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Abstract 

Human being perceives multiple tactile modalities in the process of sensation on the skin and 

interpretation in the brain. To date, several sensing techniques facilitate the accurate measurement 

of individual tactile modality, but multimodal static and dynamic sensing remain challenging. 

Moreover, low-cost and highly efficient interpretation techniques are still required for tactile 

perception. Herein, we present cost-effective and high-performing self-powered smart skins that 

mimic multimodal tactile perception, enabling accurate perception of pressure, vibration, and 

humidity in the process of sensation on the smart skin and interpretation by machine learning. The 

dynamic and static stimuli are encoded by triboelectric and hygroelectric principles in the smart 

skins, respectively, while the hygroscopic nature empowers humidity sensation capability in the 
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smart skin with an accuracy rate as high as 84.0%-100.0%. We believe our smart skin will enable 

the smooth transition of e-skin into practical applications, such as robotics, prosthetics, healthcare, 

and intelligent industry. 

Keywords: smart skins, multimodal tactile perception, self-powred sensor, triboelectric sensor, 

hygroelectric sensor 

 

  



 
 

Introduction 

Human skin plays an essential role in tactile sensation in direct contact with the external 

environment as an integumentary layer of the body. Tactile modalities, such as pressure, vibration, 

warm, cold, and humidity, activate the subcutaneous sensory receptors, offering electrical signals 

for further identification and interpretation of the stimuli information at the somatosensory cortex1. 

The mechanoreceptors perceive pressure and vibration while thermoreceptors encode thermal 

stimuli. In particular, the humidity can be detected by thermoreceptors in tandem with 

mechanoreceptors in the human skin due to the absence of hygroreceptors2. Increasing demand in 

sectors including robotics3-5, prosthetics6 , and healthcare7, 8 is triggering research into tactile 

sensors that feature sensitivity to pressure9, 10, temperature11, and humidity12. Some efforts have 

been successfully made to mimic the static tactile sensation based on the various working 

principles of piezoresistive13, 14, piezoelectric15, 16, capacitive13, 17, and pyroelectric18, 19 . However, 

the slow response rate of functional materials has hindered the fast response to dynamic stimuli20, 

21. Further, as perception includes processes of not only tactile sensing on the skin but also 

identification and interpretation in the brain, it remains challenging to imitate the tactile perception 

of the human being exactly. Although the analytic software consciously coded has shown to 

perform well for identification and interpretation, it still requires sophisticated data acquisition and 

processing algorithms. Hence, there is a need for a smart tactile perception system in the range of 

detection to interpretation, including but not limited to organization, identification, and prediction 

in a manner of low-cost and high efficiency.  

Triboelectric nanogenerators (TENGs) have been successfully put forward for encryption 

technology of the mechanical to the electrical domain in the broad range of stimuli frequency, 

being demonstrated as energy harvesters22-26 and sensors27-30. The TENGs can be served as a 



 
 

powerful tool to effectively sense the dynamic tactile sensation since they provide many 

advantages, such as simple fabrication, simple device structure, lightweight, fast response time 

and high energy conversion efficiency31, 32. On the other hand, the working mechanism of contact 

electrification and electrostatic induction inherently limits the sensitivity to static tactile sensation. 

In this regard, we designed and demonstrated cost-effective and high-performing smart skins that 

mimicked multimodal tactile perception based on triboelectricity principles in tandem with 

hygroelectricity. The key features mimicked for tactile perception are both static and dynamic 

responses of the sensing module, signal transmission, and data processing in the range of stimuli 

to perception. We found that the integration of the hygroscopic contact electrification layer into 

TENGs rendered the triboelectric smart skins module static stimuli sensitive in addition to the 

dynamic stimuli. Besides, the functional contact electrification layer endowed the moisture 

sensitivity to smart skins module for humidity sensing. The encoded signal measured by smart 

skins module was wirelessly transmitted to a central computer, and interpreted in the central 

computer with supervised machine learning. The smart skin system is shown to transcend the 

human sensory system in terms of quantitative pressure, vibration, and humidity perception, 

providing a new paradigm for a self-powered multimodal smart skin featuring low cost and high 

efficiency.  

Results and discussion 

Concept and design of a tactile perception smart finger 

Humans percept environmental stimuli in conjunction with the somatosensory system in which 

mechano- and thermo-receptors in the skin encode the stimuli into electrical signals and the 

electrical signals are then evaluated in the sensory cortex (Figure 1a). In particular, the dynamic 

pressure and vibration (10 to 800 Hz) activate the fast-adapting (FA) mechanoreceptors while the 



 
 

slow-adapting (SA) mechanoreceptors respond to the static pressure (0.1 to 100 kPa)33-35. The 

humidity is perceived by mechanoreceptors complexed with thermoreceptors due in large part to 

the absence of hygroreceptors in the human somatosensory system2, 36. Inspired by the human 

somatosensory system, we designed a tactile smart finger for pressure, vibration, and humidity 

perception based on triboelectricity and hygroelectricity, surpassing human tactile perception with 

regard to quantitative pressure, vibration, and humidity perception (Figure 1b). The smart finger 

is structurally composed of three layers: a single-ion conducting electrolyte, which serves as 

contact electrification as well as a hygroscopic layer, a gold electrode as an electrode, and a 

separatable aluminum electrode as a counter triboelectrification layer and electrode. Upon 

applying a periodic force of compressing and releasing to the Al electrode, the smart finger yields 

the instantaneous voltage outputs arising from the contact electrification between the electrolyte 

and the Al electrode, allowing it to mimic the FA receptors. The SA receptors are emulated by the 

steady voltage outputs generated by ion diffusion throughout the electrolyte sandwiched between 

asymmetric electrodes in the presence of contact. Furthermore, the pendant sulfonate anionic 

groups empower a hygroscopic nature into the electrolyte and the moisture uptake therefore 

determines the ion conduction in the electrolyte, rendering smart finger the humidity sensitive. The 

triboelectric (TE) and hygroelectric (HE) signals from the smart finger are recorded by smartphone, 

and the signals are transmitted to the main server computer for interpretation with the help of 

machine learning, imitating the peripheral and central nervous systems.  

Pressure, vibration, and humidity sensation using smart finger 

The smart finger was exposed to the course of a contacting, a pressing (4.9 kPa), and a releasing 

in the presence of 50 % relative humidity (RH) and analyzed to investigate the triboelectric and 

hygroelectric responses (Figure 2a). The electrical outputs exhibit distinct instantaneous peaks of 



 
 

0.9 and −3.4 V while contacting and releasing, respectively, and the stable voltage of 81 mV has 

been found under continuous pressing. The primary principle of the smart finger can be 

rationalized through the transient electron flow arising from the humidity-sensitive ion diffusion 

and contact-electrification of the electrolytes throughout the pressing, the releasing, and the 

contacting (Figure 2b). In moderate humidity, the hygroscopic nature of the anionic electrolyte 

gives rise to moisture uptake, facilitating ion dissociation in the solid-state electrolyte, and thereby 

the concentration gradient of mobile charge across the electrolyte is formed by the asymmetric 

accessibility of moisture37, 38. The mobile charge diffusion in the electrolyte produces a continuous 

electron flow through the external circuit upon pressing the smart finger (Figure 2b(i), 

corresponding to contact HE signal in Figure 2a). The contact electrification at the interface 

between the electrolyte and the separatable electrode engenders the surface charges, driving the 

development of the electric field at the interface, and resultingly yielding a transient electron flow 

and an instantaneous voltage peak under the separation(Figure 2b(ii), corresponding to separation 

TE in Figure 2a). While approaching the separatable electrode to the electrolyte again, the electrons 

return back to the original electrode due to the fade of the electric field, resulting in the 

instantaneous voltage peak with reverse polarity (Figure 2b(iv), corresponding to contact TE in 

Figure 2a). 

The sensitivity of hygroelectric signal was investigated in the presence of differing static pressure 

on the smart finger at the RH of 70% (Supplementary Figure 1), comparable to the typical human 

pressure perception range17, 39. The output voltage increased linearly with a sensitivity of 25 

mV/kPa (Figure 2c), which we attribute to the greater tendency of interfacial resistance on 

decreased static pressure (Supplementary Figure 2). Under low static pressure, the weak interfacial 

contact impedes the charge recombination between proton and electrons at the interface, screening 



 
 

the potential developed by the hygroelectricity. When increasing the static pressure, the greater 

contact results in less potential loss at the interface. The limit of detection was approximated by 

LoD = 3 / S where  is the standard deviation and S is sensitivity, and the LoD was accordingly 

determined to be 1.04 kPa, indicating that a small weight (0.1 N) on an area of 1 cm2 can be 

detectable. The response time was confirmed to be approximately 5.3 and 5.1 ms for sensation and 

restoration, respectively (Supplementary Figure 3), denoting the vibration detection limit of up to 

~200 Hz. This trait successfully affords biomimetic slow-adapting mechanoreceptors given that 

the frequency range of human vibration perception by slow-adapting receptors (Merkel cell) is 

shown to be <100 Hz34. Further, we analyzed the positive and negative triboelectric signals upon 

applying the dynamic pressure from 2.45 to 12.25 kPa (Supplementary Figure 4). As the effective 

area for contact electrification increases with dynamic pressure, the magnitude of negative outputs 

gradually becomes greater with increasing pressure, increasing up to 2.64 V under the 12.25 kPa. 

In contrast, the outputs of positive peaks remained stable regardless of the pressure applied (VPTE 

= ~1 V). The triboelectric charges for contact and separation were calculated from the integration 

of a single current peak (Supplementary Figure 5), representing that the charge accounted for 

separation increases with humidity while the contact charge remains same. This trait is likely due 

to the fact that mobile cations in the electrolyte migrate from the surface to the stationary electrodes, 

so that the surface becomes more negative as increasing the humidity. When sufficient time is 

given for ion diffusion while being released state of the device, the surface charges are dissipated 

by the mobile charges returning to the original positions, bringing the constant contact charge in 

the process. We prepared the devices featuring anion-conducting, binary ion-conducting, and 

cation-conducting electrolytes in differing relative humidity. Remarkably, the output voltages of 

positive peaks are nearly stable for all marinated polymer electrolytes throughout the humidity 



 
 

range (Figure 2d and Supplementary Figure 6), indicating that the charges developed on the 

polymer surfaces are independent of the humidity. For comparison, the polymer electrolyte was 

evaluated in the absence of mobile ions, acting as a typical dielectric triboelectrification layer. Its 

positive voltage peaks substantially decreased with increasing humidity as the moisture facilitates 

surface charge dissipation40, 41. In contrast, either anions or cations in the marinated polymers are 

expected to be mobile, giving rise to the compensation for the surface charge while the devices are 

separated, resulting in the constant surface charges remaining regardless of pressure and humidity.  

We investigated the triboelectric output voltages under dynamic pressure of 4.9 kPa with variable 

frequency at the RH of 70% (Figure 2e and Supplementary Figure 7). The separation voltage peak 

of 1.2 V was achieved at an initial low frequency of 0.1 Hz, and the values were increased to 2.5 

V in the frequency ranges of 0.3 to 1.1 Hz, in which frequency range we chose is crucial for smart 

finger applications like detecting heartbeats, feeling textures, and gripping objects. We attribute 

this frequency dependence to the insufficient relaxation of surface charge24, 42, leading to surface 

charge accumulation upon repeated contact. Hence, a shorter relaxation time results in more 

significant charge accumulation at a higher frequency, demonstrating increased output voltage. 

Beyond the pressure and frequency sensitivity, the hygroscopic nature of the single-ion conducting 

electrolyte confers the humidity sensitivity on the smart finger, as presented in Figure 2f and 

Supplementary Figure 8. The measured output of hygroelectricity gradually increased with 

increasing the RH from 10 % to 80 %, reaching 0.97 V at the RH of 80 %. The single-ion 

conducting electrolyte has been shown to get heavy with humidifying the surrounding 

(Supplementary Figure 9) due largely to the moisture uptake. Polar solvating water facilitates ion 

dissociation and migration in a solid electrolyte43, 44, and indeed the ion transport was found to be 



 
 

fast with increasing the RH (Supplementary Figure 10), helping to rationalize the observed 

humidity sensitivity of the smart finger.  

Self-powered smart finger for tactile perception 

Ultimately, the different sensitivities to multiple stimuli, including pressure, vibration, and 

humidity, render this smart finger a promising platform for tactile perception by characterizing 

individual behaviors (Supplementary Figure 11). We first demonstrated the self-powering 

capabilities of the smart finger, and the power curves obtained from the different humidities are 

shown in Figure 3a and Supplementary Figure 12. The maximum powers generated in RH 10 and 

80 % were 305 nW (at the load of 50 MΩ) and 25 nW (at the load of 20 MΩ), respectively, which 

stably charge the capacitor of 10 F up to 2.3 and 0.97 V within 500 seconds at RH 10 and 80%, 

respectively (Figure 3b). It is worth noting that the electrical power generated at RH 10% mainly 

arises from triboelectricity, whereas hygroelectricity is the main contributor to yielding the power 

at RH 80 %, suggesting that energy delivery from either triboelectricity or hygroelectricity is large 

enough for self-powered smart finger operation. Furthermore, we successfully lit up a light-

emitting diode (LED) under the reverse connection while the forward connection produced no 

noticeable light (Figure 3c), revealing that we can extract the separation TE peak from the single 

cycled electric signal using the LED lighting. The snapshots of the green LED with respect to 

different RHs, frequencies, and pressure are presented in Figure 3d and Supplementary Figure 13a. 

Slow vibration, high humidity and low pressure resulted in reduced brightness, and an increase in 

the vibration and pressure, and dry environment boosted brightness. To gain further in sight into 

the quantitative brightness of LEDs, we employed a home-built image analysis application in 

which the 8-bit RGB color components are extracted from the photographs taken by the mobile 

phone (Supplementary Figure 14 and Supplementary Movie 1). The perceived brightness (PB) was 



 
 

approximated by the equation PB = √0.299 𝑅2 + 0.587 𝐺2 + 0.114 𝐵2 45 where R, G, B denote 

the values of RGB color components in 0 to 255 scales, respectively. The LED images in Figure 

3d and Supplementary Figure 13a are converted into the brightness matrix, as plotted in Figure 3e 

and Supplementary Figure 13b, showing that the PB values correlated to each LED luminescent. 

Moreover, the PB values displayed a high degree of correlation (r2 = 88.4 %) with 95 % confidence 

interval to the separation TE peaks (Figure 3f), which together imply that the separation TE signal 

of smart finger can be successfully elicited from the electrical signal using the PB of green LEDs 

reversely connected. 

Implementing machine learning for tactile perception 

Machine learning has been a well-established tool for building the model from sample data without 

being explicitly programmed, facilitating the prediction of a new data behavior comprising 

multidimensional features46, 47. Herein, the multiple features, including the contact TE, contact HE, 

separation TE, pressure, frequency, and humidity, were chosen for feature extraction in the 

machine learning algorithm. To identify the categorization of multiple features, we first aim to 

reduce high-dimensional data into two-dimensional space using linear discriminant analysis (LDA) 

in which the distance between each data in the category is minimized while the category distance 

is maximized. As shown in Figure 3g, we could clearly discriminate between a complex of humid, 

pressure, and vibrational conditions; low RH and vibrational conditions inclined to group together 

in the negative side of the first and second discriminant factors, respectively. Also, low pressure 

tended to cluster on the negative side of the first discriminant factor, whereas on the positive side 

of the second factor. The first two discriminant factors account for 99.8% of the variance. The 

confusion matrices of 8 humid, 9 pressure, and 6 vibrational conditions are presented in Figures 

3h, 3i, and 3j, respectively, and high prediction accuracy was achieved for all matrices. Overall, 



 
 

data clustering demonstrates discrimination capability and high reproducibility, putting forward 

potential applications of smart fingers for accurate sensing of pressure, vibration, and humidity. 

On the basis of the pressure, vibration, and humidity discrimination capability of smart fingers 

outlined above, we demonstrated the real-world tactile perception of smart fingers incorporating 

machine learning for pressure, vibration, and humidity sensing. Figure 3k describes a flowchart 

detailing the tactile perception using smart fingers with the help of home built image analysis 

application and machine learning. First, the pre-trained model was developed using the collected 

data of known conditions in order to save calculation time and memory space for machine learning 

in a central computer. The dataset was preprocessed to label the feature matrix and split into 

training (80%) and test (20%) sets. With the linear regression algorithm based on a supervised 

machine learning, the relationship between dependent and independent features was successfully 

trained and was validified by the test dataset. The regression plot shown in Figure 3l exhibits the 

high accuracy of the pre-trained model with a high degree of correlation (r2 = 99.3 %). Next, the 

smart finger acquires the contact HE and separation TE signals using a smart transmission 

handheld device (that is smartphone) in terms of perceived brightness and output voltage, and the 

signals are then transmitted to the central computer via wifi for perception in the pre-trained model 

(Supplementary Movie 2). The perception results are set to be simultaneously displayed on the 

screens of both the central computer and the handheld device (Supplementary Movie 3). Four 

conditions were chosen to test the perception accuracy of the smart finger, and the recognition 

results are presented in Supplementary Table 1. 

Tactile perception mapping with multiarray smart skin 

Beyond the tactile perception of the localized region, the multiarray of smart skin comprising 25 

pixels of aluminum electrodes, Nafion electrolytes, and gold electrodes was constructed to 



 
 

investigate the tactile perception performance of smart skin in line with spatial regions (Figure 4a). 

The electrode arrays were fabricated by a masked thermal evaporation technique. A 5 by 5 

electrode array pattern was first defined on the paper mask, and the 100-nm-thick gold or 

aluminum films were then deposited on the polyethylene terephthalate (PET) substrate covered by 

stainless steel mask using a thermal evaporator. The Nafion electrolyte was punched into a 10 mm 

circular shape, and then placed on the gold electrode. The multiarray smart skin was obtained by 

covering the electrolyte with an aluminum electrode pattern on PET substrate. The 

polydimethylsiloxane (PDMS) spacers were located on the electrode substrate to secure a defined 

gap between electrolyte and aluminum electrode. The photographic images of a fabricated smart 

finger array presented in Figures 4b and 4c show the semi-transparency and high flexibility of our 

device, suggesting potential applications such as wearable electronic skins and biomedical sensors. 

The long-term stability was performed over the course of the 5000 compression-release cycles, as 

shown in Figure 4d, appearing to be stable compared with its initial voltage level. Insets of Figure 

4d demonstrate the outstanding durability and robustness of smart fingers, revealed by scanning 

electron microscopy. The voltage signals of the nearest pixels (1,2,4, and 5) were investigated 

when the center pixel (3) was subjected to compression (Figure 4e), and a little crosstalk between 

adjacent pixels has been found. We note that the triboelectric signals have been observed for some 

adjacent pixels (1 and 5), which is likely attributed to the electrolyte-electrode distance change in 

the nearest pixels during compression. Response and relaxation time of approximately 150 ms 

were measured from the enlarged plots in Figure 4e. It is worthnoting that the multiarray smart 

skin exhibited the slower response time. We attribute the slower responses to the viscoelasticity of 

polymeric PET substrate, bringing the smart skin to be slowly deformed and recovered over the 

course of pressing and releasing48, 49. Lastly, the convex character patterns of ‘HKU’ was directly 



 
 

pressured on the smart skin to demonstrate a 2-dimensional mapping of spatial stress 

(Supplementary Figure 15), and the resultant contact HE signals of the device at applied RHs of 

30, 50, 70 % under the compressive force of 19.6 N were recorded using multichannel oscilloscope 

(Figure 4f and Supplementary Figure 16−18). The mapping images unambiguously present ‘HKU’ 

characters and the characters became more apparent at the elevated RHs, holding a promise for 

potential applications of our smart skin array as electronic skin. It is worth mentioning that our 

smart skin can be easily scaled–up or –down due in large part to its simple device architecture, 

indicating further room for resolution improvement down to 50 μm with the aid of the 

photolithographic technique. 

Conclusion  

We proposed a route to imitate multimodal human tactile perception from sensation to 

interpretation on the basis of triboelectric/hygroelectric sensing and machine learning algorithm. 

The contact electrification of the single-ion conducting electrolyte and separatable electrode 

facilitates the dynamic mechanical stimuli sensing, while the ion migration throughout the 

electrolyte enables the static sensing. Further, the hygroscopic nature of electrolytes endows the 

capability of humidity sensing. The smart skin comprising the single-ion conducting electrolyte 

and two electrodes converted static/dynamic mechanical stimuli and humidity into electrical 

signals. The encoded signals of smart skin were successfully interpreted into RHs, pressure, and 

vibration with an accuracy of 84.0 − 100.0% using the handheld device and machine learning, 

demonstrating a tactile perception of both local and spatial sensations. Our smart skin provides 

multiple advantages, including a simple fabrication, compact size, fast response, high accuracy, 

self-powering, and multimodal sense. Moving forward, spatial resolution and miniaturization are 



 
 

required to be further improved in order to incorporate into robots or even humans with the help 

of advanced photolithographic technologies. The smart chips integrating sensing modules, LEDs, 

image analysis modules, and wireless transmitters/receivers make them “smarter” and help us to 

find more potential applications in robotics, prosthetics, healthcare, human-machine interface, and 

intelligent industry. 

Experimental Section 

Fabrication of a tactile perception smart finger The basic structure of the smart finger is 

composed of a single ion conducting electrolyte sandwiched by gold and aluminum electrodes. A 

100 nm gold layer was deposited on a piece of 2 cm×2 cm Nafion NR-211 membrane (Dupont De 

Nemours) electrolyte with a thickness of 25 m using a thermal evaporator (Beijing Technol. 

Science Co., LTD ZHD-300M2). An aluminum foil was used as the counter electrode. For the 

construction of the 5 × 5 sensory array, a 100-nm-metal layer (i.e. gold or aluminum) was first 

coated on the oxygen plasma-treated PET substrate being covered by a stainless-steel mask to 

create a customized pixel pattern. The Nafion 211 film was attached to gold electrode by pressing 

under 10 kPa overnight at RH 50%. Then PDMS pieces with a thickness of 2 mm and a diameter 

of 3 mm were sandwiched between the two electrodes to serve as the spacers. Each pixel was 

circular-shaped with a diameter of 9 mm and a center-to-center distance of 15.5 mm. 

Characterizations The periodic stress was applied to the smart finger by using a pushing tester 

(Junil Tech. JIPT-120) accommodated in a digitalized humidity controller (Terra Universal 1911-

24D). An oscilloscope (Agilent DSO-X-2014A) equipped with a preamplifier (SRS SR-570) was 

used for voltage and current measurements throughout this research. The weight change of the 

Nafion film after moisture uptake was measured using semi-microbalance (Sartorius Cubis(R) II 



 
 

MCA125S-2S00-I). The ionic conductivity of Nafion film was determined using Admiral 

Squidstat Plus potentiostat with impedance spectroscopy capability, over the frequency range from 

0.1 Hz to 1 MHz. The blocking stainless-steel electrodes were used to be assembled the symmetric 

electrode/electrolyte/electrode cells. All tests were conducted at 25 ± 2 ℃. The surface 

morphology of the Nafion film before and after long-term operation were investigated using a 

field-emission scanning electron microscope (Hitachi S4800-7952).  

Image analysis application software for self-powered smart finger The LED is directly 

connected to the smart finger to obtain the separation TE signal from the electrical outputs 

individually. The LED was positioned in the dark chamber with optical opening where a Android 

smartphone (Samsung Galaxy Note 10+) was mounted to take a video of LED lightning. A home-

built image analysis system was developed for the quantitative characterization of LED brightness, 

which is termed ‘Smart Color Analysis System (SCAS)’. The SCAS is an Android application 

software built using Android Studio. This application has been built to systematically extract the 

RGB components from the snapshot of the video, followed by perceived brightness. The SCAS 

workflow is detailed as follows: 

 Image loading The user can load the snapshot image of LED lighting for the RGB 

components extraction.  

Image preprocessing Once the user loads the snapshot image to be analyzed, it can be 

resized and cropped to remove the background. 

 Image analysis The truncated image is converted into a matrix containing the RGB and 

brightness values of each pixel. The brightness was estimated by the equation B =

√0.299 𝑅2 + 0.587 𝐺2 + 0.114 𝐵2  45 where R, G, B indicate the values of RGB color 



 
 

components in 0 to 255 scales, respectively. The matrix is processed to find the most frequent 

color from all pixels over the image selected. First, the occurrence of individual RGB components 

is counted and sorted in descending order. We chose six color matrices being the most frequently 

observed in the image by sorting them in the orders of RGB, RBG, GRB, GBR, BGR, and BRG. 

The most bright color components are selected as a representative color of the image. In this 

software, the pixels featuring a brightness of > 15 are analyzed to filter the black background.  

Tactile perception using machine learning The supervised machine learning was employed to 

predict the pressure, vibration, and humidity from responses of the smart finger using a MATLAB 

programming language (Mathworks Inc., Natick, MA). For the classification of individual RH, 

pressure, and frequency, the ‘patternnet’ algorithmm was employed to train the neural network in 

which the preprocessed data was split into 70:15:15 by percent for training, validation, and testing. 

In order to quantitatively predict the RH, pressure, and frequency values from the brightness and 

output voltage, two pre-trained models were developed to train the network by the ‘fitnet’ 

algorithm: Brightness/contact HE and contact HE/separation TE/RH/pressure/frequency. With 

two models, the web app with user interface was constructed to real-time analysis of smart skin 

signals. Once the user inputs the brightness and separation TE value into the web app, the contact 

HE value will be estimated from the pre-trained model, and then RH, pressure, and freqeuncy are 

predicted from contact HE and separation TE signals. 
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Figures 

 

Figure 1 | Self-powered smart skin system for multimodal tactile perception. a, Illustration of tactile 

perception over the course of the human skin and nervous system. The tactile stimuli, such as pressure, 

vibration, heat, and humidity, are encoded into the electrical signal by mechano- and thermoreceptors. The 

signals are transmitted to the nervous systems for identification and interpretation. b, Schematics of tactile 

perception in a self-powered smart skin. The tactile stimuli are sensed in the forms of triboelectric and 

hygroelectric signals by the smart skin module comprising a single-ion conducting electrolyte and two 

electrodes. The identification and interpretation of signals being transmitted by the handheld device are 

performed in the central computer equipped with machine learning.   



 
 

 

Figure 2 | Tactile sensation using a smart finger. a, The voltage output of the smart finger under the 

stimuli of 50 % RH, 4.90 kPa with 0.3 Hz. b, Schematic illustration of the working principle. c, The pressure 

sensitivity of hygroelectric output voltages. d, Contact electrification outputs of the smart finger featuring 

anion conducting (green), cation conducting (orange), dual-ions conducting (grey), and non-conducting 

(black) electrolytes as changing RHs. The presence of mobile ions in the electrolyte yields the constant 

contact TE peaks. e, Triboelectric output voltages with increasing frequency. f, Humidity sensing capability 

of the smart finger. 

  



 
 

 

Figure 3 | Self-powered tactile perception with machine learning. a, Output powers depending on the 

load resistance for contact hygroelectric and separation triboelectric signals. b, Capacitive charging with 

individual contact hygroelectric and separation triboelectric signals. The inset indicates an equivalent circuit 



 
 

for capacitive charging. c, Lightening of a LED with forward (red) and reverse (blue) connections. d, The 

snapshots of LED lighting with varying RHs and frequencies. e, The perceived brightness corresponding 

to the images in d using home-built image analysis application. f, Comparison of separation TE peak voltage 

and brightness calculated. Solid lines are the linear fit. g, Discrimination capability of the smart finger. LD1 

and LD2 represent the first linear discriminant factor and second linear discriminant factor, 

respectively. h−j, Confusion map of the machine learning results for 8 humid, 9 pressure, and 6 vibrational 

conditions, respectively. k, Flow diagram of tactile perception from sensation to interpretation. l, 

Regression plot of the machine learning results of pre-trained model. 

  



 
 

 

Figure 4 | Tactile perception mapping. a, Schematic of a multiarray smart skin featuring the set of 5 ⅹ 5 

electrodes and a single ion conducting electrolyte. b, The photograph of the multiarray smart skin fabricated. 

c, The flexibility of the smart skin. d, The robustness and durability of the smart skins over 5000 cycles. 

Inset images display the morphologies of the electrolyte before and after cycling, respectively. Scale bar = 

250 nm. e, Crosstalk between neighbouring pixels and the response/relaxation time of the smart skin. f, 

Tactile perception mapping of the smart skin at the different RHs while being pressed with the convex 

character patterns of ‘HKU’. 
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Supplementary Figures 

 

Supplementary Figure 1 | Hygroelectric output voltage of smart finger as increasing the static 

pressure. 
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Supplementary Figure 2 | Nyquist plot of smart finger with differing pressure applied. 
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Supplementary Figure 3 | Response time for activation (left) and restoration (right) with 

compressing-releasing profile. 
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Supplementary Figure 4 | a, Output voltages of smart finger as increasing the dynamic 

pressure. b, Dynamic pressure sensitivity of triboelectric signals. 
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Supplementary Figure 5 | Charge accumulation driven by contact (pink) and separation (blue) 

triboelectric signals at different humidities. 
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Supplementary Figure 6 | Output voltages of smart fingers comprising two electrodes and 

different electrolytes, including anion conductor (a), binary conductor (b), PVA without salt (c), 

and cation conductor (d). 
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Supplementary Figure 7 | Output voltages of smart finger as increasing the frequency of 

dynamic pressure. 
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Supplementary Figure 8 | Output voltages of smart finger as increasing the RHs. 
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Supplementary Figure 9 | Hygroscopic property of electrolyte with RHs. 
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Supplementary Figure 10 | Ionic conductivity of electrolyte with RHs. 
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Supplementary Figure 11 | Working principle of smart finger in the broad range of humidity. 
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Supplementary Figure 12 | Output voltage and current of contact hygroelectric (a) and 

separation triboelectric signals (b) as a function of load resistance. 
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Supplementary Figure 13 | a, The snapshots of LED lighting with varying RHs and pressure. b, 

The perceived brightness corresponding to the images in d using home-built image analysis 

application. 
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Supplementary Figure 14 | Snapshot of home-built image analysis application. 
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Supplementary Figure 15 | Photographs of the convex character patterns of ‘H (a) K (b) U (c)’. 
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Supplementary Figure 16 | The output voltages of smart skins under the pressure with ‘H’ 

convex pattern. 
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Supplementary Figure 17 | The output voltages of smart skins under the pressure with ‘K’ 

convex pattern. 
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Supplementary Figure 18 | The output voltages of smart skins under the pressure with ‘U’ 

convex pattern. 
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Supplementary Table 

Supplementary Table 1 |   The current signals measured at RH50% with 4.9kPa and 0.3Hz 

mechanical contact and separation. 

Sample 

No. 

Conditions applied Conditions predicted 

RH  

(%) 

Pressure 

(kPa) 

Frequency 

(Hz) 

RH  

(%) 

Pressure 

(kPa) 

Frequency 

(Hz) 

1 24 4.9 0.3 29.29 5.78 0.32 

2 25 6.9 0.5 28.15 7.93 0.39 

3 33 8.6 0.7 32.29 9.11 0.69 

4 50 6.1 1.1 64.65 7.12 1.07 
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Supplementary Movies 

Supplementary Movie 1 | Demonstration of image analysis mobile app. 

Supplementary Movie 2 | Demonstration of a web app based on the trained model. 

Supplementary Movie 3 | Demonstration of self-powered smart skin system. 

 

 


