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Abstract
Macroscopic traffic flow modeling is essential for describing and forecasting the
characteristics of traffic flow. However, the classic Lighthill–Whitham–Richards
(LWR) model only provides equilibrium values for steady-state conditions and
fails to capture common stochastic variabilities, which are a necessary com-
ponent of accurate modeling of real-time traffic management and control. In
this paper, a stochastic LWR (SLWR) model that randomizes free-flow speed
is developed to account for the stochasticity incurred by the heterogeneity of
drivers, while holding individual drivers’ behavior constant. The SLWR model
follows a conservation law of stochastic traffic density and flow and is formu-
lated as a time-dependent stochastic partial differential equation. The model is
solved using a dynamically bi-orthogonal (DyBO) method based on a spatial
basis and stochastic basis. Various scenarios are simulated and compared with
the Monte Carlo (MC) method, and the results show that the SLWR model can
effectively describe dynamic traffic evolutions and reproduce some commonly
observed traffic phenomena. Furthermore, the DyBO method shows significant
computational advantages over the MC method.

1 INTRODUCTION

Traffic flow modeling is fundamental for describing and
predicting the characteristics of vehicular movements,
and it is an important component of dynamic traffic
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assignment and real-time traffic management and control.
At the macroscopic level, traffic flow modeling focuses on
the dynamic changes in flow, density, and speed, as well
as shock formation and propagation, with the Lighthill–
Whitham–Richards (LWR) model being a classic and
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popular model (Lighthill & Whitham, 1955; Richards,
1956). The LWR model is a time-dependent deterministic
partial differential equation (PDE) that obeys a conser-
vation law of traffic density and flow. However, it ignores
stochastic variabilities, which are common because of
differences in driving behavior, vehicle types, and road
conditions. The LWR model must be extended to capture
these stochastic variabilities in traffic flow. However,
stochastic modeling increases the computational burden,
so an efficient solution method must be developed to
improve its applicability in engineering practice.
Stochastic phenomena are commonly observed in daily

traffic (Sumalee et al., 2011; Szeto et al., 2011; Zhou et al.,
2016). For example, commuting time can vary on a fixed
route across different weekdays even when the average
travel time is stable. Therefore, it is unrealistic to assume
that traffic dynamics are consistent across days, even at
the same location, with the same traffic demands. Con-
siderable effort has been made to explore stochasticity
includingmacroscopic,mesoscopic, andmicroscopicmod-
eling (Adeli & Ghosh-Dastidar, 2004; Ghosh-Dastidar &
Adeli, 2006; Martínez & Jin, 2020). In macroscopic traf-
fic flow modeling, the LWR model offers simplicity and
powerful explanations of shock formation and propaga-
tion. However, it describes traffic dynamics as a temporal
phenomenon (Prigogine & Herman, 1971). To examine
how stochasticity can affect the traffic flow, it is necessary
to recognize that randomness can come from exogenous
sources such as traffic, road geometry design features, and
weather conditions or from endogenous sources such as
driving behavior (Sumalee et al., 2011). Studies have sug-
gested three strategies to evaluate these uncertainties. One
strategy is to randomize the density function. Sumalee
et al. (2011) proposed a stochastic cell transmission model
(CTM) with a zero-mean Gaussian random process to
form a probabilistic density. Randomizing the speed func-
tion can also be effective. Li et al. (2012) modified the
speed–density function by including a random noise term
and then developed an extended LWR model based on
these random fundamental relationships. Another option
is to randomize the flow function. Jabari and Liu (2012)
developed a CTM-based stochastic model using random
state-dependent vehicle time headways. They also argued
that adding random noise terms to a deterministic equa-
tion, which was once a common way to model stochastic
traffic flow, can lead to negative densities and mean
dynamics, which are inconsistent with those in deter-
ministic dynamics (Gazis & Knapp, 1971; Gazis & Liu,
2003). These studies did not clearly state what governs the
stochasticity, and the random noise terms may not reveal
consistent factors. For example, driving behavior may be
shaped by drivers’ memories or tendencies (Cassidy &
Windover, 1995). To extend the research into stochastic

traffic flow modeling, this paper proposes a new frame-
work for examining the stochasticity stemming fromdriver
heterogeneity, while holding individual drivers’ behavior
constant. Consequently, a random free-flow speed is intro-
duced into the LWRmodel and a stochastic PDE (SPDE) is
constructed.
Despite the abundant research on solving SPDEs, it

remains challenging to balance accuracy and efficiency.
The classic Monte Carlo (MC) method is a robust tech-
nique to calculate stochastic solutions, with desirable
features including the independence of the convergence
rate from stochastic dimensionality and the parallelizabil-
ity of computation (Cheng et al., 2013a, 2013b). However,
a disadvantage of the MC method is its slow conver-
gence. MC-based methods with improved sampling tech-
niques have been developed, such as the sparse grid-based
stochastic collocation method (Babuška et al., 2007), the
multi-level MCmethod (Giles, 2008), and the internal MC
method (Jahani et al., 2014). Jahani et al. (2014) mod-
eled uncertain variables as fuzzy random variables and
evaluated them using interval MC simulations and the
interval finite element method. These methods, which
can be categorized as statistical methods, are not suit-
able when there is a large number of random variables.
Many studies have examined non-statistical methods such
as moment equations, perturbation-based methods, and
spectral methods (Wan & Karniadakis, 2006; Xiu & Em
Karniadakis, 2003; Xiu et al., 2002). However, the num-
ber of basis functions in generalized polynomial chaos
increases exponentially and makes this approach ineffi-
cient for high-dimensional problems.Motivated by the fact
that many high-dimensional SPDE problems have certain
low-dimensional structures, reduced-complexity models
that retain as much of the original predictive capability
as possible, such as the Karhunen–Loeve (KL) expansion
or the Wiener–Askey polynomial chaos expansion, have
been studied. Newman (1996a, 1996b) used the KL expan-
sion and Galerkin’s method to find reduced-complexity
models for flow-involved dynamical systems. Xiu and Em
Karniadakis (2003) proposed a Wiener–Askey polynomial
chaos expansion to represent stochastic processes and
demonstrated an exponential convergence rate by solving
a stochastic ordinary differential equation (ODE). How-
ever, these methods require the formation of covariance
matrices and the solving of large-scale eigenvalue prob-
lems, both of which are computationally expensive. To
solve this problem, researchers have studied a dynami-
cally bi-orthogonal (DyBO) method (Babaee et al., 2017;
Cheng et al., 2013a, 2013b; Choi et al., 2014) that derives
an equivalent system to govern the evolution of the spa-
tial basis and stochastic basis in the KL expansion. This
method can be used to construct a reduced basis on the fly
without the need to form a covariance matrix or compute

 14678667, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.12953, W
iley O

nline L
ibrary on [03/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FAN et al. 1449

F IGURE 1 Conceptual diagram of the stochastic
Lighthill–Whitham–Richards (SLWR) model

its eigendecomposition, which can be much more com-
petitive with high-dimensionality problems. To the best of
our knowledge, such a method has never been applied to
macroscopic stochastic traffic flow modeling. Due to the
high non-linearity in the proposed model, it is challenging
to examine its applicability.
Motivated by previous studies of stochastic traffic flow

modeling and solution methods, the objectives of this
paper are as follows:

1. To propose a new framework for examining the het-
erogeneity of drivers while holding individual drivers’
behavior consistent; specifically, the free-flow speed is
randomized in a stochastic LWR (SLWR) model.

2. To apply a highly efficient solution method, that is,
the DyBO method, to enhance the applicability of the
SLWR model.

To validate the model’s properties and the feasibility
of the solution method, two simulation experiments that
consider temporal bottleneck and geometric bottleneck
were conducted, and the MC method was used to obtain
benchmark results for comparison.

2 STOCHASTIC TRAFFIC FLOW
MODEL

In macroscopic modeling, traffic flow is described as a
continuous fluid, and the distribution, evolution, and
propagation of density, speed, and flow are studied. A
homogeneous highway road section without any entries
or exits is assumed, where all of the vehicles enter at the
beginning of the road section and travel to the end of the
road section (see Figure 1).
The rationale of the SLWR model is as follows.

1. The stochasticity is assumed to stem from the hetero-
geneity of drivers.

2. The heterogeneity is reflected in free-flow speed, which
represents the different desired speed choices on an
empty or perceived empty road.

3. The free-flow speed can be regarded as an endogenous
driving behavior that is potentially related to a driver’s
personality.

Therefore, it is reasonable to assume that the free-flow
speed of a single driver does not vary across time and space.
For example, conservative drivers travel more slowly than
aggressive drivers in the free-flow condition, and a driver
is unlikely to keep switching from conservative to aggres-
sive driving behaviors across a road section within a short
period.
In this paper, let 𝑢𝑓 be the free-flow speed, which is a

random parameter that could follow any type of distribu-
tion, defined on a probability space (Ω, 𝐹, ℙ), representing
heterogeneous driving behavior.

𝑢𝑓 ∶ Ω → ℝ (1)

where Ω is a sample space, 𝐹 is a 𝜎-algebra, ℙ is a prob-
ability measure, and ℝ is a real line. Then, 𝑢𝑓(𝜔) is the
random free-flow speed that corresponds to the random
event 𝜔 ∈ Ω.
At the beginning of the road section, traffic flow is

a stochastic process defined on the same probability
space:

{𝑄𝑖𝑛 (𝑡, 𝜔)∶ 𝑡 ∈ [0, 𝑇] , 𝜔 ∈ Ω} (2)

where 𝑄𝑖𝑛(𝑡, 𝜔) is the traffic flow at the beginning of the
road section, and 𝑡 represents the evolving time from 0 to
𝑇. Therefore, every 𝑡 ∈ [0, 𝑇] corresponds to some random
variable𝑄in(𝑡, ⋅) ∶ Ω → ℝ, which indicates that traffic flow
at the beginning of the road section can randomly change
over time.
In combination with the definitional relationship and

Greenshields’s model, the traffic dynamics of any certain
driver can be described by:

𝑞
(
𝑥, 𝑡, 𝑢𝑓 (𝜔)

)
= 𝑘

(
𝑥, 𝑡, 𝑢𝑓 (𝜔)

)
𝑢
(
𝑥, 𝑡, 𝑢𝑓 (𝜔)

)
(3)

𝑢
(
𝑥, 𝑡, 𝑢𝑓 (𝜔)

)
= 𝑢𝑓 (𝜔) −

𝑢𝑓 (𝜔)

𝑘𝑗𝑎𝑚
𝑘
(
𝑥, 𝑡, 𝑢𝑓 (𝜔)

)
(4)

where 𝑞(𝑥, 𝑡, 𝑢𝑓(𝜔)) is the traffic flow; 𝑘(𝑥, 𝑡, 𝑢𝑓(𝜔)) is the
traffic density; 𝑢(𝑥, 𝑡, 𝑢𝑓(𝜔)) is the traffic speed; and 𝑘𝑗𝑎𝑚
is the jam density. These show that for a given free-flow
speed, traffic dynamics are non-random variables across
the highway section over time.
In light of fluid mechanics, vehicular movements

through the assumed road section can be described
in terms of the conservation law, so the general
specification of the SLWR model can be described as
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follows:

𝜕𝑘
(
𝑥, 𝑡, 𝑢𝑓 (𝜔)

)
𝜕𝑡

+
𝜕𝑞

(
𝑥, 𝑡, 𝑢𝑓 (𝜔)

)
𝜕𝑥

= 0, 𝑥 ∈ [𝑎, 𝑏] ,

𝑡 ∈ [0, 𝑇] , 𝜔 ∈ Ω (5)

𝑘
(
𝑥, 0, 𝑢𝑓 (𝜔)

)
= 𝑘0

(
𝑥, 𝑢𝑓 (𝜔)

)
(6)

𝑞
(
𝑎, 𝑡, 𝑢𝑓 (𝜔)

)
= 𝑄𝑖𝑛 (𝑡, 𝜔) (7)

where 𝑥 represents the spatial dimension, that is, the
length of the road section from point 𝑎 to point 𝑏; Equa-
tion (5) is the conservation law, Equation (6) shows the
initial condition, and Equation (7) shows the boundary
condition.
The proposed model indicates that the boundary condi-

tion will evolve randomly with time, but once the free-flow
speed is sampled, its corresponding traffic dynamics will
obey the conservation law. This means that randomness
only enters the system through the boundary condition
because of heterogeneous drivers, which satisfies our
assumptions.
As the time-varying compositions of drivers are ran-

domly generated at the beginning of a road section,
stochasticity exists at every time and location. In other
words, the free-flow speed is considered a random param-
eter, but it does not only reflect the randomness at the
free-flow state. For example, given a specific density 𝑘, traf-
fic flow and time headway are also random variables with
the means and variances as follows:

𝐸 (𝑞) = �̄�𝑓

(
𝑘 −

𝑘2

𝑘𝑗

)
(8)

𝑉𝑎𝑟 (𝑞) = 𝑘2

(
1 −

𝑘

𝑘𝑗

)2

𝜎2
𝑢𝑓

(9)

𝐸 (𝜏) =
1

�̄�𝑓

(
𝑘 −

𝑘2

𝑘𝑗

)−1

+
1

�̄�3
𝑓

(
𝑘 −

𝑘2

𝑘𝑗

)−1

𝜎2
𝑢𝑓

(10)

𝑉𝑎𝑟 (𝜏) =
1

�̄�4
𝑓

(
𝑘 −

𝑘2

𝑘𝑗

)−2

𝜎2
𝑢𝑓

−
1

�̄�6
𝑓

(
𝑘 −

𝑘2

𝑘𝑗

)−2

𝜎4
𝑢𝑓

(11)
where 𝐸(𝑞) is the mean of traffic flow, 𝑉𝑎𝑟(𝑞) is the vari-
ance of traffic flow, 𝐸(𝜏) is the mean of time headway,
𝑉𝑎𝑟(𝜏) is the variance of time headway, �̄�𝑓 is the mean of
free-flow speed, and 𝜎2

𝑢𝑓
is the variance of free-flow speed.

3 SOLUTIONMETHODS

To numerically solve the SLWR model, the DyBO method
was first adopted to transform the SPDE into a series of

deterministic PDEs and ODEs. Classic finite difference
methods can then be applied. The fifth-order weighted
essentially non-oscillatory (WENO5) scheme was used.

3.1 DyBO solution method

The derivation of the DyBO formulation of the SLWR
model is presented below. Combining Equations (3)–(5),
the SLWR model can be written as

𝜕𝑘
(
𝑥, 𝑡, 𝑢𝑓 (𝜔)

)
𝜕𝑡

= 𝑘 =

(
2
𝑢𝑓 (𝜔)

𝑘𝑗𝑎𝑚
𝑘
(
𝑥, 𝑡, 𝑢𝑓 (𝜔)

)

− 𝑢𝑓 (𝜔)
) 𝜕𝑘

(
𝑥, 𝑡, 𝑢𝑓 (𝜔)

)
𝜕𝑥

(12)

where  is a differential operator, and 𝑘𝑗𝑎𝑚 is the jam
density (a constant value).
According to the KL expansion (Newman, 1996a, 1996b),

denoted by �̃� the m-term truncated solution of Equa-
tion (12):

�̃� = �̄� + 𝒌𝒀𝑇 (13)

𝒌 (𝑥, 𝑡) = (𝑘1 (𝑥, 𝑡) , 𝑘2 (𝑥, 𝑡) , … , 𝑘𝑚 (𝑥, 𝑡)) (14)

𝒀 (𝜔, 𝑡) = (𝑌1 (𝜔, 𝑡) , 𝑌2 (𝜔, 𝑡) , … , 𝑌𝑚 (𝜔, 𝑡)) (15)

𝐶𝑜𝑣𝑘 (𝑥, 𝑦) = 𝐸
[(
𝑘
(
𝑥, 𝑡, 𝑢𝑓 (𝜔)

)
− �̄� (𝑥, 𝑡)

)
(
𝑘
(
𝑦, 𝑡, 𝑢𝑓 (𝜔)

)
− �̄� (𝑦, 𝑡)

)]
(16)

where �̄� = 𝐸[�̃�], 𝒌(𝑥, 𝑡) is the spatial basis, that is,
a vector of eigenfunctions of the associated covariance
function of Equation (16); 𝒀(𝜔, 𝑡) is the stochastic basis,
that is, a vector of zero-mean random variables; and 𝑚

is the number of truncated terms. Correspondingly, <

𝒌𝑇, 𝒌 > and 𝐸[𝒀𝑇𝒀] are m-by-m matrices and satisfy the
bi-orthogonality condition as

< 𝒌𝑇, 𝒌 > (𝑡) =
(
< 𝑘𝑖, 𝑘𝑗 >

)
=
(
𝜆𝑖 (𝑡) 𝛿𝑖𝑗

)
𝑚×𝑚

(17)

𝐸
[
𝒀𝑇𝒀

]
(𝑡) =

(
𝐸
[
𝑌𝑖𝑌𝑗

])
= 𝑰 (18)

where 𝜆𝑖(𝑡) is the corresponding eigenvalues of the covari-
ance function of Equation (16), 𝛿𝑖𝑗 is the Kronecker
product, and 𝑰 is the identity matrix.
Substitute Equation (13) into Equation (12),

𝜕�̄�

𝜕𝑡
+

𝜕𝒌

𝜕𝑡
𝒀𝑇 + 𝒌

𝑑𝒀𝑇

𝑑𝑡
= �̃� +

{
𝑘 − �̃�

}

−

{
𝜕�̃�

𝜕𝑡
�̃�𝑇 + �̃�

𝑑�̃�𝑇

𝑑𝑡

}
(19)
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and assume that the eigenvalues in the KL expansion
decay fast enough and the differential operator is stable;
then, the last two terms on the right-hand sidewill be small
and can be dropped.

𝜕�̄�

𝜕𝑡
+

𝜕𝒌

𝜕𝑡
𝒀𝑇 + 𝒌

𝑑𝒀𝑇

𝑑𝑡
= �̃� (20)

Take expectations on both sides of Equation (19), and
because 𝒀 is a zero-mean random variable,

𝜕�̄�

𝜕𝑡
= 𝐸

[
�̃�

]
(21)

which gives the evolution equation for the mean of the
solution.
Multiplying both sides of Equation (20) by Y from the

right and taking expectations, the evolution equation of
the spatial basis can be obtained. Similarly, multiplying
both sides of Equation (20) by k from the right, the evolu-
tion equation of the stochastic basis can be obtained. More
detailed steps of the derivation can be found in Cheng et al.
(2013a, 2013b).

𝜕𝒌

𝜕𝑡
= −𝒌𝑫𝑇 + 𝐸

[
̃�̃�𝒀

]
(22)

𝑑𝒀

dt
= −𝒀𝑪𝑇+ < ̃�̃�, 𝒌 > 𝚲−1

𝒌
(23)

where 𝑪 and 𝑫 are m-by-m matrices representing the
projection coefficients of 𝜕𝒌

𝜕𝑡
and 𝑑𝒀

𝑑𝑡
into 𝒌 and 𝒀, respec-

tively. The solutions of 𝑪 and 𝑫 are given entry-wisely:

𝐶𝑖𝑖 = 𝐺∗𝑖𝑖 (24)

𝐶𝑖𝑗 =
||𝑘𝑗||2||𝑘𝑗||2 − ||𝑘𝑖||2

(
𝐺∗𝑖𝑗 + 𝐺∗𝑗𝑖

)
, for 𝑖 ≠ 𝑗 (25)

𝐷𝑖𝑖 = 0 (26)

𝐷𝑖𝑗 =
1||𝑘𝑗||2 − ||𝑘𝑖||2

(||𝑘𝑗||2𝐺∗𝑗𝑖 + ||𝑘𝑖||2𝐺∗𝑖𝑗

)
, for 𝑖 ≠ 𝑗

(27)
where 𝐶𝑖𝑖 , 𝐶𝑖𝑗 are elements of the matrix 𝑪; 𝐷𝑖𝑖 , 𝐷𝑖𝑗are ele-
ments of the matrix 𝑫; and 𝐺∗𝑖𝑗 , 𝐺∗𝑗𝑖 are elements of the
matrix 𝑮∗, which can be calculated as

𝑮∗ = 𝚲−1
𝒌

< 𝒌𝑇, 𝐸
[
̃�̃�𝒀

]
> (28)

𝚲𝒌 = 𝑑𝑖𝑎𝑔
(
< 𝒌𝑇, 𝒌 >

)
(29)

Equations (22) and (23) still involve random variables.
Because the random free-flow speed is assumed to follow
a normal distribution in this paper, Hermite polynomials
can be used to represent the stochastic terms.
Denote by𝑯 = (𝐻1,𝐻2, … ,𝐻𝑁𝑝

) the𝑁𝑝-term Hermite
polynomials, which exclude the zero-index𝑯0 = 1. Then,

𝒀 = 𝑯𝑨 (30)

where 𝑨 is a 𝑁𝑝-by-𝑚matrix.
Denote by 𝑍𝑢𝑓

= 𝒄𝑯𝑇 a standard normal (i.e., 𝑍𝑢𝑓
∼

𝑁(0, 1)),where 𝒄 = (1, 0, … , 0) is the expansion constants;
then, the free-flow speed can be represented as

𝑢𝑓 (𝜔) = 𝑢𝑓 + 𝜎𝑢𝑓
𝒄𝑯𝑇 (31)

where 𝑢𝑓 is the mean and 𝜎𝑢𝑓
is the standard deviation of

the random free-flow speed.
Substituting Equations (13), (30), and (31) into Equa-

tion (12),

 �̃� =

(
2
𝑢𝑓 (𝜔)

𝑘𝑗𝑎𝑚

�̄� − 𝑢𝑓 (𝜔)

)
𝜕�̄�

𝜕𝑥
+

(
2�̄�

𝑘𝑗𝑎𝑚

− 1

)
𝑢𝑓𝑯𝑨

𝜕𝒌𝑇

𝜕𝑥

+

(
2�̄�

𝑘𝑗𝑎𝑚

− 1

)
𝜎𝑢𝑓

𝒄𝑯𝑇𝑯𝑨
𝜕𝒌𝑇

𝜕𝑥
+

2

𝑘𝑗𝑎𝑚

𝜕�̄�

𝜕𝑥
𝑢𝑓𝑯𝑨𝒌𝑇

+
2

𝑘𝑗𝑎𝑚

𝜕�̄�

𝜕𝑥
𝜎𝑢𝑓

𝒄𝑯𝑇𝑯𝑨𝒌𝑇 +
2

𝑘𝑗𝑎𝑚

𝑢𝑓𝒌𝑨
𝑇𝑯𝑇𝑯𝑨

𝜕𝒌𝑇

𝜕𝑥

+
2

𝑘𝑗𝑎𝑚

𝜎𝑢𝑓
𝒄𝑯𝑇𝒌𝑨𝑇𝑯𝑇𝑯𝑨

𝜕𝒌𝑇

𝜕𝑥
(32)

Then, the following terms 𝐸[�̃�], 𝐸[̃�̃�𝑯]𝑨 =

𝐸[(�̃� − 𝐸[�̃�])𝑯]𝑨, 𝐸[𝑯𝑇̃�̃�] can be calculated using
the properties 𝐸[𝑯𝑇𝑯] = 𝑰, 𝑨𝑇𝑨 = 𝑰, and 𝐸 [𝑯] = 0.
Based on the representation ofHermite polynomials, the

DyBO formulation of the SLWR model can be expressed
as

𝜕�̄�

𝜕𝑡
= 𝐸

[
�̃�

]
(33)

𝜕𝒌

𝜕𝑡
= −𝒌𝑫𝑇 + 𝐸

[
̃�̃�𝑯

]
𝑨 (34)

𝑑𝑨

𝑑𝑡
= −𝑨𝑪𝑇+ < 𝐸

[
𝑯𝑇̃�̃�

]
, 𝒌 > 𝚲−1

𝒌
(35)

which gives the deterministic PDE of Equations (33) and
(34) and ODE of Equation (35).
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1452 FAN et al.

3.2 Weighted essentially non-oscillatory
scheme

For hyperbolic problems, the solution may contain strong
discontinuities even if the initial data are smooth. When
dealing with discontinuous solutions, high-order linear
schemes generate numerical oscillations. To avoid this
problem, non-linear schemes or limiters are needed. This
study used the fifth-orderWENO5 scheme, which has high
resolution and is non-oscillatory even in the presence of
shocks and other discontinuities in the solution (Jiang &
Shu, 1996; Xiong et al., 2011). More details can be found in
Shu (2006, 2020). The procedure of the WENO scheme is
summarized below. Consider Equation (33) as an example.
First, spatial discretization is discussed. The space

domain is discretized into a uniformmesh of J grid points:

𝑥𝑗 = 𝑗Δ𝑥, 𝑗 = 1, 2, … , 𝐽 (36)

where Δ𝑥 is the uniform grid mesh. Then, the approx-
imation of density �̄�𝑗(𝑡) ≈ �̄�(𝑥𝑗, 𝑡) satisfies the following
equation:

𝑑�̄�𝑗 (𝑡)

𝑑𝑡
+

1

Δ𝑥

(
�̂�
𝑗+

1

2

− �̂�
𝑗−

1

2

)
= 0 (37)

where �̂�
𝑗+

1

2

and �̂�
𝑗−

1

2

are the numerical fluxes at points j

+ 1/2 and j − 1/2 of the right-hand side of Equation (32),
respectively. According to the fifth-order WENO scheme,
the numerical flux �̂�

𝑗+
1

2

is defined as follows:

�̂�
𝑗+

1

2

= 𝜃1 �̂�
(1)

𝑗+1∕2
+ 𝜃2�̂�

(2)

𝑗+1∕2
+ 𝜃3�̂�

(3)

𝑗+1∕2
(38)

where 𝜃1, 𝜃2, and 𝜃3 are three non-linear weights and
�̂�
(1)

𝑗+1∕2
, �̂�(2)

𝑗+1∕2
, and �̂�

(3)

𝑗+1∕2
are three third-order numerical

fluxes on three stencils. The third-order fluxes are given by:

�̂�
(1)

𝑗+1∕2
=

1

3
𝑞𝑗−2 −

7

6
𝑞𝑗−1 +

11

6
𝑞𝑗 (39)

�̂�
(2)

𝑗+1∕2
= −

1

6
𝑞𝑗−1 +

5

6
𝑞𝑗 +

1

3
𝑞𝑗+1 (40)

�̂�
(3)

𝑗+1∕2
=

1

3
𝑞𝑗 +

5

6
𝑞𝑗+1 −

1

6
𝑞𝑗+2 (41)

where 𝑞𝑗 is an abbreviated notation for 𝑞(𝑥𝑗, 𝑡). The non-
linear weights are given by:

𝜃𝑝 =
�̃�𝑝∑3

𝑙=1
�̃�𝑙

, 𝑝 = 1, 2, 3 (42)

�̃�𝑙 =
𝛾𝑙

(𝜀 + 𝛽𝑙)
2
, 𝑙 = 1, 2, 3 (43)

where 𝜀 is a parameter to prevent the denominator of �̃�𝑙
from being zero and is fixed at 10−6 in this paper, 𝛾𝑙 is
the linear weights, and 𝛽𝑙 is the smoothness indicator. The
linear weights are given by:

𝛾1 =
1

10
, 𝛾2 =

3

5
, 𝛾3 =

3

10
(44)

and the smoothness indicators are given by:

𝛽1 =
13

12

(
𝑞𝑗−2 − 2𝑞𝑗−1 + 𝑞𝑗

)2
+

1

4

(
𝑞𝑗−2 − 4𝑞𝑗−1 + 3𝑞𝑗

)2
(45)

𝛽2 =
13

12

(
𝑞𝑗−1 − 2𝑞𝑗 + 𝑞𝑗+1

)2
+

1

4

(
𝑞𝑗−1 − 𝑞𝑗+1

)2
(46)

𝛽3 =
13

12

(
𝑞𝑗 − 2𝑞𝑗+1 + 𝑞𝑗+2

)2
+

1

4

(
3𝑞𝑗 − 4𝑞𝑗+1 + 𝑞𝑗+2

)2
(47)

Above is described the fifth-order WENO scheme for
the positive wind direction. If the wind direction is nega-
tive, the procedure for computing the numerical flux �̂�

𝑗+
1

2

is a mirror image with respect to the point 𝑥𝑗+1∕2, which
is described above. The stencil can then be biased to the
right. For the case where the wind direction may change,
the Lax–Friedrichs splitting method is used.

𝑞
(
�̄�
)
= 𝑞+

(
�̄�
)
+ 𝑞−

(
�̄�
)

(48)

𝑞±
(
�̄�
)
=

1

2

(
𝑞
(
�̄�
)
± 𝛼�̄�

)
(49)

𝛼 = max𝑘
|||𝜕𝑞 (�̄�) ∕𝜕�̄�||| (50)

where 𝑞+(�̄�) and 𝑞−(�̄�) are the splitting flux for the positive
and negative wind directions, respectively.
Second, the time domain is discretized into a mesh of N

grid points.

𝑡[𝑛] = 𝑡[𝑛−1] + Δ𝑡, 𝑛 = 1, 2, … ,𝑁 (51)

where Δ𝑡 is the uniform mesh size on the time axis. Then,
the third-order total variation diminishing Runge–Kutta
method is used.

�̄�(1) = �̄�[𝑛] + Δ𝑡𝐿
(
�̄�[𝑛], 𝑡[𝑛]

)
(52)

�̄�(2) =
3

4
�̄�[𝑛] +

1

4
�̄�(1) +

1

4
Δ𝑡𝐿

(
�̄�(1), 𝑡[𝑛] + Δ𝑡

)
(53)

 14678667, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.12953, W
iley O

nline L
ibrary on [03/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FAN et al. 1453

F IGURE 2 Traffic demand at the beginning of the road section

�̄�[𝑛+1] =
1

3
�̄�[𝑛] +

2

3
�̄�(2) +

2

3
Δ𝑡𝐿

(
�̄�(2), 𝑡[𝑛] +

1

2
Δ𝑡

)
(54)

where L is the approximation to the spatial derivatives:

𝐿 (𝑘, 𝑡) = −
1

Δ𝑥

(
�̂�
𝑗+

1

2

− �̂�
𝑗−

1

2

)
(55)

4 NUMERICAL EXAMPLES

Two simulation experiments were conducted to show the
effectiveness of the SLWRmodel and to demonstrate some
commonly observed traffic phenomena. In the first exam-
ple, a temporal bottleneck was considered. The DyBO
method was validated in comparison to the MC method.
Different samples of the MC method were calculated to
select a benchmark result, and different numbers of spatial
terms andHermite polynomials were tested in the sensitiv-
ity analysis. In the second example, more complicated geo-
metric conditions were considered. The SLWRmodel with
the DyBO method still showed excellent performance.

4.1 Example 1

4.1.1 Example settings

A 2-km homogeneous highway road section without any
intermediate ramps was considered. The free-flow speed
was assumed to be a stochastic parameter following
a normal distribution with a mean of 70 and a stan-
dard deviation of 10, that is, 𝑢𝑓 ∼ 𝑁(70, 100) and 𝑘𝑗𝑎𝑚 =

100 veh∕km. The initial condition assumed that traffic
density was empty along the section, and the boundary
condition assumed that traffic flow at the beginning of the
road section was subjected to a trapezoid of changes as
shown in Figure 2. The simulation period was 1.5 h.
It is assumed that an incident occurs at the end of the

road section, fully blocking the road section from t= 0.75 h

to t = 0.77 h. During the blockage period, no vehicles can
leave the road section, so a queue emerges and is propa-
gated upstream. After t = 0.77 h, the incident is cleared,
and the queue discharges. For the WENO5 scheme, the
spatial and time grid sizes are set to 0.01 km and 1× 10−4 h,
respectively. This relatively simple example makes it easy
for researchers to reproduce the results (Zheng, 2021).

4.1.2 Numerical results

To validate the DyBO method, a benchmark solution was
calculated using the MC method. According to the central
limit theorem, as the sample sizes increased, the results of
the MC method became closer to the exact values. Sam-
ples sizes of 100, 200, 400, 800, 1600, 3200, and 12,800
were calculated, and 12,800 MC samples were computed
to approximate the exact solution as a benchmark result.
The relative root-mean-squared error (RRMSE) is defined
as follows to measure accuracy against the benchmark
results.

𝑅𝑅𝑀𝑆𝐸𝜌 =

√
1

𝑁

∑
𝑖𝑡

(
𝜌
(𝑘)

𝑖𝑡
− 𝜌∗

𝑖𝑡

)2

1

𝑁

∑
𝑖𝑡
𝜌∗
𝑖𝑡

× 100% (56)

𝑅𝑅𝑀𝑆𝐸𝜎 =

√
1

𝑁

∑
𝑖𝑡

(
𝜎
(𝑘)

𝑖𝑡
− 𝜎∗

𝑖𝑡

)2

1

𝑁

∑
𝑖𝑡
𝜎∗
𝑖𝑡

× 100% (57)

where 𝜌
(𝑘)

𝑖𝑡
and 𝜎

(𝑘)

𝑖𝑡
are the mean (MEAN) and standard

deviation (SDEV) of the density of the 𝑘th case for grid
point (𝑖, 𝑡), respectively; 𝜌∗

𝑖𝑡
and 𝜎∗

𝑖𝑡
are the converged

MEAN and SDEV of the density from the MC scheme,
respectively; and𝑁 is the total number of grid points (space
and time).
Figure 3 shows the RRMSE of the MEAN and SDEV of

the density. The MEAN’s RRMSE converged faster than
that of SDEV. When the sample size was larger than
1600, the MEAN’s RRMSE dropped below 0.5%, while the
SDEV’s RRMSE was approximately 3%.
Although the MC method can obtain robust solutions,

its efficiency may be undesirable. As shown in Figure 4,
the computation time of theMCmethod increased linearly,
and the case of 12,800 MC samples requires approximately
12,325 min of computing time.
The DyBOmethod was then applied to reach an accept-

able level of accuracy in a much more efficient way. As a
blockage incident was considered in the simulation exper-
iment, the results are elaborated in three scenarios: (1)
before the blockage, (2) during the blockage, and (3) after
the blockage. This can help to clarify the traffic flow
propagation. As mentioned, the derivation of DyBO
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1454 FAN et al.

F IGURE 3 Relative root-mean-squared error (RRMSE) of
different numbers of MC samples: (a) mean (MEAN) and (b)
standard deviation (SDEV)

F IGURE 4 Computation time of the Monte Carlo (MC)
method

equations involved truncated terms. Therefore, the num-
ber of spatial terms or Hermite polynomials can affect
the accuracy of the solutions. Different numbers of spa-
tial terms (i.e., 𝑚 = 3, 5, 7, 9, 11, 13, 15) and Hermite
polynomials (i.e.,𝑁𝑝 = 2, 4, 6) were tested to examine the
sensitivity of accuracy and efficiency.
Before the blockage, traffic entered the left boundary

and exited at the right boundary without any disturbance,
and a relatively smooth density pattern was observed.
Figure 5 shows the density patterns at t = 0.3 h. Slight
staircase-shaped fluctuations were observed, as vehicles
with different free-flow speeds entered stochastically, and
faster vehicles traveled farther than slower ones, causing
the density to accumulate at different spots. The greater
the speed differences, the greater the fluctuations, in line
with the findings of Zhang et al. (2003). Furthermore,
with increasing spatial terms and Hermite polynomials,
the MEAN and SDEV became closer to the results of the
MC method.

During the blockage, traffic continuously entered the
left boundary but did not leave at the right boundary. A
backward shock wave was observed. Figure 6 shows the
density patterns at t = 0.78 h. The maximum MEAN was
100 veh/h, which is consistent with the jam density of
the proposed Greenshields’s model. The MEAN dropped
to approximately 50 veh/h after the peak, indicating
the saturated discharging flow, which is consistent with
the optimal density of the Greenshields’s model. Even
with the shock wave, the DyBO method showed good
convergence to the MC results, and the accuracy can
be increased by adding more spatial terms and Hermite
polynomials.
After the blockage, the queuewas discharged at the right

boundary, and similar density patterns to those observed
before the blockage were observed. Figure 7 shows the
density patterns at t = 1.2 h. The MEAN and SDEV were
relatively stable alongside the road section,with slight fluc-
tuations because of heterogeneous driving behavior, and
were generally larger than those at t = 0.3 h because of
the increased traffic flow at the left boundary. This implies
that the SLWRmodel and DyBOmethod can adapt well to
different boundary conditions.
To quantify the convergence of the DyBO method, the

RRMSE of MEAN and SDEV were calculated, with differ-
ent numbers of spatial terms (𝑚 = 3, 5, 7, 9, 11, 13, 15)
and Hermite polynomials ( 𝑁𝑝 = 2, 4, 6) with respect
to the benchmark solutions obtained by the MC method
with 12,800 MC samples as shown in Table 1. As the num-
ber of spatial terms or Hermite polynomials increased, the
RRMSE ofMEAN and SDEV decreased, indicating conver-
gence to the benchmark results.With𝑚 = 15, the RRMSE
of both MEAN and SDEV were below 1%, which was
acceptable in comparison to the MC results. Furthermore,
the computation time of the DyBOmethod ranged from 1.7
to 2.1 min, which considerably reduced the computational
costs.
One major contribution of this paper is the develop-

ment of an efficient method to solve the SLWR model.
The simulation experiment results showed that the DyBO
methodwasmuchmore efficient than theMCmethod and
had desirable accuracy. The speedup performance of the
DyBO method was also calculated. It is well known that
the convergence of the MC method satisfies the relation-
ship 𝐸 = 𝑂 (1∕

√
𝐾) = 𝐶∕

√
𝐾 , where 𝐸 is the error, 𝐾

is the number of MC samples, and 𝐶 is a constant. Tak-
ing the logarithm on both sides, a linear relationship is
expected, 𝑙𝑛𝐸 = 𝑙𝑛𝐶 − 1∕2 𝑙𝑛𝐾. Thus, if a graph of 𝑙𝑛𝐸
against 𝑙𝑛𝐾 is plotted, the slope of the best-fitted line can
be approximately−0.5. According to the RRMSE and sam-
ple size of the MCmethod in Figure 3, two best-fitted lines
were plotted, as shown in Figure 8, from which the num-
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FAN et al. 1455

F IGURE 5 Density patterns at t = 0.3 h. DyBO, dynamically bi-orthogonal; MC, Monte Carlo; MEAN, mean; SDEV, standard deviation

ber of samples that achieve the same accuracy as the DyBO
method can be estimated, and then the speedup can be
calculated.
For example, with𝑚 = 15 and𝑁𝑝 = 6, the RRMSE val-

ues of MEAN and SDEV were 0.2% and 0.9%, respectively.
Based on the best-fitted lines in Figure 8, estimated sam-
ple sizes (10,999 and 11,429) can be calculated. To ensure
that the accuracy of the DyBO method was not worse
than the MC method in terms of both MEAN and SDEV,
the smaller sample size of 10,586 was selected, which
took approximately 10,586 min using the MCmethod. The
speedupwas then calculated as 10586∕2.08 ≈ 5089. As cal-
culated, the DyBOmethod can achieve approximately five
to 6000 times speedup over the MC method. As shown in
Figure 9, the logarithm of speedup against RRMSE was
presented, and it was found that the speedup increased as
the RRMSE decreased. With respect to the same RRMSE,
the speedup of SDEV was greater than that of MEAN, and
with respect to the same speedup, the RRMSE of MEAN
was less than that of SDEV. For practical use in engineer-

ing problems, the balance between efficiency and accuracy
can be assessed. If MEAN is more important and a large
error can be tolerated, the MC method will remain popu-
lar because of its simplicity; however, if SDEV is of interest
and sufficiently small errors are desired, then the DyBO
method will be preferable.
As shown in the example 1, the SLWR model can

reproduce some commonly observed traffic phenomena.
Figure 10 shows that the MEAN of the densities varies
with the trapezoidal traffic demand throughout the sim-
ulation period; that the densities rapidly increase to the
jam density at the beginning of the congestion period and
then stabilize due to the bottleneck at the end of the road
section. The duration of the completely stopped condition
is slightly longer at the 1.75-km location than at the 1.5-
km location. A similar phenomenon can be found during
the discharging process. This is reasonable, because the
shock wave will decrease in the upstream direction once
the bottleneck is cleared. In addition, the SDEV of the den-
sities rapidly increases to the maximum value just before
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1456 FAN et al.

F IGURE 6 Density patterns at t = 0.78 h. DyBO, dynamically bi-orthogonal; MC, Monte Carlo; MEAN, mean; SDEV, standard deviation

the jam density is reached; it then significantly drops and
then climbs again to the optimal density. This reflects the
large variation in density at the start of a queue, which is
commonly observed in daily traffic. Additionally, as more
vehicles are fully stopped at the jam density, the variation
in speeds decreases.
The above queuing phenomena can be observed

throughout the road section at a given point in time
(see Figure 11). The SDEV of the densities is smaller and
more stable in the free-flow region than in a congested
region. The SDEV of the densities becomes smaller and
more stable when discharging because traffic dynamics
can vary considerably across different compositions of
drivers in the stop-and-go condition but remain basically
the same during the completely stopped condition. In
addition, as shown by the fundamental diagram, shock-
wave speeds decrease with increasing densities in the
free-flow condition, but increase with increasing densities
in the oversaturated condition. Therefore, an increase in
the heterogeneity of the driver population increases the
variations in traffic dynamics.

As the discontinuity of the traffic flow is caused by
a bottleneck, a capacity drop phenomenon is expected
as has long been commonly observed in empirical data
(Geroliminis & Sun, 2011). This suggests that the queue
discharge rate is lower than the pre-queue capacity. As
shown in Figure 12, the traffic flow increases from zero
in the free-flow condition to capacity in the congested
condition (blue dots), and then drops to zero at the jam
density. From congested condition to the free-flow con-
dition (orange dots), traffic flow increases from zero to
the discharge rate, and then drops back to a stable den-
sity that is significantly lower than the pre-queue capacity.
The mean of the discharge density is 1676 veh/h, which is
around 4% lower than the pre-queue capacity. The stan-
dard deviation of the discharge rate is 54 veh/h. This high
standard deviation is attributable to the heterogeneity of
the drivers’ speeds in the discharging flow, and is con-
sistent with the previous finding that the magnitude of
capacity drops is variable. The vehicles’ speed in conges-
tion appears to correlatewell with the queue discharge rate
(Yuan et al., 2015).

 14678667, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.12953, W
iley O

nline L
ibrary on [03/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FAN et al. 1457

F IGURE 7 Density patterns at t = 1.2 h. DyBO, dynamically bi-orthogonal; MC, Monte Carlo; MEAN, mean; SDEV, standard deviation

TABLE 1 Relative root-mean-squared error of statistical quantities computed by the dynamically bi-orthogonal and Monte Carlo
methods

No. of Hermite polynomials:𝑵𝒑 = 𝟐

No. of Hermite
polynomials:𝑵𝒑 = 𝟒

No. of Hermite
polynomials:𝑵𝒑 = 𝟔

No. of
spatial basis

Mean
(MEAN)

Standard
deviation (SDEV)

Time
(min) MEAN SDEV

Time
(min) MEAN SDEV

Time
(min)

m = 3 5.1% 24.5% 1.74 4.2% 23.6% 1.77 3.8% 23.0% 1.82
m = 5 2.2% 13.6% 1.79 2.0% 12.7% 1.81 2.0% 12.2% 1.85
m = 7 1.2% 8.0% 1.82 1.1% 7.3% 1.83 1.0% 6.7% 1.89
m = 9 0.7% 4.4% 1.85 0.6% 3.9% 1.85 0.5% 3.5% 1.93
m = 11 0.5% 3.1% 1.87 0.3% 2.4% 1.90 0.3% 2.0% 1.99
m = 13 0.4% 2.4% 1.89 0.2% 1.4% 1.94 0.2% 1.2% 2.03
m = 15 0.2% 1.7% 1.93 0.2% 1.0% 1.96 0.2% 0.9% 2.08

4.2 Example 2

4.2.1 Example settings

As shown in Table 2, a 6-km heterogeneous highway with
two geometric bottlenecks, represented by the jam density,
was considered. Other settings remained the same as the

first example except that the simulation period was 2 h to
observe queue dissipation at the downstream end.

4.2.2 Numerical results

To achieve an acceptable level of accuracy where RRMSE
of both MEAN and SDEV are all below 5%, the numbers
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F IGURE 8 Relationship between the number of MC samples
and errors of the MC method: (a) MEAN and (b) SDEV

F IGURE 9 Relationship between speedup and RRMSE

F IGURE 10 Density patterns at different locations: (a)
x = 1.5 km; (b) x = 1.75 km

F IGURE 11 Density patterns at different times: (a) t = 0.77 h;
(b) t = 0.88 h

F IGURE 1 2 Capacity drop observed at the end of the road
section

of spatial terms and Hermite polynomials were selected
as 𝑚 = 9, and 𝑁𝑝 = 4. In addition, MC solutions with
1000 MC samples were presented for comparison. The
computation times for the DyBO method and the MC
method were 5.6 and 2841 min, respectively.
Road Sections 2 and 4 have lower jam densities, thereby

lower capacities. As the traffic demand increases beyond
their capacities, queues are formed expectedly. With no
blockage at the end of the road section, the queues should
gradually discharge and clear up eventually as long as the
traffic demand remains below capacity. Typical time slots
are selected to show how the density evolves along this
heterogeneous highway.
As shown in Figure 13, at t = 0.3 h, traffic demand was

lower than capacities of all the road sections, and hence no
queuewas formed, but theMEAN of Road Sections 2 and 4
were slightly higher than those of Road Sections 1 and 3
due to lower jam densities. Afterward, at t = 0.8 h, two
queues were formed at the beginning of Road Sections 2
and 4, which were propagated upstream because traffic
demand was beyond capacities of Road Sections 2 and 4.
TheMEAN of the downstream queue was a slightly higher
than that of the upstream queue because of lower jam den-
sity. These two queues were discharging at their optimal
densities, that is, 40 veh/km and 35 veh/km, respectively.
When the traffic demand remained above the capacities
of bottlenecks, the queues continue to grow. At t = 1.2 h,
the MEAN of Road Section 2 was beyond 40 veh/km (the
optimal density), indicating that it was in the congested
state. This is because the downstream queue was spilled
back toRoad Section 2.When the traffic demandwas lower
than capacities of bottlenecks, the queue length began to
decrease. At t = 2 h, only the downstream queue existed
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TABLE 2 Jam densities of different road sections

Road section
Length
(km)

Jam density
(veh/km) Description

1 0–3 100 Long enough to hold the queuing vehicles
2 3–4 80 With a capacity drop
3 4–5 100 Same setting as Road Section 1
4 5–6 70 Second bottleneck with further capacity drop to show

the second queue at the downstream end

F IGURE 13 Density patterns with geometric bottlenecks (left column: dynamically bi-orthogonal [DyBO] solutions; right column: MC
solutions)

and was discharging at the optimal density (35 veh/km).
The upstream flow was in the free-flow state, and hence
the downstream queue was expected to clear eventually.
Based on these density patterns, this experiment well

demonstrated the good performance of the DyBO method
in solving the SLWR model with geometric bottlenecks.

5 CONCLUSION

This paper developed a new framework for examining the
stochasticity in macroscopic traffic flow modeling, under

which the free-flow speed is randomized to represent the
heterogeneity in a driver population. Individual drivers
are allowed to maintain consistent and rational behavior
along the road section,which differentiates this framework
from previous studies and makes model formulation more
challenging. In the first example, stochastic variabilities
were observed across the roadway section over time, and
the MEAN and SDEV of traffic dynamics were calculated.
In addition, some commonly observed traffic phenomena,
including capacity drop, were reproduced. In the second
example, the proposed model was shown to be well adap-
tative to heterogeneous road sections. In contrast to the
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classic LWR model, the proposed model can help users
to explore the stochastic paradigm, which may be use-
ful in traffic planning, design, and real-time management.
For example, if the stochastic speed paradigm is known, it
will be feasible to use variable speed limit signs to actively
manage real-time traffic operations.
Furthermore, the DyBOmethod was applied to improve

the efficiency of solving the highly non-linear SPDE, and
a sensitivity analysis of the DyBO method was conducted
under various settings. Compared with the MC method,
the DyBO method significantly decreased the computa-
tion time while maintaining desirable accuracy, thereby
making it suitable for engineering practice. For example,
in practical road network design problems, the evaluation
model must be updated every time the network conditions
change, and it is very computationally expensive to con-
sider stochasticity in evaluation models. Our study shows
that the DyBO method can substantially decrease compu-
tational burdens. In practice, there are many sources of
stochasticity. As this paper is the first attempt to develop an
SLWR model under the assumption of a stochastic source
and to implement the DyBO method, it has some limi-
tations that should be addressed in future research. For
example, multiple random parameters could be included,
and real-traffic data could be collected to test the proposed
model.
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