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ABSTRACT

This paper conducted a comprehensive study on the injury severity of motor
vehicle-pedestrian crashes at 489 urban intersections across a dense road
network based on high-resolution accident data recorded by the police from 2010
to 2019 in Hong Kong. Given that accounting for the spatial and temporal
correlations simultaneously among crash data can contribute to unbiased
parameter estimations for exogenous variables and improved model performance,
we developed spatiotemporal logistic regression models with various spatial
formulations and temporal configurations. The results indicated that the model
with the Leroux CAR prior and random walk structure outperformed other
alternatives in terms of goodness-of-fit and classification accuracy. According to
the parameter estimates, pedestrian age, head injury, pedestrian location,
pedestrian actions, driver maneuvers, vehicle type, first point of collision, and
traffic congestion status significantly affected the severity of pedestrian injuries.
On the basis of our analysis, a range of targeted countermeasures integrating
safety education, traffic enforcement, road design, and intelligent traffic
technologies were proposed to improve the safe mobility of pedestrians at urban
intersections. The present study provides a rich and sound toolkit for safety
analysts to deal with spatiotemporal correlations when modeling crashes
aggregated at contiguous spatial units within multiple years.

Keywords: Pedestrian crashes; Injury severity analysis; Urban intersections;
Spatiotemporal correlation; Bayesian inference
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1. Introduction

Walking, a sustainable mode of urban transportation, not only increases physical
activity and improves health, but also relieves traffic congestion and reduces
greenhouse gas emissions. However, unlike vehicle occupants, pedestrians are
particularly vulnerable road users and are more likely to sustain fatal and serious
injuries, as they have no physical protection when struck by motor vehicles. For
instance, in Hong Kong pedestrians account for approximately 60% of total traffic
fatalities. Roadway intersections are locations where vehicles and pedestrians
frequently interact, and pedestrians are prone to be involved in crashes at
intersections (Ma et al, 2022; Mirhashemi et al, 2022). It is therefore
indispensable to investigate the effects of various risk factors on the severity of
pedestrian injuries in traffic crashes, by which more targeted countermeasures
can be proposed to improve the safety of pedestrians at urban intersections.
Improvement in safety levels will also encourage more people to walk in regular
for daily travel, accompanied by health benefits, mobility options, independence,
and fun.

Within an urban road network, intersections are mutually connected by road
segments. Adjacent intersections may share unobservable attributes associated
with traffic characteristics, built environment, and weather conditions, which are
anticipated to result in spatial correlation (Ziakopoulos and Yannis, 2020).
Likewise, there may be unobservable factors that are time-varying/dependent.
Temporal correlation may also exist in pedestrian crash data. Theoretically,
accounting for spatial and temporal correlations will improve model estimation
and reduce model misspecification (Aguero-Valverde and Jovanis, 2008; DiMaggio,
2015; Meng et al., 2017; Cheng et al., 2018a, 2018b, 2018c; Cui and Xie, 2021).
Based on the high-resolution crash data recorded by the police over a 10-year
period in Hong Kong, our study developed spatiotemporal logistic regression
models with various spatial and temporal configurations to analyze the injury
severity of pedestrians involved in traffic crashes at urban intersections, by which
a range of tailor-made countermeasures can be formulated. Particularly, we
illustrate how to evaluate the temporal evolution pattern and to identify the
hotspots that impose a higher likelihood of fatal and severe pedestrian crashes by
leveraging the spatiotemporal logistic modeling results. Such findings have not
been reported by previous studies and cannot be revealed without explicit
consideration of spatiotemporal correlations.

The rest of the paper is structured as follows. Section 2 provides a
comprehensive summary of previous studies. Section 3 presents the data
collection and processing. Section 4 describes the methods of analysis. Section 5
introduces the model performance measures and then presents the model
estimation results, followed by an elaborate interpretation of the estimated
parameters and analysis of temporal/spatial dependencies in Section 6. We
summarize the findings and conclude the paper with a discussion on promising
directions for future studies in Section 7.

2. Literature review

In the past decade, considerable research efforts have been made to analyze
pedestrian crashes. Studies have suggested that factors pertaining to weather
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conditions, road environment, vehicle characteristics, traffic control, together with
driver and pedestrian characteristics affect the safety of pedestrians (Tay et al,,
2011; Xie et al,, 2018; Chen and Fan, 2019a; Li and Fan, 2019a; Sasidharan and
Menéndez, 2019; Dong et al., 2020; Zafri et al., 2020; Xu et al., 2019; Zhai et al,,
2019; Li and Fan, 2022; Xiao et al., 2023; Xue and Wen, 2022). Due to the factors
affecting pedestrians at different sites may be diverse, studies have focused on
pedestrian crashes occurring for distinct types of road entity, such as intersections
(Xuetal, 2016; Xie etal.,, 2018; Xu etal.,, 2019; Wang et al.,, 2020; Sari¢etal., 2021),
mid-block locations (Yang et al., 2019), urban roads (Zhai et al., 2019), rural roads
(Chen and Fan, 2019b), and highways (Chen and Fan, 2019a). Pedestrian crashes
atintersections are of particular interest, given that intersections are places where
numerous pedestrians and vehicles conflict.

From the perspective of research methodology, the use of statistical regression
models, which clearly explain the effects of different influential factors, has
become the mainstream in road safety analysis. Discrete choice models, such as
binary logit/probit model (Zafri et al., 2020), multinomial logit model (Amoh-
Gyimah etal.,, 2017; Tay etal.,, 2011; Chen and Fan, 2019a), and random-parameter
logit model (Adanu et al,, 2021; Pervez et al.,, 2022; Xue and Wen, 2022; Cai et al,,
2023; Wen et al,, 2023; Xing et al.,, 2023), have been used in the study of crash
severity. The ordered logit/probit model has also been developed to accommodate
the ordered properties of crash severity (Rifaat and Chin, 2007; Tjahjono et al,,
2021). However, the ordered outcome model strictly adheres to the proportional
odds assumption that the effects of explanatory variables are consistent for all
levels of the dependent variable (Peterson and Harrell Jr., 1990). To address this
drawback, a series of refined models, such as the generalized ordered outcome
model (Zeng et al, 2022a), partial proportional odds model (Sasidharan and
Menéndez, 2019; Li and Fan, 2019a; Li and Fan, 2019b), and mixed generalized
ordered response model (Eluru et al., 2008), have been introduced.

Recently, spatial correlation also known as spatial dependency or spatial
autocorrelation has attracted considerable interest from safety analysts
(Ziakopoulos and Yannis, 2020). Numerous studies have suggested that
accounting for spatial correlation contributes to unbiased parameters in
estimations of the effects of exogenous variables (Mannering and Bhat, 2014;
Katicha and Flintsch, 2022). Via adjusting for the spatial correlation, observations
are allowed to pool strengths from their neighbors, thereby substantially
improving model performance (Aguero-Valverde and Jovanis, 2008; Zeng et al.,
2019; Cheng et al., 2022). Various formulations of spatial correlation, such as the
spatial lag term (Castro et al., 2013; Prato et al, 2018), spatial error term (Castro
et al,, 2013), and conditional autoregressive (CAR) priors (Xu et al., 2016; Zeng et
al, 2019), can been incorporated into binary or generalized ordered outcome
models to capture the spatial effects of crash severity. The CAR priors are more
flexible than the spatial lag and spatial error structures (Quddus, 2008). In
particular, the CAR prior proposed by Leroux (hereafter referred to as the Leroux
CAR prior; Leroux et al., 2000) outperforms other specifications (Lee et al., 2011;
Xuetal,2017; Dongetal., 2020; Zeng et al.,, 2022a), as it is capable of representing
different degrees of spatial correlation (i.e., strong, moderate, or weak) by
specifying a joint distribution of independent and spatially correlated effects.

Temporal correlation is another issue worthy of investigation. Observations in
adjacent time slots may share unobserved common effects. The stratification of
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crash data over specified time periods thus likely leads to temporal correlation.
[gnoring such a fundamental temporal feature may result in erroneous
conclusions (Shirazi etal, 2021; Fu etal,, 2022). Although it is difficult to explicitly
parametrize temporal effects in current modeling approaches, potentially feasible
actions must be taken to address this challenge, even if in an incremental manner
(Mannering, 2018). Many scholars have therefore attempted to eliminate potential
deviations in estimated model parameters using different temporal configurations,
such as linear and/or secondary trends (Andrey and Yagar, 1993; Cheng et al,,
2018a; Cheng et al, 2018b; Cheng et al, 2018c), time-varying
intercept/coefficients (Cheng et al.,, 2018a), autoregressive correlation (Zeng et al.,
2017; Cheng et al,, 2018a; Cheng et al., 2018c), and random walk structures (Cui
and Xie, 2021; Ashraf and Dey, 2022). These studies have shown that the
consideration of temporal correlations helps to improve model performance.

Despite the potential improvements in modeling efficiency and model fitting,
few researchers have incorporated both spatial and temporal correlations into
crash severity models. One exception is that Meng et al. (2017) developed a space-
time logistic model to analyze taxi-related passenger injury severity. The spatial
correlation in their study, however, was formulated using the intrinsic CAR prior,
which failed to consider the spatially correlated and unstructured effects
simultaneously, and the temporal effects were arbitrarily specified to be linear. To
better capture the spatial and temporal effects in the analysis of the severity of
pedestrian injuries at urban intersections, the present study proposes more
flexible models with various formulations of spatial and temporal effects. We
believe that this effort yields a rich and sound toolkit for safety analysts to deal
with spatiotemporal correlations when modeling crashes aggregated at
contiguous spatial units encompassing multiple years.

3. Data preparation

Pedestrian crash data for 489 intersections within a highly urbanized area for a
10-year period (2010-2019) were collected from the Hong Kong Police Force, as
shown in Fig. 1. Crashes occurring within 70 meters of the centerline of an
intersection were defined as being intersection crashes (Xie et al., 2018; Xu et al,,
2019; Ye et al, 2021). To analyze the effects of driver and pedestrian
characteristics on pedestrian injury severity, only crashes that involved one
pedestrian and one vehicle were retrieved. After excluding samples with missing
information, a total of 3,051 valid pedestrian crash records were obtained and
used in our analysis.
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Fig. 1. Location of 489 intersections in West Kowloon, Hong Kong.

The crash dataset contains three subfiles: crash environment, casualty
information, and vehicle features (Zhou et al., 2020). The crash environment
exactly records the date, time, location, weather conditions, light conditions,
intersection type, traffic conditions, and traffic control type of each crash, while
the casualty information includes the pedestrian age, pedestrian gender,
pedestrian location (i.e., footpath, carriageway, junction, or other location),
pedestrian behaviors at the time of collision (i.e., walking along the footpath,
crossing the intersection, standing, or other), special circumstances, and
pedestrian contributing factors determined by the police at the crash scene.
Vehicle data comprise vehicle and driver information, such as the vehicle type,
vehicle age, vehicle maneuver at the time of collision, first point of impact, driver
age, driver gender, and driver contributing factors.

The Hong Kong Police Force divides the severity of pedestrian injuries into
three categories: fatality, serious injury, or slight injury. Since fatal crashes
accounted for only 3.11% of the selected samples, given the similarity of fatalities
and serious injuries, these two categories were combined into a single category of
pedestrians Kkilled or severely injured (KSI; Xu et al., 2016; Meng et al., 2017; Zhai
et al,, 2019; Zhou et al., 2020; Loo et al., 2023). The dependent variable was thus
defined as a dummy variable, equaling 1 for KSI and 0 for slight injuries. A total of
21 risk factors associated with casualties, vehicles, roads, and environments,
which possibly affect the pedestrian injury severity, were then selected as
explanatory variables. The definitions and descriptive statistics of these variables
are presented in Table 1.

Table 1. Description of the statistical variables.

Attribute Description Prop:rtio
Dependent variable

Injury severity 1 =KS]I, 0 = slight injury 0.192
Independent variable
Pedestrian age

<17 1 = Pedestrian age <17, 0 = other 0.070

6
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18-34* 1 =18 < Pedestrian age < 34, 0 = other 0.150
35-49 1 =35 < Pedestrian age < 49, 0 = other 0.195
50-64 1 =50 < Pedestrian age < 64, 0 = other 0.264
>65 1 = Pedestrian age > 65, 0 = other 0.321
Head injured 1 = Head injured, 0 = other 0.252
Pedestrian gender 1 =male, 0 = female 0.473
Pedestrian location
Footpath* 1 = Footpath, 0 = other 0.312
Carriageway 1 = Carriageway, 0 = other 0.251
Junction 1 = Junction (within 15m), 0 = other 0.315
Other location 1 = Other location (green belt, etc.), 0 = other 0.122
Pedestrian action
Walking on footpath* 1 = Walking on footpath, 0 = other 0.562
Crossing intersection 1 = Crossing the intersection, 0 = other 0.365
Standing 1 = Standing, 0 = other 0.058
Other action 1 = Other action (get on and off the vehicles, roadside work, 0.015
play), 0 = other
Pedestrian special circumstance
No special circumstance* 1 = No special circumstance, 0 = other 0.551
Footpath overcrowded 1 = Footpath overcrowded, 0 = other 0.092
Footpath obstructed 1 = Footpath obstructed, 0 = other 0.012
Other special circumstance 1 = Other special circumstance, 0 = other 0.345
Pedestrian contributor
No pedestrian factor* 1 = No pedestrian factor, 0 = other 0.542
Pedestrian inattentiveness 1 = Pedestrian inattentiveness, 0 = other 0.076
Pedestrian heedlessness 1 = Pedestrian heedlessness, 0 = other 0.211
Other contributors 1 = Other driver contributors (take alcohol, take drugs, listen 0171
to music, etc.), 0 = other
Driver age
18-24 1 =18 < Driver age < 24, 0 = other 0.042
25-34 1 =25 < Driver age < 34, 0 = other 0.163
35-49 1 =35 < Driver age < 49, 0 = other 0.332
50-64 1 =50 <Driver age < 64, 0 = other 0.389
>65 1 = Driver age > 65, 0 = other 0.074
Driver gender 1 = female, 0 = male 0.044
Driver maneuver
Go straight* 1 = Go straight, 0 = other 0.706
Turn right 1 = Turn right, 0 = other 0.138
U-turning 1 = U-turning, 0 = other 0.043
Turn left 1 =Turn left, 0 = other 0.060
Other operations 1 = Other operations (change lanes, etc.), 0 = other 0.053
Driver contributor
No driver factor* 1 = No driver factor, 0 = other 0.312
Driving inattentively 1 = Driving inattentively, 0 = other 0.490



186 * Indicates reference items.
187

188 4. Methods

189

Driving negligently 1 = Driving negligently, 0 = other 0.123
Other contributors 1 = Other driver contributors (physical contributors, 0.075
psychological contributors, drunk driving, etc.), 0 = other
Vehicle type
Private car* 1 = Private car, 0 = other 0.382
Taxi 1 = Taxi, 0 = other 0.230
Goods vehicle 1 = Goods vehicle, 0 = other 0.245
Bus 1 =Bus, 0 = other 0.104
Motorcycle 1 = Motorcycle, 0 = other 0.031
Other vehicles 1 = Other vehicles (trailer, tram, etc.), 0 = other 0.008
Vehicle age 1 =less than 10 years, 0 = other 0.321
First collision position
Head on* 1 = Head on, 0 = other 0.572
Back 1 = Back, 0 = other 0.054
Sideswipe 1 = Sideswipe, 0 = other 0.374
Junction control
No control* 1 = No control, 0 = other 0.418
Signal control 1 = Signal control, 0 = other 0.433
Other control 1 = Other control (e.g, stop and give way), 0 = other 0.149
Junction type
Crossing* 1 = Crossing, 0 = other 0.301
T/Y-type junction 1 = T/Y-type junction, 0 = other 0.622
Other junction type 1 = Other junction type (e.g., roundabout), 0 = other 0.077
Road type
One-way road* 1 = One-way road, 0 = other 0.622
Two-way road 1 = Two-way road, 0 = other 0.098
Dual carriageway 1 = Dual carriageway, 0 = other 0.192
Multi carriageways 1 = Multi carriageways, 0 = other 0.088
Time of accident
Before dawn 1=00:00-05:59, 0 = other 0.248
Morning* 1=06:00-11:59, 0 = other 0.076
Afternoon 1=12:00-17:59, 0 = other 0.412
Evening 1=18:00-23:59, 0 = other 0.264
Traffic congestion 1 = Traffic congestion, 0 = other 0.603
Day of week 1 = Weekend, 0 = weekday 0.271
Rain or not 1 = Rain, 0 = not rain 0.110
Year 1-10 Corresponding to the 2010-2019 years, respectively

190  Alogistic model was developed as the benchmark because the dependent variable
191  was dichotomous in nature. A total of 12 refined models were then established
192  successively by incorporating combinations of spatial and temporal terms.

193
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4.1 Logistic model

The dependent variable Y, for the ith pedestrian crash took one of two values:
Y. =1 forKSland Y, =0 for slight injury. Let the probability of KSI (¥, =1) be
.. The probability of slight injury (Y, = 0) is then 1- 7z, . The logistic model is

expressed as follows (Xu et al., 2016; Zhou et al., 2020).
Model 1: Logistic model (benchmark model)

Y. ~ Binomial(7,)

(1)

logit(,) = log(; i

P
=B+ 28X,
7 p=1

where Xl.p is the pth explanatory variable for crash i, ﬁp is the pth

coefficient to be estimated, and B, is the intercept.

4.2 Spatial logistic model with the Leroux CAR prior

To explore the effects of common unobserved factors on the severity of pedestrian
crashes across adjacent intersections, a spatial term ¢  with the Leroux CAR

prior was introduced into the logistic model. Specifically, the KSI probability of the
ith crash atthe mth intersection is expressed as follows.
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Model 2: Logistic model with the Leroux CAR prior

T.
1 —

logit(7,) = log( ~ )=p, + Z BX, +9, (2)

where the spatialterm ¢  follows the CAR prior distribution proposed by Leroux

et al. (2000), which specifies a joint distribution of independent and spatially
correlated random effects:

w 2
¢ .~ Normal( pz” AU % ) (3)

G L—p+pY w, 1-ptpy w,

where 0'52 is the variance parameter for the spatial term and w_  is the

adjacency weight of the mth and nth intersections. The prevalent first-order
neighboring structure was used to define the spatial weights here. Specifically, if
the mth and nth intersections are directly connected by a road segment,
w = 1; otherwise, w =0

mn

In Eq. (3), p(0 < p <1) is a weight parameter reflecting the strength of the
spatial correlation. p =0 indicates that the severity of pedestrian crashes
observed at the intersections is spatially independent, and an increase in p
toward 1 indicates a stronger spatial correlation. The Leroux CAR prior with
p =1 is equivalent to the intrinsic CAR prior used in previous studies (Xu et al.,
2016; Zeng et al., 2019).

4.3 Temporal logistic models

Unobserved/unobservable factors may remain unchanged, resulting in temporal
correlation in the severity of pedestrian crashes occurring in successive periods.
To account for the temporal correlation, five temporal configurations, namely the
linear time trend, quadratic temporal trend, random walk (RW-1), autocorrelation
lag (AR-1), and time adjacency, are introduced.

4.3.1 Logistic model with a linear time trend

In the logistic model with a linear time trend, the temporal effect is modeled as the
covariate. Specifically, the KSI probability of the ith pedestrian crash in the ¢th
year is formulated as follows.

10
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Model 3: Logistic model with a linear time trend

logit(7,) = log(- %

i ):ﬂO+ZﬂX + ut (4)

i
7Z-i p p

where u isthe scalar parameter for the linear yearly trend.

4.3.2 Logistic model with a quadratic time trend
The time trend in reality may be nonlinear. To capture nonlinear temporal effects,
the logistic model with a quadratic time trend is developed by adding a quadratic
time term to Eq. (4) (Chengetal., 2017).

Model 4: Logistic model with a quadratic time trend

T
i

P
logit(,) = log( )=B,+ D2 BX, +ut (5)
p=1

1—7z1.

where 7 isthe coefficient for the quadratic yearly trend.

4.3.3 Logistic model with RW-1 structure
As a popular approach to processing time series data, the RW-1 adopts a first-
order random walk and assumes that the parameter of current year depends on
that of the previous one (Cui and Xie, 2021).

Model 5: Logistic model with RW-1

Vd P
l_l )=ﬂ0+zlﬂlep+]/t
p=

logit(7,) = log(
72.1'

7, ~ Normal(0, 012) (6)

2
t—l’o-t)

7/4»1 ~ Normal(y

where y, denotes the temporal effect in the ¢th year and O't2 is the temporal

variance parameter.

4.3.4 Logistic model with AR-1

In the logistic model with AR-1, the temporal correlation is specified via an error
term & with lag-1 dependence, which suggests that the temporal effects in a
certain year are affected by the previous year. Conditional on the stationary

assumption, the model is formulated as follows (Cheng et al., 2018a; Cheng et al.,
2018c; Zeng et al., 2017).

11
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Model 6: Logistic model with time AR-1

P
1_”):ﬂ0+2ﬂpXip+é‘t

i p=l

T
i

logit(7,) = log(

2

6, ~ Normal(0, 1 % ) (7)
-7

o

t‘t>1

~ Normal(ad,_,, 07)

where « is the autocorrelation coefficient with a value between —1 and 1. If «
is close to 0, there is no serial correlation between consecutive years. Alternatively,
if the absolute value of « approaches 1, the temporal effect of the present year

receives a considerable contribution from that of the previous year. aé is the

variance parameter of the temporal terms.

4.3.5 Logistic model with time adjacency

Similar to the aforementioned spatial model, the logistic model with time

adjacency formulates temporal correlation using the intrinsic CAR prior

distribution. Unlike the AR-1 model, the time adjacency model also considers the

potential impact of the following year (Cheng et al., 2018a; Abellan et al., 2008).
Model 7: Logistic model with time adjacency

T
1-

P
=) =B+ 2B,
. r=1

2
Zk ekwtk O-t )
b
Zk Wtk Zk Wtk

where @ indicates the temporal effect and (le is the variance for the temporal

logit(7,) = log(
(8)

0

t

6,

k

., ~ Normal(

term. w,_ isthe adjacent weight between the rth and kth years. Similar to the
spatial adjacency weight, if the rth and kth years are consecutive, w, =1;

otherwise, w, =0.

4.4 Spatiotemporal logistic models
To capture spatial and temporal correlations simultaneously, by combining the

spatial Leroux CAR prior with the five temporal configurations, all spatiotemporal
models are formulated as follows.

12
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Model 8: Logistic model with the Leroux CAR prior and a linear time trend
logit(z,) = B, + i,b’pXip +@ + ut (9
o
Model 9: Logistic model with the Leroux CAR prior and a quadratic time trend
logit(z,) = B, + iﬂp)(ip +@ + put + ot (10)
p=1
Model 10: Logistic model with RW-1
logit(iri) = ,BO + iﬂpX[p + ¢m +7, (11)
o
Model 11: Logistic model with the Leroux CAR prior and time AR-1
logit(z.) = B, + iﬂpXip +¢ +0 (12)
p=1
Model 12: Logistic model with the Leroux CAR prior and time adjacency

logit(z) = 3, + i BX, +¢ +0 (13)

5. Model estimation and performance evaluation criteria
5.1 Model estimation

We used the Bayesian framework to estimate the parameters because of its
advantages of flexibility and generality, which are suited to complex problems such
as the spatiotemporal modeling in this study (Gelman et al., 2013; Ashraf and Dey,
2022; Xu et al,, 2022; Zhou et al,, 2022). In Bayesian estimation, obtaining the
posterior estimates requires the specification of prior distributions. In the present

study, the prior distributions for coefficients S, ,Bp, n,and u were specified

as diffused normal distributions. Previous studies have shown that there exists a
parameter-sensitive problem with an inverse-gamma distribution when the true
variance is close to zero (Gelman, 2006; Meng et al., 2017; Xu et al., 2017; Dong et

al., 2020; Xu et al., 2022). The spatial variance parameter of and time adjacency

term of in Egs. (3) and (8) were thus specified as the uniform distributions. The

specific distributions are presented as follows.
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By - B, ~ Normal(0, 10)
1, 1 ~ Normal(0,10%)
Gf, Gf ~ Uniform(0, 100) (14)
p ~ Uniform(0, I)
y ~ Uniform(-1,1)

Bayesian estimations of the above model parameters were performed in
WinBUGS software. For each model, 60,000 iterations of Markov chain Monte Carlo
simulation were performed. To ensure the convergence of all of the parameters,
the first 50,000 iterations were discarded. The convergence of the models was
diagnosed using the Gelman-Rubin statistic, visual examination of the Markov
chain Monte Carlo chains, and the ratios of Monte Carlo errors to the respective
standard deviations of the estimates.

5.2 Performance evaluation criteria

5.2.1 Deviation information criterion

As an evaluation measure commonly used for comparing Bayesian models, the
deviation information criterion (DIC) can be directly obtained using WinBUGS
software (Zeng et al., 2022a; 2022b). The DIC is formulated as (Spiegelhalter et al.,
2002):

DIC=D+p, (15)

where D is the posterior mean of the bias statistic and is used to measure the
model fitting ability. p is the number of valid model parameters and is used to

measure the model complexity. Generally, a lower DIC value indicates better
performance (Spiegelhalter et al., 2003).

5.2.2 Classification accuracy

Classification accuracy is widely used to measure the prediction performance of
discrete outcome models (Tang et al.,, 2019; Zeng et al., 2019). Given the binary
outcomes of the dependent variable, the results of the combination of observed
and predicted severity levels can be divided into four categories, namely true
positive (TP), false positive (FP), true negative (TN), and false negative (FN), which
constitute the confusion matrix, as shown in Table 2. Accordingly, the classification
accuracies for KSI (also referred to as the recall), slight injury (also referred to as
the specificity), and the whole dataset are calculated as:

TP
4 =—
“* TP+FN
'A :L (16)
* TN +FP
TP +TN

* TP +FN +TN +FP
Table 2. Confusion matrix for the classification of pedestrian crash severity.
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Predicted results

True results KSI Slight injury
KSI TP (true positive) FN (false negative)
Slight injury FP (false positive) TN (true negative)
6. Results

6.1 Model performance comparison

Table 3 displays the results for the performance evaluation criteria of the 12 fitted
models. In terms of the DIC, we can see that the models with spatial/temporal
correlation (Models 2-7) had lower DIC values than the logistic model (Model 1).
These results are generally consistent with previous findings (Xu etal., 2016; Meng
et al, 2017; Zeng et al., 2019, 2022a). However, because of the increase in model
complexity as reflected by pp, the differences in the DIC values were all less than
10, implying that the improvement in the overall fitting performance achieved by
accounting for spatial or temporal correlation was moderate. In addition, the DIC
values of Models 8-12 were similar with differences no greater than 3, but
substantially smaller than that of Model 1 (with differences exceeding 10),
suggesting that accounting for both spatial and temporal correlations improve the
overall fit performance.

With regard to the prediction performance, the results for C4,, C4,, and

CA, indicate that all of the spatiotemporal models have higher classification

accuracy than the logistic model, no matter whether we consider the KSI, slight
injury, or all samples. These results demonstrate again the advantages of capturing
both spatial and temporal correlations in pedestrian crash severity analysis.
Furthermore, the spatiotemporal models exhibited better performance than most
of the models with spatial or temporal correlation solely, especially for the
prediction of KSI. Specifically, the spatiotemporal logistic model with the Leroux
CAR prior and RW-1 structure (Model 12) had the highest classification accuracy
for each level of injury severity and the whole dataset. We thus conclude that the
model outperformed the alternatives in terms of both the overall fit and prediction
performance. Given that the spatiotemporal model with the Leroux CAR prior and
RW-1 performed better, we chose it to interpret the estimation results, as reported
in the following.

Table 3. Results for the performance evaluation criteria for alternative models.

No Model D Py DIC C4, C4, CA,

1  Logistic model (benchmark model) 2573 50 2623 80.73% 20.58% 96.75%
2 +Leroux CAR prior 2501 115 2615 80.73% 23.81% 97.00%
3 +Linear time trend 2564 51 2615 80.73% 22.28% 96.87%
4+ Quadratic time trend 2564 52 2616 80.73% 22.79% 96.79%
5  +RW-1 structure 2561 55 2616 80.73% 23.47% 96.83%
6  +Time AR-1 2562 55 2617 80.73% 23.13% 96.67%
7  + Time adjacency 2563 55 2618 80.73% 2295% 96.75%
8  +Leroux CAR prior + Linear time trend 2483 123 2605 80.73% 24.32% 97.12%

9  +Leroux CAR prior + Quadratic time trend 2479 126 2605 80.73% 24.49% 97.16%
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10 +Leroux CAR prior + RW-1 structure 2473 131 2604 80.73% 24.83% 97.16%
11  +Leroux CAR prior + Time AR-1 2476 130 2606 80.73% 24.66% 97.04%

12 +Leroux CAR prior + Time adjacency 2479 128 2607 80.73% 24.49% 97.16%

6.2 Model parameter estimations

Table 4 shows the estimation results of spatiotemporal model with the Leroux CAR
prior and RW-1. We also presented the parameters estimated from the basic
logistic model and the models with the Leroux CAR prior or the RW-1 for
comparison. The 95% Bayesian credible interval (BCI) was used to determine
whether the parameters differed significantly from zero. Variables that were
insignificant were removed for parsimony purpose (Dong et al., 2020; Xu et al,,
2022). To quantitatively explain the effects of these independent variables, the
corresponding odds ratios are shown in Table 5.
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Table 4. Parameter estimations of logistic models with the spatial, temporal, and spatiotemporal effects.

Logistic model

Logistic model with
Leroux CAR prior

Logistic model with
RW-1 structure

Logistic model with Leroux CAR
prior and RW-1 structure

Mean (SD) 95% BCI Mean (SD) 95% BCI Mean (SD) 95% BCI Mean (SD) 95% BCI

Pedestrian age (reference: 18-34)

<17 -0.69 (0.33) (-1.36,-0.06) -0.72(0.34) (-1.42,-0.07) -0.68(0.33) (-1.36,-0.04) -0.73(0.34) (-1.42,-0.07)

35-49 0.03 (0.21) (-0.38, 0.44) 0.03 (0.22) (-0.40, 0.45) 0.04 (0.21) (-0.37,0.45) 0.03 (0.22) (-0.39, 0.46)

50—64 0.50 (0.19) (0.13, 0.87) 0.52 (0.19) (0.14, 0.90) 0.50 (0.19) (0.14, 0.88) 0.53 (0.20) (0.14, 0.93)

>65 1.10 (0.18) (0.74, 1.47) 1.13(0.19) (0.75,1.50) 1.12 (0.18) (0.76,1.48) 1.15 (0.19) (0.77, 1.54)
Head injured (Yes=1, No =0) 1.17 (0.11) (0.96, 1.39) 1.20 (0.11) (0.98,1.43) 1.20 (0.11) (0.98,1.41) 1.23 (0.12) (1.00, 1.45)
Pedestrian location (reference: footpath)

Carriageway 0.00 (0.18) (-0.34, 0.34) 0.00 (0.18) (-0.36,0.35) -0.05 (0.18) (-0.40,0.30) -0.06 (0.19) (-0.42,0.30)

Junction 0.15 (0.16) (-0.16, 0.46) 0.18 (0.17) (-0.14,0.51) 0.15 (0.16) (-0.16,0.47) 0.19 (0.17) (-0.14, 0.51)

Other location 0.50 (0.19) (0.12, 0.87) 0.53 (0.20) (0.14, 0.92) 0.40 (0.20) (0.02,0.79) 0.44 (0.21) (0.04, 0.85)
Pedestrian action (reference: walking on footpath)

Crossing the intersection 0.41 (0.12) (0.17, 0.65) 0.41 (0.13) (0.16, 0.65) 0.48 (0.13) (0.23,0.73) 0.49 (0.13) (0.23,0.74)

Standing -0.56 (0.29) (-1.15,-0.01) -0.58(0.29) (-1.18,-0.02) -0.53(0.29) (-1.12,0.02) -0.54 (0.30) (-1.15,0.03)

Other action -0.31 (0.49) (-1.34, 0.60) -0.36 (0.51) (-1.43,0.57) -0.28 (0.50) (-1.31,0.63) -0.33(0.52) (-1.40, 0.63)
Pedestrian special circumstance (reference: none)

Footpath overcrowded 0.10 (0.22) (-0.34, 0.54) 0.11 (0.23) (-0.35,0.56) 0.06 (0.22) (-0.39,0.49) 0.06 (0.23) (-0.40, 0.51)

Footpath obstructed 0.55 (0.45) (-0.36, 1.40) 0.61(0.47) (-0.36,1.49) 0.52 (0.46) (-0.42,1.37) 0.57 (0.47) (-0.40, 1.46)

Others 0.32 (0.13) (0.07, 0.56) 0.33 (0.13) (0.08, 0.59) 0.28 (0.13) (0.03, 0.52) 0.29 (0.13) (0.03, 0.55)
Pedestrian contributing factors (reference: none)

Pedestrian inattentiveness 0.22 (0.24) (-0.24, 0.68) 0.23 (0.24) (-0.25,0.7) 0.20 (0.23) (-0.26, 0.66) 0.21 (0.25) (-0.28, 0.69)

Pedestrian heedlessness 0.19 (0.17) (-0.15, 0.52) 0.18 (0.18) (-0.17,0.52) 0.19 (0.17) (-0.14, 0.52) 0.18 (0.18) (-0.18,0.53)

Other pedestrian contributors 0.32 (0.16) (0.02, 0.63) 0.35 (0.16) (0.03, 0.67) 0.40 (0.16) (0.08, 0.72) 0.43 (0.17) (0.10, 0.77)
Driver maneuver (reference: go straight)

Turn right -0.15 (0.16) (-0.46, 0.16) -0.16 (0.16) (-0.49,0.15) -0.11 (0.16) (-0.43,0.19) -0.13 (0.17) (-0.46,0.19)

U-turning -1.52 (0.42) (-2.40,-0.75) -1.54(0.43) (-2.43,-0.74) -1.55(0.43) (-2.44,-0.76) _-1.59 (0.44) (-2.49,-0.77)

Turn left -0.19 (0.22) (-0.64, 0.24) -0.17 (0.23) (-0.64,0.28) -0.18 (0.23) (-0.64, 0.25) -0.16 (0.23) (-0.63,0.29)
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Other operations -0.60 (0.27)
Driver contributing factors (reference: none)
Driving inattentively 0.31 (0.15)
Driving negligently 0.56 (0.22)
Other driver contributors 0.24 (0.21)
Vehicle type (reference: private car)
Taxi -0.10 (0.17)
Goods vehicle 0.41 (0.14)
Bus 0.57 (0.18)
Motorcycle 0.16 (0.29)
Other vehicles 1.36 (0.48)

First collision position (reference: head on)
Rear end (Yes=1, No=0) -0.18 (0.11)
Time of collision (reference: morning)

Before dawn 0.54 (0.21)

Afternoon -0.45 (0.13)

Evening -0.40 (0.15)
Traffic congestion (Yes=1, No=0) 0.20 (0.13)

(-1.14, -0.09)

(0.01, 0.61)
(0.14, 0.99)
(-0.18, 0.66)

(-0.43,0.22)
(0.13, 0.68)
(0.21,0.91)
(-0.43,0.72)
(0.43, 2.30)

(-0.41, 0.04)

(0.12, 0.95)

(-0.69, -0.20)

(-0.69,-0.11)
(-0.05, 0.45)

-0.61 (0.28)

0.31 (0.16)
0.55 (0.22)
0.23 (0.22)

-0.12 (0.17)
0.39 (0.15)
0.58 (0.19)
0.12 (0.30)
1.38 (0.49)

-0.18 (0.12)

0.56 (0.22)

-0.44 (0.13)

-0.43 (0.15)
0.20 (0.13)

(-1.17,-0.08)

(0.00, 0.62)
(0.11, 0.99)
(-0.21, 0.66)

(-0.46,0.21)
(0.10, 0.67)
(0.21,0.94)
(-0.49, 0.70)
(0.40, 2.35)

(~0.41, 0.05)

(0.13,0.99)
(-0.70, -0.19)
(-0.73,-0.13)

(-0.06, 0.46)

-0.55 (0.27)

0.36 (0.15)
0.59 (0.22)
0.19 (0.22)

-0.11 (0.17)
0.40 (0.14)
0.55 (0.18)
0.12 (0.30)
1.42 (0.48)

-0.24 (0.12)

0.55 (0.21)
-0.45 (0.13)
-0.39 (0.15)
0.27 (0.13)

(-1.09, -0.04)

(0.06, 0.66)
(0.17,1.02)
(-0.24, 0.61)

(-0.44, 0.22)
(0.12, 0.68)
(0.20, 0.90)
(-0.47, 0.69)
(0.48,2.37)

(-0.47,-0.01)

(0.14, 0.97)
(-0.70, -0.20)
(-0.68, -0.10)

(0.01, 0.53)

-0.56 (0.28)

0.35 (0.16)
0.57 (0.23)
0.17 (0.22)

-0.12 (0.17)
0.38 (0.15)
0.57 (0.19)
0.08 (0.31)
1.47 (0.50)

-0.24 (0.12)

0.58 (0.22)
-0.46 (0.13)
-0.42 (0.16)
0.27 (0.14)

(-1.12,-0.03)

(0.04, 0.66)
(0.12, 1.02)
(-0.27,0.61)

(-0.47,0.22)
(0.09, 0.68)
(0.19, 0.94)
(-0.54, 0.67)
(0.49, 2.46)

(-0.48,-0.01)

(0.15, 1.02)
(-0.72, -0.20)
(-0.73,-0.12)

(0.00, 0.54)

1SD and BCl refer to standard deviation and Bayesian credible interval, respectively.

2Boldfaced values indicate significance at 95% BCI.
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397  Table 5. 0dd ratios of logistic models with the spatial, temporal, and spatiotemporal effects.

Logistic model Logistic model v.vith Logistic model with Logist.ic model with Leroux
Leroux CAR prior RW-1 structure CAR prior and RW-1 structure
Mean 95% BCI Mean 95% BCI Mean 95% BCI Mean 95% BCI

Pedestrian age (reference: 18-34)

<17 0.53 (0.26, 0.95) 0.51 (0.24, 0.93) 0.54 (0.26, 0.96) 0.51 (0.24, 0.93)

35-49 1.05 (0.68, 1.55) 1.05 (0.67,1.57) 1.07 (0.69, 1.58) 1.06 (0.68, 1.59)

50-64 1.68 (1.14, 2.39) 1.71 (1.15, 2.47) 1.69 (1.15, 2.4) 1.73 (1.16, 2.53)

>65 3.05 (2.1,4.34) 3.14 (2.13, 4.49) 3.10 (2.13,4.38) 3.22 (2.17, 4.65)
Head injured (Yes=1, No =0) 3.25 (2.61,4) 3.35 (2.67,4.16) 3.33 (2.67,4.1) 3.43 (2.72, 4.28)
Pedestrian location (reference: footpath)

Carriageway 1.01 (0.71,1.41) 1.02 (0.7,1.42) 0.97 (0.67,1.35) 0.96 (0.65, 1.35)

Junction 1.18 (0.85,1.59) 1.21 (0.87,1.66) 1.18 (0.85,1.59) 1.22 (0.87,1.67)

Other location 1.67 (1.12,2.39) 1.74 (1.15, 2.52) 1.53 (1.02,2.2) 1.59 (1.04, 2.33)
Pedestrian action (reference: walking on footpath)

Crossing the intersection 1.51 (1.18,1.91) 1.52 (1.18, 1.92) 1.62 (1.26,2.07) 1.64 (1.26,2.11)

Standing 0.59 (0.32, 0.99) 0.58 (0.31, 0.98) 0.62 (0.33,1.02) 0.61 (0.32,1.03)

Other action 0.82 (0.26,1.82) 0.79 (0.24,1.77) 0.85 (0.27,1.88) 0.82 (0.25, 1.87)
Pedestrian special circumstance (reference: none)

Footpath overcrowded 1.14 (0.71,1.72) 1.15 (0.71, 1.75) 1.08 (0.68, 1.64) 1.09 (0.67, 1.66)

Footpath obstructed 1.92 (0.69, 4.07) 2.04 (0.7, 4.45) 1.86 (0.66, 3.94) 1.97 (0.67,4.32)

Others 1.38 (1.08, 1.75) 1.41 (1.08, 1.81) 1.33 (1.03, 1.69) 1.35 (1.03,1.74)
Pedestrian contributing factors (reference: none)

Pedestrian inattentiveness 1.29 (0.78,1.97) 1.30 (0.78,2.01) 1.26 (0.77,1.94) 1.27 (0.75,1.99)

Pedestrian heedlessness 1.22 (0.86, 1.69) 1.22 (0.84, 1.69) 1.23 (0.87,1.69) 1.21 (0.84,1.7)

Other pedestrian contributors 1.40 (1.02, 1.88) 1.44 (1.03,1.95) 1.51 (1.08, 2.06) 1.57 (1.11, 2.15)

Driver maneuver (reference: go straight)
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Turn right 0.87
U-turning 0.24
Turn left 0.85
Other operations 0.57
Driver contributing factors (reference: none)
Driving inattentively 1.38
Driving negligently 1.80
Other driver contributors 1.30

Vehicle type (reference: private car)

Taxi 0.91
Goods vehicle 1.52
Bus 1.79
Motorcycle 1.22
Other vehicles 4.36
First collision position (reference: head on)
Rear end (Yes=1, No=0) 0.84
Time of collision (reference: morning)
Before dawn 1.75
Afternoon 0.65
Evening 0.68
Traffic congestion (Yes=1, No=0) 1.23

(0.63,1.17)
(0.09, 0.47)
(0.53, 1.28)
(0.32,0.91)

(1.01, 1.85)
(1.15, 2.69)
(0.83,1.93)

(0.65, 1.25)
(1.14, 1.98)
(1.24, 2.5)
(0.65, 2.05)
(1.53,9.96)

(0.67, 1.04)

(1.13, 2.58)
(0.5, 0.82)
(0.5, 0.9)
(0.95, 1.57)

0.86
0.23
0.86
0.57

1.38
1.78
1.29

0.90
1.49
1.81
1.18
4.48

0.84

1.80
0.65
0.66
1.23

(0.61,1.17)
(0.09, 0.48)
(0.53,1.32)
(0.31, 0.92)

(1, 1.86)
(1.11, 2.69)
(0.81,1.93)

(0.63,1.24)
(1.11, 1.96)
(1.24, 2.55)
(0.61,2.02)
(1.5,10.5)

(0.66, 1.05)

(1.14, 2.69)
(0.5, 0.83)
(0.48,0.88)
(0.94, 1.58)

0.90
0.23
0.85
0.60

1.45
1.85
1.24

091
1.51
1.76
1.18
4.66

0.79

1.78
0.64
0.68
1.32

(0.65,1.21)
(0.09, 0.47)
(0.53, 1.28)
(0.33,0.96)

(1.06,1.93)
(1.18,2.77)
(0.79, 1.85)

(0.65, 1.24)
(1.13,1.97)
(1.22, 2.47)
(0.63,1.99)
(1.62,10.7)

(0.63, 0.99)

(1.15,2.63)
(0.5,0.82)
(0.5,0.91)
(1.01,1.7)

0.89
0.22
0.87
0.59

1.44
1.82
1.22

0.90
1.48
1.79
1.14
4.92

0.79

1.83
0.64
0.66
1.33

(0.63,1.21)
(0.08, 0.46)
(0.53,1.34)
(0.33,0.97)

(1.04,1.94)
(1.13,2.77)
(0.76, 1.84)

(0.63, 1.24)

(1.09, 1.97)
(1.22,2.56)
(0.58, 1.96)
(1.64,11.69)

(0.62, 0.99)

(1.16,2.77)

(0.49, 0.82)

(0.48, 0.89)
(1,1.72)

1 BCI refers to the Bayesian credible interval.
2Boldfaced values indicate significance at 95% BCI.
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According to Table 4, a total of 12 variables were significantly associated with
the severity of pedestrian injuries. Although the estimation results were broadly
consistent across the four models, their significant variables were not completely
identical. For example, traffic congestion was insignificant in the benchmark model
and the logistic model with the Leroux prior;, but became highly significant in the
models with temporal and spatiotemporal effects. Similar results were found for
first collision point, whereas the opposite conclusion hold true for pedestrian action.
These findings highlight that the neglect of spatiotemporal effects when modeling
the severity of pedestrian crashes over multiple years across road networks in
dense urban regions unlikely achieves unbiased estimations and valid inferences.

Once the potential bias arising from the spatiotemporal correlations was
adjusted, we can interpret the results for safety policymaking. A sound
interpretation of the parameter estimates also helps justify the validity of the
proposed method.

6.2.1 Pedestrian factors

Table 4 shows that pedestrians older than 50 years of age were more likely to
suffer from KSI crashes than the young adult pedestrians. Specifically, pedestrians
aged 65 or above were 3.22 times more likely to experience fatal or severe injuries
than those during 18—-34 years old when struck by motor vehicles. This result is
largely expected and is consistent with the results of previous studies (Xu et al.,
2016; Zhai et al.,, 2019), given the increasing fragility of the body, slower gait,
longer reaction time, and weakened ability to cope with hazardous situations
associated with aging. Also interestingly, compared with the young adult
pedestrians, children (under 18 years old) were less likely to be involved in serious
crashes. One plausible explanation is that in recent years traffic safety education
and publicity for children have been promoted in Hong Kong, and children are
often accompanied by their guardians when crossing intersections, by which their
safety can be better guaranteed.

Regarding the location of injury, pedestrians with head injuries sustained a
likelihood of fatal and severe injuries 3.43 times higher than those with non-head
injuries. This finding was also reported by Xu et al. (2016) and Zhou et al. (2020),
which reminds us that in the event of collisions involving vulnerable road users,
the protection of the head should be the top priority.

The behavior of pedestrians before crashes also significantly affected the
injury outcomes. As an illustration, pedestrians crossing a road were more likely
to be fatally or severely injured than those walking along the sidewalk, whereas
standing still was the safest pedestrian behavior. This result is expected to some
extent. Other pedestrian factors, including drinking alcoholic beverages, taking
drugs, and listening to music, were detrimental to pedestrian safety, as these
activities may prolong a pedestrian’s reaction time, reduce a pedestrian’s
perception abilities, and prevent a pedestrian from reacting to dangerous
situations.

In addition to the overcrowded or obstructed footpaths, other circumstances
such as the absence of a footpath were more likely to result in fatal or severe
injuries to pedestrians. This result probably reflects the fact that drivers do not
expect the presence of pedestrians at intersections without footpaths. Based on a
Danish dataset, Abay (2013) reported a similar finding that pedestrians at
unmarked crossings were more likely to be fatally or severely injured.

21



449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497

6.2.2 Driver factors

Some risk factors significantly affecting pedestrian injury severity, such as the
driver’s age, driver’s maneuver, and vehicle type, have been reported in previous
studies (Kim et al., 2017; Sasidharan and Menéndez, 2019; Tjahjono et al., 2021).
According to the results of our study, driver age was not significantly associated
with the severity of pedestrian injuries. One plausible explanation might be that
although the driving performance (e.g., lateral control ability and braking response
time) of elderly drivers is not as good as that of young drivers, elderly drivers tend
to adapt compensatory strategies such as driving slower, driving more
conservatively, and being more willing to yield to reduce the possible conflicts with
pedestrians at intersections (Chen et al., 2021).

In terms of driver maneuvers, our estimations indicate that the probability of
KSI in the case of a driver making a U-turn or other maneuvers (i.e., lane changing,
overtaking, parking, and deceleration) was much lower than that of driving
straight. As presented in Table 5, the probability of KSI for a U-turn or other
maneuver was only 0.20 or 0.57 times that for straight driving, respectively. These
findings are intuitively reasonable, because when a driver conducts these
maneuvers, not only does the driver reduce speed and act more vigilantly but
nearby pedestrians also take avoidance measures to ensure their own safety.

Regarding driver contributary factors, no one disagrees that driving
inattentively and negligently result in more serious crashes. Specifically, the
likelihood of KSI increased by 44% and 82% if the drivers were inattentive and
negligent, respectively.

6.2.3 Vehicle factors
Vehicle type was also closely related to the severity of pedestrian injury. Compared
with the taxis, private cars, and motorcycles, once trucks, buses, and other heavy
vehicles such as trailers and trams were involved, these crashes were more likely
to cause fatal or severe injuries to pedestrians. This result is plausible given the
increase in mass, velocity, and energy release during collisions with heavy vehicles.
Also importantly, as presented in Table 5, the likelihood of pedestrians being
fatally or severely injured reduced by approximately 21% if the first point of
collision was rear end. This result is expected to some extent. As vulnerable road
users without any external protection, pedestrians are likely to absorb more
kinetic energy when collision by the front of vehicle, thereby resulting in more
serious outcomes.

6.2.4 Environmental factors

Regarding the crash time, the negative signs of the estimated coefficients for
afternoon (12:00-18:00) and evening (18:00-24:00) suggest that the likelihood of
fatal or severe injury tended to be lower in the afternoon and evening than in the
morning (06:00-12:00). During the morning rush hours, greater commuting
pressure to arrive at work on time inevitably motivates both drivers and
pedestrians to be more aggressive (e.g., speeding and red-light violations). It is
thus not surprising that pedestrian crashes in the morning resulted in more
serious injury outcomes. In addition, pedestrian crashes before dawn were more
likely to induce serious consequences, a finding consistent with previous studies
(Chu, 2014). This elevated injury risk is probably attributed to the speeding,
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fatigue driving, and restricted visibility during nighttime.

Finally, the results for spatiotemporal model revealed that traffic congestion
was more likely to cause serious pedestrian crashes, which is inconsistent with
previous findings (Shefer and Rietveld, 1997; Stiles et al., 2021). Intuitively, vehicle
speed in congested areas is lower, and crashes are accordingly expected to be less
severe. One plausible explanation is that the conclusions of previous studies were
mainly drawn from highway data (Quddus et al, 2010). In contrast, the
intersections under investigation in the present study were located in highly
urbanized areas with dense road networks and heavy pedestrian activities. The
frequent acceleration and deceleration maneuver due to congestion in urban areas
are likely to trigger negative emotions, such as impatience and road rage, which
potentially induce aggressive driving behaviors and thus adversely affect
pedestrian safety (Li et al., 2020).

6.3 Temporal/spatial correlation analysis

6.3.1 Temporal correlation analysis

Table 6 presents the parameter estimates of the temporal error term for the
spatiotemporal models with linear and quadratic time trends. The results of the
linear time trend item (Model 8) indicate that the coefficient of the time variable
was statistically significant at the 95% BCI, whereas the parameters for the
quadratic time trend were insignificant (Model 9). Such a consistent reduction in
the likelihood of fatal and severe injuries sustained by pedestrians within the past
10 years was also demonstrated by the results of the spatiotemporal models with
RW-1 structure, time AR-1, and time adjacency, respectively, as illustrated in Fig. 3.
Given the presence of a linearly decreasing trend, it is not surprising that the
performances of models with different temporal configurations were broadly
similar.

Table 6. Temporal parameter estimations of the spatiotemporal model.

Leroux CAR prior and linear time trend Leroux CAR prior and quadratic time trend
H -0.07 (-0.11,-0.03) 0.04 (-0.12,0.21)
n —-0.01 (-0.03, 0.004)

Boldfaced values indicate significance at the 95% BCI.
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Fig. 2. Distribution of temporal error terms in the spatiotemporal logistic
regression models.

6.3.2 Spatial correlation analysis
Table 7 presents the parameter estimation results of the spatial error terms of the

spatiotemporal model. The variance parameter o  produced a posterior
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distribution with a mean of 0.54 and standard deviation of 0.27. The spatial
correlation parameter p produced a posterior estimate with a mean of 0.41 and
standard deviation of 0.25. The corresponding 95% BCI was (0.03, 0.93), which
significantly differs from both 0 and 1. These results indicate that a moderate
amount of unobserved heterogeneity was explained by the spatially correlated
effects.

Table 7. Spatial parameter estimations of the spatiotemporal model.

Mean (standard deviation) 95% BCI
o, 0.54 (0.27) (0.02,1.01)
P 0.41 (0.25) (0.03,0.93)

Boldfaced values indicate significance at the 95% BCI.

One pragmatic advantage of spatiotemporal models is their ability to identify
hotspots for safety diagnoses. Inspired by the concept of the potential for safety
improvement (Hauer et al,, 2002; Xu et al,, 2019), we defined relative risk (RR;
DiMaggio, 2015) as the expected excess odd ratios to determine whether the mth
intersection had a higher likelihood of KSI pedestrian crashes than those with
similar characteristics. RR is expressed as follows.

RR = exp(g, ) (17)

where ¢ s the spatial error term defined in Eq. (3). An intersection with an RR

greater than 1 at the 95% BCI can be regarded as having substantial potential for
safety improvement.

The results are illustrated in Fig. 4. The left plot illustrates the RR estimates
for the top 30 safest and most dangerous intersections, respectively. The mapping
of the RR values in the right plot further helps identify intersections where
pedestrians are more likely to sustain fatal or severe injuries than expected. Such
a thorough risk profile can serve as a basis for local authorities in identification of
targeted sites where the safety and mobility of pedestrians need to be improved.

Relative risk Relative risk
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Fig. 3. Hotspots identification by the spatiotemporal logistic regression model
with the Leroux CAR prior and RW-1 structure: (a) top 30 safest and most
dangerous intersections, respectively, in terms of relative risk (dots: mean values;
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lines: 95% BCI), and (b) locations of hotspots across the studied region.
7. Practical implications

According to our findings, tailored countermeasures can be formulated to enhance
pedestrian safety at intersections in urban areas. As presented in Table 5, odds
ratios for the three variables, i.e., pedestrians over 65 years old, head injuries, and
heavy vehicles exceeded 3. It is thus urgent to take special measures for these
situations.

First, against the background of an aging society, special attention should be
paid to the elderly pedestrians. The safety awareness of this particularly
vulnerable group can be improved through education and publicity activities. In
terms of traffic management, traffic facilities need to be refined to guarantee the
safety and mobility of elderly pedestrians, such as by extending the green signal
time to ensure that elderly pedestrians have adequate time to cross a street safely.
Furthermore, to reduce the conflicts between pedestrians and motor vehicles at
intersections, traffic management departments can separate the paths of
pedestrians and vehicles in time or space, such as by setting up dedicated
pedestrian signal lights or building overpasses. Second, beacons can also be set up
at locations where heavy vehicles such as trucks frequently pass to remind
pedestrians of safety. Also, to minimize the serious consequences of head injuries,
traffic safety education campaigns and publicity can be carried out to inform road
users how to avoid head injuries and what protective measures to take after a head
injury.

In addition to the aforementioned 4E (i.e., engineering, enforcement,
emergency, and education) strategies, 3A (i.e, awareness, appreciation, and
assistance) strategies can be adopted to aid the formulation of safety programs for
pedestrians and reduce the severity of injury outcomes at urban intersections. In
terms of awareness, drivers and pedestrians should be made more aware of the
limitations of their behaviors at intersections. For example, they should be aware
that there are intensive conflicts between vehicles and pedestrians at intersections.
This will encourage pedestrians to be more vigilant when crossing an intersection
and to avoid inattentive behaviors such as listening to music or playing with
mobile phones. Likewise, drivers can adopt more considerate behaviors, such as
approaching intersections at lower speeds and being more willing to yield when
encountering pedestrians at intersections. In terms of appreciation, drivers and
pedestrians should be educated to be more aware of situations that increase the
severity of pedestrian crashes. According to our study, elderly pedestrians were
more likely to be fatally or severely injured if a collision occurred in the morning.
Similarly, pedestrians should pay special attention to large vehicles, such as buses,
large trucks, and coaches when crossing intersections, because large vehicles
create blind spots. Furthermore, given that head injuries cause serious
consequences, vehicle manufacturers should consider the use of flexible materials
that better absorb the impact force when a pedestrian’s head collides with the
vehicle. In terms of assistance, it would be beneficial to introduce appropriate
driver assistance systems, such as pedestrian recognition systems, electronic road
information boards, and mobile navigation software to identify nearside
pedestrians, broadcast traffic conditions, provide drivers with real traffic
information, thereby helping drivers get familiar with road environment in
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advance. A real-time traffic broadcast system not only allows drivers to avoid
congested routes and time periods, but also helps drivers plan their travel time
and improve their tolerance of traffic congestion, consequently improving driving
safety.

8. Conclusions

Pedestrians, as vulnerable road users, are prone to suffering from serious injuries
in traffic crashes. In improving pedestrian safety and mobility, potential factors
contributing to the severity of pedestrian crashes need to be determined. In this
study, we integrated geographic information with traffic accident data and
selected 21 risk factors that may affect the severity of pedestrian injury mainly
from four aspects, human (both motor vehicle drivers and pedestrians), vehicle,
road, and environment. We then developed a basic logistic model and 11 improved
models considering temporal and spatial effects. By comparing model goodness-
of-fit measures, we found that an explicit consideration of both spatial and
temporal correlations substantially improved model performance. Specifically, the
spatiotemporal logistic model with the spatial Leroux CAR prior and RW-1
structure performed best, with the highest prediction accuracy and the lowest DIC
value.

The estimations of the spatiotemporal logistic model showed that the time of
the collision, location of the pedestrian, injured part of the body, pedestrian age,
pedestrian action, driver age, driver maneuver, and vehicle type significantly
affected the severity of pedestrian injuries at urban intersections. Our results
revealed that crashes occurring in the afternoon or evening had a lower
probability of KSI. Elder pedestrians were more likely to be fatally or severely
injured than the middle-aged group, and the probability of fatality or severe injury
was higher when pedestrians sustained head injuries. Turning and overtaking
maneuvers were safer than straight driving. A driver’s improper maneuver or a
pedestrian’s inattentive behavior would lead to more serious injury outcomes.
Collisions with large vehicles, such as buses and trucks, were more likely to result
in serious injuries to pedestrians. On the basis of our findings, 4E and 3A targeted
countermeasures were proposed to improve pedestrian safety at urban
intersections.

The limitations of this study should be acknowledged. Our crash data were
derived from police reports and may suffer from underreporting (Imprialou and
Quddus, 2019), which probably result in biased parameter estimates. Furthermore,
in addition to the typically used CAR model, other methods of accommodating
spatial effects, such as the use of differencing (Katicha and Flintsch, 2022), spatial
autoregressive, spatial error, and multiple membership models, could be
attempted in future research.
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