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Abstract

Human being perceives multiple tactile modalities in the process of sensation on the skin and
interpretation in the brain. To date, several sensing techniques facilitate the accurate measurement
of individual tactile modality, but multimodal static and dynamic sensing remain challenging.
Moreover, low-cost and highly efficient interpretation techniques are still required for tactile
perception. Herein, we present cost-effective and high-performing self-powered smart skins that
mimic multimodal tactile perception, enabling accurate perception of pressure, vibration, and
humidity in the process of sensation on the smart skin and interpretation by machine learning. The
dynamic and static stimuli are encoded by triboelectric and hygroelectric principles in the smart

skins, respectively, while the hygroscopic nature empowers humidity sensation capability in the
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smart skin with an accuracy rate as high as 84.0%-100.0%. We believe our smart skin will enable
the smooth transition of e-skin into practical applications, such as robotics, prosthetics, healthcare,

and intelligent industry.
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Introduction

Human skin plays an essential role in tactile sensation in direct contact with the external
environment as an integumentary layer of the body. Tactile modalities, such as pressure, vibration,
warm, cold, and humidity, activate the subcutaneous sensory receptors, offering electrical signals
for further identification and interpretation of the stimuli information at the somatosensory cortex'.
The mechanoreceptors perceive pressure and vibration while thermoreceptors encode thermal
stimuli. In particular, the humidity can be detected by thermoreceptors in tandem with
mechanoreceptors in the human skin due to the absence of hygroreceptors?. Increasing demand in
sectors including robotics®®, prosthetics® , and healthcare” ® is triggering research into tactile
sensors that feature sensitivity to pressure” ', temperature!!, and humidity'?. Some efforts have

been successfully made to mimic the static tactile sensation based on the various working
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principles of piezoresistive'> !4, piezoelectric'™ '°, capacitive!* 17, and pyroelectric'®!* . However,
the slow response rate of functional materials has hindered the fast response to dynamic stimuli*®
21 Further, as perception includes processes of not only tactile sensing on the skin but also
identification and interpretation in the brain, it remains challenging to imitate the tactile perception
of the human being exactly. Although the analytic software consciously coded has shown to
perform well for identification and interpretation, it still requires sophisticated data acquisition and
processing algorithms. Hence, there is a need for a smart tactile perception system in the range of

detection to interpretation, including but not limited to organization, identification, and prediction

in a manner of low-cost and high efficiency.

Triboelectric nanogenerators (TENGs) have been successfully put forward for encryption
technology of the mechanical to the electrical domain in the broad range of stimuli frequency,

being demonstrated as energy harvesters?>?® and sensors?>’>°. The TENGs can be served as a



powerful tool to effectively sense the dynamic tactile sensation since they provide many
advantages, such as simple fabrication, simple device structure, lightweight, fast response time
and high energy conversion efficiency®"”*2. On the other hand, the working mechanism of contact
electrification and electrostatic induction inherently limits the sensitivity to static tactile sensation.
In this regard, we designed and demonstrated cost-effective and high-performing smart skins that
mimicked multimodal tactile perception based on triboelectricity principles in tandem with
hygroelectricity. The key features mimicked for tactile perception are both static and dynamic
responses of the sensing module, signal transmission, and data processing in the range of stimuli
to perception. We found that the integration of the hygroscopic contact electrification layer into
TENGs rendered the triboelectric smart skins module static stimuli sensitive in addition to the
dynamic stimuli. Besides, the functional contact electrification layer endowed the moisture
sensitivity to smart skins module for humidity sensing. The encoded signal measured by smart
skins module was wirelessly transmitted to a central computer, and interpreted in the central
computer with supervised machine learning. The smart skin system is shown to transcend the
human sensory system in terms of quantitative pressure, vibration, and humidity perception,
providing a new paradigm for a self-powered multimodal smart skin featuring low cost and high

efficiency.

Results and discussion

Concept and design of a tactile perception smart finger

Humans percept environmental stimuli in conjunction with the somatosensory system in which
mechano- and thermo-receptors in the skin encode the stimuli into electrical signals and the
electrical signals are then evaluated in the sensory cortex (Figure 1a). In particular, the dynamic

pressure and vibration (10 to 800 Hz) activate the fast-adapting (FA) mechanoreceptors while the



slow-adapting (SA) mechanoreceptors respond to the static pressure (0.1 to 100 kPa)*-%. The
humidity is perceived by mechanoreceptors complexed with thermoreceptors due in large part to
the absence of hygroreceptors in the human somatosensory system? *°. Inspired by the human
somatosensory system, we designed a tactile smart finger for pressure, vibration, and humidity
perception based on triboelectricity and hygroelectricity, surpassing human tactile perception with
regard to quantitative pressure, vibration, and humidity perception (Figure 1b). The smart finger
is structurally composed of three layers: a single-ion conducting electrolyte, which serves as
contact electrification as well as a hygroscopic layer, a gold electrode as an electrode, and a
separatable aluminum electrode as a counter triboelectrification layer and electrode. Upon
applying a periodic force of compressing and releasing to the Al electrode, the smart finger yields
the instantaneous voltage outputs arising from the contact electrification between the electrolyte
and the Al electrode, allowing it to mimic the FA receptors. The SA receptors are emulated by the
steady voltage outputs generated by ion diffusion throughout the electrolyte sandwiched between
asymmetric electrodes in the presence of contact. Furthermore, the pendant sulfonate anionic
groups empower a hygroscopic nature into the electrolyte and the moisture uptake therefore
determines the ion conduction in the electrolyte, rendering smart finger the humidity sensitive. The
triboelectric (TE) and hygroelectric (HE) signals from the smart finger are recorded by smartphone,
and the signals are transmitted to the main server computer for interpretation with the help of

machine learning, imitating the peripheral and central nervous systems.

Pressure, vibration, and humidity sensation using smart finger

The smart finger was exposed to the course of a contacting, a pressing (4.9 kPa), and a releasing
in the presence of 50 % relative humidity (RH) and analyzed to investigate the triboelectric and

hygroelectric responses (Figure 2a). The electrical outputs exhibit distinct instantaneous peaks of



0.9 and —-3.4 V while contacting and releasing, respectively, and the stable voltage of 81 mV has
been found under continuous pressing. The primary principle of the smart finger can be
rationalized through the transient electron flow arising from the humidity-sensitive ion diffusion
and contact-electrification of the electrolytes throughout the pressing, the releasing, and the
contacting (Figure 2b). In moderate humidity, the hygroscopic nature of the anionic electrolyte
gives rise to moisture uptake, facilitating ion dissociation in the solid-state electrolyte, and thereby
the concentration gradient of mobile charge across the electrolyte is formed by the asymmetric
accessibility of moisture®”- 3%, The mobile charge diffusion in the electrolyte produces a continuous
electron flow through the external circuit upon pressing the smart finger (Figure 2b(i),
corresponding to contact HE signal in Figure 2a). The contact electrification at the interface
between the electrolyte and the separatable electrode engenders the surface charges, driving the
development of the electric field at the interface, and resultingly yielding a transient electron flow
and an instantaneous voltage peak under the separation(Figure 2b(ii), corresponding to separation
TE in Figure 2a). While approaching the separatable electrode to the electrolyte again, the electrons
return back to the original electrode due to the fade of the electric field, resulting in the
instantaneous voltage peak with reverse polarity (Figure 2b(iv), corresponding to contact TE in

Figure 2a).

The sensitivity of hygroelectric signal was investigated in the presence of differing static pressure
on the smart finger at the RH of 70% (Supplementary Figure 1), comparable to the typical human
pressure perception range'” 3°. The output voltage increased linearly with a sensitivity of 25
mV/kPa (Figure 2c), which we attribute to the greater tendency of interfacial resistance on
decreased static pressure (Supplementary Figure 2). Under low static pressure, the weak interfacial

contact impedes the charge recombination between proton and electrons at the interface, screening



the potential developed by the hygroelectricity. When increasing the static pressure, the greater
contact results in less potential loss at the interface. The limit of detection was approximated by
LoD =3c /S where o is the standard deviation and S is sensitivity, and the LoD was accordingly
determined to be 1.04 kPa, indicating that a small weight (0.1 N) on an area of 1 cm? can be
detectable. The response time was confirmed to be approximately 5.3 and 5.1 ms for sensation and
restoration, respectively (Supplementary Figure 3), denoting the vibration detection limit of up to
~200 Hz. This trait successfully affords biomimetic slow-adapting mechanoreceptors given that
the frequency range of human vibration perception by slow-adapting receptors (Merkel cell) is
shown to be <100 Hz**. Further, we analyzed the positive and negative triboelectric signals upon
applying the dynamic pressure from 2.45 to 12.25 kPa (Supplementary Figure 4). As the effective
area for contact electrification increases with dynamic pressure, the magnitude of negative outputs
gradually becomes greater with increasing pressure, increasing up to 2.64 V under the 12.25 kPa.
In contrast, the outputs of positive peaks remained stable regardless of the pressure applied (Vere
=~1 V). The triboelectric charges for contact and separation were calculated from the integration
of a single current peak (Supplementary Figure 5), representing that the charge accounted for
separation increases with humidity while the contact charge remains same. This trait is likely due
to the fact that mobile cations in the electrolyte migrate from the surface to the stationary electrodes,
so that the surface becomes more negative as increasing the humidity. When sufficient time is
given for ion diffusion while being released state of the device, the surface charges are dissipated
by the mobile charges returning to the original positions, bringing the constant contact charge in
the process. We prepared the devices featuring anion-conducting, binary ion-conducting, and
cation-conducting electrolytes in differing relative humidity. Remarkably, the output voltages of

positive peaks are nearly stable for all marinated polymer electrolytes throughout the humidity



range (Figure 2d and Supplementary Figure 6), indicating that the charges developed on the
polymer surfaces are independent of the humidity. For comparison, the polymer electrolyte was
evaluated in the absence of mobile ions, acting as a typical dielectric triboelectrification layer. Its
positive voltage peaks substantially decreased with increasing humidity as the moisture facilitates
surface charge dissipation*®#!. In contrast, either anions or cations in the marinated polymers are
expected to be mobile, giving rise to the compensation for the surface charge while the devices are

separated, resulting in the constant surface charges remaining regardless of pressure and humidity.

We investigated the triboelectric output voltages under dynamic pressure of 4.9 kPa with variable
frequency at the RH of 70% (Figure 2e and Supplementary Figure 7). The separation voltage peak
of 1.2 V was achieved at an initial low frequency of 0.1 Hz, and the values were increased to 2.5
V in the frequency ranges of 0.3 to 1.1 Hz, in which frequency range we chose is crucial for smart
finger applications like detecting heartbeats, feeling textures, and gripping objects. We attribute
this frequency dependence to the insufficient relaxation of surface charge** **, leading to surface
charge accumulation upon repeated contact. Hence, a shorter relaxation time results in more
significant charge accumulation at a higher frequency, demonstrating increased output voltage.
Beyond the pressure and frequency sensitivity, the hygroscopic nature of the single-ion conducting
electrolyte confers the humidity sensitivity on the smart finger, as presented in Figure 2f and
Supplementary Figure 8. The measured output of hygroelectricity gradually increased with
increasing the RH from 10 % to 80 %, reaching 0.97 V at the RH of 80 %. The single-ion
conducting electrolyte has been shown to get heavy with humidifying the surrounding
(Supplementary Figure 9) due largely to the moisture uptake. Polar solvating water facilitates ion

43,44

dissociation and migration in a solid electrolyte™ **, and indeed the ion transport was found to be



fast with increasing the RH (Supplementary Figure 10), helping to rationalize the observed

humidity sensitivity of the smart finger.

Self-powered smart finger for tactile perception

Ultimately, the different sensitivities to multiple stimuli, including pressure, vibration, and
humidity, render this smart finger a promising platform for tactile perception by characterizing
individual behaviors (Supplementary Figure 11). We first demonstrated the self-powering
capabilities of the smart finger, and the power curves obtained from the different humidities are
shown in Figure 3a and Supplementary Figure 12. The maximum powers generated in RH 10 and
80 % were 305 nW (at the load of 50 MQ) and 25 nW (at the load of 20 MQ), respectively, which
stably charge the capacitor of 10 uF up to 2.3 and 0.97 V within 500 seconds at RH 10 and 80%,
respectively (Figure 3b). It is worth noting that the electrical power generated at RH 10% mainly
arises from triboelectricity, whereas hygroelectricity is the main contributor to yielding the power
at RH 80 %, suggesting that energy delivery from either triboelectricity or hygroelectricity is large
enough for self-powered smart finger operation. Furthermore, we successfully lit up a light-
emitting diode (LED) under the reverse connection while the forward connection produced no
noticeable light (Figure 3c¢), revealing that we can extract the separation TE peak from the single
cycled electric signal using the LED lighting. The snapshots of the green LED with respect to
different RHs, frequencies, and pressure are presented in Figure 3d and Supplementary Figure 13a.
Slow vibration, high humidity and low pressure resulted in reduced brightness, and an increase in
the vibration and pressure, and dry environment boosted brightness. To gain further in sight into
the quantitative brightness of LEDs, we employed a home-built image analysis application in
which the 8-bit RGB color components are extracted from the photographs taken by the mobile

phone (Supplementary Figure 14 and Supplementary Movie 1). The perceived brightness (PB) was



approximated by the equation PB = v0.299 R2 + 0.587 G2 + 0.114 B2 %> where R, G, B denote
the values of RGB color components in 0 to 255 scales, respectively. The LED images in Figure
3d and Supplementary Figure 13a are converted into the brightness matrix, as plotted in Figure 3e
and Supplementary Figure 13b, showing that the PB values correlated to each LED luminescent.
Moreover, the PB values displayed a high degree of correlation (+° = 88.4 %) with 95 % confidence
interval to the separation TE peaks (Figure 3f), which together imply that the separation TE signal
of smart finger can be successfully elicited from the electrical signal using the PB of green LEDs

reversely connected.
Implementing machine learning for tactile perception

Machine learning has been a well-established tool for building the model from sample data without
being explicitly programmed, facilitating the prediction of a new data behavior comprising
multidimensional features*®*’. Herein, the multiple features, including the contact TE, contact HE,
separation TE, pressure, frequency, and humidity, were chosen for feature extraction in the
machine learning algorithm. To identify the categorization of multiple features, we first aim to
reduce high-dimensional data into two-dimensional space using linear discriminant analysis (LDA)
in which the distance between each data in the category is minimized while the category distance
is maximized. As shown in Figure 3g, we could clearly discriminate between a complex of humid,
pressure, and vibrational conditions; low RH and vibrational conditions inclined to group together
in the negative side of the first and second discriminant factors, respectively. Also, low pressure
tended to cluster on the negative side of the first discriminant factor, whereas on the positive side
of the second factor. The first two discriminant factors account for 99.8% of the variance. The
confusion matrices of 8 humid, 9 pressure, and 6 vibrational conditions are presented in Figures

3h, 31, and 3j, respectively, and high prediction accuracy was achieved for all matrices. Overall,



data clustering demonstrates discrimination capability and high reproducibility, putting forward

potential applications of smart fingers for accurate sensing of pressure, vibration, and humidity.

On the basis of the pressure, vibration, and humidity discrimination capability of smart fingers
outlined above, we demonstrated the real-world tactile perception of smart fingers incorporating
machine learning for pressure, vibration, and humidity sensing. Figure 3k describes a flowchart
detailing the tactile perception using smart fingers with the help of home built image analysis
application and machine learning. First, the pre-trained model was developed using the collected
data of known conditions in order to save calculation time and memory space for machine learning
in a central computer. The dataset was preprocessed to label the feature matrix and split into
training (80%) and test (20%) sets. With the linear regression algorithm based on a supervised
machine learning, the relationship between dependent and independent features was successfully
trained and was validified by the test dataset. The regression plot shown in Figure 31 exhibits the
high accuracy of the pre-trained model with a high degree of correlation (+* = 99.3 %). Next, the
smart finger acquires the contact HE and separation TE signals using a smart transmission
handheld device (that is smartphone) in terms of perceived brightness and output voltage, and the
signals are then transmitted to the central computer via wifi for perception in the pre-trained model
(Supplementary Movie 2). The perception results are set to be simultaneously displayed on the
screens of both the central computer and the handheld device (Supplementary Movie 3). Four
conditions were chosen to test the perception accuracy of the smart finger, and the recognition

results are presented in Supplementary Table 1.
Tactile perception mapping with multiarray smart skin

Beyond the tactile perception of the localized region, the multiarray of smart skin comprising 25

pixels of aluminum electrodes, Nafion electrolytes, and gold electrodes was constructed to



investigate the tactile perception performance of smart skin in line with spatial regions (Figure 4a).
The electrode arrays were fabricated by a masked thermal evaporation technique. A 5 by 5
electrode array pattern was first defined on the paper mask, and the 100-nm-thick gold or
aluminum films were then deposited on the polyethylene terephthalate (PET) substrate covered by
stainless steel mask using a thermal evaporator. The Nafion electrolyte was punched into a 10 mm
circular shape, and then placed on the gold electrode. The multiarray smart skin was obtained by
covering the electrolyte with an aluminum electrode pattern on PET substrate. The
polydimethylsiloxane (PDMS) spacers were located on the electrode substrate to secure a defined
gap between electrolyte and aluminum electrode. The photographic images of a fabricated smart
finger array presented in Figures 4b and 4c show the semi-transparency and high flexibility of our
device, suggesting potential applications such as wearable electronic skins and biomedical sensors.
The long-term stability was performed over the course of the 5000 compression-release cycles, as
shown in Figure 4d, appearing to be stable compared with its initial voltage level. Insets of Figure
4d demonstrate the outstanding durability and robustness of smart fingers, revealed by scanning
electron microscopy. The voltage signals of the nearest pixels (1,2,4, and 5) were investigated
when the center pixel (3) was subjected to compression (Figure 4e), and a little crosstalk between
adjacent pixels has been found. We note that the triboelectric signals have been observed for some
adjacent pixels (1 and 5), which is likely attributed to the electrolyte-electrode distance change in
the nearest pixels during compression. Response and relaxation time of approximately 150 ms
were measured from the enlarged plots in Figure 4e. It is worthnoting that the multiarray smart
skin exhibited the slower response time. We attribute the slower responses to the viscoelasticity of
polymeric PET substrate, bringing the smart skin to be slowly deformed and recovered over the

course of pressing and releasing®® #°. Lastly, the convex character patterns of ‘HKU” was directly



pressured on the smart skin to demonstrate a 2-dimensional mapping of spatial stress
(Supplementary Figure 15), and the resultant contact HE signals of the device at applied RHs of
30, 50, 70 % under the compressive force of 19.6 N were recorded using multichannel oscilloscope
(Figure 4f and Supplementary Figure 16—18). The mapping images unambiguously present ‘HKU”’
characters and the characters became more apparent at the elevated RHs, holding a promise for
potential applications of our smart skin array as electronic skin. It is worth mentioning that our

smart skin can be easily scaled—up or —down due in large part to its simple device architecture,

indicating further room for resolution improvement down to 50 pm with the aid of the

photolithographic technique.

Conclusion

We proposed a route to imitate multimodal human tactile perception from sensation to
interpretation on the basis of triboelectric/hygroelectric sensing and machine learning algorithm.
The contact electrification of the single-ion conducting electrolyte and separatable electrode
facilitates the dynamic mechanical stimuli sensing, while the ion migration throughout the
electrolyte enables the static sensing. Further, the hygroscopic nature of electrolytes endows the
capability of humidity sensing. The smart skin comprising the single-ion conducting electrolyte
and two electrodes converted static/dynamic mechanical stimuli and humidity into electrical
signals. The encoded signals of smart skin were successfully interpreted into RHs, pressure, and
vibration with an accuracy of 84.0 — 100.0% using the handheld device and machine learning,
demonstrating a tactile perception of both local and spatial sensations. Our smart skin provides
multiple advantages, including a simple fabrication, compact size, fast response, high accuracy,

self-powering, and multimodal sense. Moving forward, spatial resolution and miniaturization are



required to be further improved in order to incorporate into robots or even humans with the help
of advanced photolithographic technologies. The smart chips integrating sensing modules, LEDs,
image analysis modules, and wireless transmitters/receivers make them “smarter” and help us to
find more potential applications in robotics, prosthetics, healthcare, human-machine interface, and

intelligent industry.
Experimental Section

Fabrication of a tactile perception smart finger The basic structure of the smart finger is
composed of a single ion conducting electrolyte sandwiched by gold and aluminum electrodes. A
100 nm gold layer was deposited on a piece of 2 cmx2 cm Nafion NR-211 membrane (Dupont De
Nemours) electrolyte with a thickness of 25 pm using a thermal evaporator (Beijing Technol.
Science Co., LTD ZHD-300M2). An aluminum foil was used as the counter electrode. For the
construction of the 5 x 5 sensory array, a 100-nm-metal layer (i.e. gold or aluminum) was first
coated on the oxygen plasma-treated PET substrate being covered by a stainless-steel mask to
create a customized pixel pattern. The Nafion 211 film was attached to gold electrode by pressing
under 10 kPa overnight at RH 50%. Then PDMS pieces with a thickness of 2 mm and a diameter
of 3 mm were sandwiched between the two electrodes to serve as the spacers. Each pixel was

circular-shaped with a diameter of 9 mm and a center-to-center distance of 15.5 mm.

Characterizations The periodic stress was applied to the smart finger by using a pushing tester
(Junil Tech. JIPT-120) accommodated in a digitalized humidity controller (Terra Universal 1911-
24D). An oscilloscope (Agilent DSO-X-2014A) equipped with a preamplifier (SRS SR-570) was
used for voltage and current measurements throughout this research. The weight change of the

Nafion film after moisture uptake was measured using semi-microbalance (Sartorius Cubis(R) II



MCA125S5-2800-I). The ionic conductivity of Nafion film was determined using Admiral
Squidstat Plus potentiostat with impedance spectroscopy capability, over the frequency range from
0.1 Hz to 1 MHz. The blocking stainless-steel electrodes were used to be assembled the symmetric
electrode/electrolyte/electrode cells. All tests were conducted at 25 + 2 °C. The surface
morphology of the Nafion film before and after long-term operation were investigated using a

field-emission scanning electron microscope (Hitachi S4800-7952).

Image analysis application software for self-powered smart finger The LED is directly
connected to the smart finger to obtain the separation TE signal from the electrical outputs
individually. The LED was positioned in the dark chamber with optical opening where a Android
smartphone (Samsung Galaxy Note 10+) was mounted to take a video of LED lightning. A home-
built image analysis system was developed for the quantitative characterization of LED brightness,
which is termed ‘Smart Color Analysis System (SCAS)’. The SCAS is an Android application
software built using Android Studio. This application has been built to systematically extract the
RGB components from the snapshot of the video, followed by perceived brightness. The SCAS

workflow is detailed as follows:

Image loading The user can load the snapshot image of LED lighting for the RGB

components extraction.

Image preprocessing Once the user loads the snapshot image to be analyzed, it can be

resized and cropped to remove the background.

Image analysis The truncated image is converted into a matrix containing the RGB and

brightness values of each pixel. The brightness was estimated by the equation B =

v0.299 R2 + 0.587 G2 + 0.114 B2 ¥ where R, G, B indicate the values of RGB color



components in 0 to 255 scales, respectively. The matrix is processed to find the most frequent
color from all pixels over the image selected. First, the occurrence of individual RGB components
is counted and sorted in descending order. We chose six color matrices being the most frequently
observed in the image by sorting them in the orders of RGB, RBG, GRB, GBR, BGR, and BRG.
The most bright color components are selected as a representative color of the image. In this

software, the pixels featuring a brightness of > 15 are analyzed to filter the black background.

Tactile perception using machine learning The supervised machine learning was employed to
predict the pressure, vibration, and humidity from responses of the smart finger using a MATLAB
programming language (Mathworks Inc., Natick, MA). For the classification of individual RH,
pressure, and frequency, the ‘patternnet’ algorithmm was employed to train the neural network in
which the preprocessed data was split into 70:15:15 by percent for training, validation, and testing.
In order to quantitatively predict the RH, pressure, and frequency values from the brightness and
output voltage, two pre-trained models were developed to train the network by the ‘fitnet’
algorithm: Brightness/contact HE and contact HE/separation TE/RH/pressure/frequency. With
two models, the web app with user interface was constructed to real-time analysis of smart skin
signals. Once the user inputs the brightness and separation TE value into the web app, the contact
HE value will be estimated from the pre-trained model, and then RH, pressure, and freqeuncy are

predicted from contact HE and separation TE signals.
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Figure 1 | Self-powered smart skin system for multimodal tactile perception. a, Illustration of tactile

perception over the course of the human skin and nervous system. The tactile stimuli, such as pressure,

vibration, heat, and humidity, are encoded into the electrical signal by mechano- and thermoreceptors. The

signals are transmitted to the nervous systems for identification and interpretation. b, Schematics of tactile

perception in a self-powered smart skin. The tactile stimuli are sensed in the forms of triboelectric and

hygroelectric signals by the smart skin module comprising a single-ion conducting electrolyte and two

electrodes. The identification and interpretation of signals being transmitted by the handheld device are

performed in the central computer equipped with machine learning.
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Figure 2 | Tactile sensation using a smart finger. a, The voltage output of the smart finger under the
stimuli of 50 % RH, 4.90 kPa with 0.3 Hz. b, Schematic illustration of the working principle. ¢, The pressure
sensitivity of hygroelectric output voltages. d, Contact electrification outputs of the smart finger featuring
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of the smart finger.
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Figure 3 | Self-powered tactile perception with machine learning. a, Output powers depending on the

load resistance for contact hygroelectric and separation triboelectric signals. b, Capacitive charging with

individual contact hygroelectric and separation triboelectric signals. The inset indicates an equivalent circuit



for capacitive charging. ¢, Lightening of a LED with forward (red) and reverse (blue) connections. d, The
snapshots of LED lighting with varying RHs and frequencies. e, The perceived brightness corresponding
to the images in d using home-built image analysis application. f, Comparison of separation TE peak voltage
and brightness calculated. Solid lines are the linear fit. g, Discrimination capability of the smart finger. LD1
and LD2 represent the first linear discriminant factor and second linear discriminant factor,
respectively. h—j, Confusion map of the machine learning results for 8 humid, 9 pressure, and 6 vibrational

conditions, respectively. k, Flow diagram of tactile perception from sensation to interpretation. I,

Regression plot of the machine learning results of pre-trained model.
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Figure 4 | Tactile perception mapping. a, Schematic of a multiarray smart skin featuring the set of 5 x 5

electrodes and a single ion conducting electrolyte. b, The photograph of the multiarray smart skin fabricated.
¢, The flexibility of the smart skin. d, The robustness and durability of the smart skins over 5000 cycles.
Inset images display the morphologies of the electrolyte before and after cycling, respectively. Scale bar =
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Supplementary Figure 1 | Hygroelectric output voltage of smart finger as increasing the static

pressure.
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Supplementary Figure 2 | Nyquist plot of smart finger with differing pressure applied.
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compressing-releasing profile.
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Supplementary Figure 4 | a, Output voltages of smart finger as increasing the dynamic

pressure. b, Dynamic pressure sensitivity of triboelectric signals.
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dynamic pressure.
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Supplementary Figure 15 | Photographs of the convex character patterns of ‘H (a) K (b) U (¢)’.
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Supplementary Figure 16 | The output voltages of smart skins under the pressure with ‘H’

convex pattern.
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Supplementary Figure 17 | The output voltages of smart skins under the pressure with ‘K’

convex pattern.
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convex pattern.
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Supplementary Table

Supplementary Table 1| The current signals measured at RH50% with 4.9kPa and 0.3Hz

mechanical contact and separation.

Conditions applied Conditions predicted
Sample
No. RH Pressure Frequency RH Pressure Frequency

(%) (kPa) (Hz) (%) (kPa) (Hz)
1 24 4.9 0.3 29.29 5.78 0.32
2 25 6.9 0.5 28.15 7.93 0.39
3 33 8.6 0.7 32.29 9.11 0.69
4 50 6.1 1.1 64.65 7.12 1.07
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Supplementary Movies

Supplementary Movie 1 | Demonstration of image analysis mobile app.
Supplementary Movie 2 | Demonstration of a web app based on the trained model.

Supplementary Movie 3 | Demonstration of self-powered smart skin system.
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