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Abstract: Sound waves are reflected and absorbed by a passive side-branch device in a duct. The 

performance is limited at low frequencies if the cavity is compact. In this study, an electro-magnetic 

mechanism to enhance such low-frequency performance is examined. A common loudspeaker 

diaphragm, with its moving-coil immersed in the magnetic field, is used as a passive interface to the 

cavity, and a shunt analogue circuit is periodically connected and disconnected by a MOSFET. When 

the diaphragm is driven to vibrate by the incident wave, the reactive Lorentz force exerts extra acoustic 

impedance, which almost stops the diaphragm vibration if the shunt is close to a short circuit. The 

repeated transition between system damping of very low and high values scatters a significant portion 

of the incident sound energy to frequencies other than the source frequency. The peak energy scattering 

efficiency is found when the switching is twice the frequency of the incident. The sudden removal of 

the Lorentz force by MOSFET switch-off creates a boost in the diaphragm response, which is otherwise 

suppressed by the cavity stiffness, leading to much enhanced sound reflection. When the incident wave 

is random with a finite frequency band, scattering effect is found to offer a positive virtual mass, which 

counters the high system stiffness in the low frequencies. 

Keywords: spectral scattering, duct noise control, electro-magnetic diaphragm, switching shunt, low-

frequency sound 

1. Introduction 

Broadband noise control remains a great technical challenge to acousticians. To be specific, we define 

“broadband” to be a frequency range that very much exceeds an octave band, such as a decade. We 

shall call a bandwidth near one octave band as “finite-band”, and the range well below this to be a 

narrow band, single-frequency being its extreme. As we can soon appreciate from basic dynamics of all 

basic materials and structures, bandwidth very much dictates what is possible, and a discussion without 

reference to bandwidth can be misleading. For instance, one cannot compare the performance in a 

narrow stopband (or bandgap) of a resonating device with the seemingly low performance of a 

broadband device that operates at frequencies far away from its own resonance.  

In a flow duct, silencers must be installed in a side branch. The dynamics of such configuration differs 

significantly from the normal incidence. This configuration is traditionally called grazing incidence and 
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some recent literature calls it “ventilated” mode. It is well known that the use of porous material along 

a duct, namely duct lining, is technically satisfactory in the medium to high frequency regions. To be 

more specific, we define “medium” frequency to be the range whose half-wavelength is comparable 

with the duct height. Micro-perforated panels (MPP) can also serve as the dissipative element in a 

silencer, but there is no fundamental difference in acoustics between an MPP and fibrous materials. 

MPP has the practical advantage of being hygienic but it comes at a high manufacturing cost when very 

high levels of dissipation is desired. What is missing technologically is the low-frequency performance 

for duct noise control. A large volume is needed to tackle this over a reasonably broad frequency band 

in the low frequency region, such as the octaves centred at 63, 125 and 250 Hz. Existing good designs 

use a hybrid of sound absorption and reflection [1-2], but a higher-level of hybrid using active and 

passive controls [3] is theoretically more promising. In reality, the latter is not widely used as engineers 

favour pure passive control with good robustness and low cost. Advances in acoustic metamaterials 

(AMM) have raised the prospect of a smart passive device [4-6] performing better than the classical 

hybrid designs. Before discussing AMM in a broader sense, we would like to bring up the concept of 

optimal impedance.  

What is mathematically possible for duct noise control was examined by Cremer [7], and the result of 

that study is appropriately called the Cremer impedance in later literature. Though not strictly proven, 

the best locally reactive impedance is achieved when eigen-values of two lowest order modes in a lined 

duct converge, leading to the so-called exceptional point or branch point in the complex plane [8-11]. 

This impedance condition certainly points to the direction of superior performance in duct noise control, 

but caution is also needed for the following reasons. First, the model is based on a duct liner of infinite 

length. It is reasonable to suspect that a short device has different answers for the optimal interface 

impedance. Second, the optimal impedance is a function of frequency, which means that a true 

metamaterial must follow an ideal mathematical curve of material properties. Such a design is yet to be 

materialized. Third, the total noise reduction is determined by the incident wave spectrum. There is no 

such thing as an optimal impedance for all noise problems. Having said that, pink noise incidence would 

be a good benchmark to start with as most industrial and environmental noise problems have energy 

concentrated towards low frequencies. As pointed out by Tester [8], the benefit of the Cremer 

impedance is only valid when the prevailing incident noise is indeed dwelling in the least-decaying 

modes. Besides, the onus to achieve the identified Cremer impedance is by no means trivial at low 

frequencies. For instance, Tester [8] gave the following optimal impedance for a rectangular duct 

without flow as 𝑝/(𝜌0𝑐0𝑣) = (0.929 − 0.744 i)𝑘ℎ0/𝜋, where 𝜌0𝑐0 is the specific air impedance and 

𝑘ℎ0 is the Helmholtz number of the duct of height ℎ0. If the duct liner has a cavity depth of ℎcav, the 

negative dimensionless reactance provided by the cavity alone is cot(𝑘ℎcav). Therefore 0.744𝑘ℎ0/𝜋 =

cot(𝑘ℎcav). For the typical example we shall treat in this study, ℎ0 = 0.1m, 𝑓 = 150 Hz, it means a 

rather deep cavity of ℎcav ≈ 0.55 m. Interestingly, the optimal resistance is found to be negative when 

frequency approaches zero [9]. We can therefore conclude that we are dealing with a very different 

question here. What we are interested to know is what is possible for a shallow cavity such as ℎcav =

ℎ0 = 0.1 m as a given condition. For such a geometry, the Cremer impedance is partially satisfied when 

𝑓 ≈ 700 Hz, which is clearly in the medium frequency range. In the language of the AMM community, 

the problem of 𝑓 = 150 Hz  using ℎcav = ℎ0  is in the deep subwavelength range. In a related 

development of active impedance control [12], desirable impedance with prescribed system mass, 

resistance and compliance is achieved through sending the right electrical current through the shunt 

circuit of a side-branch diaphragm based on the average acoustic pressure sensed on the diaphragm.  

In the past decade or so, various smart structural designs, known as acoustic metamaterials (AMM), 

have enjoyed successes following the footsteps of optical metamaterials for cloaking and super-

resolution imaging [13-14]. To achieve low-frequency wave manipulation is one of many worthy goals 

of AMM nowadays. However, a comprehensive comparison with classical passive noise control 

techniques or hybrid active-passive control is yet to be performed to take stock of the current status of 
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AMM. One of the most interesting topics in AMM is the so-called acoustic non-reciprocity [15], which 

seems to have direct bearing on duct noise control. It would be intuitively appealing if sound from left 

were allowed to travel to the right but not the other way round. It remains to be seen, however, how 

much “resources” we need to deploy to achieve such non-reciprocity and to what extent it bears fruit in 

broadband noise control. By “resources” we mean the volume occupied by the controller device, instead 

of the manufacturing cost, in the context of low-frequency broadband noise. In an informal AMM 

review, Haberman and Norris [16] point out that traditional Helmholtz resonator has always been 

compact, and the line between AMM and classical acoustics is not distinctive. Like any other 

mechanical resonator, a Helmholtz resonator achieves resonance when the inertia effect balances the 

stiffness. Low frequencies are stiffness controlled but it is always possible to add inertia, such as by 

adding a thin membrane, whose material density is thousands of times higher than air, to bring down 

the resonance frequency down to zero. The consequence of doing so is that the bandwidth will also 

vanish. It is therefore compulsory to present some measure of total wave energy reduction when 

discussing the merits of any resonator-based designs. Classical designs using parallel arrangement of 

MPP resonators [17, 4] or Helmholtz resonators in series [18-19], or meticulously detuned resonators 

in series  [20] have already demonstrated high levels of sound absorption within a finite frequency band. 

In such studies, the trade-off between bandwidth and the total device performance is apparent. The 

device volume as the control parameter can be explicitly formulated using a causality-based integral 

approach [21-22]. In terms of the interface impedance for the grazing incidence, the resonator volume, 

or the system compliance, is represented by the negative reactance analyzed in this study. The question 

we ask is the following: is it possible to achieve a reduction in the magnitude of the interface reactance 

for a given cavity depth without invoking the usual resonance mechanism that will inevitably limit the 

bandwidth?  

As a typical noise spectrum is “pink”, in which the intensity is nearly inversely proportional to the 

frequency, the overall performance of a duct liner crucially depends on how much noise is reduced for 

the lowest frequency components. It is very “expensive” to allocate enough space for a low-frequency 

resonator with a useful bandwidth. An optimization program can be set up for the sound absorption 

performance for a given total side-branch volume. Instead of going down this path of design 

optimization, this study aims to explore a different strategy of noise control: linear frequency conversion, 

which is also described as spectral scattering in the subsequent text. Specifically, we introduce a time-

varying liner property that modulates the incident sound such that some energy in the low-frequency 

region is converted to higher frequencies that can be handled more easily by other mature techniques. 

For example, in our main example for an incident sound of 150 Hz, a modulation at 300 Hz converts 

part of the sound energy to 450 Hz, which is fairly easy to absorb. 

Frequency shift is also commonly found in nonlinear materials, which are sometimes called dynamic 

materials and can be regarded as the first generation of time-varying materials [23-24] with a possible 

link to the concept of time crystals [25]. Its time-varying properties, such as stiffness, is dynamically 

dependent on the excitation amplitude. The amplitude at which nonlinear effect is significant can be 

impractically high. An attempt to introduce active nonlinearity at low excitation amplitude [26] 

succeeded in broadening the sound absorption around the nonlinear resonance, but the high coefficient 

for the nonlinear-term needed in the control law may cause saturation and the beneficial nonlinear effect 

remains amplitude-dependent. A linear mechanism of frequency conversion is much more desirable, 

and the crucial parameter for success is the modulation ratio. The best performance is likely to be 

derived from designs that do not depend on narrow-band resonances. In what follows, we modify the 

shunt circuit used in [27-28] to exclude the capacitor so as to avoid electrical resonance, and refrain 

from adjusting any structural design such that the mechanical system will remain at some distance from 

resonance in frequency. Section 2 introduces the plane-wave theory suitable for low-frequency studies 

in the electro-mechanically coupled system. This is done with both analytical formulation in frequency-

domain and time-domain numerical simulation. The latter is validated by the exact frequency-domain 

results. Section 3 describes the typical example with details of energy conservation analysis. Finally, 
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the results of time-domain simulation is Fourier transformed to seek frequency-domain understanding 

of the main spectral scattering mechanism. It is shown that MOSFET switching neutralizes a significant 

part of the cavity reactance leading to improved noise reduction performance. Conclusions are drawn 

in Section 4. 

2. Basic theory and numerical method 

2.1 Side-branch device without shunt switching 

In this particular realization, we use an electro-magnetic diaphragm shunted by an analogue circuit, 

illustrated in Figure 1(a). The diaphragm can be specially made or can be a commercially available 

loudspeaker for convenience. Instead of generating sound as is normally intended for, an incident sound 

pushes a passive diaphragm whose moving coil cuts through the magnetic field. When a shunt circuit 

connects the coil in a loop, the generated electrical charges flow. The induced current through the 

moving coil induces the Lorentz force, which is a reaction force against the incursion by the diaphragm, 

in a way like a mechanical spring. The shunt circuit only consists of passive elements like a resistor, 

capacitor and inductor. Since the coil has inductance, we may not need any extra inductance. In any 

 

Figure 1. The basic module and two configurations of study. (a) The construction of shunted electro-

magnetic diaphragm (SEMD). The square wave train on the upper-right represents the voltage 

supplied to the “Gate” terminal of MOSFET which connects or disconnects the RCL shunt circuit. (b) 

SEMD used to stop the incident sound wave (𝑝inc) from transmitting through in a duct. (c) SEMD 

used as a sound absorber or scatterer in a side-branch to minimize sound transmission (𝑝𝑡) 

downstream. The cavity size is ℎcav by 𝐿cav, while the duct height is ℎ0. Incident sound pushes the 

diaphragm into the cavity at a surface-averaged velocity 𝑣, which radiates sound to both sides. 

case, we shall use 𝐿 to represent the total inductance in the shunt. The diaphragm used in this special 

manner is denoted as Shunted Electro-magnetic Diaphragm, or SEMD, in all subsequent discussions. 

The simplest method of achieving the time-variation of the acoustic property, or modulation, is to use 

a MOSFET (metal–oxide–semiconductor field-effect transistor) to dynamically connect or disconnect 

the shunt circuit, as demonstrated in our recent study [28]. A voltage is supplied to the “Gate” terminal 

of the transistor. When this voltage exceeds a threshold, such as 5 v, the MOSFET connects the shunt 

circuit, which is described as “shunt-on” state; otherwise, the transistor presents a high resistance of 

several thousands of Ohms, and the shunt circuit is effectively disconnected. The switching takes place 

over nano-seconds and it is considered as instant. The connection and disconnection is specified by the 

square wave train illustrated in the upper right side of Fig. 1(a). The frequency of switching is thus the 
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modulation frequency. Despite the appearance of being “active” in achieving such modulation, the 

switching action is pre-programmed and it should not act in response to any detection signal in an active 

control scheme. There is no energy exchange between the circuit and the mechanical vibration during 

the switching event, and the system is effectively passive. Switching shunt has also been used in 

vibration control, but it remains to be seen if it is effective for our acoustic purpose. 

Figure 1(b) was the configuration used in our recent study [28]. It was experimentally demonstrated 

that part of the sound energy in the source (incident) frequency 𝑓𝑠  was scattered into numerous 

sidebands of frequency 𝑓𝑠 ± 𝑛𝑓𝑚, where 𝑓𝑚 is the modulation (switching) frequency by the MOSFET, 

and 𝑛 = 1 is the dominant order of modulation. It was also demonstrated that, when a pure tone of 

frequency 𝑓𝑠 was modulated by a random switching pattern with a frequency range of 𝑓𝑚 ∈ (𝑓1, 𝑓2), the 

generated output in the first-order sideband also had the linear bandwidth of 𝑓2 − 𝑓1. In other words, a 

pure tone was scattered into a banded signal. By suitably choosing the switching frequency range, 𝑓𝑚, 

part of the incident sound energy was converted to infrasound, 𝑓𝑠 − 𝑓𝑚 < 20 Hz. The purpose of the 

current study is to explore how effective the system can be for the grazing incidence configuration 

shown in Fig. 1(c), which is more applicable in duct noise control. For this purpose, a cavity must be 

provided to prevent sound leakage, and its size, ℎcav × 𝐿cav , very much determines the silencing 

performance for traditional duct liners in the low-frequency regime. This is so because the air stiffness 

in a compact cavity suppresses the acoustic response in the side-branch, allowing the sound to transmit 

directly to downstream. It will be shown below that the switching shunt can effectively neutralize the 

cavity stiffness effect when a suitable modulation frequency is chosen.  

In order to focus on the basic mechanisms of spectral scattering, the frequency is assumed to be in the 

cut-off region, 𝑓 ≪ 𝑐0/(2ℎ0). As shown in Fig. 1(c), the diaphragm responds to the incident wave and 

its retreat into the cavity at velocity 𝑣(𝑡) creates a negative pressure wave into the upstream, forming 

the reflection pressure, 𝑝𝑟𝑒𝑓, and cancels part of the incident wave pressure in the downstream, 

𝑝ref = −𝜌0𝑐0𝑣𝑍rad𝑒
i(𝜔𝑡+𝑘0𝑥), 𝑝𝑡 = 𝑝inc − 𝜌0𝑐0𝑣𝑍rad𝑒

i(𝜔𝑡−𝑘0𝑥) , (1) 

  𝑍rad = Re (
𝑝rad
𝜌0𝑐0𝑣

) = (
𝐿cav
2ℎ0

) , (2) 

where 𝑘0 = 𝜔/𝑐0 is the wavenumber, and 𝑍rad is the real part of the radiation impedance normalized 

by the specific air impedance 𝜌0𝑐0. At low frequencies, the volume flux by the vertical motion of the 

diaphragm is simply converted to the horizontal fluxes in the upstream and downstream, each with half 

share at the absence of a mean flow. The radiation loading on the diaphragm has a part in phase with 

the velocity, 𝜌0𝑐0𝑣𝑍rad, as well as a part out-of-phase with the velocity. The latter has been analyzed 

in details by Huang [29] with the pressure expanded into rigid duct modes. It is concluded that the sum 

of the out-of-phase parts approximately amounts to the effects of a negative virtual mass and has an 

interesting physics. If the upper duct wall is mathematically replaced by a mirror, its constraining effects 

on the sound field is represented by a series of image sources, the one right above the upper wall being 

dominant. This image source radiates in the same time phase as the actual one and its radiation pressure, 

which is in phase with the vibration velocity, is time delayed by 2ℎ0/𝑐0 as it is located at a distance 

2ℎ0 above the lower wall. The delayed radiation resistance force is partially converted to the negative 

mass. The amount of negative mass thus incurred is equivalent to an air column of length 𝐿cav and is 

considered to have a minimal impact on the diaphragm dynamics, especially in the low-frequency 

region. Alternatively, one may lump this into the diaphragm mass. Thus simplified, the pressure 

continuity and volume flux conservation for the junction enclosing the diaphragm region for Fig. 1(c) 

read, assuming the origin of 𝑥 = 0 at the centre of the device, 

𝑝inc + 𝑝ref = 𝑝𝑡 , (𝑝inc − 𝑝ref)ℎ0 = 𝑝𝑡(ℎ0 + 𝑍int
−1𝐿cav), (3) 
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where 𝑍int is the dimensionless interface impedance of the cavity-backed diaphragm, which consists of 

contributions from structural elements (mass, mechanical damping, diaphragm suspension stiffness and 

cavity stiffness) and from the Lorentz force when the shunt circuit is connected by MOSFET, 

𝑍int =
𝑝

𝜌0𝑐0𝑣
|
interface

= [𝑚i𝜔 + 𝑑𝑚 + 𝜅
′(i𝜔)−1 +

(𝐵𝑙)2

𝑍𝑒
] /𝑑0, (4𝑎) 

where  

𝜅′ = 𝜅 + 
𝜌0𝑐0

2ℎ0
2

ℎcav
,   𝑑0 = 𝜌0𝑐0ℎ0

2. (4𝑏) 

Here, we have taken the liberty to use 𝑚,𝑑𝑚, 𝜅 to denote the mass, damping and stiffness per unit 

diaphragm area equal to ℎ0
2. Constant 𝑑0 is the resistance of sound radiation in a duct of cross section 

ℎ0
2. This scheme of notation will bring the following benefits. When a larger diaphragm is needed, such 

as two square-shaped loudspeakers to implement a cavity length of 𝐿cav = 2ℎ0 , the parameters 

𝑚,𝑑𝑚, 𝜅 remain unchanged. The parameter (𝐵𝑙) is the force factor, 𝐵 being the magnetic flux density 

and 𝑙 the effective coil length. Under the scheme of measuring everything per unit area ℎ0
2, one assumes 

𝐿cav/ℎ0 sets of such square-shaped diaphragm, each with the same 𝐵𝑙 and the same set of electrical 

circuit whose electrical impedance is 

𝑍𝑒 = 𝐿i𝜔 + 𝑅 +
1

𝐶i𝜔
. (5) 

Here, 𝐿 and 𝑅 already include the coil inductance and resistance, respectively. Solving Eq. (3), we 

obtain the complex, linear transmission coefficient and reflection coefficient, 

𝑝𝑡
𝑝inc

=
𝑍int

𝑍int + 𝑍rad
,

𝑝ref
𝑝inc

=
−𝑍rad

𝑍int + 𝑍rad
. (6) 

Note that 𝑍rad, given in Eq. (2), is derived from the mass flux term with 𝐿cav in Eq. (3). It is important 

to note that, by such modular construction of devices, 𝑍int is independent of the length 𝐿cav, which is 

solely reflected in 𝑍rad. In an experimental implementation for 𝐿cav = 2ℎ0, one can use two square 

loudspeakers to occupy the whole lateral width of a square duct and the axial length is 𝐿cav . 

Alternatively, one can take one of the two square loudspeakers to be placed on the sidewall and the 

volume flux into or out of the duct will have the same effect as two loudspeakers in tandem. 

Detailed physics of each shunt circuit component are explained by Zhang et al. [30]. When the shunt 

circuit has no capacitor (𝐶 = ∞), and no inductor (𝐿 = 0), which is impractical in this design due to the 

use of the coil, the electro-magnetically induced acoustic impedance, (𝐵𝑙)2/𝑅, would amount to a pure 

mechanical damping inversely proportional to 𝑅. The presence of the inductor 𝐿 complicates the phase 

relation. Wu et al. [31] experimentally demonstrated that a negative impedance converter could be used 

to minimize the inductance effect as well as the residual resistance embedded in the coil, and in the 

connecting wires, to approximate a true short circuit, 𝑅 → 0. A very high sound isolation effect for Fig. 

1(b) was achieved with extremely broad frequency band well over a decade. When 𝑅 = 0, 𝐶 = ∞, an 

inductor-only shunt circuit would mean an electro-magnetic spring of stiffness (𝐵𝑙)2/𝐿. This effect is 

surely present in the analysis of the next section although we will certainly allow a small resistor 𝑅 as 

any practical inductor should have. In the current theoretical study, we retain part of the natural 

inductance existing in the chosen loudspeaker, but will explore the effect of reduced circuit resistance 

𝑅 → 0 , which is physically viable if the device is tailor-made instead of being constrained by 

commercially available products. 

In order to investigate details of spectral scattering mechanism, we first limit ourselves to the example 

of one single incident wave frequency, 𝑓𝑠, but we avoid any effect of resonance in the hope that the 
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result is applicable to a wide frequency band. Specifically, the capacitor is removed, 𝐶 = ∞, so that 

there is no circuit resonance at a finite frequency. The structural mass is taken from the natural 

loudspeaker diaphragm, and the structural resonance frequency is higher than that in the incident sound 

wave. 

The structural damping coefficient in a realistic loudspeaker varies with frequency. For the sake of 

simplicity of this theoretical investigation, we keep it as a constant and allow the damping to be 

specified according to theoretical needs. The coefficients of sound energy reflection (𝛽), transmission 

(𝛾), and absorption (𝛼), are defined below,  

𝛽 = |
𝑝ref
𝑝inc

|
2

, 𝛾 = |
𝑝𝑡
𝑝inc

|
2

, 𝛼 = 1 − 𝛽 − 𝛾, (7) 

which can be analytically calculated from Eqs. (2), (4), (5) and (6) when the device is without MOSFET. 

With MOSFET switching, analytical calculation would become impractical as the device response at 

any one frequency is coupled with the property at all others [28]. In such case, numerical simulation 

has to be employed and the results of 𝑝𝑡/𝑝inc, 𝑝ref/𝑝inc are analyzed by Fourier transforms to yield the 

spectra of sound absorption, reflection and transmission. Energy conservation check to be conducted 

later refers to the comparison of 𝛼 calculated from the acoustic part here with the sum of components 

of energy damping calculated from structural damping and Joule heating in the circuit. 

Figure 2 shows the sound energy transmission coefficient 𝛾 before shunt switching technique is applied. 

Figure 2(a) is for the single source frequency of 𝑓𝑠 = 150 Hz but the design parameters vary. Figure 

2(b) is the performance of the device for all frequencies when the design parameter is optimized for 

𝑓𝑠 = 150 Hz. The best design parameters are identified as the trough points in Fig. 2(a). The essential 

purpose of this figure is to show what the best is for SEMD without MOSFET, and this will serve as a 

basis to study the effects of shunt switching. 

In Fig. 2(a), the solid curve is for the shunt-off design and the abscissa is  𝑑̅ = 𝑑𝑚/𝑑0. The filled circle 

gives the best performance of 𝛾min = 0.75 when 𝑑𝑚/𝑑0 = 3.01. The loudspeaker used in [28] has 

𝑑𝑚/𝑑0 = 1.20, meaning that it is very much below the optimal for this frequency. The dashed line is 

for the design with shunted circuit but with structural damping 𝑑𝑚 = 0 , and the abscissa is the 

electrically induced damping normalized by 𝑑0 , namely 𝑑̅ = (𝐵𝑙)2/(𝑅𝑑0) . The best performance 

(open-squares) is 𝛾min = 0.77, slightly worse than the shunt-off as the inductance increases the system 

stiffness. 

The reason for the troughs in Fig. 2(a) can be easily analyzed by the transmission coefficient 𝛾 in Eq. 

(6). Suppose the interface impedance is split into real and imaginary parts as 𝑍int = 𝑍𝑟 + i𝑍𝑖, minimal 

transmission is achieved when 𝜕𝛾/𝜕𝑍𝑟 = 0 for a given condition of 𝑍𝑖 mainly determined by the cavity 

stiffness, diaphragm stiffness and the shunt inductance. Combining the definition of 𝛾 in Eq. (7) and 

the complex transmission ratio in Eq. (6), we obtain 

𝛾 =
𝑍𝑟
2 + 𝑍𝑖

2

(𝑍𝑟 + 𝑍rad)
2 + 𝑍𝑖

2 ,
𝜕𝛾

𝜕𝑍𝑟
|
𝑍𝑟=𝑍𝑟,opt

= 0 → 𝑍𝑟,opt = √𝑍𝑖
2 + (𝑍rad/2)

2 − (𝑍rad/2). (8) 

At side-branch resonance, 𝑍𝑖 = 0, the optimal real part will be with zero damping when all sound is 

reflected. However, when the system is far from resonance, as is the case for a compact-cavity-backed 

device, 𝑍𝑖 → −∞, the optimal design would be 𝑍𝑟,opt ≈ |𝑍𝑖|. In other words, a high damping is needed 

to match the high system stiffness. At the optimal damping setting, the optimal transmission is 
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𝛾min =
√𝑍𝑖

2 + (𝑍rad/2)
2 − (𝑍rad/2)

√𝑍𝑖
2 + (𝑍rad/2)

2 + (𝑍rad/2)

𝑍𝑖→−∞
→    1 −

𝑍rad
|𝑍𝑖|

. (9) 

 

Figure 2. Optimal performance for the shunt-off design and the validation of time-domain 

computation by the frequency-domain solution. (a) Transmission coefficient 𝛾 for the incident sound 

with 𝑓𝑠 = 150 Hz when different energy dissipations are used, showing the best designs highlighted 

by an open square and a filled circle. The solid line is the design without shunt circuit and the abscissa 

is 𝑑̅ = 𝑑𝑚/𝑑0. The dashed line is for SEMD with electrical damping but without structural damping, 

𝑑𝑚 = 0, and the abscissa is the electrically induced, normalized, mechanical damping parameter  𝑑̅ =

(𝐵𝑙)2/(𝑅𝑑0). (b) Transmission spectrum for a fixed set of design parameters. The thick solid line is 

with the optimal structural damping identified in (a) as the filled circle. The thin solid line is for 

SEMD with the best electrical resistor identified in (a) as the open-square. The open-circles along this 

line is the result of time-domain calculation at these chosen frequencies. The dash-dot line is the 

shunt-off design without structural damping. Other parameters used are 𝑚 = 5.8g, κ =

4516N m−1, ℎ0 = ℎcav = 0.1m, 𝐿cav = 2ℎ0, 𝐿 = 0.2 mH, C = ∞,𝐵𝑙 = 4.6 Tm. 

It is easily checked that the trough for the shunt-off design in Fig. 2(a) conforms to the result of Eqs. 

(8) and (9). The same is true with the shunted design but the calculation for 𝑍𝑖 is more complicated. 

The last part of Eq. (9) implies that sound transmission can be reduced by increasing 𝑍rad via cavity 

length 𝐿cav, cf. Eq. (2), which will be presented later in Fig. 6. 

Figure 2(b) gives the transmission spectrum when the device is optimized for 𝑓𝑠 = 150 Hz only, which 

is marked by a vertical dashed line. The dash-dot line is an un-shunted diaphragm without damping, 

giving a resonance at 287.5 Hz where all sound is reflected and 𝛾 = 0 . The vertical dashed line 

highlights the fact that the frequency of 𝑓𝑠 = 150 Hz is well within the stiffness-controlled region for 

which the optimal passive design (thick solid curve) can only provide 𝛾min = 0.75, which means a 
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transmission loss of TL = −10 lg 0.75 = 1.25 dB. The thin solid curve is for the shunted design with 

all structural damping removed in favour of electrical damping of 𝑅 = 1.92Ω optimized for 𝑓𝑠 = 150 

Hz. Its performance for higher frequencies is generally better than the pure mechanical design by a 

small margin. The open-circles are the results from the time-domain numerical simulation, for which 

the deviation from the analytical frequency-domain solution is not discernable. Having said that, this 

validation is without MOSFET switching. With MOSFET switching, there can be no analytical result. 

However, the same simulation method for the configuration shown in Fig. 1(b) has been compared with 

experiment in [28] with very close agreement. It is pointed out that a perfect agreement with experiment 

is not expected, as there are quite a number of measurement uncertainties. We are therefore satisfied 

with the time-domain solution, which is briefly outlined below for the current configuration in Fig. 1(c), 

but without the special normalization scheme used in [28] for simplicity. 

2.2 Time-domain solution method 

The governing equation for the motion of the diaphragm under the incident wave pressure 𝑝inc(𝑡) is 

𝑚
d𝑣

d𝑡
+ 𝑑′𝑣 + 𝜅′𝜂 + 𝐵𝑙𝐼 = ℎ0

2𝑝inc(𝑡),   𝑑
′ = 𝑑𝑚 + 𝑍rad𝑑0 (10) 

where 𝑣 = d𝜂/d𝑡 is the vibration velocity, 𝜂 is the displacement, 𝜅′ is the device stiffness inclusive of 

the cavity contribution, cf. Eq. (4b), 𝐼 is the electric current in the shunt circuit. The term 𝑍rad𝑑0 in 𝑑′ 

accounts for the radiation pressure −𝜌0𝑐0𝑣𝑍rad  acting on the diaphragm of one unit area ℎ0
2 . The 

governing equation for the shunt circuit is given below together with more parameter definitions, 

𝐿
d𝐼

d𝑡
+ 𝑅(𝑡)𝐼 +

𝑞

𝐶
= 𝐵𝑙𝑣, 𝐼 =

d𝑞

d𝑡
, (11𝑎) 

𝑅(𝑡) = 𝑅on + 𝑅off[1 − 𝑔(𝑡)],   𝑔(𝑡) = 1(MOSFET on); 0(MOSFET off). (11b) 

Here, 𝑞 is the electrical charge, 𝑅(𝑡) is the instantaneous electric resistance, 𝑅on is the total circuit 

resistance when MOSFET is switched on, and 𝑅off is the huge resistance value when MOSFET is 

switched off. The coupled second order Equations (10) and (11) are cast as a set of four first-order 

equations in matrix form, 

d

d𝑡
[

𝑣
𝐼
𝜂
𝑞

]

⏟
𝐔

+ [

𝑑′/𝑚 𝐵𝑙/𝑚 𝜅′ 0
−𝐵𝑙/𝐿 𝑅(𝑡)/𝐿 0 1/(𝐿𝐶)
−1 0 0 0
0 −1 0 0

]

⏟                    
𝐃𝐌

[

𝑣
𝐼
𝜂
𝑞

]

⏟
𝐔

= [

𝑝incℎ0
2/𝑚
0
0
0

]

⏟      
𝐅

, (12)
 

where 𝐃𝐌 is the damping matrix. Equations (12) degenerate into a set of three equations when the 

capacitor is absent, 𝐶 = ∞, as there is no need to calculate the electrical charge 𝑞 from the current 𝐼, or 

two equations for 𝑣 and 𝜂 when the MOSFET is switched off with 𝐼 = 0. The time-domain solution is 

easiest when it is separated into two states of MOSFET-on, 𝑅(𝑡) = 𝑅on, 𝑔(𝑡) = 1, and MOSFET-off, 

𝑅off → ∞,𝑔(𝑡) = 0. All material properties are constant during the shunt-on and shunt-off periods, 

respectively.  

The electric current vanishes at the precise moment of switching, while all other variables in 𝐔 remain 

unchanged. The electrical charge is held constant during the entire MOSFET-off period,  

d𝑞

d𝑡
|
𝑔=0

= 0,   𝑞|𝑔=0 = constant, (13) 

and the end values of d𝑞/d𝑡 and 𝑞 are given as initial values for the four-element state vector 𝐔 in the 

next MOSFET-on period. 
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For both states, time-marching from time step 𝑡𝑛 to 𝑡𝑛+1 is given by the usual solution to the first-order 

differential equations (12), or d𝐔/d𝑡 + 𝐃𝐌𝐔 = 𝐅, 

𝐔(𝑡𝑛+1) = 𝑒
−∫ 𝐃𝐌d𝑡

𝑡𝑛+1
𝑡𝑛 [𝐔(𝑡𝑛) + ∫ 𝑒∫

𝐃𝐌d𝜏
𝑡

𝑡𝑛 𝐅(𝑡)d𝑡
𝑡𝑛+1
𝑡𝑛

] . (14)

The matrix exponential may be evaluated by eigen-value decomposition for such small matrix size,  

−𝐃M = 𝐇𝚲𝐇
−1, 𝑒

∫ ∓𝐃𝐌d𝜏
𝑡

𝑡𝑛 = 𝐇[𝑒±𝚲(𝑡−𝑡𝑛)]𝐇−1, (15) 

but Padé approximation will be more appropriate when a large matrix is involved in two or three 

dimensional wave propagation computations [32]. Here, 𝚲  is the diagonal matrix containing four 

eigenvalues of the damping matrix, and [𝑒±𝚲(𝑡−𝑡𝑛)] is the diagonal matrix whose j’th entry is calculated 

by the j’th eigenvalue 𝛬𝑗 as exp [±𝛬𝑗(𝑡 − 𝑡𝑛)]. For a real-valued problem, we expect eigen-values to 

emerge as conjugate pairs representing eigen oscillations for the diaphragm coupled to the shunt circuit. 

Columns in matrix 𝐇 are the corresponding eigen-functions.  

Time-marching solution may begin with zero values for all fluctuation variables, when an incident wave 

is introduced at the next time step. When the solutions are segmented into MOSFET-on and MOSFET-

off periods, the eigen-values are constant in each time segment. The exponential functions in Eqs. (14) 

and (15) effectively represent analytical solutions. The accuracy of the time-marching procedure is 

mainly dependent on how the integration with the forcing term 𝐅 in Eq. (14) is handled. We employ a 

four-segment Chebyshev series expansion for each time step, Δ𝑡 = 1/𝐹𝑠 , where 𝐹𝑠  is the sampling 

frequency. The accuracy for time marching is at least fourth order. Energy conservation check is 

conducted below to examine the actual numerical accuracy. 

2.3 Energy conservation equations and the validation on numerical accuracy 

Multiplying Eq. (10) by velocity 𝑣 and integrate over time and recognizing that the results for ∫𝑣d𝑣 

and ∫𝑣𝜂d𝑡 = ∫𝜂d𝜂 both vanish for stationary processes, we obtain 

∫(𝑑𝑚𝑣
2 + 𝐵𝑙𝐼𝑣)d𝑡 = ∫(ℎ0

2𝑝inc − 𝑑0𝑍rad𝑣)𝑣 d𝑡 , (16) 

for which the term −𝑑0𝑍rad𝑣 in the right-hand side is rewritten as −ℎ0
2𝜌0𝑐0𝑣𝑍rad and hence ℎ0

2𝑝ref via 

Eq. (3a). The whole right-hand side becomes RHS = ∫ℎ0
2(𝑝inc + 𝑝ref)𝑣d𝑡. The latter can be further 

transformed into a form of net acoustic energy input to the diaphragm via the relationship of 𝑝𝑡 = 𝑝inc +

𝑝ref, c.f. Eq. (3a), as follows, 𝑝inc
2 − 𝑝ref

2 − 𝑝𝑡
2 = 𝑝inc

2 − 𝑝ref
2 − (𝑝inc + 𝑝ref)

2 = −2𝑝ref(𝑝inc + 𝑝ref). 

Since 𝑝ref = −𝜌0𝑐0𝑣𝑍rad, cf. Eq. (1a), and that 𝑍rad = 𝐿cav/(2ℎ0), we obtain 

𝑝inc
2 − 𝑝ref

2 − 𝑝𝑡
2 = 𝜌0𝑐0𝑣(𝐿cav/ℎ0)(𝑝inc + 𝑝ref). (17) 

The right-hand side of Eq. (16) evolves as follows 

∫(ℎ0
2𝑝inc − 𝑑0𝑍rad𝑣)𝑣 d𝑡 = ∫ℎ0

2(𝑝inc + 𝑝ref)𝑣d𝑡 =
ℎ0
2

𝐿cav
∫ℎ0

𝑝inc
2 − 𝑝ref

2 − 𝑝𝑡
2

𝜌0𝑐0
d𝑡 . (18) 

When Eq. (16) is multiplied by 𝐿cav/ℎ0
2, it transforms the energy integration per unit diaphragm area 

of ℎ0
2  into the diaphragm area per unit width perpendicular to the plane shown in Fig. 1(c). The 

integration in the right-hand side of Eq. (18), such as ∫ℎ0𝑝inc
2 /(𝜌0𝑐0)d𝑡, then becomes the sound 

energy for the duct cross section with one unit of width. Finally, all energy integration is normalized by 

the incident wave energy, 𝐸inc defined below, to obtain the energy conservation in the form of energy 

coefficients, 
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𝐸inc = ∫ℎ0
𝑝inc
2

𝜌0𝑐0
d𝑡 , 𝛼𝑑𝑚 =

𝐿cav

𝐸incℎ0
2∫𝑑𝑚𝑣

2d𝑡,   𝛼𝑥 =
𝐿cav

𝐸incℎ0
2∫𝐵𝑙𝐼𝑣d𝑡 , (19) 

𝛼𝑑𝑚 + 𝛼𝑥 + 𝛽 + 𝛾 = 1. (20) 

Here, 𝛼𝑑𝑚 is the mechanical damping coefficient, 𝛼𝑥 is the coupling energy flowing into the electrical 

circuit, 𝛽 and 𝛾 are, respectively, the acoustic sound reflection and transmission coefficients defined in 

Eqs. (7). The total sound absorption coefficient as defined in Eq. 7(c) is thus 𝛼 = 𝛼𝑑𝑚 + 𝛼𝑥. 

The coupling energy flow into the circuit is examined by multiplying Eq. (11a) with the current 𝐼 and 

integrating over time,  

∫(𝐿
d𝐼

d𝑡
+ 𝑅(𝑡)𝐼 + 𝑞𝐶−1) 𝐼 d𝑡 = ∫𝐵𝑙𝐼𝑣 d𝑡 . (21) 

The main complication here is the switching-off moments at times 𝑡off(𝑛) where n is the counting index. 

Around 𝑡off(𝑛), both current and resistance experience rapid changes. A proper treatment for the 

integration is made by considering a small time interval Δ𝑡 before and after the switching action, which 

will be allowed to vanish. Over this short time, both vibration velocity 𝑣 and electrical charge 𝑞 are 

continuous. When Δ𝑡 → 0, the integrations involving the capacitor and the Lorentz force both vanish, 

yielding 

lim
Δ𝑡→0

∫ (𝐿
d𝐼

d𝑡
+ 𝑅(𝑡)𝐼) 𝐼 d𝑡

𝑡off(𝑛)+Δ𝑡

𝑡off(𝑛)−Δ𝑡

= 0, (22𝑎) 

lim
Δ𝑡→0

∫ 𝑅(𝑡)𝐼2d𝑡
𝑡off(𝑛)+Δ𝑡

𝑡off(𝑛)−Δ𝑡

= − lim
Δ𝑡→0

∫ 𝐿𝐼
d𝐼

d𝑡
d𝑡

𝑡off(𝑛)+Δ𝑡

𝑡off(𝑛)−Δ𝑡

, (22𝑏) 

where the last integration of ∫𝐿𝐼d𝐼/d𝑡 × d𝑡 = ∫𝐿𝐼d𝐼  becomes −(𝐿/2)𝐼off
2 (𝑛) , 𝐼off(𝑛)  being the 

current right before the switching-off, 𝑡off(𝑛) − Δ𝑡. It means that the energy dissipation by the rapid 

rise in resistance can be calculated simply by (𝐿/2)𝐼off
2 (𝑛). In other words, all the electrical “kinetic 

energy” stored right before the switching-off is consumed by the huge resistor in order to reach 𝐼 = 0. 

The energy integration over the whole time, shown in Eq. (21), is now divided into the Joule heating 

integration ∫𝑅(𝑡)𝐼2d𝑡 over the MOSFET-on periods with 𝑅(𝑡) = 𝑅on and the energy consumed over 

all the sudden switching-off moments. Finally, all the energy integrations in Eq. (21) are also 

normalized by the incident sound energy 𝐸inc, giving  

𝛼on =
𝐿cav

ℎ0
2𝐸inc

∫ 𝑅on𝐼
2d𝑡

𝑔=1

, 𝛼off =∑
𝐿

2
𝐼off
2 (𝑛)

𝑛

, 𝛼𝑥 = 𝛼on + 𝛼off. (22𝑐) 

The combination of the last equation of Eq. (22c) with Eq. (20) gives the grand total energy conservation 

in all fundamental physical elements 

𝛼𝑑𝑚 + 𝛼on + 𝛼off + 𝛽 + 𝛾 = 1. (23) 

Note that the integration for 𝛼on is conducted over the MOSFET-on (𝑔 = 1) periods, but it can also be 

extended over the entire period since 𝐼 = 0 is assigned for the MOSFET-off periods anyway. All the 

energy integrations can be calculated by the summation over all frequency components (according to 

Perceval’s theorem) when the fluctuation signals are Fourier transformed except 𝛼off which has to be 

added up from all individual switching moments. The spectral analysis is more revealing than the direct 

time-integration as we seek to study spectral scattering of sound energy.  
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For the typical examples presented in the next section with 100 time steps for the source oscillation 

cycle, the error for energy conservation in the mechanical part, Eq. (20), is 0.020%, while that for the 

electrical part, Eq. (22c), is 0.025%. The error for the total energy conservation in Eq. (23) is 0.004%, 

indicating mutual cancellation of errors. In addition to the above self-consistency check, the time-

domain numerical simulation scheme was validated by experiment in our previous work on the normal 

incidence configuration, cf. Fig. 3(d) of [28]. 

3. Results for spectral scattering 

Since there are many design variables, we limit ourselves to the set of parameters in Table 1. Note that 

all extensive diaphragm and shunt circuit properties, 𝑚,𝑑𝑚, 𝜅, 𝐵𝑙, 𝑅on, 𝐶, 𝐿, are given in terms of per 

diaphragm surface area equal to ℎ0
2 based on the test rig used in the experiment of [28] except that 

mechanical damping is given 𝑑𝑚 = 0 as we use electrical resistor for system damping instead. For the 

diaphragm length used in most of the computations below, 𝐿cav = 2ℎ0, and with the lateral width of ℎ0, 

the actual diaphragm surface area becomes 2ℎ0
2. The bulk properties, such as mass, should take the 

values twice the ones given in the table. The source frequency is 𝑓𝑠 = 150 Hz for most figures except 

when the broadband incident noise source is studied in the last subsection. 

Table 1. Parameters used for computations  

Duct height ℎ0 = 0.1 m Cavity depth  ℎcav = ℎ0 

Diaphragm length 𝐿cav = 2ℎ0, except for Fig. 6 

Diaphragm mass  𝑚 = 5.8 g Diaphragm spring constant  𝜅 = 4516 N/m 

Mechanical damping 𝑑𝑚 = 0 Diaphragm force factor 𝐵𝑙 = 4.6 Tm, except 

for Fig. 6 with 9.2 Tm 

Capacitor Absent, 𝐶 = ∞ Inductance 𝐿 = 0.2 mH 

Resistor  𝑅on = 0.05Ω, except when the effect of its variation is studied in Fig. 5 

 

3.1 Effect of modulation frequency 

We first vary the modulation frequency 𝑓𝑚 and subsequently look at the effect of the shunt resistor 𝑅. 

The variable to be minimized is the sound energy transmission to downstream, 𝛾. It is recalled that, 

when a shunt-off design is equipped with the best damping according to Eq. (8), the minimal 𝛾 is 

obtained and is used as a reference, 𝛾ref = 0.75, which is shown as the filled circle in Fig. 2(a). Results 

from all switching shunt designs will be compared with this reference. 

The MOSFET switching is controlled by a gating voltage in experiment. In simulation, it is simpler to 

specify an oscillating function 𝑦𝑚(𝑡) which issues a switch-on command when 𝑦𝑚  increases from 

negative to positive values, and a switch-off command when 𝑦𝑚(𝑡) decreases from positive to negative 

values. In this study, we choose the following function 𝑦𝑚, which is phase related to the incident wave 

pressure 𝑝inc sensed at the diaphragm, 𝑥 = 0, 

𝑝inc(0, 𝑡) = 1 [Pa] sin2𝜋𝑓𝑠𝑡 , 𝑦𝑚(𝑡) = sin(2𝜋𝑓𝑚𝑡 − 𝜃) , (24) 

where 𝜃 is the phase delay. Note that when 𝑓𝑚 is not a multiple of source frequency, 𝑓𝑚 ≠ 𝑛𝑓𝑠, where 

𝑛 = 1,2,⋯, 𝜃 has no meaning as the system goes through all values of 𝜃, but 𝜃 will be consequential 

when 𝑓𝑚 = 𝑛𝑓𝑠, which will be investigated below. In actual implementation, it is possible to feed the 

voltage present in the coil, 𝐵𝑙𝑣, through a low-pass filter, and amplify the filtered signal to create the 

gating voltage. Since the gating voltage is merely used to operate MOSFET, it does not constitute a 

feedback loop that has the potential to destabilize the system. 
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Figure 3 shows the effect of 𝑓𝑚 on the wave outputs, by absorption, reflection and transmission. The 

results are obtained by summing up contributions from all frequency components after the time-series 

are Fourier transformed. Figure 3(a) is for 𝛾 which has an obvious trough at 𝑓𝑚 = 2𝑓𝑠 = 300 Hz. This 

double-frequency relation, with optimal 𝑓𝑚/𝑓𝑠 = 2, is found to be true through numerical simulations 

for a wide range of source signal of interest, 𝑓𝑠 ∈ (50,250), although we have not obtained an analytical 

proof for this. The trough value achieved is 𝛾 = 0.65, which is better (lower) than the reference, 𝛾ref =

0.75. The results at 𝑓𝑚 = 𝑓𝑠 = 150 Hz and 𝑓𝑚 = 2𝑓𝑠 = 300 Hz depend on the phase angle 𝜃 and the  

 

Figure 3. Variation with modulation (switching) frequency 𝑓𝑚 and comparison with the reference 

results achieved by the optimal passive diaphragm, according to Eq. (8), shown as horizontal lines. (a) 

The transmission coefficient, which reaches a minimum of 𝛾min = 0.65 at 𝑓𝑚 = 2𝑓𝑠 = 300 Hz. (b) 

Absorption (dashed line) and reflection coefficients.  

result presented in Fig. 3(a) is averaged over all phases, 𝜃 ∈ (0,2𝜋). The variation with respect to 𝜃 is 

analyzed in the next figure. Figure 3(b) shows the absorption (solid line, 𝛼) and reflection (dashed line, 

𝛽) coefficients, both compared with the respective reference values drawn as horizontal lines with labels. 

For most 𝑓𝑚 values covered in this figure, the absorption is well below the reference value of 𝛼ref =

0.214, but the reflection is well above the reference value of 𝛽ref = 0.035. The results at 𝑓𝑚 = 300 Hz 

do not show special features for the curves of 𝛼 and 𝛽. 

Since the results for 𝑓𝑚 = 2𝑓𝑠 are the most encouraging, we now focus on this case and explore the 

effect of 𝜃, together with the setting of 𝑓𝑚 = 𝑓𝑠. Figure 4(a) is for 𝑓𝑚 = 𝑓𝑠, while Fig. 4(b) is for 𝑓𝑚 =

2𝑓𝑠. In terms of 𝛾 (solid curve with open circles), it is interesting to note that the lowest value for 𝑓𝑚 =

𝑓𝑠  in Fig. 4(a) happens to be almost the same as the average value of 𝛾  for 𝑓𝑚 = 2𝑓𝑠 , which is 

highlighted by a filled circle in Fig. 4(b) at 𝜃/𝜋 = 1.04, 𝛾 = 0.65. The trough of 𝛾 = 0.38 at 𝜃 =

1.56𝜋 is highlighted by another filled circle. Both phase settings will be analyzed below. The curves of 

the sound absorption 𝛼 (thin solid lines) have phase shifts relative to the curves of the transmission 

coefficient 𝛾, but the reflection curves 𝛽 (dashed lines) are almost the exact opposite in phase with the 
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𝛾 curves. Since reflection depends on the diaphragm vibration, it means that more diaphragm vibration 

is good for noise control at downstream. 

 

Figure 4. Sound absorption, reflection and transmission for (a) 𝑓𝑚 = 𝑓𝑠, and (b) 𝑓𝑚 = 2𝑓𝑠 when the 

phase of the modulation varies relative to the source signal. The two filled circles in (b) represent, 

respectively, the average result for all the phases, and the minimum transmission coefficient.  

With 𝑓𝑚 = 2𝑓𝑠  fixed, we are left with only two design variables, shunt circuit resistor 𝑅 and MOSFET 

phase angle 𝜃. A simple parametric scan produces the optimal design parameter shown in Fig. 5 for 

𝑓𝑚 = 2𝑓𝑠 = 300 Hz. Figure 5(a) shows a minimum transmission 𝛾min = 0.38, which is about half of 

𝛾ref = 0.75. This is achieved at the lowest resistor value scanned, 𝑅 = 0.05Ω. Figure 5(b) shows the 

same location for the peak reflection coefficient 𝛽, similar to the trend shown in Fig. 4(b). In Figure 

5(c), the total sound absorption 𝛼 includes mechanical damping, which is zero in this case as 𝑑𝑚 = 0, 

the shunt-on Joule heating 𝑅𝐼2, as well as the switching absorption of (𝐿/2)𝐼off
2 , where 𝐼off is the value 

of the current right before switching-off. Here, it is obvious that the design for 𝛾min is not achieved 

because of the maximum absorption, but rather a lowest value of 𝛼 in the range studied. Note that the 

same is not quite true if the same study is conducted for 𝑓𝑚 = 𝑓𝑠, where 𝛾min is found as a compromise 

between 𝛼 and 𝛽, which have separate peak settings. Figure 5(d) shows the ratio of energy conversion 

in the system from the source frequency to all other frequencies, which in this case is simply 𝑓 =

𝑛𝑓𝑠, 𝑛 = 3,5,7,⋯. Since all energy components in Eq. (23) have spectral distribution, the ratio of the 

total energy scattering is defined as the sum of energy outside 𝑓𝑠, 

𝜂conv = (𝛼𝑑𝑚 + 𝛼on + 𝛼off + 𝛽 + 𝛾)|𝑓≠𝑓𝑠 . (25) 

When 𝛾min is achieved, the total conversion is 𝜂conv = 0.43. If the percentage of non-source-

frequency is calculated in the transmitted sound only, 𝜂conv would be 0.37 (not shown).  
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Figure 5. Effects of resistor 𝑅 and phase for double-frequency modulation 𝜃 (𝑓𝑚 = 2𝑓𝑠 = 300Hz). (a) 

Surface plot of 𝛾(𝜃, 𝑅) with the trough shown in red circle found at the minimum resistance 𝑅 =

0.05Ω and 𝜃 = 1.56𝜋, 𝛾min = 0.38. (b) Reflection coefficient 𝛽. (c) Absorption coefficient 𝛼 =

𝛼𝑑𝑚 + 𝛼on + 𝛼off. (d) Total spectral scattering ratio in sound energy, 𝜂conv defined in Eq. (25). The 

optimal point for 𝛾min is also marked by open circles in sub-figures (b), (c) and (d). 

In Fig. 5, the results for (a) 𝛾, (b) 𝛽, (c) 𝛼 and (d) 𝜂conv essentially show a rather separable influence 

of 𝜃 and 𝑅. While the variations with 𝜃 is periodical, as shown in Figs. 3 and 4, the same for 𝑅 is 

monotonic for all except 𝛼 where a peak of 𝛼 = 0.34 appears at 𝑅 = 0.39, 𝜃 = 1.68𝜋. Note that the 

trough point for 𝛾 has 𝜃 = 1.56𝜋, and so the peak for 𝛼 is only slightly shifted in terms of 𝜃, as was 

shown clearly in Fig. 4 when the thin solid lines are compared with the thin dashed lines. The minimum 

of 𝛾 (0.38) is achieved at a relatively low 𝛼 (0.22) but a high 𝛽 (0.40) and a high 𝜂conv (0.43). Later 

analysis (Fig. 9) shows that scattering has a key role in achieving the low transmission by suppressing 

the cavity acoustic reactance. The results in Fig. 5 allow us to fix 𝑅 = 0.05Ω for subsequent studies 

with the geometry of 𝐿cav = 2ℎ0 . The theoretical optimum should be 𝑅 = 0 but it is not realistic. 

Besides, the results are very similar. 

The level of transmission loss (TL) achieved by the best result in Fig. 5(a), 𝛾min = 0.38, is TL =

−10 lg 0.38 = 4.2 dB, which may not seem signficant. The performance of the device is now examined 

together with the standard duct lining occupying the same cavity volume of ℎcav × 𝐿cav, cf. Fig. 1(c). 

When ℎcav = ℎ0 is fixed, the lining length 𝐿cav determines the volume. Figure 6 shows the monotonous 

increase of TL with 𝐿cav for all four curves detailed as follows. Curve 1 is the performance of the current 

switching shunt design operated at a modulation frequency of  𝑓𝑚 = 2𝑓𝑠 and with the best phase angle 

(for each 𝐿cav setting), as illustrated in Fig. 4(b). Curve 2 is for the average performance for 𝜃 ∈ (0,2𝜋). 

Curve 3 is for a cavity of length 𝐿cav filled with fibrous porous material of flow resistivity 10,000 Pa ∙

s/m2, for which the equivalent fluid formulas of Miki [33] have been adopted in a Comsol® simulation 

with the downstream boundary allowing all waves to exit the computational domain. Curve 4 is obtained 

when the cavity is empty, serving as a purely reactive expansion chamber. The gaps between curve 3 
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and curves 1 and 2 demonstrate the beneficial effects of spectral scattering. Please note that 𝐵𝑙 values 

for curves 1 and 2 have been set as twice as much as that adopted for Figs. 2-5, but other diaphragm 

parameters have remained the same. Please also note that as 𝐿cav increases further, the compact-device 

assumption, 𝐿cav ≪ 𝜆, where 𝜆 is the wavelength, implicit in Eqs. (2,3,6) may fail for curves 1 and 2. 

A practical workaround for 𝐿cav = 8ℎ0 is the following. Instead of using a single diaphragm covering 

a single cavity of length 8ℎ0, a square duct with 4 identical diaphragms and cavities of 2ℎ0 are attached 

to the four duct sides. When higher TL is desired, which is entirely possible with more volume, multiple 

units are needed along the duct and the none-compactness needs to be taken into account by 

simultaneously solving for the vibration velocity of all diaphragms in series. 

 

Figure 6. Improvement of device performance with the total volume occupied by the cavity. The 

cavity depth for all configurations shown here is ℎcav = ℎ0, while the cavity length 𝐿cav varies. 

Curves 1 and 2 are for the switching shunt design, in which the properties of the diaphragm per unit 

surface area ℎ0
2 are listed in Table 1, except that the magnetic force factor is doubled, 𝐵𝑙 = 9.2 Tm. 

Curve 1 is the result using the best phase 𝜃 for the gating voltage expressed in Eq. (24), while curve 2 

is with the average performance derived for 𝜃 ∈ (0,2𝜋). The duct liner for curve 3 has a cavity filled 

with a fibrous porous material of flow resistivity 10,000 Pa ∙ s/m2 using the Miki [33] equivalent 

fluid model. Curve 4 is the performance of empty cavity forming an expansion chamber. 

3.2 Details of spectral scattering mechanism 

Figure 7 shows the waveforms of the optimal modulation identified in Fig. 5(a) by the open circle, with 

𝑓𝑚 = 2𝑓𝑠 = 300 Hz and 𝜃 = 1.56𝜋. Figure 7(a) compares the incident wave (dashed line) with the 

transmitted wave (solid line), both measured at the diaphragm position. Since 𝛾 = 0.38, the r.m.s. 

amplitude of the transmitted wave has an amplitude of √𝛾 = 62% times that of the incident wave. 

Figure 7(b) shows that switching-off occurs twice in the source wave cycle and it does not quite happen 

when the current 𝐼 reaches its peak magnitude. The peak Lorentz force is more than twice the force of 

the incident wave acting on the cross section of ℎ0
2, or roughly equal to the incident wave force on the 

entire diaphragm surface with length 𝐿cav = 2ℎ0. Despite the appearance of not dumping the electrical 

energy at the peak current magnitude, the amount of system energy consumed by the switching-off  
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Figure 7. Time-domain result for the double source-frequency modulation (𝑓𝑚 = 2𝑓𝑠 = 300 Hz). (a) 

Incident and transmission wave compared. (b) Shunt circuit current 𝐼 shown in the normalized form of 

𝐵𝑙𝐼/(𝑝incℎ0
2), with open-circle indicating the exact moment of switching-off. (c) Diaphragm vibration 

velocity (solid line) with the source frequency component (dashed line) plotted for phase reference. 

All coordinates are shown in normalized form indicated by the vertical axis labels. The time 

coordinate 𝑡 = 0 here is 0.1 sec, or 15 cycles, after the incident wave is launched and when the 

waveforms have become stationary. 

action, 𝛼off defined in Eq. 22(b), has the lion share of 98.5% of the total electrical energy drained, 

𝛼on + 𝛼off. When the energy is consumed gradually by the shunt-on resistor 𝑅on, one can expect the 

same behaviour of energy dissipation as that by mechanical damping. It is well known that such 

damping induces phase differences in the vibration response and hence waveform distortion when the 

incident wave is not of a single frequency. For the current modulation design, however, damping almost 

exclusively occurs all of a sudden by the MOSFET switching. This changes the phase response of the 

diaphragm in relation to the incident wave forcing. Moreover, the phase relation is adjustable, instead 

of being fixed with vibration velocity in a traditional mechanical system. The implication of this will 

be analyzed further below when the equivalent acoustic impedance introduced by the modulating device 

is examined. 

The diaphragm vibration velocity 𝑣 is shown in Fig. 7(c) (solid line) in a form normalized by the 

acoustic particle velocity 𝑝inc/(𝜌0𝑐0). The component of 𝑣 for the source frequency 𝑓𝑠 (dashed line) is 

also plotted for examining the phase angle relation with the current 𝐼 in Fig. 7(b). It is observed here 

that the vibration is particularly rigorous when the circuit is switched off, namely in the time segment 

with the flat line of 𝐼 = 0 in Fig. 7(b). This is so because the diaphragm has zero mechanical damping 

and is therefore responding to the incident wave well. During the shunt-on period, the vibration is 

subdued due to the fact that a small resistor of 𝑅 = 0.005 Ω almost constitutes a short circuit, which 

presents a huge induced acoustic impedance forbidding the vibration. It is such drastic change between 

the damping-free responses to almost an on-hold state of the diaphragm that scatters the frequency 
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content of the incident wave. The current is at a high amplitude when the circuit is switched off, 

dumping all the electric energy stored in the electric spring, the inductor, to the huge resistor present in 

MOSFET at the switch-off position. The amount of energy damping created will also be analyzed in 

the form of acoustic impedance further below. 

Figure 8 shows the spectra for the transmitted wave and electro-mechanical coupling defined below for 

the two phase-settings identified in Fig. 4(b) by the filled circles. One is the best performance with 𝜃 =

1.56𝜋, shown here in sub-figures (a) and (c), and another is the average performance with 𝜃 = 1.04𝜋 

in sub-figures (b) and (d). All sub-figures have double y-axis. The right-hand side is for the cumulative 

energy shown in thin solid curves, normalized by its own maximum. Cumulative energy is particularly 

helpful in spectral analysis as it visualizes the actual energy contribution when the system response is 

spread over a frequency band and the height of discrete peaks can be misleading, especially when 

presented in the decibel scale. The solid curve in Fig. 8(a) is for the transmitted wave spectrum, 

calculated by 20 lg |𝑝𝑡/𝑝inc|. We see energy scattering to all higher-order frequencies of 𝑓𝑠 + 𝑛𝑓𝑚, 𝑛 ≥

1. The cummulative energy curve, ∫|𝑝𝑡|
2 d𝑓, normalized by its own total, shows a dominant rise at the 

source frequency 𝑓𝑠, followed by a significant rise at the next peak of 𝑓𝑠 + 𝑓𝑚 = 450 Hz, and much less 

contributions from higher harmonics. If the energy outside the source frequency, 𝑓 ≠ 𝑓𝑠, is added up, it 

contributes 45% of the total transmitted wave. The total scattering ratio defined in Eq. (25) is 𝜂conv =

48%. The latter is more indicative of the effectiveness of spectral scattering as the transmission wave 

only accounts for 𝛾 = 38% of the incident wave energy in this case. 

 

Figure 8. Spectral scattering analysis for the double-frequency modulation (𝑓𝑚 = 2𝑓𝑠) for the two 

phase settings of best performance, (a) and (c), and average performance, (b) and (d), identified by the 

two filled circles in Fig. 4(b), 𝜃 = 1.56𝜋, 1.04𝜋, respectively. As illustrated in sub-figure (a) but 

applicable to all sub-figures, the thin solid lines are the cumulative spectra for the thick solid curves in 

each sub-figure corresponding to the right coordinate axes. (a) and (b) are for the transmitted wave 

spectra while (c) and (d) are for the electro-mechanical coupling spectra. 
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Figure 8(b) is for the average-performance setting, for which the energy in the scattered frequencies is 

less than that in Fig. 8(a). Figure 8(c) shows the cross-correlation spectrum for the Lorentz force 𝐵𝑙𝐼 

and the diaphragm vibration velocity 𝑣. The result is normalized by the incident wave energy 𝐸inc, 

𝛼̂𝑥(𝑓) =
𝐿cav𝐵𝑙

2𝐸incℎ0
2 Re(𝐼𝑣

∗), (26) 

where 𝐼  and 𝑣  are, respectively, the Fourier transforms of the current and vibration velocity, and 

superscript ‘*’ denotes complex conjugate. The sum of the coupling coefficient 𝛼̂𝑥(𝑓)  over all 

frequencies is simply 𝛼𝑥 defined in Eq. (19). The coupling spectrum in Fig. 8(c) shows a prominent 

peak at 𝑓𝑠, as expected, but it becomes negative at all sum frequencies. Negative value implies that, 

without energy input, there is energy output to the diaphragm vibration as well as energy damping 

occurring at higher frequencies. This is the direct evidence of spectral scattering. The sum of the positive 

and negative coupling coefficients over all frequencies is equal to the sum of energy damping in the 

circuit, 𝛼on + 𝛼off, which is guranteed by the stationary process governed by the circuit equation (11). 

The cumulative sum shown in Fig. 8(c) eventually comes down to unity as it is normalized by its own 

total. The amount of over-shoot at 𝑓𝑠, or the depth of the dive at 450Hz, indicates the extent to which 

the spectral energy is scattered. Figure 8(d) shows that the coupling is weaker even at 𝑓𝑠 when compared 

with Fig. 8(c). 

The above analysis concerns either time-domain events or spectral scattering in terms of the quantitative 

outcome. The mechanism is now further analyzed from a new perspective. Suppose the spectral 

scattering is an additional material property that changes the device response to the source frequency 

𝑓𝑠, knowing that the radiation of sound at the scattered frequencies is entirely separate. We now focus 

on the change of device response to the source frequency and compare it to the non-switching 

configurations, either without a shunt circuit, or with a shunt circuit constantly engaged. The device 

impedance of the latter is given in Eq. (4) as the interface impedance. When switching occurs, the new 

impedance is now calculated by the actual waves transmitted according to Eq. (6). Given the complex 

value of 𝑝𝑡/𝑝inc, we work backwards from Eq. (6) to obtain the equivalent interface impedance denoted 

here as 𝑍int
′ , 

𝑍int
′ = 𝑍rad

𝑝𝑡/𝑝inc
1 − 𝑝𝑡/𝑝inc

, (27) 

where the real-valued radiation impedance, 𝑍rad = 𝐿cav/(2ℎ0), remains unchanged. This impedance 

𝑍int
′  is compared with the effective impedance when the shunt-on and shunt-off each taking half of the 

online time-share, which may be called the multiplexing arrangement. Since the exact timing of the 

shunt-on and shunt-off is different, the wave output from each will have a different phase angle. When 

the switching takes place at a frequency unrelated to the source signal, this phase angle sweeps through 

all values and the interference effect vanishes over a long period of Fourier transform integration. The 

result is equivalent to a fully fused combination of time-share in which the switching between them 

occurs so frequently that they are present in parallel “time-channel” each taking half of the total time. 

When switching is synchronized with the source signal, this is no longer the case. The phase will have 

a serious impact on the results, as was revealed in Figs. 4 and 5. Nevertheless, we shall still define a 

“neutral” state of multiplexing in which the two are fully fused, and assign the effects of timing as part 

of the temporal scattering that mainly arises at the instants of switching. Mathematically, temporal 

scattering is defined as the difference between the actual wave output from the system and an ideal, 

fully fused multiplexing state described above. In a time-constant system, spatial singularity can scatter 

waves from one wavenumber to another, and so is temporal scattering which scatters wave energy from 

one frequency to another. Since the transmission wave in the fully fused multiplexing case is simply 

the average of the two states, we define the impedance of spectral scattering Δ𝑍sc as follows, 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

20 

 

𝑝𝑡
′ =

1

2
(𝑝𝑡|shunt on + 𝑝𝑡|shunt off), 𝑍mpx = 𝑍rad

𝑝𝑡
′/𝑝inc

1 − 𝑝𝑡
′/𝑝inc

, Δ𝑍sc = 𝑍int
′ − 𝑍mpx. (28) 

Here subscripts ‘mpx’ and ‘sc’ denote multiplexing and scattering, respectively. 

Figure 9(a) compares the complex transmission ratio 𝑝𝑡/𝑝inc  for shunt-off (open circle), shunt-on 

(cross), fully fused multiplexing (open square) and the switching shunt (diamond) in the complex plane. 

This is for the double-frequency modulation identified as the average design point, 𝜃 = 1.04𝜋, in Fig. 

4(b). Surely, the multiplexing transmission lies in the middle between the shunt-on and shunt-off states, 

but the switching shunt (diamond) is distinctively different. All symbols are connected to the origin for 

clarity. Figure 9(b) is the complex-plane presentation for the four impedances. The shunt-off impedance 

is −3.5i, in which the mechanical spring contributes -0.83i and the cavity contributes -2.65i. The shunt-

on impedance is 6.6 − 28i which has a huge magnitude stretching to the right-lower corner in Fig. 9(b). 

This is mainly due to the small resistance and inductance used. When combined in parallel, the  

 

Figure 9. Equivalent impedance analysis for the switching shunt compared with the shunt-off, shunt-

on and the multiplexing state. The latter refers to the equal time-share between the shunt-on and 

shunt-off conditions according to the switching function given in Eq. (24), without accounting for the 

scattering effects. (a) Complex transmitted wave amplitude. (b) Variation of scattering induced 

impedance with phase angle 𝜃. (c) Complex-plane presentation for the scattering and other 

impedances. The design setting is the average-performance point with 𝑓𝑚 = 2𝑓𝑠, 𝜃 = 1.04𝜋 (the left 

filled circle in Fig. 4(b)). 

multiplexing impedance is more moderate, 0.77 − 6.2i. It is noted that the stiffness is still higher than 

the shunt-off configuration, but the available damping (real part, 0.77) is inadequate, recalling that the 

optimal damping for the shunt-off design is 3.01. The switching configuration has a drastically different 

impedance of 0.58 − 1.56i. The reactive part is so small that the damping, 0.58, is about half of the 

optimal damping 1.14 calculated from Eq. (8). The line drawn from the multiplexing impedance (open-

square) to the switching shunt impedance (diamond) represents the scattering effect, Δ𝑍sc = −0.19 +
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4.64i. Figure 9(c) gives the variation of the real (solid line) and imaginary (dashed line) parts of Δ𝑍sc 

with 𝜃 , together with the energy transmission coefficient 𝛾  (dotted line). The impedance lines are 

unremarkable around the troughs of 𝛾, but there is a rapid rise near 𝜃 = 𝜋/2 when the performance is 

poor, poorer than the pure shunt-off configuration. When the best performance point (𝜃 = 1.56𝜋) is 

analyzed, the scattering impedance is found to be Δ𝑍sc = 0.16 + 6.0i. The switching shunt impedance 

itself is 0.93 − 0.20i which is very close to the no-stiffness state or resonance. As a result, much more 

sound reflection occurs (𝛽 = 0.40) and much reduced transmission (𝛾 = 0.38) is obtained. Although 

the reactance reduction of 6.0i by the optimally phased switching shunt is even higher than that of the 

passive device itself, −3.5i, it is still slightly smaller than the ‘multiplexing’ state, which has −6.2i. 
Figure 9(b) visualizes various impedance components. 

The reason why the switching reduces the system reactance at the source frequency may be further 

explained by examining the phase relation between switching and the source frequency vibration, 

denoted here as 𝑣𝑓𝑠(𝑡) and identified as the dashed line in Fig. 7(c). Switching occurs roughly when 

𝑣𝑓𝑠(𝑡) reaches its maximum magnitude. Sudden switch-off drains the maximum energy stored in the 

circuit by the MOSFET resistor. Since the Lorentz force opposes the coil motion in general, the sudden 

disappearance of the Lorentz force implies a relative boost for the diaphragm motion. The actual amount 

of boost depends on the coupling between the Lorentz force release and the vibration velocity. When 

the force and velocity are in phase, the enhancement is the greatest. Enhanced motion implies less 

restriction by the cavity stiffness. If the magnitude of 𝑣𝑓𝑠 is plotted as a function of switching phase, as 

is done in Figs. 4(a) and 4(b) in dashed lines, we find it to trend in the opposite direction with 𝛾 (the 

dashed line with open circle). In other words, when the magnitude of 𝑣𝑓𝑠 is high, the transmission is 

low, mainly because the system reactance reduction is large. Of course, the details of all the factors 

determining 𝛾 are complex, such as the resistance, the spectral spread of the energy, but we argue that 

the system reactance reduction by the sudden release of the reactive Lorentz force to be the crucial part 

of the spectral scattering mechanism. 

3.3 Finite-band random noise as incident wave 

The purpose of avoiding low-frequency resonance in the basic mechanical design of the diaphragm and 

in the circuit design is to make sure that the new mechanism of spectral scattering does not rely on 

narrow-banded resonance. It is also the reason why we analyze both the average-performance point in 

addition to the optimal point in Fig. 4 since the latter depends on phase and is a type of semi-active 

control. To achieve broadband noise control in a passive manner, it is necessary to test the conclusion 

derived from the single source frequency (𝑓𝑠 = 150 Hz) by broadband simulations. For this purpose, 

we start from a white noise, band filter it to 𝑓𝑠 ∈ (125,180)Hz, which is roughly half of an octave 

around 150 Hz. The modulation signal is the single-frequency twice the centre frequency, 𝑓𝑚 = 300Hz. 

The results are shown in Fig. 10. Figure 10(a) shows the band-limited source spectrum labelled as 𝑆𝑃𝐿0 

in decibels. The source frequency band and the first scattered frequency band, or the sum frequency 

band, 𝑓𝑚 + 𝑓𝑠 ∈ (425,480) are marked by vertical grid lines. Figure 10(b) shows the cumulative sound 

reflection coefficients, ∫ 𝛽𝑑𝑓 , for the optimal passive design (reference) in dashed line and the 

switching shunt design in solid line. The legend also displays the total sound reflection coefficients (∑𝛽) 

for the entire frequency range, 0.037 and 0.195, for the reference and switching shunt designs, 

respectively. Figure 10(c) is for the transmitted wave, also in cumulative spectra. The reference case 

has 𝛾ref = 0.743, which is almost identical to the earlier result of 0.75 for the single source frequency. 

The switching shunt (solid line) has 𝛾sw = 0.691. The dominant transmitted sound lies in the source 

frequency region. However, the diaphragm vibration in the scattered frequency region, (435,480) Hz, 
has a certain sound energy. This is much easier to absorb than the source frequency. So, if the device is 

used in conjunction with a traditional liner, be it porous-material-based or with some MPP design, this 

part of the energy may be excluded. Under such consideration, a dotted line is added for this outcome 

and the revised total transmission becomes 𝛾sw+liner = 0.624. Figure 10(d) is the cumulative sound  
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Figure 10. Finite-band spectral scattering and its comparison with the optimal shunt-off design. (a) 

The source spectrum with energy spread in the band of (125,180) Hz. (b) Cumulative sound reflection 

coefficient with the dominant content in the source region and significant energy in the sum frequency 

region of (430,485) Hz. The solid curve is for the switching shunt design while the dashed line is the 

reference design. (c) Sound transmission with a composite design (dotted line) added to exclude the 

sound scattered in the sum frequency. (d) Sound absorption. (e) Imaginary (reactive) part of 

impedance for the multiplexing (dashed line) and the switching shunt design (open circles) with least 

squares fit by 𝑚𝜔 − 𝜅/𝜔 in solid line. (f) Real (damping) part of impedance for the multiplexing 

setting (dashed line), the switching shunt design (solid line), and the optimal damping (dotted line) 

calculated by Eq. 8 using the actual system reactance shown in the open-circles in (e). 

absorption spectra. Here, the scattered frequency region sees a decrease in the cumulative energy curve. 

This is so because there is no source energy in this region and any energy appearance in this region is 

counted as “negative absorption”. The reference case has 𝛼ref = 0.22, the switching shunt has 𝛼sw =

0.114, and the switching shunt plus liner design has 𝛼sw+liner = 0.18. The switching shunt has a lower 

absorption due to the presence of the scattered frequency in the transmission. Comparing the total 

transmission of the switching shunt, 𝛾sw = 0.691, with the average performance of 𝛾 = 0.65 shown in 

Fig. 4(b), the broadband result is deteriorated by a moderate margin but the general improvement over 

the reference case still holds. 

Figures 10(e) and 10(f) compare the multiplexing impedance calculated by Eq. (28) and the true 

interface impedance calculated by Eq. (27) for 𝑓𝑠 ∈ (125,180) Hz . Figure 10(e) deals with the 
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reactance part of the impedance, while Fig. 10(f) deals with the real part. For an electro-mechanical 

system, mass and stiffness can be frequency-dependent. It is somewhat arbitrary to assign a positive 

reactance to a positive mass or negative stiffness at a single frequency. The sign changes around 

resonance, and the seemingly new physics of negativity does not carry much impact on finite-band 

wave propagation. This issue can be settled by demanding the right frequency dependency of reactance 

over a finite frequency band. The logical step to take is to apply a least squares fit to the reactance curve 

by a system with constant mass and constant stiffness, 𝑋 ≡ Im(𝑍) = 𝑚𝜔 − 𝜅/𝜔. The open-circles in 

Fig. 10(e) are the samples of reactance over the frequency range of interest, 𝜔𝑛, 𝑛 = 1,2,3,⋯𝑁. The 

collection of the discrete angular frequencies forms a column vector, so is the reactance. The least-

squares fit is thus derived from the following method of pseudo-inversion of non-square matrix, which 

is based on the singular value decomposition using the matlab® function of “pinv”, 

 𝐗 = [
Im(𝑍(𝜔1))

⋮
Im(𝑍(𝜔𝑁))

] = [

𝜔1
⋮
𝜔𝑁

𝜔1
−1

⋮
𝜔𝑁
−1
]

⏟      
𝐌𝛚 

[
𝑚
−𝜅
] , [

𝑚
−𝜅
] = 𝐌𝛚

+𝐗. (29)
 

Here, 𝐌𝛚
+  is the pseudo-inverse of the 𝑁 × 2 matrix 𝐌𝛚 . The dashed line in Fig. 10(e) is for the 

multiplexing result, while the solid line through the open-circles is the least squares fit for the switching 

shunt. The values for mass and stiffness in this frequency range are given in Table 2. Obviously, the 

shunt-off state has exactly the right diaphragm mass and suspension stiffness plus cavity stiffness 

calculated by Eq. 4(b). The shunt-on state has a strange combination of large stiffness and marginally 

negative mass. This is caused by the phase distortion in the series electrical circuit. The electro-

magnetically induced acoustic impedance is given in Eq. (4a) as (𝐵𝑙)2/𝑍𝑒. Therefore, the series circuit 

acts on acoustic admittance in a serial manner. It is therefore harder to interpret the results in terms of 

acoustic impedance. As shown in Table 2, the multiplexing system mass (9.16g) is much higher than 

the diaphragm (5.80g), and the system stiffness (32.67 kN/m) is much higher than the shunt-off (18.93 

kN/m). What really counts is the switching shunt results, which has a mass of 20.05 g and a stiffness of 

21.83 kN/m. The conclusion is that the system stiffness is increased by a small margin with respect to 

the shunt-off state, but the effective diaphragm mass is increased significantly. The mass increase is so 

significant that the system actually reaches resonance (Im(𝑍) = 0) around 165 Hz. In other words, 

spectral scattering essentially adds to the system mass which counters cavity stiffness in the low-

frequency region. This outcome contrasts with the negative stiffness envisaged by Huang [29] and 

experimentally demonstrated by Chiu et al. [34] in which a magnetized diaphragm is attracted by a 

permanent magnet in the cavity. 

Table 2. Least-squares fit for the system mass and stiffness over the frequency range of (125,185) Hz 

State Shunt-off Shunt-on Multiplexing Switching 

Mass 𝑚 (gram)  5.80 -1.55 9.16 20.05 

Stiffness 𝜅 (kN/m) 18.93 110.92 32.67 21.83 

Figure 10(f) shows the real parts of the impedances, or damping. It is found that the switching shunt 

design (solid curve) has a higher damping than the multiplexing setting (dashed line); the latter is 

essentially a constant. The dotted line is the optimal damping corresponding to the actual reactance to 

achieve the minimal wave transmission, which is calculated by Eq. (8) with the reactance shown in the 

open-circles in Fig. 10(e). The optimal damping is zero when the system resonates around 165 Hz. At 

all other frequencies, the actual system damping (solid line) does not follow the optimal damping. It 

means that the system design using such a few degrees of freedom cannot suppress wave transmission 

over a finite bandwidth. The outcome of spectral scattering is quite similar to the parallel arrangement 

of resonators in normal incidence [17], for which the essential physics is recalled below. When two 

resonators are in space parallel and they have a small difference in impedance properties, namely when 
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their resonance peaks are close to each other, the decoupled response of resonators produces different 

velocity responses. This difference produces radiation pressure difference that induces an internal flow 

between resonators to balance the pressures; the resonators are then coupled. The coupling has two 

effects: one is to increase the system damping as extra flux is introduced, and the other is to increase 

system inertia due to the same extra acoustic particle velocity. For the case of temporal scattering 

discussed in the current study, the tendency for the diaphragm to continue vibrating with the pattern of 

motion set up by one state of shunt is not cancelled by the sudden switching of MOSFET. Instead, the 

old motion presents itself as an extra system inertia for the new shunt state. This is also similar to the 

virtual mass in a fibrous material when air particles oscillate and have to change directions constantly 

due to the random fiber arrangement. The fact that temporal scattering brings positive system mass 

instead of negative system stiffness means that the performance enhancement in a finite-band is 

frequency dependent and further broadening of the source frequency, (125,180) Hz in the current 

example, will cause gradual deterioration of the performance gain by the scattering. A truly broadband 

reactance reduction remains the ideal design goal of acoustic metamaterial to be further explored. 

4. Conclusions 

We have chosen a stiffness-dominated side-branch absorber as the basis for study. When the optimal 

damping corresponding to the large reactance is selected, the energy ratio of the transmission is found 

to be 75%. This is reduced to 65% by switching shunt design when the modulation frequency is twice 

the source frequency without phase synchronization. When the latter is applied, the transmission ratio 

is reduced to 38%. The finite-band sound source is tested with the same method and is found to yield 

69% in energy transmission, not as good as the single frequency but still shows promise. For a truly 

broadband sound source, it is expected that the side-branch can be divided into multiple segments, each 

catering for a finite bandwidth. Extensive further parametric studies will be needed for such a design. 

Focusing on the fundamental mechanisms of the switching shunt, the following observations are 

made.  

(1) When a shunt circuit is suddenly switched off, the energy of the diaphragm vibration is stored in 

the form of electrical energy and is consumed by the large MOSFET resistance instantaneously. 

This constitutes a new form of damping that is very different from the usual mechanical damping; 

the latter is incremental over time and is phase locked with the vibration velocity.  

 

(2) It is found that, when the modulation signal is synchronized with the incident sound source, the 

impact of switching is phase dependent and presents opportunity for optimization. The phase of the 

shunt switching is programmable and it could be used to achieve a very different effect in addition 

to the sound energy extraction. On the other hand, a modulation frequency unrelated to the source 

frequency does not have meaningful phase, and the result is similar to the modulation at the 

multiples of the source frequency but with phase angle varying between 0 and 2𝜋. The latter 

presents itself as a kind of “average” performance that is much easier to implement and achieve. In 

the examples given, the average performance can still be better than the shunt-off design with 

optimized parameters and offer a rather realistic prospect of a truly passive design.  

 

(3) For a stiffness-dominated side-branch, the crucial element in wave manipulation is the reduction of 

equivalent system reactance seen by the incident wave. The sudden switch-off releases the Lorentz 

force that normally opposes the diaphragm motion. The removal of the Lorentz force represents a 

boost to the diaphragm motion, which is otherwise stifled by the cavity stiffness. Maximum boost 

is achieved when the switching is synchronized with the diaphragm vibration velocity. Temporal 

or spectral scattering is found to completely neutralize the reactance of the system. Detailed analysis 

reveals that the reactance reduction is a result of extra system mass introduced by the scattering 

instead of direct stiffness reduction, in a way similar to the space parallel arrangement of resonators. 
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(4) The scattering caused by the switching shunt appears to be the strongest when the mechanical and 

electrical systems are both close to damping-free states. When the resistor in the shunt circuit is 

small, close to a short circuit, the electromagnetically induced acoustic damping is very large, so is 

the equivalent system stiffness. The mechanical system response transits between a damping-free 

vibration to one that has a very high damping and stiffness. The total energy scattering defined in 

Eq. (25) is found to be as high as 43%, for the optimally synchronized modulation design. In terms 

of the reduction of the transmitted waves, the major contribution is derived from enhanced wave 

reflection.  
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