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Abstract
Inventories of biodiversity are crucial for helping support conservation and management efforts, yet the deep-sea, which is 
the largest biome on earth remains vastly understudied. Recent advances in molecular detection methods offer alternative 
techniques for studying inaccessible ecosystems, including those at depth. In this study we utilized environmental DNA 
metabarcoding, a first for studying deep-sea benthic environments in southern Africa, to assess biological diversity and to 
test the effects of depth and historical trawling activities on deep-sea communities. Utilising 29 sediment samples (thus 
focussing on predominantly meiofaunal and epifaunal biodiversity) and targeting a 313 bp region of the mtDNA cytochrome 
oxidase I gene, we recovered 444 OTUs across a wide array of species and genera. Even though many OTUs could only be 
assigned to higher taxonomic levels, results showed that biodiversity differed significantly across depth, suggesting that even 
at relatively small spatial scales (~ 6 km, across a depth gradient of 355 m to 515 m), eDNA derived biodiversity detected 
variation linked to the depth gradient. Comparison of the OTU database with known species inventories from the sampled 
area revealed little overlap, highlighting the need for expanding barcoding efforts of deep-sea species to aid future eDNA 
survey efforts. Overall our results suggest that within a South African context, increased barcoding efforts, in combination 
with eDNA metabarcoding and physical sampling could capture a greater proportion of benthic deep-sea biodiversity. This 
provides additional opportunities to underpin conservation and management decision-making in the region, such as evaluat-
ing potential sites for future protection.
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Introduction

The deep-sea, composed of the water column and seafloor 
below a depth of 200 m (Ramirez-Llodra et al. 2011), is the 

largest biome on earth (Glover and Smith 2003; Thurber 
et al. 2014; Costello and Chaudhary 2017) providing numer-
ous important ecological and economic functions and ser-
vices (Dallagnolo et al. 2009; Armstrong et al. 2012; Norse 
et al. 2012; Mengerink et al. 2014; Thurber et al. 2014). Yet 
deep-sea habitats remain poorly studied, mostly because they 
are difficult to access and costly to sample, driven largely by 
their remoteness (Benn et al. 2010; Costello et al. 2010; 
Thurber et al. 2014). The seafloor is presumed to have high 
levels of biodiversity (Levin et al. 2001; Armstrong et al. 
2012; Thurber et al. 2014; Sinniger et al. 2016; Laroche et al. 
2020) of which many species are still undiscovered (Men-
gerink et al. 2014; Thurber et al. 2014; Sinniger et al. 2016). 
In spite of the value and the high levels of biodiversity, the 
deep-sea is threatened by overexploitation of fisheries and 
other natural resources, pollution as well as more indirect 
threats from climate change (Paulus 2021). Formal protec-
tion of deep-sea environments remains rare, particularly in 
Areas Beyond National Jurisdiction (Baco et al. 2016; John-
son et al. 2018; Da Ros et al. 2019; Combes et al. 2021). As 
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such, there remains an urgent need to better characterize the 
deep-sea so that anthropogenic impacts on deep-sea envi-
ronments can be better understood and managed (Johnson 
et al. 2018; Da Ros et al. 2019), especially as recovery of 
impacted areas could take many decades (Vanreusel et al. 
2016). Essential to this is knowledge of biodiversity, particu-
larly for establishing baselines against which future changes 
can be measured (Paulus 2021).

Environmental DNA (eDNA) metabarcoding studies 
have targeted deep-sea biodiversity in various ecosystems 
including the seafloor, seamounts, hydrothermal vents and 
deep-sea coral reefs (e.g. Sinniger et al. 2016; Everett and 
Park 2018; Laroche et al. 2020; Canals et al. 2021), as well 
as investigating optimal sampling and analytical methodolo-
gies (Brandt et al. 2021; Kawato et al. 2021). In the deep-
sea, environmental DNA has been collected from several 
sources, including sediment, the water column and nodules, 
focussing on detection of target groups such as cephalo-
pods (Merten et al. 2021), as well as characterising entire 
communities (see for example Sinniger et al. 2016; Laro-
che et al. 2020). Different source types are likely to capture 
different communities; whereas water samples will mostly 
represent planktonic species, those are likely to be missed 
when collecting sediments. Numerous studies have shown 
eDNA results are comparable to more traditional methods 
of sampling (e.g. using nets, traps or cameras), includ-
ing for invertebrate (Seymour et al. 2021), and vertebrate 
communities (e.g. Fujii et al. 2019; Valentini et al. 2014), 
though some studies show less congruence (e.g. Djurhuss 
et al. 2018) between methods. Additional challenges around 
the effectiveness of eDNA metabarcoding as a biodiversity 
assessment tool is that reference databases lack adequate 
representation of many taxa, including those from the deep-
sea (Marques et al. 2021; Gaither et al. 2022). Despite this 
limitation, eDNA surveys can help expand biodiversity 
inventories, thus supporting and allowing for more targeted 
further research.

South Africa is characterised by high levels of marine 
biodiversity with over 12,000 species having been described 
(Griffiths et al. 2010), although only a minority of known 
species were collected beyond 100 m depth. As such, most 
of the known biodiversity is from research on coastal and 
pelagic habitats and from commercially important species 
(Griffiths et al. 2010). More recently, there has been a more 
concerted focus on South Africa’s deeper ecosystems (see 
Currie et al. 2020; Button et al. 2021; Heyns-Veale et al. 
2022). Little is known, however, regarding the ecology, 
including functional diversity and life histories of many 
deep-sea species, as many of the smaller species are still 
not accounted for or have yet to be discovered and identified.

The oceanography of the west coast of South Africa is 
dominated by the cold Benguela current (Hutchings et al. 
2009), which in conjunction with strong seasonal upwelling 

results in a highly productive marine environment that sup-
ports numerous important fisheries species such as the Cape 
hakes (Merluccius capensis and M. paradoxus) and kingklip 
(Genypterus capensis) (Griffiths et al. 2010). This region 
also hosts unique and vulnerable ecosystems, including can-
yons, seamounts (Sink et al. 2012) and a productive fishing 
area adjacent to Childs Bank, targeted by demersal trawl and 
longline fishing vessels (Fairweather et al. 2006). In South 
Africa, as elsewhere, trawling is the most commonly utilised 
method for demersal fishing and conducting research surveys 
for stock assessment (Sink et al. 2012). Of all human impacts 
on the seafloor, demersal trawling is identified to have the 
greatest spatial impact (Benn et al. 2010), with about one 
fifth of the global sea floor having been trawled at least 
once (Mengerink et al. 2014, with impacts including habi-
tat destruction, disruption of sediment processes and nutri-
ent cycling, all of which may lead to negatively impacting 
biodiversity (Pusceddu et al. 2014; Atkinson et al. 2011a,b; 
Da Ros et al. 2019). Trawling pressures are not necessarily 
uniform across all taxa; for example Atkinson et al. (2011b) 
suggest that trawling affects epi-and-infaunal communities 
in different ways, with epifauna showing more sensitivity to 
heavy trawling at two sites in the southern Benguela region.

Within an African context, environmental DNA surveys 
from marine systems are rare, although more generally, the 
African continent is currently under-represented in studies 
utilising eDNA for biodiversity surveys (von der Heyden 
2023). As such, this study presents the first attempt at utilis-
ing metabarcoding of deep-sea sediment eDNA collected 
at depth from the South African coastline, where we are 
likely targeting meiofaunal and epifaunal biodiversity. Uti-
lising sediment eDNA in conjunction with metabarcoding 
of a partial fragment of the cytochrome oxidase I gene, the 
objectives of this research were to (i) evaluate sediment 
eDNA metabarcoding for the detection of benthic biodiver-
sity at Childs Bank, (ii) to compare the biodiversity inven-
tory detected from sediment eDNA with existing species 
lists/taxonomic records generated by traditional sampling 
methods and (iii) to test the effects of depth and historical 
trawling activities on sediment biodiversity.

Methods

Study site and sample collection

The study site, adjacent to Childs Bank, is located ~ 180 km 
off Hondeklip Bay on the west coast of South Africa 
(Fig. 1). This area is considered to be an Ecologically or 
Biologically Significant Area (EBSA, Harris et al. 2022) 
and lies adjacent to one of the new Marine Protected Areas 
(MPAs) from Operation Phakisa (RSA 2019). The area 
is considered vulnerable to mining and trawling, as well 
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as being identified as an important area for supporting 
bycatch management and fisheries sustainability (Harris 
et al. 2014, 2022). Our study was carried out as an exten-
sion of an existing long-term benthic trawl experiment, 
that sought to quantify the impact of trawling on benthic 
marine biodiversity. The experimental design of the pro-
ject was implemented in an area ± 90  km2 and included 
five ‘lanes’ spanning a depth range from 355 to 515 m 
(Fig. 1). Alternating lanes one, three and five were closed 
to trawling in 2014, while lanes two and four remained 
open to trawling, after which annual surveys were con-
ducted in the experimental area to monitor for resulting 
benthic ecosystem changes. Sediment samples for eDNA 
research were obtained in 2018, four years after the clo-
sure of some of the lanes as described above; sediments 
were collected opportunistically, given logistical and 
capacity challenges that prevent targeted sediment eDNA 
collection at the time of the project. Sediment was sam-
pled using a Van Veen benthic grab from three stations in 
each of the five lanes. At each station, sediment for eDNA 
analyses were collected from two replicate grabs, except 
for at one station in lane 5 (the shallowest lane), where 
sediment for eDNA analysis was only collected from one 
grab. From each of the 29 grabs a sediment sample from 
the top 3-5 cm (~ 350 ml of sediment) was collected into 
pre-sterilised plastic jars, whilst wearing fresh gloves and 
taking care to open and close the jar for as short a time as 
possible. Samples were frozen immediately after collec-
tion at − 20 °C until DNA extraction. The depth at which 
each sample was collected and sediment composition were 
also recorded for each site.

DNA extraction

Sediment samples were subsampled for DNA extraction, 
as it has been shown that extraction replication improves 
diversity estimates and coverage of target groups (Lanzén 
et al. 2017). Three subsamples (technical replicates) were 
taken from each grab for extraction purposes by dividing 
each sample into thirds, resulting in 87 samples in total. 
One extraction replicate was taken from each third, with 
a total of ~ 1 g of sediment extracted per sample. Negative 
extraction controls were also carried out for each extraction 
session. DNA was extracted directly from the sediment using 
the DNeasy PowerSoil extraction kit (Qiagen, Venlo, The 
Netherlands) following the manufacturer’s protocol, except 
for a final elution volume of 25 ul. The final elute was passed 
through the spin column a second time before storage to 
ensure that as much DNA as possible was recovered. DNA 
extractions were stored at − 20 °C and replicates from each 
sample were pooled before library preparation.

Library preparation and sequencing

Extracted DNA from each of the selected sites were sent to 
the Advanced Identification Methods (AIM; https:// www. 
aimet hods- lab. com/) lab in Leipzig, Germany for library 
preparation using a two-step PCR protocol, targeting a 
partial fragment of mtDNA COI. The primers jgHCO2198 
(TAIACYTCIGGRTGICCR AAR AAYCA; Geller et  al. 
2013) and mtCOIintF (GGW ACW GGW TGA ACW GTW 
TAY CCY CC; Leray et al. 2013) were utilised to amplify 
a 313  bp fragment of the mtDNA COI gene and have 

Fig. 1  a Map showing the location of trawling study in relation to 
the west coast of South Africa, the lines indicated bathymetry of the 
area and depth is given as metres (m); the inset shows a map of South 
Africa. b Diagram showing the sampling design and the dimensions 

of the sampling area. There were three sampling stations per lane, as 
indicated by black dots. At each sampling station three replicate grab 
samples were collected which were subsampled for sediment eDNA. 
Depth from surface is indicated as m

https://www.aimethods-lab.com/
https://www.aimethods-lab.com/
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successfully been utilized for a wide variety of eDNA sur-
veys, including sediment samples (Lacoursière‐Roussel et al. 
2018). Primers were synthesis by Metabion (Steinkirchen, 
Germany). PCRs followed Morinière et al. (2019) with the 
MyTAQ Plant-PCR (Bioline, Luckenwalde, Germany) and 
5 μL (up to 250 ng of DNA). The initial PCR reaction was 
as follows: 95 °C for 5 min, 3 cycles of [96 °C for 15 s; 
48 °C for 30 s; 65 °C for 90 s], 30 cycles of [96 °C for 15 s; 
55 °C for 30 s; 65 °C for 90 s] and 76 °C for 10 min. Ampli-
fication success and fragment length were then observed 
using gel electrophoresis. Amplified DNA was cleaned 
and resuspended in 50 μL molecular water for each sample 
before proceeding. Illumina Nextera XT (N7xx and N5xx 
Nextera Index Kit; Illumina Inc., San Diego, USA) indi-
ces were attached to the samples in a second PCR reaction 
applying the same annealing temperature as for the first PCR 
reaction but with only 7 PCR cycles. Ligation success was 
confirmed by gel electrophoresis. DNA concentrations were 
measured using a Qubit fluorometer with Kit Qubit™ 1X 
dsDNA (Life Technologies, Carlsbad, USA), and samples 
were combined into 40 μL pools containing equimolar con-
centrations of 100 ng each. Pools were purified using MagSi-
NGSprep Plus (Steinbrenner Laborsysteme GmbH) beads. 
A final elution volume of 20 μL was used. High-Throughput 
Sequencing (HTS) was performed on an Illumina MiSeq 
using v3 (2*300 bp, 600 cycles, maximum of 25mio paired-
end reads) chemistry.

Bioinformatic analyses

After sequencing, an initial quality control analysis of the 
reads was performed using FastQC version 0.11.8. Paired-
end merging was performed using usearch v11.0.667 with 
the parameters –fastq_maxdiffs 99 –fastq_pctid 75 –fastq_
trunctail 0. Primers were trimmed using cutadatpt 1.18 
with Python 2.7.15. In the next step, sequences above a 
minimum length of 300 were retained, and with a maxi-
mum of 1 expected error. Of those, unique sequences and 
singletons were filtered for. Quality filtering was performed 
using vsearch 2.9.1 with the parameters –fastq_minlen 300 
–fastq_maxee 1. To save processing power, OTU clustering 
was performed before detecting chimaeras. Clustering was 
performed using vsearch 2.9.1 and the parameters –id 0.98 
–iddef 029–centroids. OTU cut-off was 97%. Chimeras were 
detected using vsearch 2.9.1 and the parameters –uchime_
denovo –nonchimeras. For full commands for bioinformatic 
processing see Supplementary Materials Note 1.

Taxonomic assignment of the OTUs generated was per-
formed using a BLAST search, using the GenBank (NCBI) 
database. All sequences and their identifications were care-
fully inspected, with OTUs that were classified as non-
marine organisms discarded and OTUs that could not be 
identified further than Domain level also removed. The final 

list of OTUs was compared to both the Field Guide to the 
Offshore Marine Invertebrates of South Africa (Atkinson and 
Sink 2018) and the infaunal species list from the same sam-
pling cruise obtained from physical sampling methods (grab 
samples). The latter was kindly provided by Dr N. Karenyi 
from the University of Cape Town, South Africa. All data is 
available through www. github. com/ vonde rheyd enlab.

Statistical analyses

An accumulation curve for total diversity was generated as 
well as separate curves for trawled and untrawled sites. The 
final OTU table was used to create a presence/absence data-
set (github.com/vonderHeydenLab/Oosthuizen_Deep-Sea-
benthic-eDNA) for each site, which was subsequently used 
for further analyses. All statistical analyses were performed 
using the Program R version 4.0.2 (Team R.C. 2020).

Sequence reads per site were rarefied to 3351 reads (low-
est read count for sites with at least 3000 sequences reads) 
prior to formal analyses using the rarefy function in the 
r-package vegan. Community richness was calculated as the 
total number of unique OTUs per site and was calculated 
to quantify the level of biodiversity observed at each site. 
To describe the spatial change in biodiversity composition 
between sites a Bray–Curtis similarity resemblance measure 
was calculated between all site pairs. Using the vegan pack-
age in R (Oksanen et al. 2020), a PERMANOVA was used to 
test the effects of trawling, absolute depth and the interaction 
between trawling using 999 permutations. As a significant 
effect of depth between communities was observed (see 
results below), a Kendall’s exact test was applied, to assess 
individual OTUs in relation to depth (Hollander and Wolfe 
1973). NMDS ordination was calculated using Bray–Curtis 
dissimilarities and the function metaMDS in the r-package 
vegan.

Results

Sequencing results and comparison with species 
lists obtained from physical sampling

A total of 1,844,876 paired-end reads were obtained from 
sequencing, but for three of the 29 samples no reads were 
recovered. After paired-end merging, quality filtering, de-
replications, and removal of singletons, a total of 24,154 
were retained (~ 1000 reads per sample; 19 samples had 
> 3000 reads/sample), clustered into 1975 OTUs (Fig. 2). 
After taxonomic assignment and filtering, 444 OTUs were 
retained and used for further analyses (Fig. 3). Based on a 
97% OTU cut-off, of the 444 OTUs, ~ 2.7% could be identi-
fied to species, approximately 4.05% to Genus, 10.59% to 
Family, 24.55% to Order, 36.26% to Class, and 45.49% to 

http://www.github.com/vonderheydenlab
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Phylum. (Supplementary Table 1). The number of unique 
taxonomic assignments to OTUs included 12 species, 18 
genera, 71 families and 109 orders. 

The accumulation curve did not reach an asymptote (Sup-
plementary Fig. 1), showing that there are likely to still be 
portions of biodiversity not reached by our sampling and fil-
tering approaches. When comparing taxonomic assignments 
from OTUs with both a published field guide (Atkinson and 
Sink 2018) and species list specific to the area sampled (N. 
Karenyi pers comm.), OTU assignments matched the field 
guide for 1 species, 4 genera, 6 families and 21 orders and 
matched the species list for no species, 2 genera, 71 families 
and 8 orders (Table 1).

Community diversity analyses

Community richness analyses suggest that taxa were 
relatively evenly spread across sites, although the PER-
MANOVA showed that the biodiversity composition dif-
fered significantly across absolute depth (df = 1; F = 1.6; p 
value = 0.006). There was no significant difference between 
communities in relation to the main effect of trawling or the 
trawling by depth interaction effect (Supplementary Table 2; 
Fig. 4). The correlation analyses further showed that OTUs 
belonging to Arthropoda, Mollusca and Nematoda increased 
in frequency with depth; in contrast, other OTUs belonging 

to Amphipoda and Polymastiida in particular, became less 
frequent with increasing depth (Supplementary Table 3).

Discussion

This study presents the first attempt at using sediment 
eDNA metabarcoding to characterise deep-sea benthic 
communities in South Africa. We recovered novel biodi-
versity across numerous families and genera that had pre-
viously not been recorded from the region, such as the Pla-
cozoa, that are generally poorly understood. As expected 
there was little overlap between the eDNA survey and the 
known biodiversity of the area sampled, including from 
specimens identified from the same sampling opportunity. 
The lack of barcodes (see for example Gaither et al. 2022; 
von der Heyden 2023), hampered species identification 
and we reiterate the call for concerted foundational bar-
coding efforts of marine life, particularly of biodiversity 
beyond coastal areas. Given that with only a few sam-
ples collected during one cruise and recovering over 400 
OTUs, we show that metabarcoding of sediment eDNA 
is a promising complimentary tool for capturing South 
African biodiversity in areas that are logistically challeng-
ing to survey. However, there also exists a need to extend 
several aspects of the eDNA workflow in southern Africa 

Fig. 2  Krona figure showing the proportions of OTUs belonging to the different phyla identified through sediment eDNA metabarcoding adja-
cent to Childs Bank
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to ensure that this methodology becomes firmly embedded 
in biodiversity monitoring of the unique diversity of the 
region’s deep-sea systems.

Novel biodiversity inventories and little overlap 
with known biodiversity

We recovered a high level of deep-sea benthic diversity, with 
over 400 OTUs spread across diverse families. Although a 
major challenge of our study pertained to low read num-
bers, which likely does not allow for the detection of low 
abundance species (Alberdi et al. 2018; Shirazi et al. 2021) 
and as such will contribute to an under-estimation of actual 
biodiversity, this study provides exciting insights into deep-
sea benthic biodiversity in an understudied system. Notably, 
there was little overlap with species records from either the 
physical sampling or know field guides (Table 1) and less 
than 3% of OTUs could be identified to species level based 
on global reference databases (Supplementary Materials 

Fig. 3  Stacked column OTU richness for all families recovered across 19 samples (each with > 3000 reads per sample after rarefaction analyses)

Table 1  Comparison of numbers of taxa found between metabar-
coding sample list (OTUs) and sample lists of species detected from 
the same sampling cruise (list) and in the Guide to Offshore Marine 
Invertebrates of South Africa (Atkinson and Sink 2018; (guide))

Order Family Genus Species

Unique OTU 47 45 19 10
OTU matches to guide 21 6 4 1
OTU matches to list 8 7 2 0
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Table 1). The overlap of taxa identified between the eDNA 
samples and other sampling methods decreased with the 
level of identification, with lower taxonomic levels such as 
species or genus not having a strong overlap in terms of 
organisms identified between different sampling methods. In 
this study, both the field guide and the species list contained 
unknown species that could only be broadly classified to a 
certain phylum or order (see Atkinson and Sink 2018), and 
it is possible that some of the OTUs identified may represent 
some of these unknown species. Confirming this, however, 
is difficult, since many species in this region lack barcod-
ing information (Singh et al. 2021; von der Heyden 2023) 
making molecular identification difficult. While the infaunal 
species list of identified taxa collected at the same time as 
the eDNA samples identifies 87 taxa to species level, none of 
them are shared with the 10 species identified in the eDNA 
samples and of the 409 epifaunal species identified in the 
field guide, only one was shared with the species identified 
by the eDNA samples. One explanation could pertain to how 
we sampled sediment; in our study we used Van Veen grabs 
to collect sediment samples, which would have exposed 
the collected sediment to the water column and potentially 

and accidentally facilitated the sampling non-benthic taxa/
eDNA, thereby potentially increasing the detected biodiver-
sity beyond benthic species. In addition, our eDNA survey 
may well have included meiofauna, whereas biodiversity 
guides for Childs Bank are based on larger-bodied epi-and-
infauna, thus providing additional opportunities for mis-
matches. Finally, the persistence and transport of eDNA in 
the deep-sea are not understood and we may have sampled 
the DNA of an individual that was not captured during the 
physical sampling, providing additional mismatches between 
OTUs from the eDNA samples and other species inventories.

Within the context of capturing the broadest possible 
diversity of a biological community, different sampling 
methods are frequently used in broad biodiversity studies 
to ensure that as many taxa as possible are covered in the 
sampling effort. For example, Thomsen et al. (2016) found 
small differences between the fish taxa caught in a trawl net 
and those detected through water eDNA thus expanding the 
known fish community. Lejzerowicz et al. (2015) also found 
numerous differences between the taxa detected in physi-
cal sampling and by sediment eDNA analysis. Numerous 
reasons can explain such differences, such as taxa avoiding 

Fig. 4  NMDS plot showing the 
effects of trawling and depth. 
Only depth was shown to be a 
significant predictor of com-
munity richness
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physical capture equipment such as nets, grabs or cam-
eras (Thomsen et al. 2016) or that some taxa are difficult 
to identify and could be cryptic species (e.g. Everett and 
Park 2018). Importantly, ours and other studies highlight the 
value of using complementary sampling methods to attain 
better representation of the target communities. For example, 
in their results on recolonisation of deep-sea vent communi-
ties, Cowart et al. (2020) also recommended that physical 
sampling should be combined with eDNA sampling to give 
a more complete picture of the recolonisation process. In the 
South African context, significant advances in the founda-
tional barcode database are required before multiple tech-
niques, such as eDNA metabarcoding, will likely add sig-
nificantly to the knowledge of deep-sea benthic biodiversity.

Drivers of community diversity

The composition of deep-sea benthic communities is influ-
enced by a variety of environmental factors such as food 
availability, depth, natural disturbance regimes, sediment 
type and organic matter (Harris 2014; Rosli et al. 2018; 
Wang et al. 2019), although measuring environmental vari-
ation in the deep-sea is difficult, and there is still much that 
remains unknown. In this study, depth had a significant 
effect on biodiversity composition detected with eDNA 
metabarcoding, with other studies also reporting that depth, 
in particular, plays an important role in structuring deep-sea 
communities. For example, in the Yap Trench in the Western 
Pacific Ocean, the distribution of meiofaunal communities 
was influenced by depth, sediment grain size, sediment type 
and factors relating to food availability, where depth had a 
strong positive correlation to organic matter (Wang et al. 
2019). Along the West coast of South Africa, Roel (1987) 
and Atkinson et al. (2011b) found that depth played a sig-
nificant role in the structuring demersal fish assemblages 
with fish assemblages showing a distinct difference between 
300 and 400 m along the shelf-break, which is the same 
depth range of the sites sampled in this study. Depth was 
also the major factor influencing benthic epifauna along the 
west coast of South Africa in a study conducted by Lange 
and Griffiths (2014).

Trawling is known to impact benthic communities in the 
deep-sea in a number of different ways such as by caus-
ing disruption of sediment, habitat destruction, disruption 
of nutrient cycling and loss of biodiversity (Bluhm 2001; 
Pusceddu et al. 2014; Hiddink et al. 2017; Da Ros et al. 
2019), with Good et al. (2022) utilising eDNA metabarcod-
ing to show impacts of trawling on deep-sea communities 
in the Mediterranean Sea. Within the context of our study, 
the broader trawl impact project investigated changes in the 
benthic community (infauna and epifauna) over the entire 
four year period, with results showing significant shifts in 
the community composition over this time (L. Atkinson, 

pers. comm.). Our eDNA metabarcoding did not detect any 
significant difference in biodiversity composition between 
trawled and untrawled sites in the sampled area and although 
unexpected, there are several explanations that can provide 
insight into these results. The first is that, on a national level 
the experimental area did not reflect sufficiently intense trawl 
effort at the outset (Currie et al. 2020), limiting the detect-
able contrast in change between open and closed lanes. Since 
fishing pressure was then comparatively low at all sites, there 
may not have been sufficient contrast in the effect to detect 
after four years. Second, trawling may not have as great an 
impact on communities of certain taxonomic groups, espe-
cially infauna, here targeted via sediment eDNA. For exam-
ple, Kaiser et al. (2006) demonstrated that the impacts of 
trawling and rates of recovery differ among habitat types, 
trawling gear types and different taxonomic groups. In addi-
tion, Atkinson et al. (2011a) found that infaunal and epifau-
nal communities responded differently to trawling pressures 
and Fleddum et al. (2013) using biological traits analysis on 
benthic communities in southern Africa also reported that 
epifaunal groups were generally more impacted by trawling 
than infaunal groups. For our study, most OTUs could only 
be identified to higher taxonomic levels which meant that 
it was not possible to carry out more detailed community 
assemblage analyses.

Overall, our study provides a first glimpse at the potential 
of sediment eDNA metabarcoding for detecting biodiver-
sity of South Africa’s deep-seas and shows that much of 
the eukaryotic diversity is as yet unaccounted for. Given the 
general lack of overlap between species detected through 
physical sampling and sediment eDNA, we encourage a 
complimentary approach to better capture more of the diver-
sity of the deeper areas of the ocean. In particular, within 
the context of the recent extension of the MPA and EBSA 
networks, that include numerous offshore features, eDNA 
based approaches could significantly support future conser-
vation and management decision-making. Biodiversity sur-
veys based on a wide range of eDNA sources (such as sedi-
ments and water) will undoubtedly open up new and exciting 
opportunities to dive into the world of the deep unexplored 
depths of southern Africa’s oceans.
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