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ABSTRACT	1 
 2 
This paper conducted a comprehensive study on the injury severity of motor 3 
vehiclepedestrian crashes at 489 urban intersections across a dense road 4 
network based on high-resolution accident data recorded by the police from 2010 5 
to 2019 in Hong Kong. Given that accounting for the spatial and temporal 6 
correlations simultaneously among crash data can contribute to unbiased 7 
parameter estimations for exogenous variables and improved model performance, 8 
we developed spatiotemporal logistic regression models with various spatial 9 
formulations and temporal configurations. The results indicated that the model 10 
with the Leroux CAR prior and random walk structure outperformed other 11 
alternatives in terms of goodness-of-fit and classification accuracy. According to 12 
the parameter estimates, pedestrian age, head injury, pedestrian location, 13 
pedestrian actions, driver maneuvers, vehicle type, first point of collision, and 14 
traffic congestion status significantly affected the severity of pedestrian injuries. 15 
On the basis of our analysis, a range of targeted countermeasures integrating 16 
safety education, traffic enforcement, road design, and intelligent traffic 17 
technologies were proposed to improve the safe mobility of pedestrians at urban 18 
intersections. The present study provides a rich and sound toolkit for safety 19 
analysts to deal with spatiotemporal correlations when modeling crashes 20 
aggregated at contiguous spatial units within multiple years. 21 
Keywords:	 Pedestrian crashes; Injury severity analysis; Urban intersections; 22 
Spatiotemporal correlation; Bayesian inference  23 
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1. Introduction	24 
	25 
Walking, a sustainable mode of urban transportation, not only increases physical 26 
activity and improves health, but also relieves traffic congestion and reduces 27 
greenhouse gas emissions. However, unlike vehicle occupants, pedestrians are 28 
particularly vulnerable road users and are more likely to sustain fatal and serious 29 
injuries, as they have no physical protection when struck by motor vehicles. For 30 
instance, in Hong Kong pedestrians account for approximately 60% of total traffic 31 
fatalities. Roadway intersections are locations where vehicles and pedestrians 32 
frequently interact, and pedestrians are prone to be involved in crashes at 33 
intersections (Ma et al., 2022; Mirhashemi et al., 2022). It is therefore 34 
indispensable to investigate the effects of various risk factors on the severity of 35 
pedestrian injuries in traffic crashes, by which more targeted countermeasures 36 
can be proposed to improve the safety of pedestrians at urban intersections. 37 
Improvement in safety levels will also encourage more people to walk in regular 38 
for daily travel, accompanied by health benefits, mobility options, independence, 39 
and fun. 40 

Within an urban road network, intersections are mutually connected by road 41 
segments. Adjacent intersections may share unobservable attributes associated 42 
with traffic characteristics, built environment, and weather conditions, which are 43 
anticipated to result in spatial correlation (Ziakopoulos and Yannis, 2020). 44 
Likewise, there may be unobservable factors that are time-varying/dependent. 45 
Temporal correlation may also exist in pedestrian crash data. Theoretically, 46 
accounting for spatial and temporal correlations will improve model estimation 47 
and reduce model misspecification (Aguero-Valverde and Jovanis, 2008; DiMaggio, 48 
2015; Meng et al., 2017; Cheng et al., 2018a, 2018b, 2018c; Cui and Xie, 2021). 49 
Based on the high-resolution crash data recorded by the police over a 10-year 50 
period in Hong Kong, our study developed spatiotemporal logistic regression 51 
models with various spatial and temporal configurations to analyze the injury 52 
severity of pedestrians involved in traffic crashes at urban intersections, by which 53 
a range of tailor-made countermeasures can be formulated. Particularly, we 54 
illustrate how to evaluate the temporal evolution pattern and to identify the 55 
hotspots that impose a higher likelihood of fatal and severe pedestrian crashes by 56 
leveraging the spatiotemporal logistic modeling results. Such findings have not 57 
been reported by previous studies and cannot be revealed without explicit 58 
consideration of spatiotemporal correlations.  59 

The rest of the paper is structured as follows. Section 2 provides a 60 
comprehensive summary of previous studies. Section 3 presents the data 61 
collection and processing. Section 4 describes the methods of analysis. Section 5 62 
introduces the model performance measures and then presents the model 63 
estimation results, followed by an elaborate interpretation of the estimated 64 
parameters and analysis of temporal/spatial dependencies in Section 6. We 65 
summarize the findings and conclude the paper with a discussion on promising 66 
directions for future studies in Section 7. 67 
 68 
2. Literature	review	69 
	70 
In the past decade, considerable research efforts have been made to analyze 71 
pedestrian crashes. Studies have suggested that factors pertaining to weather 72 



4 
 

conditions, road environment, vehicle characteristics, traffic control, together with 73 
driver and pedestrian characteristics affect the safety of pedestrians (Tay et al., 74 
2011; Xie et al., 2018; Chen and Fan, 2019a; Li and Fan, 2019a; Sasidharan and 75 
Menéndez, 2019; Dong et al., 2020; Zafri et al., 2020; Xu et al., 2019; Zhai et al., 76 
2019; Li and Fan, 2022; Xiao et al., 2023; Xue and Wen, 2022). Due to the factors 77 
affecting pedestrians at different sites may be diverse, studies have focused on 78 
pedestrian crashes occurring for distinct types of road entity, such as intersections 79 
(Xu et al., 2016; Xie et al., 2018; Xu et al., 2019; Wang et al., 2020; Šarić et al., 2021), 80 
mid-block locations (Yang et al., 2019), urban roads (Zhai et al., 2019), rural roads 81 
(Chen and Fan, 2019b), and highways (Chen and Fan, 2019a). Pedestrian crashes 82 
at intersections are of particular interest, given that intersections are places where 83 
numerous pedestrians and vehicles conflict. 84 

From the perspective of research methodology, the use of statistical regression 85 
models, which clearly explain the effects of different influential factors, has 86 
become the mainstream in road safety analysis. Discrete choice models, such as 87 
binary logit/probit model (Zafri et al., 2020), multinomial logit model (Amoh-88 
Gyimah et al., 2017; Tay et al., 2011; Chen and Fan, 2019a), and random-parameter 89 
logit model (Adanu et al., 2021; Pervez et al., 2022; Xue and Wen, 2022; Cai et al., 90 
2023; Wen et al., 2023; Xing et al., 2023), have been used in the study of crash 91 
severity. The ordered logit/probit model has also been developed to accommodate 92 
the ordered properties of crash severity (Rifaat and Chin, 2007; Tjahjono et al., 93 
2021). However, the ordered outcome model strictly adheres to the proportional 94 
odds assumption that the effects of explanatory variables are consistent for all 95 
levels of the dependent variable (Peterson and Harrell Jr., 1990). To address this 96 
drawback, a series of refined models, such as the generalized ordered outcome 97 
model (Zeng et al., 2022a), partial proportional odds model (Sasidharan and 98 
Menéndez, 2019; Li and Fan, 2019a; Li and Fan, 2019b), and mixed generalized 99 
ordered response model (Eluru et al., 2008), have been introduced. 100 

Recently, spatial correlation also known as spatial dependency or spatial 101 
autocorrelation has attracted considerable interest from safety analysts 102 
(Ziakopoulos and Yannis, 2020). Numerous studies have suggested that 103 
accounting for spatial correlation contributes to unbiased parameters in 104 
estimations of the effects of exogenous variables (Mannering and Bhat, 2014; 105 
Katicha and Flintsch, 2022). Via adjusting for the spatial correlation, observations 106 
are allowed to pool strengths from their neighbors, thereby substantially 107 
improving model performance (Aguero-Valverde and Jovanis, 2008; Zeng et al., 108 
2019; Cheng et al., 2022). Various formulations of spatial correlation, such as the 109 
spatial lag term (Castro et al., 2013; Prato et al, 2018), spatial error term (Castro 110 
et al., 2013), and conditional autoregressive (CAR) priors (Xu et al., 2016; Zeng et 111 
al., 2019), can been incorporated into binary or generalized ordered outcome 112 
models to capture the spatial effects of crash severity. The CAR priors are more 113 
flexible than the spatial lag and spatial error structures (Quddus, 2008). In 114 
particular, the CAR prior proposed by Leroux (hereafter referred to as the Leroux 115 
CAR prior; Leroux et al., 2000) outperforms other specifications (Lee et al., 2011; 116 
Xu et al., 2017; Dong et al., 2020; Zeng et al., 2022a), as it is capable of representing 117 
different degrees of spatial correlation (i.e., strong, moderate, or weak) by 118 
specifying a joint distribution of independent and spatially correlated effects. 119 

Temporal correlation is another issue worthy of investigation. Observations in 120 
adjacent time slots may share unobserved common effects. The stratification of 121 
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crash data over specified time periods thus likely leads to temporal correlation. 122 
Ignoring such a fundamental temporal feature may result in erroneous 123 
conclusions (Shirazi et al., 2021; Fu et al., 2022). Although it is difficult to explicitly 124 
parametrize temporal effects in current modeling approaches, potentially feasible 125 
actions must be taken to address this challenge, even if in an incremental manner 126 
(Mannering, 2018). Many scholars have therefore attempted to eliminate potential 127 
deviations in estimated model parameters using different temporal configurations, 128 
such as linear and/or secondary trends (Andrey and Yagar, 1993; Cheng et al., 129 
2018a; Cheng et al., 2018b; Cheng et al., 2018c), time-varying 130 
intercept/coefficients (Cheng et al., 2018a), autoregressive correlation (Zeng et al., 131 
2017; Cheng et al., 2018a; Cheng et al., 2018c), and random walk structures (Cui 132 
and Xie, 2021; Ashraf and Dey, 2022). These studies have shown that the 133 
consideration of temporal correlations helps to improve model performance.  134 

Despite the potential improvements in modeling efficiency and model fitting, 135 
few researchers have incorporated both spatial and temporal correlations into 136 
crash severity models. One exception is that Meng et al. (2017) developed a space–137 
time logistic model to analyze taxi-related passenger injury severity. The spatial 138 
correlation in their study, however, was formulated using the intrinsic CAR prior, 139 
which failed to consider the spatially correlated and unstructured effects 140 
simultaneously, and the temporal effects were arbitrarily specified to be linear. To 141 
better capture the spatial and temporal effects in the analysis of the severity of 142 
pedestrian injuries at urban intersections, the present study proposes more 143 
flexible models with various formulations of spatial and temporal effects. We 144 
believe that this effort yields a rich and sound toolkit for safety analysts to deal 145 
with spatiotemporal correlations when modeling crashes aggregated at 146 
contiguous spatial units encompassing multiple years.  147 
 148 
3. Data	preparation	149 

 150 
Pedestrian crash data for 489 intersections within a highly urbanized area for a 151 
10-year period (2010–2019) were collected from the Hong Kong Police Force, as 152 
shown in Fig. 1. Crashes occurring within 70 meters of the centerline of an 153 
intersection were defined as being intersection crashes (Xie et al., 2018; Xu et al., 154 
2019; Ye et al., 2021). To analyze the effects of driver and pedestrian 155 
characteristics on pedestrian injury severity, only crashes that involved one 156 
pedestrian and one vehicle were retrieved. After excluding samples with missing 157 
information, a total of 3,051 valid pedestrian crash records were obtained and 158 
used in our analysis.  159 
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 160 

Fig.	1. Location of 489 intersections in West Kowloon, Hong Kong. 161 

The crash dataset contains three subfiles: crash environment, casualty 162 
information, and vehicle features (Zhou et al., 2020). The crash environment 163 
exactly records the date, time, location, weather conditions, light conditions, 164 
intersection type, traffic conditions, and traffic control type of each crash, while 165 
the casualty information includes the pedestrian age, pedestrian gender, 166 
pedestrian location (i.e., footpath, carriageway, junction, or other location), 167 
pedestrian behaviors at the time of collision (i.e., walking along the footpath, 168 
crossing the intersection, standing, or other), special circumstances, and 169 
pedestrian contributing factors determined by the police at the crash scene. 170 
Vehicle data comprise vehicle and driver information, such as the vehicle type, 171 
vehicle age, vehicle maneuver at the time of collision, first point of impact, driver 172 
age, driver gender, and driver contributing factors. 173 

The Hong Kong Police Force divides the severity of pedestrian injuries into 174 
three categories: fatality, serious injury, or slight injury. Since fatal crashes 175 
accounted for only 3.11% of the selected samples, given the similarity of fatalities 176 
and serious injuries, these two categories were combined into a single category of 177 
pedestrians killed or severely injured (KSI; Xu et al., 2016; Meng et al., 2017; Zhai 178 
et al., 2019; Zhou et al., 2020; Loo et al., 2023). The dependent variable was thus 179 
defined as a dummy variable, equaling 1 for KSI and 0 for slight injuries. A total of 180 
21 risk factors associated with casualties, vehicles, roads, and environments, 181 
which possibly affect the pedestrian injury severity, were then selected as 182 
explanatory variables. The definitions and descriptive statistics of these variables 183 
are presented in Table 1. 184 

Table	1. Description of the statistical variables. 185 

Attribute	 Description	
Proportio

n	

Dependent	variable	

Injury severity 1 = KSI, 0 = slight injury 0.192 

Independent	variable	

Pedestrian	age 

17 1 = Pedestrian age  17, 0 = other 0.070  
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1834* 1 = 18  Pedestrian age  34, 0 = other 0.150 

3549 1 = 35  Pedestrian age  49, 0 = other 0.195  

5064 1 = 50  Pedestrian age  64, 0 = other 0.264 

65 1 = Pedestrian age  65, 0 = other 0.321 

Head	injured 1 = Head injured, 0 = other 0.252  

Pedestrian	gender 1 = male, 0 = female 0.473  

Pedestrian	location 

Footpath* 1 = Footpath, 0 = other 0.312 

Carriageway 1 = Carriageway, 0 = other 0.251  

Junction 1 = Junction (within 15m), 0 = other 0.315  

Other location 1 = Other location (green belt, etc.), 0 = other 0.122 

Pedestrian	action 

Walking on footpath* 1 = Walking on footpath, 0 = other 0.562 

Crossing intersection 1 = Crossing the intersection, 0 = other 0.365  

Standing 1 = Standing, 0 = other 0.058  

Other action 1 = Other action (get on and off the vehicles, roadside work, 

play), 0 = other 
0.015  

Pedestrian	special	circumstance 

No special circumstance* 1 = No special circumstance, 0 = other 0.551 

Footpath overcrowded 1 = Footpath overcrowded, 0 = other 0.092 

Footpath obstructed 1 = Footpath obstructed, 0 = other 0.012 

Other special circumstance 1 = Other special circumstance, 0 = other 0.345  

Pedestrian	contributor 

No pedestrian factor* 1 = No pedestrian factor, 0 = other 0.542 

Pedestrian inattentiveness 1 = Pedestrian inattentiveness, 0 = other 0.076  

Pedestrian heedlessness 1 = Pedestrian heedlessness, 0 = other 0.211  

Other contributors 1 = Other driver contributors (take alcohol, take drugs, listen 

to music, etc.), 0 = other 
0.171  

Driver	age 

1824 1 = 18  Driver age  24, 0 = other 0.042 

2534 1 = 25  Driver age  34, 0 = other 0.163 

3549 1 = 35 ≤ Driver age ≤ 49, 0 = other 0.332 

5064 1 = 50 ≤ Driver age ≤ 64, 0 = other 0.389 

65 1 = Driver age  65, 0 = other  0.074 

Driver	gender 1 = female, 0 = male 0.044  

Driver	maneuver 

Go straight* 1 = Go straight, 0 = other 0.706 

Turn right 1 = Turn right, 0 = other 0.138  

U-turning 1 = U-turning, 0 = other 0.043  

Turn left 1 = Turn left, 0 = other 0.060  

Other operations 1 = Other operations (change lanes, etc.), 0 = other 0.053  

Driver	contributor 

No driver factor* 1 = No driver factor, 0 = other 0.312 

Driving inattentively 1 = Driving inattentively, 0 = other 0.490  
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Driving negligently 1 = Driving negligently, 0 = other 0.123  

Other contributors 1 = Other driver contributors (physical contributors, 

psychological contributors, drunk driving, etc.), 0 = other 
0.075  

Vehicle	type 

Private car* 1 = Private car, 0 = other 0.382 

Taxi 1 = Taxi, 0 = other 0.230  

Goods vehicle 1 = Goods vehicle, 0 = other 0.245  

Bus  1 = Bus, 0 = other 0.104  

Motorcycle 1 = Motorcycle, 0 = other 0.031  

Other vehicles 1 = Other vehicles (trailer, tram, etc.), 0 = other 0.008  

Vehicle	age	 1 = less than 10 years, 0 = other 0.321  

First	collision	position 

Head on* 1 = Head on, 0 = other 0.572 

Back  1 = Back, 0 = other 0.054  

Sideswipe  1 = Sideswipe, 0 = other 0.374  

Junction	control 

No control* 1 = No control, 0 = other 0.418 

Signal control 1 = Signal control, 0 = other 0.433  

Other control 1 = Other control (e.g., stop and give way), 0 = other 0.149  

Junction	type 

Crossing* 1 = Crossing, 0 = other 0.301 

T/Y-type junction 1 = T/Y-type junction, 0 = other 0.622  

Other junction type 1 = Other junction type (e.g., roundabout), 0 = other 0.077  

Road	type 

One-way road* 1 = One-way road, 0 = other 0.622 

Two-way road 1 = Two-way road, 0 = other 0.098  

Dual carriageway 1 = Dual carriageway, 0 = other 0.192  

Multi carriageways 1 = Multi carriageways, 0 = other 0.088  

Time	of	accident 

Before dawn  1 = 00:0005:59, 0 = other 0.248 

Morning* 1 = 06:0011:59, 0 = other 0.076  

Afternoon 1 = 12:0017:59, 0 = other 0.412  

Evening 1 = 18:0023:59, 0 = other 0.264  

Traffic	congestion 1 = Traffic congestion, 0 = other 0.603 

Day	of	week 1 = Weekend, 0 = weekday 0.271  

Rain	or	not 1 = Rain, 0 = not rain 0.110  

Year 1-10 Corresponding to the 2010-2019 years, respectively  

* Indicates reference items. 186 
 187 

4. Methods	188 
 189 

A logistic model was developed as the benchmark because the dependent variable 190 
was dichotomous in nature. A total of 12 refined models were then established 191 
successively by incorporating combinations of spatial and temporal terms. 192 
 193 
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4.1 Logistic	model	194 
	195 

The dependent variable 
i
Y  for the t hi  pedestrian crash took one of two values: 196 

1
i
Y   for KSI and 0

i
Y   for slight injury. Let the probability of KSI ( 1

i
Y  ) be 197 

i
 . The probability of slight injury ( 0

i
Y  ) is then 1

i
 . The logistic model is 198 

expressed as follows (Xu et al., 2016; Zhou et al., 2020). 199 
Model	1: Logistic model (benchmark model)  200 

0
1

~ Binomial( )

logit( ) log( )
1

i i

P
i

i p ip
pi

Y

X




  

 

  
 

                    (1) 201 

where 
ip
X   is the t hp   explanatory variable for crash i  , 

p
   is the t hp  202 

coefficient to be estimated, and 
0

  is the intercept. 203 

 204 
4.2 	 Spatial	logistic	model	with	the	Leroux	CAR	prior	205 
 206 
To explore the effects of common unobserved factors on the severity of pedestrian 207 

crashes across adjacent intersections, a spatial term 
m
   with the Leroux CAR 208 

prior was introduced into the logistic model. Specifically, the KSI probability of the 209 
t hi  crash at the t hm  intersection is expressed as follows.	 	210 
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Model	2: Logistic model with the Leroux CAR prior 211 

0
1

logit( ) log( )
1

P
i

i p ip m
pi

X


   
 

   
               (2) 212 

where the spatial term 
m
  follows the CAR prior distribution proposed by Leroux 213 

et al. (2000), which specifies a joint distribution of independent and spatially 214 
correlated random effects: 215 

2

~ Normal( , )
1 1

n mnn s
m n m

mn mnn n

w

w w

  
 

       


 
        (3) 216 

where 2
s

   is the variance parameter for the spatial term and 
mn
w   is the 217 

adjacency weight of the t hm  and t hn  intersections. The prevalent first-order 218 
neighboring structure was used to define the spatial weights here. Specifically, if 219 
the t hm   and t hn   intersections are directly connected by a road segment, 220 

1
mn
w  ; otherwise, 0

mn
w  . 221 

In Eq. (3), (0 1)    is a weight parameter reflecting the strength of the 222 

spatial correlation. 0    indicates that the severity of pedestrian crashes 223 

observed at the intersections is spatially independent, and an increase in   224 

toward 1 indicates a stronger spatial correlation. The Leroux CAR prior with 225 
1   is equivalent to the intrinsic CAR prior used in previous studies (Xu et al., 226 

2016; Zeng et al., 2019). 227 
 228 
4.3 Temporal	logistic	models	229 
	230 
Unobserved/unobservable factors may remain unchanged, resulting in temporal 231 
correlation in the severity of pedestrian crashes occurring in successive periods. 232 
To account for the temporal correlation, five temporal configurations, namely the 233 
linear time trend, quadratic temporal trend, random walk (RW-1), autocorrelation 234 
lag (AR-1), and time adjacency, are introduced. 235 
 236 
4.3.1 Logistic	model	with	a	linear	time	trend	 	237 
In the logistic model with a linear time trend, the temporal effect is modeled as the 238 
covariate. Specifically, the KSI probability of the t hi  pedestrian crash in the tht  239 
year is formulated as follows.  240 
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Model	3: Logistic model with a linear time trend 241 

0
1

logit( ) log( )
1

P
i

i p ip
pi

X t


   
 

   
                (4) 242 

where   is the scalar parameter for the linear yearly trend. 243 

 244 
4.3.2 Logistic	model	with	a	quadratic	time	trend	245 
The time trend in reality may be nonlinear. To capture nonlinear temporal effects, 246 
the logistic model with a quadratic time trend is developed by adding a quadratic 247 
time term to Eq. (4) (Cheng et al., 2017). 248 

Model	4: Logistic model with a quadratic time trend  249 

2
0

1

logit( ) log( )
1

P
i

i p ip
pi

X t t


    
 

    
             (5) 250 

where   is the coefficient for the quadratic yearly trend. 251 

 252 
4.3.3 Logistic	model	with	RW‐1	structure	253 
As a popular approach to processing time series data, the RW-1 adopts a first-254 
order random walk and assumes that the parameter of current year depends on 255 
that of the previous one (Cui and Xie, 2021). 256 

Model	5: Logistic model with RW-1 257 

0
1

2
1 1

2
11

logit( ) log( )
1

~ Normal(0, )

~ Normal( , )

P
i

i p ip t
pi

t tt t

X


   


 

  





   
 

             (6) 258 

where 
t
  denotes the temporal effect in the tht  year and 2

t
  is the temporal 259 

variance parameter. 260 
 261 
4.3.4 Logistic	model	with	AR‐1	262 
In the logistic model with AR-1, the temporal correlation is specified via an error 263 

term 
t
   with lag-1 dependence, which suggests that the temporal effects in a 264 

certain year are affected by the previous year. Conditional on the stationary 265 
assumption, the model is formulated as follows (Cheng et al., 2018a; Cheng et al., 266 
2018c; Zeng et al., 2017).  267 
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Model	6: Logistic model with time AR-1 268 

0
1

2

1 2

2
11

logit( ) log( )
1

~ Normal(0, )
1

~ Normal( , )

P
i

i p ip t
pi

tt t

X






   








  





   






              (7) 269 

where   is the autocorrelation coefficient with a value between 1 and 1. If   270 
is close to 0, there is no serial correlation between consecutive years. Alternatively, 271 
if the absolute value of   approaches 1, the temporal effect of the present year 272 

receives a considerable contribution from that of the previous year. 2
   is the 273 

variance parameter of the temporal terms. 274 
 275 
4.3.5 Logistic	model	with	time	adjacency	276 
Similar to the aforementioned spatial model, the logistic model with time 277 
adjacency formulates temporal correlation using the intrinsic CAR prior 278 
distribution. Unlike the AR-1 model, the time adjacency model also considers the 279 
potential impact of the following year (Cheng et al., 2018a; Abellan et al., 2008). 280 

Model	7: Logistic model with time adjacency  281 

0
1

2

logit( ) log( )
1

~ Normal( , )

P
i

i p ip t
pi

k tkk t
t k t

tk tkk k

X

w

w w


   



 
 





   
 


 

            (8) 282 

where 
t
  indicates the temporal effect and 2

t
  is the variance for the temporal 283 

term. 
tk
w  is the adjacent weight between the tht  and t hk  years. Similar to the 284 

spatial adjacency weight, if the tht   and t hk   years are consecutive, 1
tk
w   ; 285 

otherwise, 0
tk
w  .  286 

 287 
4.4 Spatiotemporal	logistic	models	288 
	289 

To capture spatial and temporal correlations simultaneously, by combining the 290 
spatial Leroux CAR prior with the five temporal configurations, all spatiotemporal 291 
models are formulated as follows.  292 
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Model	8: Logistic model with the Leroux CAR prior and a linear time trend 293 

0
1

logit( )
P

i p ip m
p

X t    


                     (9) 294 

Model	9: Logistic model with the Leroux CAR prior and a quadratic time trend 295 

2
0

1

logit( )
P

i p ip m
p

X t t     

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Model	10: Logistic model with RW-1	297 
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Model	11: Logistic model with the Leroux CAR prior and time AR-1 299 
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Model	12: Logistic model with the Leroux CAR prior and time adjacency 301 
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 303 
5. Model	estimation	and	performance	evaluation	criteria	304 
5.1	Model	estimation	305 
	306 
We used the Bayesian framework to estimate the parameters because of its 307 
advantages of flexibility and generality, which are suited to complex problems such 308 
as the spatiotemporal modeling in this study (Gelman et al., 2013; Ashraf and Dey, 309 
2022; Xu et al., 2022; Zhou et al., 2022).	 In Bayesian estimation, obtaining the 310 
posterior estimates requires the specification of prior distributions. In the present 311 

study, the prior distributions for coefficients 
0

 , 
p

 ,  , and   were specified 312 

as diffused normal distributions. Previous studies have shown that there exists a 313 
parameter-sensitive problem with an inverse-gamma distribution when the true 314 
variance is close to zero (Gelman, 2006; Meng et al., 2017; Xu et al., 2017; Dong et 315 

al., 2020; Xu et al., 2022). The spatial variance parameter 2
s

  and time adjacency 316 

term 2
t

  in Eqs. (3) and (8) were thus specified as the uniform distributions. The 317 

specific distributions are presented as follows.  318 
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

 

                   (14)  319 

Bayesian estimations of the above model parameters were performed in 320 
WinBUGS software. For each model, 60,000 iterations of Markov chain Monte Carlo 321 
simulation were performed. To ensure the convergence of all of the parameters, 322 
the first 50,000 iterations were discarded. The convergence of the models was 323 
diagnosed using the Gelman–Rubin statistic, visual examination of the Markov 324 
chain Monte Carlo chains, and the ratios of Monte Carlo errors to the respective 325 
standard deviations of the estimates. 326 

 327 
5.2	Performance	evaluation	criteria	328 
	329 
5.2.1	Deviation	information	criterion	330 
As an evaluation measure commonly used for comparing Bayesian models, the 331 
deviation information criterion (DIC) can be directly obtained using WinBUGS 332 
software (Zeng et al., 2022a; 2022b). The DIC is formulated as (Spiegelhalter et al., 333 
2002): 334 

DIC
D

D p                          (15) 335 

where D  is the posterior mean of the bias statistic and is used to measure the 336 

model fitting ability. 
D
p  is the number of valid model parameters and is used to 337 

measure the model complexity. Generally, a lower DIC value indicates better 338 
performance (Spiegelhalter et al., 2003). 339 
	340 
5.2.2	Classification	accuracy	341 
Classification accuracy is widely used to measure the prediction performance of 342 
discrete outcome models (Tang et al., 2019; Zeng et al., 2019). Given the binary 343 
outcomes of the dependent variable, the results of the combination of observed 344 
and predicted severity levels can be divided into four categories, namely true 345 
positive (TP), false positive (FP), true negative (TN), and false negative (FN), which 346 
constitute the confusion matrix, as shown in Table 2. Accordingly, the classification 347 
accuracies for KSI (also referred to as the recall), slight injury (also referred to as 348 
the specificity), and the whole dataset are calculated as: 349 

k

s

t

T P
CA

TP FN

TN
CA

TN FP

TP TN
CA

TP FN TN FP









  

                  (16) 350 

Table	2. Confusion matrix for the classification of pedestrian crash severity. 351 
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 Predicted results 
True results KSI Slight injury 

KSI TP (true positive) FN (false negative) 
Slight injury FP (false positive) TN (true negative) 

 352 
6. Results	353 
6.1 Model	performance	comparison	354 
	355 
Table 3 displays the results for the performance evaluation criteria of the 12 fitted 356 
models. In terms of the DIC, we can see that the models with spatial/temporal 357 
correlation (Models 2–7) had lower DIC values than the logistic model (Model 1). 358 
These results are generally consistent with previous findings (Xu et al., 2016; Meng 359 
et al., 2017; Zeng et al., 2019, 2022a). However, because of the increase in model 360 
complexity as reflected by 𝑝஽, the differences in the DIC values were all less than 361 
10, implying that the improvement in the overall fitting performance achieved by 362 
accounting for spatial or temporal correlation was moderate. In addition, the DIC 363 
values of Models 8–12 were similar with differences no greater than 3, but 364 
substantially smaller than that of Model 1 (with differences exceeding 10), 365 
suggesting that accounting for both spatial and temporal correlations improve the 366 
overall fit performance.  367 

With regard to the prediction performance, the results for 
t

CA  , 
k

CA  , and 368 

s
CA   indicate that all of the spatiotemporal models have higher classification 369 

accuracy than the logistic model, no matter whether we consider the KSI, slight 370 
injury, or all samples. These results demonstrate again the advantages of capturing 371 
both spatial and temporal correlations in pedestrian crash severity analysis. 372 
Furthermore, the spatiotemporal models exhibited better performance than most 373 
of the models with spatial or temporal correlation solely, especially for the 374 
prediction of KSI. Specifically, the spatiotemporal logistic model with the Leroux 375 
CAR prior and RW-1 structure (Model 12) had the highest classification accuracy 376 
for each level of injury severity and the whole dataset. We thus conclude that the 377 
model outperformed the alternatives in terms of both the overall fit and prediction 378 
performance. Given that the spatiotemporal model with the Leroux CAR prior and 379 
RW-1 performed better, we chose it to interpret the estimation results, as reported 380 
in the following.  381 
Table	3.	Results for the performance evaluation criteria for alternative models. 382 

No	 Model	 D 	 	
D
p 	 	 DIC	 t

CA 	 	
k

CA 	 	
s

CA 	 	

1 Logistic model (benchmark model) 2573 50 2623 80.73% 20.58% 96.75% 

2 +Leroux CAR prior 2501 115 2615 80.73% 23.81%	 97.00%	

3 +Linear time trend 2564 51 2615 80.73% 22.28% 96.87% 

4 + Quadratic time trend 2564 52 2616 80.73% 22.79% 96.79% 

5 +RW-1 structure 2561 55 2616 80.73% 23.47% 96.83% 

6 +Time AR-1 2562 55 2617 80.73% 23.13% 96.67% 

7 + Time adjacency 2563 55 2618 80.73% 22.95% 96.75% 

8 +Leroux CAR prior + Linear time trend 2483 123 2605 80.73% 24.32% 97.12% 

9 +Leroux CAR prior + Quadratic time trend 2479 126 2605 80.73% 24.49% 97.16% 
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10	 +Leroux	CAR	prior	+	RW‐1	structure	 2473	 131	 2604	 80.73%	 24.83%	 97.16%	

11 +Leroux CAR prior + Time AR-1 2476 130 2606 80.73% 24.66% 97.04% 

12 +Leroux CAR prior + Time adjacency 2479 128 2607 80.73% 24.49% 97.16% 

 383 
6.2 Model	parameter	estimations	384 

 385 
Table 4 shows the estimation results of spatiotemporal model with the Leroux CAR 386 
prior and RW-1. We also presented the parameters estimated from the basic 387 
logistic model and the models with the Leroux CAR prior or the RW-1 for 388 
comparison. The 95% Bayesian credible interval (BCI) was used to determine 389 
whether the parameters differed significantly from zero. Variables that were 390 
insignificant were removed for parsimony purpose (Dong et al., 2020; Xu et al., 391 
2022). To quantitatively explain the effects of these independent variables, the 392 
corresponding odds ratios are shown in Table 5.  393 
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Table	4. Parameter estimations of logistic models with the spatial, temporal, and spatiotemporal effects. 394 

	 Logistic	model	
Logistic	model	with	 	
Leroux	CAR	prior	

Logistic	model	with	 	
RW‐1	structure	

Logistic	model	with	Leroux	CAR	
prior	and	RW‐1	structure	

 Mean (SD) 95% BCI Mean (SD) 95% BCI Mean (SD) 95% BCI Mean (SD)  95% BCI 

Pedestrian	age	(reference:	1834)	

  17 –0.69	(0.33)	 (–1.36,	–0.06)	 –0.72	(0.34)	 (–1.42,	–0.07)	 –0.68	(0.33)	 (–1.36,	–0.04)	 –0.73	(0.34)	 (–1.42,	–0.07)	

  3549 0.03 (0.21) (–0.38, 0.44) 0.03 (0.22) (–0.40, 0.45) 0.04 (0.21) (–0.37, 0.45) 0.03 (0.22) (–0.39, 0.46) 

  5064 0.50	(0.19)	 (0.13,	0.87)	 0.52	(0.19)	 (0.14,	0.90)	 0.50	(0.19)	 (0.14,	0.88)	 0.53	(0.20)	 (0.14,	0.93)	

  65 1.10	(0.18)	 (0.74,	1.47)	 1.13	(0.19)	 (0.75,	1.50)	 1.12	(0.18)	 (0.76,	1.48)	 1.15	(0.19)	 (0.77,	1.54)	

Head	injured	(Yes=1,	No	=0)	 1.17	(0.11)	 (0.96,	1.39)	 1.20	(0.11)	 (0.98,	1.43)	 1.20	(0.11)	 (0.98,	1.41)	 1.23	(0.12)	 (1.00,	1.45)	

Pedestrian	location	(reference:	footpath)	

  Carriageway 0.00 (0.18) (–0.34, 0.34) 0.00 (0.18) (–0.36, 0.35) –0.05 (0.18) (–0.40, 0.30) –0.06 (0.19) (–0.42, 0.30) 

  Junction 0.15 (0.16) (–0.16, 0.46) 0.18 (0.17) (–0.14, 0.51) 0.15 (0.16) (–0.16, 0.47) 0.19 (0.17) (–0.14, 0.51) 

  Other location 0.50	(0.19)	 (0.12,	0.87)	 0.53	(0.20)	 (0.14,	0.92)	 0.40	(0.20)	 (0.02,	0.79)	 0.44	(0.21)	 (0.04,	0.85)	

Pedestrian	action	(reference:	walking	on	footpath)	

  Crossing the intersection 0.41	(0.12)	 (0.17,	0.65)	 0.41	(0.13)	 (0.16,	0.65)	 0.48	(0.13)	 (0.23,	0.73)	 0.49	(0.13)	 (0.23,	0.74)	

  Standing –0.56	(0.29) (–1.15,	–0.01) –0.58	(0.29)	 (–1.18,	–0.02)	 –0.53 (0.29) (–1.12, 0.02) –0.54 (0.30) (–1.15, 0.03) 

  Other action –0.31 (0.49) (–1.34, 0.60) –0.36 (0.51) (–1.43, 0.57) –0.28 (0.50) (–1.31, 0.63) –0.33 (0.52) (–1.40, 0.63) 

Pedestrian	special	circumstance	(reference:	none)	

  Footpath overcrowded 0.10 (0.22) (–0.34, 0.54) 0.11 (0.23) (–0.35, 0.56) 0.06 (0.22) (–0.39, 0.49) 0.06 (0.23) (–0.40, 0.51) 

  Footpath obstructed 0.55 (0.45) (–0.36, 1.40) 0.61 (0.47) (–0.36, 1.49) 0.52 (0.46) (–0.42, 1.37) 0.57 (0.47) (–0.40, 1.46) 

  Others 0.32	(0.13)	 (0.07,	0.56)	 0.33	(0.13)	 (0.08,	0.59)	 0.28	(0.13)	 (0.03,	0.52)	 0.29	(0.13)	 (0.03,	0.55)	

Pedestrian	contributing	factors	(reference:	none)	

  Pedestrian inattentiveness 0.22 (0.24)	 (–0.24, 0.68) 0.23 (0.24)	 (–0.25, 0.7) 0.20 (0.23)	 (–0.26, 0.66) 0.21 (0.25)	 (–0.28, 0.69) 

  Pedestrian heedlessness 0.19 (0.17)	 (–0.15, 0.52) 0.18 (0.18)	 (–0.17, 0.52) 0.19 (0.17)	 (–0.14, 0.52) 0.18 (0.18)	 (–0.18, 0.53) 

  Other pedestrian contributors 0.32	(0.16)	 (0.02,	0.63) 0.35	(0.16)	 (0.03,	0.67) 0.40	(0.16)	 (0.08,	0.72) 0.43	(0.17)	 (0.10,	0.77) 

Driver	maneuver	(reference:	go	straight) 

  Turn right –0.15 (0.16)	 (–0.46, 0.16) –0.16 (0.16)	 (–0.49, 0.15) –0.11 (0.16)	 (–0.43, 0.19) –0.13 (0.17)	 (–0.46, 0.19) 

  U-turning –1.52	(0.42)	 (–2.40,	–0.75) –1.54	(0.43)	 (–2.43,	–0.74) –1.55	(0.43)	 (–2.44,	–0.76) –1.59	(0.44)	 (–2.49,	–0.77) 

  Turn left –0.19 (0.22)	 (–0.64, 0.24) –0.17 (0.23)	 (–0.64, 0.28) –0.18 (0.23)	 (–0.64, 0.25) –0.16 (0.23)	 (–0.63, 0.29) 
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  Other operations –0.60	(0.27)	 (–1.14,	–0.09) –0.61	(0.28)	 (–1.17,	–0.08) –0.55	(0.27)	 (–1.09,	–0.04) –0.56	(0.28)	 (–1.12,	–0.03) 

Driver	contributing	factors	(reference:	none)	

  Driving inattentively 0.31	(0.15)	 (0.01,	0.61)	 0.31	(0.16)	 (0.00,	0.62)	 0.36	(0.15)	 (0.06,	0.66)	 0.35	(0.16)	 (0.04,	0.66)	

  Driving negligently 0.56	(0.22)	 (0.14,	0.99)	 0.55	(0.22)	 (0.11,	0.99)	 0.59	(0.22)	 (0.17,	1.02)	 0.57	(0.23)	 (0.12,	1.02)	

  Other driver contributors 0.24 (0.21)	 (–0.18, 0.66)	 0.23 (0.22)	 (–0.21, 0.66)	 0.19 (0.22)	 (–0.24, 0.61)	 0.17 (0.22)	 (–0.27, 0.61)	

Vehicle	type	(reference:	private	car) 

  Taxi –0.10 (0.17) (–0.43, 0.22) –0.12 (0.17) (–0.46, 0.21) –0.11 (0.17) (–0.44, 0.22) –0.12 (0.17) (–0.47, 0.22) 

  Goods vehicle 0.41	(0.14)	 (0.13,	0.68)	 0.39	(0.15)	 (0.10,	0.67)	 0.40	(0.14)	 (0.12,	0.68)	 0.38	(0.15)	 (0.09,	0.68)	

  Bus  0.57	(0.18)	 (0.21,	0.91)	 0.58	(0.19)	 (0.21,	0.94)	 0.55	(0.18)	 (0.20,	0.90)	 0.57	(0.19)	 (0.19,	0.94)	

  Motorcycle 0.16 (0.29) (–0.43, 0.72) 0.12 (0.30) (–0.49, 0.70) 0.12 (0.30) (–0.47, 0.69) 0.08 (0.31) (–0.54, 0.67) 

  Other vehicles 1.36	(0.48)	 (0.43,	2.30)	 1.38	(0.49)	 (0.40,	2.35)	 1.42	(0.48)	 (0.48,	2.37)	 1.47	(0.50)	 (0.49,	2.46)	

First	collision	position	(reference:	head	on)	

  Rear end (Yes=1, No=0) –0.18 (0.11)	 (–0.41, 0.04)	 –0.18 (0.12) (–0.41, 0.05) –0.24	(0.12)	 (–0.47,	–0.01)	 –0.24	(0.12)	 (–0.48,	–0.01)	

Time	of	collision	(reference:	morning)	

  Before dawn 0.54	(0.21)	 	 (0.12,	0.95)	 0.56	(0.22)	 (0.13,	0.99)	 0.55	(0.21)	 (0.14,	0.97)	 0.58	(0.22)	 (0.15,	1.02)	

  Afternoon –0.45	(0.13)	 (–0.69,	–0.20)	 –0.44	(0.13)	 (–0.70,	–0.19)	 –0.45	(0.13)	 (–0.70,	–0.20)	 –0.46	(0.13)	 (–0.72,	–0.20)	

  Evening –0.40	(0.15) (–0.69,	–0.11) –0.43	(0.15) (–0.73,	–0.13) –0.39	(0.15) (–0.68,	–0.10) –0.42	(0.16) (–0.73,	–0.12) 

Traffic	congestion	(Yes=1,	No=0) 0.20 (0.13) (–0.05, 0.45) 0.20 (0.13) (–0.06, 0.46) 0.27	(0.13) (0.01,	0.53) 0.27	(0.14) (0.00,	0.54) 
1 SD and BCI refer to standard deviation and Bayesian credible interval, respectively. 395 
2 Boldfaced values indicate significance at 95% BCI.  396 
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Table	5. Odd ratios of logistic models with the spatial, temporal, and spatiotemporal effects. 397 

	 Logistic	model	
Logistic	model	with	
Leroux	CAR	prior	

Logistic	model	with	
RW‐1	structure	

Logistic	model	with	Leroux	
CAR	prior	and	RW‐1	structure	

 Mean  95% BCI Mean  95% BCI Mean  95% BCI Mean  95% BCI 

Pedestrian	age	(reference:	18‐34)	

  17 0.53	 (0.26,	0.95)	 0.51	 (0.24,	0.93)	 0.54	 (0.26,	0.96)	 0.51	 (0.24,	0.93)	

  3549 1.05 (0.68, 1.55) 1.05 (0.67, 1.57) 1.07 (0.69, 1.58) 1.06 (0.68, 1.59) 

  5064 1.68	 (1.14,	2.39)	 1.71	 (1.15,	2.47)	 1.69	 (1.15,	2.4)	 1.73	 (1.16,	2.53)	

  65 3.05	 (2.1,	4.34)	 3.14	 (2.13,	4.49)	 3.10	 (2.13,	4.38)	 3.22	 (2.17,	4.65)	

Head	injured	(Yes=1,	No	=0)	 3.25	 (2.61,	4)	 3.35	 (2.67,	4.16)	 3.33	 (2.67,	4.1)	 3.43	 (2.72,	4.28)	

Pedestrian	location	(reference:	footpath)	

  Carriageway 1.01 (0.71, 1.41) 1.02 (0.7, 1.42) 0.97 (0.67, 1.35) 0.96 (0.65, 1.35) 

  Junction 1.18 (0.85, 1.59) 1.21 (0.87, 1.66) 1.18 (0.85, 1.59) 1.22 (0.87, 1.67) 

  Other location 1.67	 (1.12,	2.39)	 1.74	 (1.15,	2.52)	 1.53	 (1.02,	2.2)	 1.59	 (1.04,	2.33)	

Pedestrian	action	(reference:	walking	on	footpath)	

  Crossing the intersection 1.51	 (1.18,	1.91)	 1.52	 (1.18,	1.92)	 1.62	 (1.26,	2.07)	 1.64	 (1.26,	2.11)	

  Standing 0.59	 (0.32,	0.99)	 0.58	 (0.31,	0.98)	 0.62	 (0.33,	1.02)	 0.61	 (0.32,	1.03)	

  Other action 0.82 (0.26, 1.82) 0.79 (0.24, 1.77) 0.85 (0.27, 1.88) 0.82 (0.25, 1.87) 

Pedestrian	special	circumstance	(reference:	none)	

  Footpath overcrowded 1.14 (0.71, 1.72) 1.15 (0.71, 1.75) 1.08 (0.68, 1.64) 1.09 (0.67, 1.66) 

  Footpath obstructed 1.92 (0.69, 4.07) 2.04 (0.7, 4.45) 1.86 (0.66, 3.94) 1.97 (0.67, 4.32) 

  Others 1.38	 (1.08,	1.75)	 1.41	 (1.08,	1.81)	 1.33	 (1.03,	1.69)	 1.35	 (1.03,	1.74)	

Pedestrian	contributing	factors	(reference:	none)	

  Pedestrian inattentiveness 1.29 (0.78, 1.97) 1.30 (0.78, 2.01) 1.26 (0.77, 1.94) 1.27 (0.75, 1.99) 

  Pedestrian heedlessness 1.22 (0.86, 1.69) 1.22 (0.84, 1.69) 1.23 (0.87, 1.69) 1.21 (0.84, 1.7) 

  Other pedestrian contributors 1.40	 (1.02,	1.88)	 1.44	 (1.03,	1.95)	 1.51	 (1.08,	2.06)	 1.57	 (1.11,	2.15)	

Driver	maneuver	(reference:	go	straight)	
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  Turn right 0.87 (0.63, 1.17) 0.86 (0.61, 1.17) 0.90 (0.65, 1.21) 0.89 (0.63, 1.21) 

  U-turning 0.24	 (0.09,	0.47)	 0.23	 (0.09,	0.48)	 0.23	 (0.09,	0.47)	 0.22	 (0.08,	0.46)	

  Turn left 0.85 (0.53, 1.28) 0.86 (0.53, 1.32) 0.85 (0.53, 1.28) 0.87 (0.53, 1.34) 

  Other operations 0.57	 (0.32,	0.91)	 0.57	 (0.31,	0.92)	 0.60	 (0.33,	0.96)	 0.59	 (0.33,	0.97)	

Driver	contributing	factors	(reference:	none)	

  Driving inattentively 1.38	 (1.01,	1.85)	 1.38	 (1,	1.86)	 1.45	 (1.06,	1.93)	 1.44	 (1.04,	1.94)	

  Driving negligently 1.80	 (1.15,	2.69)	 1.78	 (1.11,	2.69)	 1.85	 (1.18,	2.77)	 1.82	 (1.13,	2.77)	

  Other driver contributors 1.30 (0.83, 1.93) 1.29 (0.81, 1.93) 1.24 (0.79, 1.85) 1.22 (0.76, 1.84) 

Vehicle	type	(reference:	private	car)	

  Taxi 0.91 (0.65, 1.25) 0.90 (0.63, 1.24) 0.91 (0.65, 1.24) 0.90 (0.63, 1.24) 

  Goods vehicle 1.52	 (1.14,	1.98)	 1.49	 (1.11,	1.96)	 1.51	 (1.13,	1.97)	 1.48	 (1.09,	1.97)	

  Bus 1.79	 (1.24,	2.5)	 1.81	 (1.24,	2.55)	 1.76	 (1.22,	2.47)	 1.79	 (1.22,	2.56)	

  Motorcycle 1.22 (0.65, 2.05) 1.18 (0.61, 2.02) 1.18 (0.63, 1.99) 1.14 (0.58, 1.96) 

  Other vehicles 4.36	 (1.53,	9.96)	 4.48	 (1.5,	10.5)	 4.66	 (1.62,	10.7)	 4.92	 (1.64,	11.69)	

First	collision	position	(reference:	head	on)	

  Rear end (Yes=1, No=0) 0.84 (0.67, 1.04) 0.84 (0.66, 1.05) 0.79	 (0.63,	0.99)	 0.79	 (0.62,	0.99)	

Time	of	collision	(reference:	morning)	

  Before dawn 1.75	 (1.13,	2.58)	 1.80	 (1.14,	2.69)	 1.78	 (1.15,	2.63)	 1.83	 (1.16,	2.77)	

  Afternoon 0.65	 (0.5,	0.82)	 0.65	 (0.5,	0.83)	 0.64	 (0.5,	0.82)	 0.64	 (0.49,	0.82)	

  Evening 0.68	 (0.5,	0.9)	 0.66	 (0.48,	0.88)	 0.68	 (0.5,	0.91)	 0.66	 (0.48,	0.89)	

Traffic	congestion	(Yes=1,	No=0)	 1.23 (0.95, 1.57) 1.23 (0.94, 1.58) 1.32	 (1.01,	1.7)	 1.33	 (1,	1.72)	
1 BCI refers to the Bayesian credible interval. 398 
 2 Boldfaced values indicate significance at 95% BCI.399 
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According to Table 4, a total of 12 variables were significantly associated with 400 
the severity of pedestrian injuries. Although the estimation results were broadly 401 
consistent across the four models, their significant variables were not completely 402 
identical. For example, traffic	congestion was insignificant in the benchmark model 403 
and the logistic model with the Leroux prior, but became highly significant in the 404 
models with temporal and spatiotemporal effects. Similar results were found for 405 
first	collision	point, whereas the opposite conclusion hold true for pedestrian	action. 406 
These findings highlight that the neglect of spatiotemporal effects when modeling 407 
the severity of pedestrian crashes over multiple years across road networks in 408 
dense urban regions unlikely achieves unbiased estimations and valid inferences. 409 

Once the potential bias arising from the spatiotemporal correlations was 410 
adjusted, we can interpret the results for safety policymaking. A sound 411 
interpretation of the parameter estimates also helps justify the validity of the 412 
proposed method. 413 
 414 
6.2.1 Pedestrian	factors	415 
Table 4 shows that pedestrians older than 50 years of age were more likely to 416 
suffer from KSI crashes than the young adult pedestrians. Specifically, pedestrians 417 
aged 65 or above were 3.22 times more likely to experience fatal or severe injuries 418 
than those during 1834 years old when struck by motor vehicles. This result is 419 
largely expected and is consistent with the results of previous studies (Xu et al., 420 
2016; Zhai et al., 2019), given the increasing fragility of the body, slower gait, 421 
longer reaction time, and weakened ability to cope with hazardous situations 422 
associated with aging. Also interestingly, compared with the young adult 423 
pedestrians, children (under 18 years old) were less likely to be involved in serious 424 
crashes. One plausible explanation is that in recent years traffic safety education 425 
and publicity for children have been promoted in Hong Kong, and children are 426 
often accompanied by their guardians when crossing intersections, by which their 427 
safety can be better guaranteed.  428 

Regarding the location of injury, pedestrians with head injuries sustained a 429 
likelihood of fatal and severe injuries 3.43 times higher than those with non-head 430 
injuries. This finding was also reported by Xu et al. (2016) and Zhou et al. (2020), 431 
which reminds us that in the event of collisions involving vulnerable road users, 432 
the protection of the head should be the top priority. 433 

The behavior of pedestrians before crashes also significantly affected the 434 
injury outcomes. As an illustration, pedestrians crossing a road were more likely 435 
to be fatally or severely injured than those walking along the sidewalk, whereas 436 
standing still was the safest pedestrian behavior. This result is expected to some 437 
extent. Other pedestrian factors, including drinking alcoholic beverages, taking 438 
drugs, and listening to music, were detrimental to pedestrian safety, as these 439 
activities may prolong a pedestrian’s reaction time, reduce a pedestrian’s 440 
perception abilities, and prevent a pedestrian from reacting to dangerous 441 
situations. 442 

In addition to the overcrowded or obstructed footpaths, other circumstances 443 
such as the absence of a footpath were more likely to result in fatal or severe 444 
injuries to pedestrians. This result probably reflects the fact that drivers do not 445 
expect the presence of pedestrians at intersections without footpaths. Based on a 446 
Danish dataset, Abay (2013) reported a similar finding that pedestrians at 447 
unmarked crossings were more likely to be fatally or severely injured. 448 
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 449 
6.2.2 Driver	factors	450 
Some risk factors significantly affecting pedestrian injury severity, such as the 451 
driver’s age, driver’s maneuver, and vehicle type, have been reported in previous 452 
studies (Kim et al., 2017; Sasidharan and Menéndez, 2019; Tjahjono et al., 2021). 453 
According to the results of our study, driver age was not significantly associated 454 
with the severity of pedestrian injuries. One plausible explanation might be that 455 
although the driving performance (e.g., lateral control ability and braking response 456 
time) of elderly drivers is not as good as that of young drivers, elderly drivers tend 457 
to adapt compensatory strategies such as driving slower, driving more 458 
conservatively, and being more willing to yield to reduce the possible conflicts with 459 
pedestrians at intersections (Chen et al., 2021). 460 

In terms of driver maneuvers, our estimations indicate that the probability of 461 
KSI in the case of a driver making a U-turn or other maneuvers (i.e., lane changing, 462 
overtaking, parking, and deceleration) was much lower than that of driving 463 
straight. As presented in Table 5, the probability of KSI for a U-turn or other 464 
maneuver was only 0.20 or 0.57 times that for straight driving, respectively. These 465 
findings are intuitively reasonable, because when a driver conducts these 466 
maneuvers, not only does the driver reduce speed and act more vigilantly but 467 
nearby pedestrians also take avoidance measures to ensure their own safety. 468 

Regarding driver contributary factors, no one disagrees that driving 469 
inattentively and negligently result in more serious crashes. Specifically, the 470 
likelihood of KSI increased by 44% and 82% if the drivers were inattentive and 471 
negligent, respectively.  472 
 473 
6.2.3 Vehicle	factors	474 
Vehicle type was also closely related to the severity of pedestrian injury. Compared 475 
with the taxis, private cars, and motorcycles, once trucks, buses, and other heavy 476 
vehicles such as trailers and trams were involved, these crashes were more likely 477 
to cause fatal or severe injuries to pedestrians. This result is plausible given the 478 
increase in mass, velocity, and energy release during collisions with heavy vehicles.  479 

Also importantly, as presented in Table 5, the likelihood of pedestrians being 480 
fatally or severely injured reduced by approximately 21% if the first point of 481 
collision was rear end. This result is expected to some extent. As vulnerable road 482 
users without any external protection, pedestrians are likely to absorb more 483 
kinetic energy when collision by the front of vehicle, thereby resulting in more 484 
serious outcomes. 485 

 486 
6.2.4 Environmental	factors	487 
Regarding the crash time, the negative signs of the estimated coefficients for 488 
afternoon (12:00–18:00) and evening (18:00–24:00) suggest that the likelihood of 489 
fatal or severe injury tended to be lower in the afternoon and evening than in the 490 
morning (06:00–12:00). During the morning rush hours, greater commuting 491 
pressure to arrive at work on time inevitably motivates both drivers and 492 
pedestrians to be more aggressive (e.g., speeding and red-light violations). It is 493 
thus not surprising that pedestrian crashes in the morning resulted in more 494 
serious injury outcomes. In addition, pedestrian crashes before dawn were more 495 
likely to induce serious consequences, a finding consistent with previous studies 496 
(Chu, 2014). This elevated injury risk is probably attributed to the speeding, 497 
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fatigue driving, and restricted visibility during nighttime. 498 
Finally, the results for spatiotemporal model revealed that traffic congestion 499 

was more likely to cause serious pedestrian crashes, which is inconsistent with 500 
previous findings (Shefer and Rietveld, 1997; Stiles et al., 2021). Intuitively, vehicle 501 
speed in congested areas is lower, and crashes are accordingly expected to be less 502 
severe. One plausible explanation is that the conclusions of previous studies were 503 
mainly drawn from highway data (Quddus et al., 2010). In contrast, the 504 
intersections under investigation in the present study were located in highly 505 
urbanized areas with dense road networks and heavy pedestrian activities. The 506 
frequent acceleration and deceleration maneuver due to congestion in urban areas 507 
are likely to trigger negative emotions, such as impatience and road rage, which 508 
potentially induce aggressive driving behaviors and thus adversely affect 509 
pedestrian safety (Li et al., 2020).  510 
 511 
6.3 Temporal/spatial	correlation	analysis	512 
	513 
6.3.1	Temporal	correlation	analysis	514 
Table 6 presents the parameter estimates of the temporal error term for the 515 
spatiotemporal models with linear and quadratic time trends. The results of the 516 
linear time trend item (Model 8) indicate that the coefficient of the time variable 517 
was statistically significant at the 95% BCI, whereas the parameters for the 518 
quadratic time trend were insignificant (Model 9). Such a consistent reduction in 519 
the likelihood of fatal and severe injuries sustained by pedestrians within the past 520 
10 years was also demonstrated by the results of the spatiotemporal models with 521 
RW-1 structure, time AR-1, and time adjacency, respectively, as illustrated in Fig. 3. 522 
Given the presence of a linearly decreasing trend, it is not surprising that the 523 
performances of models with different temporal configurations were broadly 524 
similar. 525 

Table	6. Temporal parameter estimations of the spatiotemporal model. 526 
 Leroux CAR prior and linear time trend Leroux CAR prior and quadratic time trend 
  0.07	(0.11,	0.03)	 0.04 (0.12, 0.21) 
   0.01 (0.03, 0.004) 

Boldfaced values indicate significance at the 95% BCI. 527 

 528 
Fig.	 2. Distribution of temporal error terms in the spatiotemporal logistic 529 
regression models. 530 
 531 
6.3.2	Spatial	correlation	analysis	532 
Table 7 presents the parameter estimation results of the spatial error terms of the 533 

spatiotemporal model. The variance parameter 
s

  produced a posterior 534 
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distribution with a mean of 0.54 and standard deviation of 0.27. The spatial 535 
correlation parameter   produced a posterior estimate with a mean of 0.41 and 536 

standard deviation of 0.25. The corresponding 95% BCI was (0.03, 0.93), which 537 
significantly differs from both 0 and 1. These results indicate that a moderate 538 
amount of unobserved heterogeneity was explained by the spatially correlated 539 
effects. 540 

Table	7. Spatial parameter estimations of the spatiotemporal model. 541 
 Mean (standard deviation) 95% BCI 

s
   0.54	(0.27) (0.02,1.01) 
   0.41	(0.25)	 (0.03,0.93)	

Boldfaced values indicate significance at the 95% BCI. 542 

One pragmatic advantage of spatiotemporal models is their ability to identify 543 
hotspots for safety diagnoses. Inspired by the concept of the potential for safety 544 
improvement (Hauer et al., 2002; Xu et al., 2019), we defined relative risk (RR; 545 
DiMaggio, 2015) as the expected excess odd ratios to determine whether the t hm  546 
intersection had a higher likelihood of KSI pedestrian crashes than those with 547 
similar characteristics. RR is expressed as follows. 548 

RR exp( )
m
                         (17) 549 

where 
m
  is the spatial error term defined in Eq. (3). An intersection with an RR 550 

greater than 1 at the 95% BCI can be regarded as having substantial potential for 551 
safety improvement. 552 

The results are illustrated in Fig. 4. The left plot illustrates the RR estimates 553 
for the top 30 safest and most dangerous intersections, respectively. The mapping 554 
of the RR values in the right plot further helps identify intersections where 555 
pedestrians are more likely to sustain fatal or severe injuries than expected. Such 556 
a thorough risk profile can serve as a basis for local authorities in identification of 557 
targeted sites where the safety and mobility of pedestrians need to be improved.  558 

 559 
Fig.	3. Hotspots identification by the spatiotemporal logistic regression model 560 
with the Leroux CAR prior and RW-1 structure: (a) top 30 safest and most 561 
dangerous intersections, respectively, in terms of relative risk (dots: mean values; 562 
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lines: 95% BCI), and (b) locations of hotspots across the studied region. 563 
 564 
7. Practical	implications	565 
	566 
According to our findings, tailored countermeasures can be formulated to enhance 567 
pedestrian safety at intersections in urban areas. As presented in Table 5, odds 568 
ratios for the three variables, i.e., pedestrians over 65 years old, head injuries, and 569 
heavy vehicles exceeded 3. It is thus urgent to take special measures for these 570 
situations. 571 

First, against the background of an aging society, special attention should be 572 
paid to the elderly pedestrians. The safety awareness of this particularly 573 
vulnerable group can be improved through education and publicity activities. In 574 
terms of traffic management, traffic facilities need to be refined to guarantee the 575 
safety and mobility of elderly pedestrians, such as by extending the green signal 576 
time to ensure that elderly pedestrians have adequate time to cross a street safely. 577 
Furthermore, to reduce the conflicts between pedestrians and motor vehicles at 578 
intersections, traffic management departments can separate the paths of 579 
pedestrians and vehicles in time or space, such as by setting up dedicated 580 
pedestrian signal lights or building overpasses. Second, beacons can also be set up 581 
at locations where heavy vehicles such as trucks frequently pass to remind 582 
pedestrians of safety. Also, to minimize the serious consequences of head injuries, 583 
traffic safety education campaigns and publicity can be carried out to inform road 584 
users how to avoid head injuries and what protective measures to take after a head 585 
injury.  586 

In addition to the aforementioned 4E (i.e., engineering, enforcement, 587 
emergency, and education) strategies, 3A (i.e., awareness, appreciation, and 588 
assistance) strategies can be adopted to aid the formulation of safety programs for 589 
pedestrians and reduce the severity of injury outcomes at urban intersections. In 590 
terms of awareness, drivers and pedestrians should be made more aware of the 591 
limitations of their behaviors at intersections. For example, they should be aware 592 
that there are intensive conflicts between vehicles and pedestrians at intersections. 593 
This will encourage pedestrians to be more vigilant when crossing an intersection 594 
and to avoid inattentive behaviors such as listening to music or playing with 595 
mobile phones. Likewise, drivers can adopt more considerate behaviors, such as 596 
approaching intersections at lower speeds and being more willing to yield when 597 
encountering pedestrians at intersections. In terms of appreciation, drivers and 598 
pedestrians should be educated to be more aware of situations that increase the 599 
severity of pedestrian crashes. According to our study, elderly pedestrians were 600 
more likely to be fatally or severely injured if a collision occurred in the morning. 601 
Similarly, pedestrians should pay special attention to large vehicles, such as buses, 602 
large trucks, and coaches when crossing intersections, because large vehicles 603 
create blind spots. Furthermore, given that head injuries cause serious 604 
consequences, vehicle manufacturers should consider the use of flexible materials 605 
that better absorb the impact force when a pedestrian’s head collides with the 606 
vehicle. In terms of assistance, it would be beneficial to introduce appropriate 607 
driver assistance systems, such as pedestrian recognition systems, electronic road 608 
information boards, and mobile navigation software to identify nearside 609 
pedestrians, broadcast traffic conditions, provide drivers with real traffic 610 
information, thereby helping drivers get familiar with road environment in 611 
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advance. A real-time traffic broadcast system not only allows drivers to avoid 612 
congested routes and time periods, but also helps drivers plan their travel time 613 
and improve their tolerance of traffic congestion, consequently improving driving 614 
safety. 615 
 616 
8. Conclusions	617 
	618 
Pedestrians, as vulnerable road users, are prone to suffering from serious injuries 619 
in traffic crashes. In improving pedestrian safety and mobility, potential factors 620 
contributing to the severity of pedestrian crashes need to be determined. In this 621 
study, we integrated geographic information with traffic accident data and 622 
selected 21 risk factors that may affect the severity of pedestrian injury mainly 623 
from four aspects, human (both motor vehicle drivers and pedestrians), vehicle, 624 
road, and environment. We then developed a basic logistic model and 11 improved 625 
models considering temporal and spatial effects. By comparing model goodness-626 
of-fit measures, we found that an explicit consideration of both spatial and 627 
temporal correlations substantially improved model performance. Specifically, the 628 
spatiotemporal logistic model with the spatial Leroux CAR prior and RW-1 629 
structure performed best, with the highest prediction accuracy and the lowest DIC 630 
value. 631 

The estimations of the spatiotemporal logistic model showed that the time of 632 
the collision, location of the pedestrian, injured part of the body, pedestrian age, 633 
pedestrian action, driver age, driver maneuver, and vehicle type significantly 634 
affected the severity of pedestrian injuries at urban intersections. Our results 635 
revealed that crashes occurring in the afternoon or evening had a lower 636 
probability of KSI. Elder pedestrians were more likely to be fatally or severely 637 
injured than the middle-aged group, and the probability of fatality or severe injury 638 
was higher when pedestrians sustained head injuries. Turning and overtaking 639 
maneuvers were safer than straight driving. A driver’s improper maneuver or a 640 
pedestrian’s inattentive behavior would lead to more serious injury outcomes. 641 
Collisions with large vehicles, such as buses and trucks, were more likely to result 642 
in serious injuries to pedestrians. On the basis of our findings, 4E and 3A targeted 643 
countermeasures were proposed to improve pedestrian safety at urban 644 
intersections. 645 

The limitations of this study should be acknowledged. Our crash data were 646 
derived from police reports and may suffer from underreporting (Imprialou and 647 
Quddus, 2019), which probably result in biased parameter estimates. Furthermore, 648 
in addition to the typically used CAR model, other methods of accommodating 649 
spatial effects, such as the use of differencing (Katicha and Flintsch, 2022), spatial 650 
autoregressive, spatial error, and multiple membership models, could be 651 
attempted in future research. 652 
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