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Abstract
[bookmark: OLE_LINK520][bookmark: OLE_LINK521][bookmark: OLE_LINK291][bookmark: OLE_LINK292][bookmark: OLE_LINK506][bookmark: OLE_LINK283][bookmark: OLE_LINK284][bookmark: OLE_LINK285][bookmark: OLE_LINK286][bookmark: OLE_LINK766][bookmark: OLE_LINK767][bookmark: OLE_LINK293][bookmark: OLE_LINK294][bookmark: OLE_LINK764][bookmark: OLE_LINK765][bookmark: OLE_LINK200][bookmark: OLE_LINK201][bookmark: OLE_LINK776][bookmark: OLE_LINK777][bookmark: OLE_LINK505][bookmark: OLE_LINK41][bookmark: OLE_LINK89][bookmark: OLE_LINK507][bookmark: OLE_LINK508][bookmark: OLE_LINK287][bookmark: OLE_LINK288][bookmark: OLE_LINK509][bookmark: OLE_LINK510][bookmark: OLE_LINK297][bookmark: OLE_LINK298][bookmark: OLE_LINK42][bookmark: OLE_LINK43][bookmark: OLE_LINK295][bookmark: OLE_LINK296][bookmark: OLE_LINK768][bookmark: OLE_LINK769][bookmark: OLE_LINK305][bookmark: OLE_LINK306][bookmark: OLE_LINK501][bookmark: OLE_LINK502][bookmark: OLE_LINK512][bookmark: OLE_LINK513][bookmark: OLE_LINK514][bookmark: OLE_LINK515][bookmark: OLE_LINK772][bookmark: OLE_LINK773][bookmark: OLE_LINK516][bookmark: OLE_LINK517][bookmark: OLE_LINK518][bookmark: OLE_LINK519][bookmark: OLE_LINK354][bookmark: OLE_LINK355][bookmark: OLE_LINK208][bookmark: OLE_LINK209][bookmark: OLE_LINK774][bookmark: OLE_LINK775]Anaerobic digestion (AD) relies on myriads of functions performed by complex microbial communities in customized settings, thus, the comprehensive investigation of the AD microbiome is central to the fine-tuned control. Most current AD microbiome studies are based on the relative abundance, however, their compositional nature hinders the interpretation of microbes’ dynamics and inter-sample comparisons. Here, we developed an absolute quantification (AQ) approach which integrated cellular spike-ins with metagenomic sequencing to elucidate microbial community variations and population dynamics in four anaerobic digesters. Using this method, 253 microbes were defined as decaying populations with decay rates from -0.05 to -5.85 d-1, wherein, a population from Flavobacteriaceae family decayed at the highest rates of -3.87 to -5.85 d-1 in four digesters. Meanwhile, 25 microbes demonstrated the growing trend in AD processes with growth rates from 0.11 to 1.77 d-1, and genome-centric analysis revealed that some of them had functional niches in hydrolysis, short-chain fatty acids metabolism, and methane generation. Additionally, we observed that the specific activity of methanogens was lower in the prolonged digestion stage, and redundancy analysis revealed that the feedstock composition and the digestion duration were the two key parameters in governing the AD microbial compositions.
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1. Introduction
[bookmark: OLE_LINK14][bookmark: OLE_LINK15][bookmark: OLE_LINK16][bookmark: OLE_LINK289][bookmark: OLE_LINK290][bookmark: OLE_LINK19][bookmark: OLE_LINK20][bookmark: OLE_LINK21][bookmark: OLE_LINK17][bookmark: OLE_LINK18][bookmark: OLE_LINK1][bookmark: OLE_LINK2][bookmark: OLE_LINK313][bookmark: OLE_LINK314][bookmark: OLE_LINK317][bookmark: OLE_LINK318][bookmark: OLE_LINK319][bookmark: OLE_LINK320][bookmark: OLE_LINK311][bookmark: OLE_LINK312][bookmark: OLE_LINK309][bookmark: OLE_LINK310]Anaerobic digestion (AD), a microbial-mediated biotechnology, relies on myriads of functions performed by complex microbial communities in customized settings for volatile solid reduction, biogas generation, and pathogen inactivation (Kim et al., 2002; Labatut et al., 2014; Vanwonterghem et al., 2014a; Zhang et al., 2014). The operating parameters are adjusted to optimize the anaerobic digesters’ performance based on the waste stabilization efficiency and biogas generation rates (Ju et al., 2017). However, the fine-tuned manipulation of the AD system presents major challenges owing to the lack of comprehensive biological understanding of the AD microbiome, which has been regarded as a black-box (Wang et al., 2020; Zhu et al., 2019). With the rapid development of molecular techniques, especially for the culture-independent high-throughput sequencing, an increasing number of studies have explored and documented the heterogeneity of microbial communities and population dynamics in anaerobic digesters under varying operating conditions, such as solid/hydraulic retention time (SRT/HRT) (Mei et al., 2017; Wang et al., 2020), temperature (Vanwonterghem et al., 2015), and feedstock compositions (Fitamo et al., 2016) (Wang et al., 2022), which provides substantial insights into the AD microbiome.

[bookmark: OLE_LINK522][bookmark: OLE_LINK523][bookmark: OLE_LINK527][bookmark: OLE_LINK528][bookmark: OLE_LINK315][bookmark: OLE_LINK316][bookmark: OLE_LINK526][bookmark: OLE_LINK300][bookmark: OLE_LINK524][bookmark: OLE_LINK525][bookmark: OLE_LINK530][bookmark: OLE_LINK531][bookmark: OLE_LINK321][bookmark: OLE_LINK322][bookmark: OLE_LINK529][bookmark: OLE_LINK123][bookmark: OLE_LINK124][bookmark: OLE_LINK323][bookmark: OLE_LINK324][bookmark: OLE_LINK532][bookmark: OLE_LINK533][bookmark: OLE_LINK534][bookmark: OLE_LINK535][bookmark: OLE_LINK536][bookmark: OLE_LINK537]The mono-digestion of sewage sludge (SS) has been widely adopted in sewage treatment works with the excess biomass from the secondary aeration tank and/or the solids separated from the primary sedimentation as the dominant organic feedstocks (Mei et al., 2017; Vanwonterghem et al., 2014b). Currently, the co-digestion of SS with food waste (FW) is also gaining the increasing popularity globally (Chiu and Lo, 2016). To promote the AD application for higher efficiencies in treating of different types of organic wastes, it is of great importance to determine how the structure and functions of microbial community changes when anaerobic digesters fed with various feedstocks. However, current interpretations of the AD microbiome are dependent on the relative abundance rather than absolute values, which hinders the illustration of the actual microbial dynamics and inter-sample comparisons (Ju et al., 2017; Morton et al., 2017; Props et al., 2017; Vandeputte et al., 2017; Yang et al., 2021). Thus, high-resolution microbial community-wide and population-specific dynamics profiling shall be rooted in absolute cell numbers. Additionally, the growth/decay rates of microbes, a basic parameter of microbial lifestyle, is central to understanding microbial interactions and the whole ecosystem (Long et al., 2021; Rousk and Bååth, 2011; Weissman et al., 2021). More crucially, the widely applied correlation analysis based on Pearson and Spearman metrics, which has been used to infer the microbe-microbe, and microbe-operating parameters correlations, mainly relies on the assumption that the changes of an individual population are independent (Lovell et al., 2015; Weiss et al., 2015).

[bookmark: OLE_LINK538][bookmark: OLE_LINK539][bookmark: OLE_LINK540][bookmark: OLE_LINK541][bookmark: OLE_LINK542][bookmark: OLE_LINK543][bookmark: OLE_LINK544][bookmark: OLE_LINK52][bookmark: OLE_LINK53][bookmark: OLE_LINK547][bookmark: OLE_LINK548][bookmark: OLE_LINK545][bookmark: OLE_LINK546]Nowadays, some studies have attempted to apply absolute quantification (AQ) to study the microbial communities of some ecosystems, e.g., human gut (Ji et al., 2019; Vandeputte et al., 2017), soil (Tkacz et al., 2018), and cooling water (Props et al., 2017), but very few studies adopted AQ in AD systems. In the above studies that adopted AQ, the cell number of a specific population was calculated by multiplying the total cell number of a mixed community which was roughly estimated based on biomass from volatile suspended solids (VSS) (Mei et al., 2019) or enumerated by the flow cytometer (FCM) or fluorescence microscopy (Foladori et al., 2007; Vandeputte et al., 2017; Liang et al., 2020; Long et al., 2021) with the compositional data derived from the 16S rRNA amplicon sequencing. Nonetheless, these absolute values shall be interpretated with care because of the bias in total microbial load counting methods, and/or unequal amplification (PCR bias) (O’Donnell et al., 2016; Peng et al., 2018).

[bookmark: OLE_LINK549][bookmark: OLE_LINK550][bookmark: OLE_LINK325][bookmark: OLE_LINK326][bookmark: OLE_LINK327][bookmark: OLE_LINK328][bookmark: OLE_LINK553][bookmark: OLE_LINK554][bookmark: OLE_LINK363][bookmark: OLE_LINK364][bookmark: OLE_LINK329][bookmark: OLE_LINK330][bookmark: OLE_LINK331][bookmark: OLE_LINK332][bookmark: OLE_LINK555][bookmark: OLE_LINK49][bookmark: OLE_LINK50][bookmark: OLE_LINK556][bookmark: OLE_LINK557][bookmark: OLE_LINK333][bookmark: OLE_LINK334][bookmark: OLE_LINK335][bookmark: OLE_LINK356][bookmark: OLE_LINK357]To avoid the above-mentioned pitfalls, we adopted two strategies to develop the metagenome-based absolute quantification, i) using two microbial internal cellular standards (termed as “spike-ins”) of known absolute cell numbers for the downstream calibration to avoid the bias in counting the microbial total loads (Yang et al., 2021), and ii) integrating metagenomic sequencing with genome-centric analysis to avoid PCR amplicon bias. The reliability of this spike-ins based AQ method was validated using FCM-based counting to quantify the total cell number of AD samples, and culture-based Colilert maximum possible number (MPN) test to enumerate cell counts of Escherichia coli. Making use of this spike-ins based AQ approach helped in successfully deciphering populations with varying dynamics trends coupled with their corresponding growth/decay rates, especially for those decay ones showing varied behaviors in mono- and co-digesters. Additionally, the specific activity of methanogens calculated based on the absolute quantification method provided novel insights into methane production per methanogenic cell in the anaerobic digesters and could be  a valuable reference for the fine-tuned control of the AD process.

2. Method and materials
[bookmark: OLE_LINK903][bookmark: OLE_LINK904]2.1. Digester setup, operation, and chemical analyses
[bookmark: OLE_LINK245][bookmark: OLE_LINK246][bookmark: OLE_LINK247][bookmark: OLE_LINK248][bookmark: OLE_LINK249][bookmark: OLE_LINK224][bookmark: OLE_LINK227][bookmark: OLE_LINK12][bookmark: OLE_LINK13][bookmark: OLE_LINK591][bookmark: OLE_LINK592][bookmark: OLE_LINK571][bookmark: OLE_LINK572]The inoculum and feedstock preparations were illustrated in Supplementary Information (SI) 1. Four mesophilic digesters with 900 mL working volume per digester, wherein, two for mono-digestion of feeding sewage sludge (FSS) (named as M1 and M2), and two for co-digestion of FW and FSS (named as C1 and C2, with FW: FSS mass ratio of 50:50), were set up with the feedstock to inoculum ratio of 2:1 (V/V). All digesters were flushed with N2 gas for 15 min to create the oxygen-free condition and operated for 40 days. The physicochemical properties monitored were 1) biogas volume and its composition, 2) concentrations of total organic carbon (TOC), volatile fatty acids (VFAs), and 3) total solids (TS) and volatile solids (VS). The analytical methods for these parameters had been well documented in our previous publications (Ju et al., 2016; Wang et al., 2017). The physicochemical characteristics of the feedstocks, and the mixtures of feedstock and inoculum were summarized in Table S2. The isolation and numeration methods for an isolated wild type E. coli strain were described in SI 2, which was added into the feedstocks as indicator organism with the ratio of 4.0% (E. coli / FSS, VS-based) ahead of starting the AD process. 

2.2 Internal standards (spike-ins) preparation and spike-ins based AQ workflow
[bookmark: OLE_LINK267][bookmark: OLE_LINK268][bookmark: OLE_LINK5][bookmark: OLE_LINK8][bookmark: OLE_LINK901][bookmark: OLE_LINK902][bookmark: OLE_LINK1143][bookmark: OLE_LINK1144][bookmark: OLE_LINK4][bookmark: OLE_LINK252][bookmark: OLE_LINK253][bookmark: OLE_LINK943][bookmark: OLE_LINK944][bookmark: OLE_LINK256][bookmark: OLE_LINK257][bookmark: OLE_LINK258][bookmark: OLE_LINK225][bookmark: OLE_LINK226]We used two spike-ins, namely, Pseudomonas putida KT2240 p35S::CASP2:GFP and Bacillus amyloliquefaciens M13KE.mCherry, considering different DNA extraction efficiencies for gram-positive and gram-negative microbes. The information of spike-ins solution preparation, enumeration, and complete genomes details were documented in SI 3. In total, 54 samples were selected for the spike-ins based AQ metagenomics, including 52 digested effluent samples from four anaerobic digesters (i.e., 13 samples per digester, as shown in Table S1), two feedstocks, and two inoculum samples. For spike-ins based AQ workflow, firstly, we combined 3.08× 108 cells of each spike-in with 0.25 mL sample into a 15 mL centrifuge tube, placed on a vortex machine at full power for 1 min to completely mix the spike-ins with the sample, then, the mixture was centrifuged at 4,000 rpm for 20 min and concentrated into 0.5 mL volumes, and finally, the total DNA was extracted using the FastDNA Spin Kit (MP Biomedicals). Details of direct counting on cell number of spike-ins and AD samples using single-cell FCM were deciphered in SI 4.

[bookmark: OLE_LINK945][bookmark: OLE_LINK946]2.3 Illumina sequencing, and metagenomic analyses
[bookmark: OLE_LINK838][bookmark: OLE_LINK839][bookmark: OLE_LINK593][bookmark: OLE_LINK594]The Illumina sequencing service (Novaseq PE150) was provided by Novogene Co. Ltd (Beijing), then, fastp (v0.23.2) (Chen et al., 2018) with default settings was employed for the quality control of raw reads. Next, clean reads from the same digester were co-assembled using MEGAHIT (v. 1.2.9) (Li et al., 2015) with default settings, then, assembled contigs were imported to MetaWRAP (v.1.2.1) (Uritskiy et al., 2018) to retrieve metagenome-assembled genomes (MAGs) in the modules of “binning” through two binning methods, namely, MetaBAT 2 (Kang et al., 2019) and MaxBin (Wu et al., 2016), and the retrieved bins were further polished in the modules of “bin_refinement” to retain MAGs with the completeness ≥ 50% and contamination of ≤ 10%, determined by CheckM (Parks et al., 2015). MAGs dereplication was conducted using dRep (v2.4.0) (Olm et al., 2017) (-comp 50, -con 10, and -nc 0.5) and 365 non-redundant MAGs were obtained for taxonomy annotation through GTDB-tk (v1.4.1) (Parks et al., 2020) against the Genome Taxonomy Database (version r95) (Parks et al., 2020). The abundances of MAGs were computed in the genome module of CoverM (--min-covered-fraction 0) (v0.61.0, https://github.com/wwood/CoverM) with the methods of relative_abundance (to output relative abundance values of MAGs) and mean (to output the coverage values of MAGs) using the mapping aligner of bwa-mem (Li, 2013) of default settings.

[bookmark: OLE_LINK259][bookmark: OLE_LINK260][bookmark: OLE_LINK24][bookmark: OLE_LINK265][bookmark: OLE_LINK266][bookmark: OLE_LINK263][bookmark: OLE_LINK264][bookmark: OLE_LINK261][bookmark: OLE_LINK262][bookmark: OLE_LINK233][bookmark: OLE_LINK234][bookmark: OLE_LINK231][bookmark: OLE_LINK232][bookmark: OLE_LINK301][bookmark: OLE_LINK302][bookmark: OLE_LINK27][bookmark: OLE_LINK28][bookmark: OLE_LINK29][bookmark: OLE_LINK30][bookmark: OLE_LINK269][bookmark: OLE_LINK270][bookmark: OLE_LINK271][bookmark: OLE_LINK272][bookmark: OLE_LINK670][bookmark: OLE_LINK671][bookmark: OLE_LINK130][bookmark: OLE_LINK178][bookmark: OLE_LINK849][bookmark: OLE_LINK850][bookmark: OLE_LINK672][bookmark: OLE_LINK673][bookmark: OLE_LINK228][bookmark: OLE_LINK229][bookmark: OLE_LINK840][bookmark: OLE_LINK841]The cutoff of 99% identity and minimum 20% subject alignment coverage (alignment cutoff evaluation was described in Figure S2) was used to quantify the copy number of gfp and mCherry genes using Bowtie2 (in –local mode) (Langmead and Salzberg, 2012) in the clean reads. Then, scaling factors (SFs, values between known cell numbers of spike-ins strains and copy numbers of these two genes in metagenomics sequencing datasets) were employed to scale up the metagenome-assembled genomes (MAGs) coverage to attain the absolute number of microbes (SI 6). We assumed that i) the gram-positive and gram-negative populations shared the same DNA exaction efficiencies with B. amyloliquefaciens and P. putida, respectively; and ii) the cell numbers of spike-ins were consistent with the copy numbers of gfp and mCherry genes as these two genes were single-copy on the spike-ins genomes. The retrieved MAGs were grouped into three categories according to the cell membrane features, namely, gram-negative (G-), gram-positive (G+), and unknown populations. mCherry and gfp SFs were subjected to compute the absolute cell number of G+ and G- populations, and for microbes with unknown membrane features or these affiliated to the novel phylum with no pure culture, the SF was the average values of gfp and mCherry SFs.  Besides, the mCherry SFs of gram-positive spike-in B. amyloliquefaciens were applied to obtain the cell counts of archaeal populations. The cell numbers in the scientific format in different magnitudes were used for comparison. The workflow of the developed spike-ins based AQ and genome-centric metagenomics analysis was shown in Figure 1, and the phylogenetic tree construction, functional annotation of MAGs (Table S7), network analysis, and redundancy analysis were illustrated in SI 7. 

3. Results
[bookmark: OLE_LINK587][bookmark: OLE_LINK588]3.1 Validation of the spike-ins based AQ approach
[bookmark: OLE_LINK714][bookmark: OLE_LINK715][bookmark: OLE_LINK786][bookmark: OLE_LINK787][bookmark: OLE_LINK336][bookmark: OLE_LINK337][bookmark: OLE_LINK712][bookmark: OLE_LINK713][bookmark: OLE_LINK62][bookmark: OLE_LINK63][bookmark: OLE_LINK64][bookmark: OLE_LINK74][bookmark: OLE_LINK77][bookmark: OLE_LINK80]Benchmarking to the total cell number of AD samples enumerated by the spike-ins based AQ was performed using the FCM counting. Results showed that the total cell abundance of AD samples based on the spike-ins based AQ and FCM counting were comparable, i.e., ranging from 2.25 × 109 to 5.20 × 109 cells/mL versus from 7.06 × 109 to 17.1 × 109 cells/mL. The difference of values of two methods were within one magnitude, but cell number counted by FCM were higher (i.e., 3.68 ± 0.87 and 2.65 ± 0.62 times in mono- and co-digesters, respectively) than that enumerated by spike-ins based AQ method (Figure S3).

[bookmark: OLE_LINK222][bookmark: OLE_LINK223]Furthermore, we evaluated the consistency of results obtained from the spike-ins based AQ and from the Colilert MPN test to quantify cell changes of specifically concerned populations, such as E. coli, an indicator organism (Figure S4). It showed that the AD did have an inactivation effect on E. coli in both the mono- and co-digestion processes, and the rapid inactivation of the AD on E. coli in the first five days was consistent using these two numeration approaches. Pearson metric-based correlation analysis revealed a significant (p-value < 0.001) positive correlation (with the coefficient of 0.81) between cell counts derived from the two numeration methods in the first five days. Hence, this spike-ins based AQ was adopted to calculate the cell numbers of AD samples for the downstream analysis.

3.2 Microbial population dynamics
[bookmark: OLE_LINK10][bookmark: OLE_LINK11]There were 365 MAGs retrieved from four anaerobic digesters (Figure 2). When profiling the longitudinal microbial population dynamics based on relative and absolute abundances in the four anaerobic digesters, one striking discrepancy was observed that all MAGs had opposite trends between the relative and the absolute profiles in at least one AD digester. For example, the bacterium Chloro_3, the cell counts decreased by 4.47 ×107 cell/mL in C1 from Day-8 to Day-10, while its relative abundance increased by 1.97%. The relative abundance of Actino_14 decreased by 3.94% while its cell numbers increased by 1.42 × 107 cell/mL in C2 from Day-3 to Day-5. Another bacterium, Thermot_4 increased its relative abundance by 0.80%, while its cell counts decreased by 1.82 × 107 cell/mL in M1 from Day-15 to Day-20 (Figure 3). Thus, the compositional data would potentially be misleading if the conclusions were drawn solely based on the relative abundance.

[bookmark: OLE_LINK238][bookmark: OLE_LINK239][bookmark: OLE_LINK240]The spike-ins based AQ approach enabled us to track the community-wide and population-resolved dynamics. Firstly, we analyzed the retrieved 365 MAGs on the correlation of their dynamic profiles (Foladori et al., 2010) using eLSA (Xia et al., 2011). Then, we grouped these clustered microorganisms into three categories featured with growing, decay, and fluctuating trends (Table S6). The dynamics variation of each  population was determined by dividing the maximum cell number by its minimum value in each digester. We found that 25 populations (spanning from 8 phyla, e.g., Firmicutes (10), Synergistota (4), Halobacteriota (4), Hydrogenedentota (2), Proteobacteria (2), Chloroflexota (1) Thermoplasmatota (1), and Verrucomicrobiota (1)) demonstrated an obvious growing trend, implying that they gained the proliferative advantage in AD conditions. Among these growing microorganisms, 7 populations were shared in both mono- and co-digesters (Table 1), of which 6 microbes grew at the same magnitudes, including 5 populations had less than 1 log increasement and 1 population had 1- 2 logs increasement in anaerobic digesters.

Results showed that 253 MAGs (spanning 28 phyla, e.g., Proteobacteria (58), Actinobacteriota (36), Bacteroidota (31), Firmicutes (36), etc.) were classified as decaying populations in these 40-day operated digesters, suggesting that AD conditions unfavored their survival. Specifically, 189 out of 253 decaying populations were shared in both mono- and co-digesters, wherein, 97 microbes decayed at the same magnitudes in all four digesters. Among the 189 shared decaying populations, 23 microbes had varied decay scales in anaerobic digesters fed with different feedstocks, wherein, 1 population showed larger decay variation in mono-digesters, and 22 ones decayed in higher magnitudes in co-digesters. In replicate digesters of mono-digestion, 31 populations decayed at the same scales, while 24 populations decayed at the same magnitudes in two co-digesters. 

3.3 Observed maximum growth/decay rates of the populations in the AD microbiome
In addition to documenting population dynamics, the growth/decay rate is another key characteristic for microbial ecology (Kirchman, 2016; Rousk and Bååth, 2011). Our spike-ins based AQ integrated with genome-centric analyses enabled the population-level growth/decay rate scanning of a large number of microbes (Weissman et al., 2021). The maximum growth/decay rates were computed as the slopes of the ln-transformed MAGs’ cell counts over the digestion time between two time points, following the method in the previous studies (Korem et al., 2015; Long et al., 2021). 

[bookmark: OLE_LINK279][bookmark: OLE_LINK280][bookmark: OLE_LINK299][bookmark: OLE_LINK277][bookmark: OLE_LINK278][bookmark: OLE_LINK254][bookmark: OLE_LINK255][bookmark: OLE_LINK350][bookmark: OLE_LINK351][bookmark: OLE_LINK281][bookmark: OLE_LINK282]For growing populations, their cell numbers increased from 0.04 ± 0.001 × 109 to 0.20 ± 0.01 × 109 cells/mL in mono-digesters, and from 0.03 ± 0.005 × 109 to 0.15 ± 0.02 × 109 cells/mL in co-digesters, respectively. The maximum growth rates of all growing microbes were in the range of 0.11 - 1.77d-1 (with doubling times ranged from 6.3 to 0.4 days), wherein Synerg_1 (affiliating to s_Aminobacterium sp002432275) had the highest maximum growth rate of 1.77 d-1 in co-digester C1, and Firmic_51 was the one with the highest maximum growth rate of 1.20 d-1 in mono-digester M1. For the shared growing microbes, 6 out 7 populations showed higher maximum growth rates in mono-digesters than in co-digesters, for example Haloba_1 (affiliating to s_Methanothrix_A harundinacea) grew twice faster in mono-digesters than that in co-digesters. But another archaeal microbe, haloba_3 (belong to the g_Methanoculleus) was the only grew faster in co-digesters than that in mono-digesters.

[bookmark: OLE_LINK243][bookmark: OLE_LINK244][bookmark: OLE_LINK435][bookmark: OLE_LINK436][bookmark: OLE_LINK214][bookmark: OLE_LINK215][bookmark: OLE_LINK216][bookmark: OLE_LINK250][bookmark: OLE_LINK251][bookmark: OLE_LINK241][bookmark: OLE_LINK242][bookmark: OLE_LINK22][bookmark: OLE_LINK23][bookmark: OLE_LINK144][bookmark: OLE_LINK145][bookmark: OLE_LINK183][bookmark: OLE_LINK184][bookmark: OLE_LINK146][bookmark: OLE_LINK147][bookmark: OLE_LINK160][bookmark: OLE_LINK161]The total cell density of decaying populations declined from 2.24 ± 0.07 × 109 to 0.69 ± 0.10 × 109 cells/mL in the mono-digesters, and from 2.00 ± 0.06 × 109 to 0.39 ± 0.03 × 109 cells/mL in the co-digesters over the 40-day digestion (Figure 4a). The overall range of maximum decay rates in all four digesters ranged from -0.05 d-1 to -5.85 d-1 (with decimal reduction time ranged from 46.1 to 0.4 days) (Figure 4, Table S6). We observed that decay rates varied largely at the phylum level, and the top three phyla with the highest maximum decay rates were Aureabacteria, Fusobacteriota, and Campylobacterota with rates of -1.90 ± 1.14, -1.86 ± 0.27, and -1.56 ± 0.95 d-1, respectively. Meanwhile, Hydrogenedentota and Dependentiae microbes were the two phyla with the lowest decay rates of -0.12 ± 0.02 and -0.23 ± 0.08 d-1, respectively.

[bookmark: OLE_LINK162][bookmark: OLE_LINK163][bookmark: OLE_LINK191][bookmark: OLE_LINK192]Proteobacteria populations did not decay at high rates, although this phylum comprised the highest number of decayed populations. The average decay rate of Proteobacteria populations was -0.64 ± 0.70 d-1 in all four digesters, and they were observed decaying at similar rates in mono- and co-digesters, with -0.65 ± 0.67 vs -0.63 ± 0.73 d-1, respectively. Intriguingly, Proteobacteria populations showed divergent maximum decay rates among 26 families, wherein, the top three families with the highest decay rates were Enterobacteriaceae (-3.52 ± 0.55 d-1), Rhodanobacteraceae (-1.88 ± 0.10 d-1), and Competibacteraceae (-1.77 ± 0.66 d-1). Additionally, Proteo_11 belonging to Enterobacteriaceae family decayed at high rates, ranging from -4.19 to -2.85 d-1 in the four anaerobic digesters. We also observed that almost half of families of Proteobacteria  populations, for example, Competibacteraceae, Aeromonadaceae, and Parvularculaceae, decayed faster in the co-digesters than in the mono-digesters.

[bookmark: OLE_LINK168][bookmark: OLE_LINK169][bookmark: OLE_LINK170][bookmark: OLE_LINK171][bookmark: OLE_LINK179][bookmark: OLE_LINK180][bookmark: OLE_LINK217][bookmark: OLE_LINK218]Most families from Bacteroidota also showed higher decay rates in the co-digesters than those in the mono-digesters, wherein, two populations, Bacter_8 and Bacter_28 (f_Flavobacteriaceae and g_Draconibacterium, respectively) had the highest decay rates with values ranging from -5.85 to -3.87 d-1 and -4.34 to -3.47 d-1 in the four anaerobic digesters. Desulfobacterota microbes also showed the same trend, they decayed faster in the co-digesters at the rates of -1.45 ± 1.22 d-1 than those in the mono-digesters with the rates of -1.13 ± 0. 71 d-1. The average decay rate of Firmicutes was more than twice higher in mono-digesters than that in the co-digesters (-1.11 ± 0.77 d-1 vs -0.50 ± 0.30 d-1). Different from Bacteroidota, Desulfobacterota, and Firmicutes populations, microbes from Actinobacteriota phylum demonstrated the opposite trends with -0.33 ± 0.11 d-1 vs -0.24 ± 0.20 d-1 decay rates. In mono-digesters Synerg_14 (belonging to s_Aminivibrio sp002417725) demonstrated the lowest decay rate of -0.09 d-1 in the mono-digester M1, and Chloro_11 (affiliated to the o_Thermomicrobiales) had the slowest decay rate of -0.05 d-1 in co-digester C1. Interestingly, we observed that two populations (i.e., Synerg_3 and Hydrog_3) showed the inverse trend in mono- and co-digesters. The cell number of Synerge_3 increased in the mono-digesters at the max growth rate of 0.63 ± 0.16 d-1, but decayed at the maximum rate of -0.31 ± 0.01 d-1 in co-digesters. Hydrog_3 decayed in co-digesters at rates of -0.12 ± 0.02 d-1, but grew at the maximum growth rate of 0.57 ± 0.10 d-1 in the mono-digesters (Figure S7).

3.4 Dynamics profile and the specific activity of methanogens 
During the 40-day digestion, the accumulated CH4 productions were 3699 ± 48.6, and 5254 ± 460 mL for the mono- and co-digesters, respectively. A total of 17 retrieved archaeal MAGs were retrieved from the AD samples, wherein, 16 comprised nearly complete methanogenic pathways, spanning two archaeal phyla, i.e., Halobacteriota (12) and Thermoplasmatota (4). The total cell counts of methanogens were in the ranges of 0.04-0.14, 0.06-0.16, 0.06-0.2, and 0.08-0.22 × 109 cells/mL in M1, M2, C1, and C2, respectively, and the highest cell counts of methanogens were observed no later than Day-15 in all digesters (Figure 5a).

[bookmark: OLE_LINK172][bookmark: OLE_LINK173][bookmark: OLE_LINK433][bookmark: OLE_LINK434][bookmark: OLE_LINK437][bookmark: OLE_LINK438][bookmark: OLE_LINK439][bookmark: OLE_LINK440][bookmark: OLE_LINK443][bookmark: OLE_LINK444][bookmark: OLE_LINK441][bookmark: OLE_LINK442]The specific activities of methanogens were calculated and we found that i) the average values of both mono- and co-digesters’ were similar, i.e., 0.09 ± 0.02 and 0.08 ± 0.01 µMCH4/106 methanogens/d  (equal to  0.60 ± 0.68 × 106  and 0.54 ± 0.49 × 106   methane molecule generated by a methanogen cell per second) over the 40-day digestion, ii) higher specific activity of methanogens was observed in the early digestion period in all anaerobic digesters, and iii) the longer the digestion time, the lower the detected specific activity of methanogens (Figure 5a and b). Especially, the highest specific activities of methanogens were detected on Day-1 with 0.22 ± 0.13 and 0.23 ± 0.02 µMCH4/106 methanogens/d (equal to 1.51 ± 0.89 × 106  and 1.59 ± 0.16 × 106   methane molecule generated by a methanogen cell per second) in the mono- and co-digesters, respectively. We observed that the specific activities of methanogens were not positively correlated with the total cell counts of methanogens during the digestion process. Starting from Day-20, the specific activities of methanogens were very low and the cell numbers of methanogens declined, suggesting that methanogens might terminate both their proliferative and metabolic activities when the digestion period lasted more than 20 days. 

[bookmark: OLE_LINK174][bookmark: OLE_LINK175][bookmark: OLE_LINK176][bookmark: OLE_LINK177]We profiled the methanogens dynamics, and  found that Haloba_1 accounted for more than half of the total cells of methanogenic communities in all the four digesters at the end of AD, and its relative abundance gradually increased with the digestion time (Figure 5c). This microbe was an acetoclastic methanogen, but, it can adjust its metabolic potential to reduce CO2 for CH4 production through direct interspecies electron transfer (Zheng et al., 2021). Besides, the relative abundance of Halobo_11 (affiliated to the f_ Methanoregulaceae) was higher at the early stage of the digestion, with the highest values of 27.9 ± 2.34% on Day-1, and gradually declined over time, suggesting that this microbe might be one of the key contributors to methane production in the early digestion stage. It was worth noting that certain methanogens demonstrated proliferative and niche preferences in varying digestion conditions. Specifically, although Haloba_9 and Haloba_12 (affiliated to s_Methanofollis liminatans and s_Methanosarcina mazei, respectively) were the major methanogenic members at the early stage of digestion, the former methanogen was more abundant in the mono-digesters and the latter predominated in the co-digesters, probably due to the preference for the substrate compositions in the two types of anaerobic digesters.

3.5 Functional microbes for short-chain fatty acids metabolism 
Genome-centric analysis enabled us to identify functional microbes with genetic potentials in to participate in the metabolism of short-chain fatty acids (i.e., butyrate, propionate, and acetate) (Vanwonterghem et al., 2016). Results showed that 40 populations from 9 bacterial phyla, and 18 microbes from 8 bacterial phyla, harbored butyrate, and propionate metabolism pathways in their genomes. Besides, 32 microbes were annotated as the acetogens, possessing nearly complete glycolysis pathway, pyruvate oxidation, as well as AckA and Pta genes in their genomes. Additionally, 3 Firmicutes and one Chloroflexota MAGs were identified to have the genetic potentials to carry out syntrophic acetate oxidization (SAO) through the reverse Wood-Ljungdahl pathway (Mosbæk et al., 2016), and 55 MAGs, spanning 15 bacterial phyla, were found could employ the glycine cleavage system (Nobu et al., 2015) for the SAO process, which was consistent with a previous report that this novel pathway was not phylogenetically conserved (Zhu et al., 2020). 

[bookmark: OLE_LINK307][bookmark: OLE_LINK338][bookmark: OLE_LINK339][bookmark: OLE_LINK340][bookmark: OLE_LINK341]We observed that the total cell numbers of these functional populations were higher during the early digestion period and decreased thereafter (Figure S5). Specifically, the cell numbers of microbes with propionate-metabolic potentials peaked on Day-1 and decreased to the lowest points after Day-30. The highest abundance of acetogens with values of 1.70 ± 0.3 × 109 and 1.05 ± 0.01 × 109 cells/mL were observed on Day-1 and their cell numbers decreased till Day-40 and Day-35 as the lowest points for the mono- and co-digesters, respectively. Regarding syntrophic acetate oxidation bacteria (SAOB) dynamics, their cell numbers stepwise increased and peaked at 1.08 ± 0.09 × 109 and 1.08 ± 0.14 × 109 cells/mL on Day-8 in mono-digesters and co-digesters, respectively. The cell changes of butyrate-related microbes showed the similar trend with that of SAOB, their cell numbers peaked at 1.16 ± 0.07 × 109 and 1.25 ± 0.12 × 109 cells/mL on Day 10 and gradually decreased afterwards. 

3.6 Redundancy analysis
In this study, we employed the redundancy analysis to pinpoint the key abiotic and/or biotic factor(s) in governing the dynamics of functional populations and quantify their contributions (Mei et al., 2019). Results showed that two operating parameters (i.e., digestion duration, and feedstock composition) and six environmental variables (accumulated methane/biogas production and varying digestion intermediates, such as propionate, butyrate, and valerate acids concentrations) had significant impacts (p-value < 0.01), explaining 77% of the variability in microbial dynamics (Figure S6). Notably, the operating parameters (i.e., digestion duration and feedstock composition) were the most significant factors (up to 73%) governing the compositional variation of functional populations.

Furthermore, we observed some correlations between the dynamics of some functional populations and the fatty acids’ concentrations based on the Pearson correlation analysis. For example, the cell counts of Firmic_30, Firmic_33, Bacter_6, and Rifleb_3 were positively correlated with the butyrate concentration, but 2 Thermotoga populations, (i.e., Thermot_1 and Thermot_2) demonstrated the reverse trend.  Besides, Firmic_25’s abundance was positively correlated with the propionate concentration. Additionally, the variations of cell counts of Desulf_3, Desulf_11, Firmic_8, and Firmic_10 were similar to acetate concentrations’ changes, and the cell counts of two Firmicutes microbes (i.e., Firmic_53, and Firmic_58) were negatively correlated with acetate concentrations. 

4. Discussion
[bookmark: OLE_LINK45][bookmark: OLE_LINK54][bookmark: OLE_LINK342][bookmark: OLE_LINK343][bookmark: OLE_LINK783][bookmark: OLE_LINK344][bookmark: OLE_LINK345][bookmark: OLE_LINK346][bookmark: OLE_LINK55][bookmark: OLE_LINK40][bookmark: OLE_LINK44][bookmark: OLE_LINK37][bookmark: OLE_LINK39][bookmark: OLE_LINK92][bookmark: OLE_LINK93][bookmark: OLE_LINK96][bookmark: OLE_LINK97][bookmark: OLE_LINK94][bookmark: OLE_LINK95][bookmark: OLE_LINK101][bookmark: OLE_LINK127][bookmark: OLE_LINK128][bookmark: OLE_LINK104][bookmark: OLE_LINK105][bookmark: OLE_LINK102][bookmark: OLE_LINK103][bookmark: OLE_LINK133][bookmark: OLE_LINK134][bookmark: OLE_LINK108][bookmark: OLE_LINK115][bookmark: OLE_LINK116][bookmark: OLE_LINK117][bookmark: OLE_LINK106][bookmark: OLE_LINK107][bookmark: OLE_LINK126][bookmark: OLE_LINK118][bookmark: OLE_LINK119][bookmark: OLE_LINK135][bookmark: OLE_LINK136][bookmark: OLE_LINK137]Absolute quantification plays an important role in correcting the misinterpretation of populations dynamics as determined by the relative abundance profile of microbes (Stämmler et al., 2016; Vandeputte et al., 2017). It had been reported that the relative abundances of the two rich microbes in a cooling water system were almost identical, but their absolute cell counts were significantly different (Props et al., 2017). Additionally, absolute quantitative profiling indicated that the taxonomic trade-off between Bacteroides and Prevotella in human gut (Lozupone et al., 2012) was an artifact of relative microbiome analyses (Vandeputte et al., 2017). Besides, genome-centric metagenomics is currently a central molecular technique that offers insights into microbial ecology in biological processes, from tracking microbial temporal dynamics, to pinpointing microbial metabolic interactions (Hao et al., 2020; Zhu et al., 2020). An approach is highly required that can quantify hundreds of populations in a sample in the units of cell number per mass or volume integrated with genome-centric metagenomics (Crossette et al., 2021). Comparing with the published AQ methods, including adding the synthetic DNA fragments into soil samples (Tkacz et al., 2018) and dosing an internal standard stain E. coli cells with green fluorescent protein before DNA extraction (Yang et al., 2018), our proposed approach addressed the bias caused by DNA extraction efficiency variation and quantified the absolute number of microbes considering the different cell wall structures of gram-positive and gram-negative bacteria. Nevertheless, one limitation of applying this newly developed quantification method in AD systems was that no exogenous archaeal microbe was spiked in the AD samples due to the lack of gene-labeled engineered archaeal population. The absolute cell counts of methanogens were attained by scaling up the methanogenic MAGs’ coverage with the SFs of gram-positive spike-in B. amyloliquefaciens. 

[bookmark: OLE_LINK138][bookmark: OLE_LINK139][bookmark: OLE_LINK78][bookmark: OLE_LINK79][bookmark: OLE_LINK81][bookmark: OLE_LINK82][bookmark: OLE_LINK56][bookmark: OLE_LINK57][bookmark: OLE_LINK784][bookmark: OLE_LINK785][bookmark: OLE_LINK58][bookmark: OLE_LINK46][bookmark: OLE_LINK47][bookmark: OLE_LINK48][bookmark: OLE_LINK51][bookmark: OLE_LINK60][bookmark: OLE_LINK61][bookmark: OLE_LINK59][bookmark: OLE_LINK65][bookmark: OLE_LINK71][bookmark: OLE_LINK72][bookmark: OLE_LINK75][bookmark: OLE_LINK76][bookmark: OLE_LINK788][bookmark: OLE_LINK789][bookmark: OLE_LINK790][bookmark: OLE_LINK791][bookmark: OLE_LINK68][bookmark: OLE_LINK69][bookmark: OLE_LINK792][bookmark: OLE_LINK793][bookmark: OLE_LINK597][bookmark: OLE_LINK598][bookmark: OLE_LINK273][bookmark: OLE_LINK274][bookmark: OLE_LINK9][bookmark: OLE_LINK129][bookmark: OLE_LINK83][bookmark: OLE_LINK84][bookmark: OLE_LINK275][bookmark: OLE_LINK276]Benchmarking cell numbers of AD samples using FCM counting demonstrated the reliability of applying this spike-ins based AQ approach in quantifying the total cells of AD samples. Additionally, considering the reduction of VS over 40 days from 25.3 to 15.9 g/L, and from 24.6 to 11.1 g/L in mono- and co-digesters. Cell densities were 0.31~0.96 ×1012 cells/g-VS (using FCM counting) and 0.16~0.31 ×1012 cells/g-VS (using the spike-ins based AQ). These absolute cell counts of microbes were comparable to that of samples in anaerobic side-stream reactors, ranging from 1.1 ×1012 to 1.2 ×1012cells/g-TSS reported by Foladori et al. (2015). Although the FCM technique enables us to count the total cell number faster than the using spike-ins based AQ method, its limitations hindered the use of FCM counting in the AD systems. The pretreatment efforts are highly required to make cells in a homogenized suspension before FCM counting, including series dilution, mechanical dispersion, such as vortex mixing, and/or ultrasonication, etc. (Foladori et al., 2007; Foladori et al., 2010; Props et al., 2017; Vandeputte et al., 2017). And, FCM counting requires supervised strategies to gate the cell signals from background noises and cell aggregates (Props et al., 2017). Besides, quantification of a specific population based on the relative abundance revealed by amplicon sequencing and total cell number may be inaccurate because of the biases of PCR before amplicon sequencing (O’Donnell et al., 2016). In this study, samples from co-digesters were less dense and cells were more homogeneously distributed in the suspension than those from mono-digesters, and we observed that the cell numbers enumerated by spike-ins based AQ and FCM were closer for samples from co-digesters than those from mono-digesters. The spike-ins based AQ not only overcame the above-mentioned drawbacks of the FCM method, but also was highly sensitive with very low limits of detection (LoDs), allowing us to detect rare populations in the AD microbiome.  LoDs of gram-positive and gram-negative microbes were 265.4 ± 136.1 cells/mL vs 130.9 ± 93.9 cells/mL in mono-digesters, and 298.4 ± 146.2 cells/mL vs 113.8 ± 81.4 cells/mL in co-digesters, following the calculation method illustrated in SI 6, at the sequencing depth of 10 Gb.
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[bookmark: OLE_LINK120][bookmark: OLE_LINK121][bookmark: OLE_LINK122][bookmark: OLE_LINK85][bookmark: OLE_LINK86][bookmark: OLE_LINK829][bookmark: OLE_LINK830][bookmark: OLE_LINK87][bookmark: OLE_LINK88][bookmark: OLE_LINK181][bookmark: OLE_LINK182][bookmark: OLE_LINK359][bookmark: OLE_LINK360][bookmark: OLE_LINK373][bookmark: OLE_LINK374][bookmark: OLE_LINK365][bookmark: OLE_LINK366][bookmark: OLE_LINK347][bookmark: OLE_LINK348][bookmark: OLE_LINK349][bookmark: OLE_LINK70][bookmark: OLE_LINK73]The growth and decay are fundamental issues in the studies of microbial dynamics (Long et al., 2021). Three terms are exchangeable to quantify growth and decay of microbes, namely, growth/decay rate (Kirchman, 2016 ), growth/decay rate constant (Hall et al., 2014), and specific growth/decay rate (Calabrese et al., 2021), in the units of hour-1 or day-1, which normalizes the biomass change in abundance per unit initial biomass, following the assumption of the first-order growth model (Hall et al., 2014). The global average growth rate was 0.076 ± 0.071 d-1 for heterotrophic bacteria in open-sea (Kirchman, 2016), but seawater microbes grew at rates ranging from 0.08 to 5.99 d-1 in the bottle incubation based on the quantitative genome-centric metagenomics analysis (Long et al., 2021). Interestingly, in a full-scale activated sludge of a wastewater treatment facility, 49.41% of the observed operational taxonomic units (OTUs) had growth rates, but most populations’ growth rates were ≤ 0.10 d-1, and the remaining half OTUs were defined as inactive microbes with decay rates ≥ -0.20 d-1 (Mei et al., 2019). The above study employed calculation based on the VSS-based biomass estimation for total cell density and the relative abundance derived from 16S rRNA gene amplicon sequencing, thus, the rough cell counts estimation and biased PCR amplicon efficiency might cause potential misinterpretations. In this study, based on the AQ method which may overcome the above biases, we computed the growth rates of 25 populations with the overall growing trend and the decay rates of 253 microbes with decreasing profiles in the 40-day anaerobic digesters (Table S6). We found that microbes demonstrated different growth/decay rates in mono- and co-digesters because they are sensitive to environmental conditions (Rousk and Bååth, 2011). 

5. Conclusion
[bookmark: OLE_LINK109][bookmark: OLE_LINK110][bookmark: OLE_LINK750][bookmark: OLE_LINK751][bookmark: OLE_LINK456][bookmark: OLE_LINK457][bookmark: OLE_LINK748][bookmark: OLE_LINK749][bookmark: OLE_LINK761][bookmark: OLE_LINK753][bookmark: OLE_LINK754][bookmark: OLE_LINK111][bookmark: OLE_LINK112][bookmark: OLE_LINK752][bookmark: OLE_LINK755][bookmark: OLE_LINK756][bookmark: OLE_LINK458][bookmark: OLE_LINK459][bookmark: OLE_LINK460][bookmark: OLE_LINK461][bookmark: OLE_LINK462][bookmark: OLE_LINK463][bookmark: OLE_LINK186][bookmark: OLE_LINK187][bookmark: OLE_LINK464][bookmark: OLE_LINK465][bookmark: OLE_LINK185][bookmark: OLE_LINK757][bookmark: OLE_LINK758][bookmark: OLE_LINK466][bookmark: OLE_LINK467][bookmark: OLE_LINK113][bookmark: OLE_LINK114][bookmark: OLE_LINK759][bookmark: OLE_LINK760][bookmark: OLE_LINK468][bookmark: OLE_LINK469]This study developed and evaluated an absolute quantification workflow coupling cellular spike-ins and genome-centric analyses, which was then implemented to elucidate the populations’ dynamics from the perspective of absolute cell counts rather than relative abundance. Profiling microbial communities dynamics based on absolute cell number enabled us to identify populations featured with growth and decay dynamics, to chart the behavioral divergence of microbes in anaerobic digesters fed with varying feedstocks, and to obtain their growth/decay rates through  high-resolution screening at both the community and individual level. These observed growth/decay rates of AD microbes could serve as benchmarks for understanding the AD microbial ecology. The specific activity of methanogens calculated in this study provided novel insights into methane production per methanogenic cell in the anaerobic digesters.  Furthermore,  statistical analyses based on microbial absolute cell counts enabled us to identify the real contributions from several factors in governing the functional microbes’ variability and to pinpoint the true relationships between environmental variables and microorganisms. These findings were basic aspects of microbial lifestyle and were necessary to further conceptually or mathematically model microbial community composition and dynamics, laying the foundation for fine-tuned controls of the engineered AD systems. In the future, there are two perspectives to be further investigated: 1) developing the methods to differentiate viable and nonviable cells integrated with this spike-ins based AQ, and ii) optimizing sequencing strategies and developing bioinformatic tools to retrieve more high quality MAGs to increase the resolution of AD microbiome.
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Table 1 Summary on dynamics variations (log10 scale) of shared 189 decay and 7 growing populations in both mono- and co-digesters.
	Overall trend
	Description
	No. of MAGs
	Dynamics variation (cellsmax./cellsmin.)
	No. of MAGs

	[bookmark: OLE_LINK189][bookmark: OLE_LINK190]Decaying
	[bookmark: _Hlk111812055][bookmark: _Hlk111643239]Decay at the same scale in all four anaerobic digesters
	97
	< 1 log
	59

	
	
	
	1-2 log
	32

	
	
	
	2-3 log
	6

	
	Decay at the same scale in replicate digesters fed with the same feedstock
	23
	Dynamics variation larger in mono-digesters
	1

	
	
	
	Dynamics variation smaller in mono-digesters
	22

	
	[bookmark: _Hlk111643437][bookmark: _Hlk111812034]Decay at the same scale in mono-digesters, but different scales in c-digesters
	31
	< 1 log
	8

	
	
	
	1-2 log
	16

	
	
	
	2-3 log
	7

	
	Decay at the same scale in co-digesters, but different scales in mono-digesters
	24
	< 1 log
	10

	
	
	
	1-2 log
	9

	
	
	
	2-3 log
	3

	
	
	
	3-4 log
	2

	
	[bookmark: OLE_LINK212][bookmark: OLE_LINK213]Decay at varied scales in replates in either mono- or co-digesters
	14
	
	

	Growing
	Growing at the same scale in all four anaerobic digesters
	6
	< 1 log
	5

	
	
	
	1-2 log
	1

	
	Growing at varied scales in replates in mono-digesters
	1
	
	



Figure caption:
[bookmark: OLE_LINK308]Figure 1 The workflow of spike-ins based AQ and genome-centric analysis. Letters of G+ and G- represent gram positive and gram negative, and MAGs denote the metagenome-assembled genomes from AD samples.
[bookmark: OLE_LINK188][bookmark: OLE_LINK193][bookmark: OLE_LINK25][bookmark: OLE_LINK26]Figure 2 Phylogenetic distribution of  dereplicated MAGs in this study. The completeness of MAGs was determined using CheckM. The circles in green and purple and squares in orange outside the tree represent the overall dynamics of decaying, growing, and fluctuated trends of MAGs in anaerobic digesters, respectively.
[bookmark: OLE_LINK195][bookmark: OLE_LINK196]Figure 3 Absolute and relative abundances of top four abundant microbes in four anaerobic digesters. Bars represent the absolute cell numbers of microbes, numbers labeled in bars demonstrate the relative abundance of the specific MAG, up arrows denote the increase of MAG’s relative abundance but the decrease in absolute values, and vice versa for down arrows.
[bookmark: OLE_LINK35][bookmark: OLE_LINK36][bookmark: OLE_LINK194][bookmark: OLE_LINK197][bookmark: OLE_LINK303]Figure 4 Population dynamics of the decaying MAGs and the maximum decay rates. (a) Population dynamics of decaying MAGs, (b-f) present maximum decay rates of each MAGs in varying taxonomic levels, i.e., phyla and families in Proteobacteria, Actinobacteriota, Bacteroidota, and Firmicutes. The boxes are drawn from the 25th to 75th quantiles, the center line and diamond symbol of each box denote the median and mean values. Whiskers indicate the smallest and largest values for each phylum.
[bookmark: OLE_LINK204][bookmark: OLE_LINK205]Figure 5 Specific activity of methanogens and methanogens abundance. (a) step-lines present the specific activity of methanogens at varying sampling intervals, (b) bars denote the absolute cell counts of methanogens, colors in green and red show the results from mono- and co-digesters, and (c) ridge plots show the relative abundance of a specific methanogen among all methanogens in four digesters, the numbers in the ridge plot were the maximum relative abundance of methanogens.







