-8, 2017.

P. Li, J. Lam, and K. C. Cheung, “Stability, stabiliza-
tion and L,-gain analysis of periodic piecewise linear
systems,” Automatica, vol. 61, pp. 218-226, 2015.

P.Li, J. Lam, K.-W. Kwok, and R. Lu, “Stability and sta-
bilization of periodic piecewise linear systems: A matrix
polynomial approach,” Automatica, vol. 94, pp. 1-8,
2018.

X. Xie, J. Lam, and P. Li, “H_ control problem of
linear periodic piecewise time-delay systems,” Interna-
tional Journal of Systems Science, vol. 49, no. 5, pp.
997-1011, 2018.

C. Fan, J. Lam, and X. Xie, “Peak-to-peak filtering for
periodic piecewise linear polytopic systems,” Interna-
tional Journal of Systems Science, pp. 1-15, 2018.

X. Xie and J. Lam, “Guaranteed cost control of peri-
odic piecewise linear time-delay systems,” Automatica,
vol. 94, pp. 274-282, 2018.

X. Xie, J. Lam, and P. Li, “Finite-time H_ control of
periodic piecewise linear systems,” International Jour-
nal of Systems Science, vol. 48, no. 11, pp. 2333-2344,
2017.

L. I. Allerhand and U. Shaked, ‘“Robust stability and sta-
bilization of linear switched systems with dwell time,”
IEEE Transactions on Automatic Control, vol. 56, no. 2,
pp- 381-386, 2010.

X. Zhao, L. Zhang, P. Shi, and M. Liu, “Stability
and stabilization of switched linear systems with mode-
dependent average dwell time,” IEEE Transactions on
Automatic Control, vol. 57, no. 7, pp. 1809-1815, 2012.

W. Xiang and J. Xiao, “Stabilization of switched
continuous-time systems with all modes unstable via

dwell time switching,” Automatica, vol. 50, no. 3, pp.
940-945, 2014.

X. Zhao, Y. Yin, L. Liu, and X. Sun, “Stability analysis
and delay control for switched positive linear systems,”

IEEE Transactions on Automatic Control, vol. 63, no. 7,
pp- 2184-2190, 2018.

J. Zhang, J. Huang, and X. Zhao, “Further results on
stability and stabilisation of switched positive systems,”
IET Control Theory & Applications, vol. 9, no. 14, pp.
2132-2139, 2015.

[42] B. Zhu, J. Lam, and X. Song, “Stability and L,-gain
analysis of linear periodic piecewise positive systems,”
Automatica, vol. 101, pp. 232-240, 2019.

[43] A. Berman and R. J. Plemmons, Nonnegative Matrices
in the Mathematical Sciences. Philadephia, PA: STAM,

1994.

[44] D.S. Bernstein, Matrix Mathematics: Theory, Facts, and
Formulas with Application to Linear Systems Theory.
Princeton, New Jersey: Princeton University Press, 2005.

[45] R. A. Horn and C. R. Johnson, Matrix Analysis.
bridge: Cambridge University Press, 1990.

Cam-

[46] N. Bougatef, M. Chaabane, O. Bachelier, and D. Mehdi,
“Stability and stabilization of constrained positive
discrete-time periodic systems,” in Proceedings of the
8th International Multi-Conference on Systems, Signals

& Devices. Sousse, Tunisia, IEEE, 2011, pp. 1-6.

[47] C. Briat, “Dwell-time stability and stabilization condi-
tions for linear positive impulsive and switched systems,”
Nonlinear Analysis: Hybrid Systems, vol. 24, pp. 198—

226, 2017.

[48] W. Xiang, “On equivalence of two stability criteria for
continuous-time switched systems with dwell time con-

straint,” Automatica, vol. 54, pp. 3640, 2015.

How to cite this article:




	Stability and Stabilization of Periodic Piecewise Positive Systems: A Time Segmentation Approach
	Abstract
	Introduction
	Problem Formulation and Preliminaries
	Main Results
	Stability Analysis
	Spectral Radius Characterization
	Controller Synthesis

	Illustrative Examples
	Conclusion
	References


