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Multimodal brain connectome-based 
prediction of suicide risk in people with  
late-life depression
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Ho-Ling Liu7, Cheng-Hong Toh8, Changwei Wu9,10, Yun-Fang Tsai11,12,  
Shwu-Hua Lee    4,13   & Tatia M. C. Lee    1,2,14 

Suicidal ideation, plans and behavior are particularly serious health issues 
among the older population, resulting in a higher likelihood of deaths than 
in any other age group. The increasing prevalence of depression in late life 
reflects the urgent need for efficient screening of suicide risk in people with 
late-life depression. Employing a cross-sectional design, we performed 
connectome-based predictive modelling using whole-brain resting-state 
functional connectivity and white matter structural connectivity data to 
predict suicide risk in late-life depression patients (N = 37 non-suicidal 
patients, N = 24 patients with suicidal ideation/plan, N = 30 patients who 
attempted suicide). Suicide risk was measured using three standardized 
questionnaires. Brain connectivity profiles were used to classify three groups 
in our dataset and two independent datasets using machine learning. We 
found that brain patterns could predict suicide risk in the late-life depression 
population, with the explained variance up to 30.34%. The functional and 
structural connectivity profiles improved the classification-prediction 
accuracy compared with using questionnaire scores alone and could 
be applied to identify depressed patients who had higher suicide risk in 
two independent datasets. Our findings suggest that multimodal brain 
connectivity could capture individual differences in suicide risk among late-
life depression patients. Our predictive models might be further tested to help 
clinicians identify patients who need detailed assessments and interventions. 
The trial registration number for this study is ChiCTR2200066356.

Depression affects the aging population at a one month prevalence 
rate of nearly 20%1, and more than one-third of late-life depression 
(LLD) patients cannot attain full remission after treatment2. One of the 
most fatal consequences of depression is suicide. Suicidal ideation, 
plans and behavior are particularly serious health issues among the 
older population3. Suicidal actions could result in a higher likelihood 
of deaths among the older population than in any other age group4. 
Recent evidence shows that neural features can be used to classify 

suicidal individuals from non-suicidal individuals5. On the other hand, 
existing research has repeatedly identified a constellation of risk fac-
tors, including previous suicidal ideation or behavior, emotional prob-
lems, financial crisis, impaired functional ability and substance use6. 
These important factors have been included in widely used question-
naires that assess general suicidal tendency, such as the Beck Scale 
for Suicidal Ideation (BSS)7 and SAD PERSONS Scale (SPS)8. Studies 
have employed these questionnaires to measure individual differences 
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demographic and clinical information on the three groups and group-
comparison results are shown in Table 1. The suicide risk was evaluated 
using three questionnaires including the Chinese version of BSS7, which 
assessed the intensity of a patient’s suicidal attitudes, behavior and plans 
over the previous week, the Chinese SPS8, which estimated a patient’s 
suicide risk level over the previous 6 months, and the Triggers of Suicidal 
Ideation Inventory (TSII)26, which assessed the triggers of suicidal idea-
tion over the previous 12 months among older adults.

For each participant, we extracted a resting-state FC matrix gener-
ated from rs-fMRI data using the Shen 268-node functional brain atlas 
and a structural connectivity (SC) matrix generated from DTI data using 
the Automated Anatomical Labeling (AAL-116) atlas. We then adopted 
the CPM method using leave-one-out cross-validation (LOOCV)21. Edges 
(connectivity between brain regions) positively or negatively correlated 
with suicide risk and passing a predefined P value (Extended Data Fig. 5)  
were extracted as the positive or negative network, respectively. The 
CPM pipeline is summarized in Fig. 1. The results revealed that FC sig-
nificantly predicted BSS (positive network, coefficient of determination 
R2 = 8.08%, Ppermu = 0.02; negative network, R2 = 5.11%, Ppermu = 0.03), SPS 
(negative network, R2 = 30.34%, Ppermu < 0.001) and TSII (positive network, 
R2 = 16.05%, Ppermu = 0.01; negative network, R2 = 10.50%, Ppermu = 0.05) 
(Fig. 2). The SC significantly predicted BSS (positive network, R2 = 6.96%, 
Ppermu = 0.01) and SPS (positive network, R2 = 14.37%, Ppermu = 0.01) but did 
not predict TSII (all R2 values ≤ 3.97%, all Ppermu values ≥ 0.14). The number 
of edges selected in each iteration and the final number of connectivity 
profiles are shown in Supplementary Tables 1 and 2. Given that two LLD 
patients had a comorbidity of generalized anxiety disorder (GAD), we 
reran the CPM analysis excluding these two patients and found that 
results remained largely unchanged (Supplementary Table 3). After 
controlling for head motion, the FC positive network did not significantly 
predict BSS, while other results remained unaffected. Thus, in the fol-
lowing analyzes, we did not consider the FC positive network.

FC and SC profiles
To construct FC and SC profiles for each participant, we extracted and 
summed the edges of positive and negative networks that appeared 
in all of the cross-validated significant CPM models, denoted as the 
network strength of the connectivity profiles. We labelled brain nodes 
in each atlas using the Brodmann area (BA) labels27 to make inferences 
across FC and SC findings. The connectivity profiles of the significant 
(FC, negative networks predicting BSS, SPS and TSII; FC, positive net-
work predicting TSII; SC, positive networks predicting BSS and SPS) 
and non-significant (FC, positive networks predicting BSS and SPS; SC, 
negative networks predicting BSS, SPS and TSII; SC, positive network 
predicting TSII) CPM models are shown in Fig. 3 and Extended Data 
Fig. 1, respectively. Brain regions including BA1 and BA3 (the primary 
somatosensory cortex), BA7 (the superior parietal lobule), BA11 (the 
orbitofrontal area) and BA37 (the fusiform gyrus) contributed to both 
FC and SC models. The cerebellum appeared in all significant CPM 
models. Moreover, BA17 (the primary visual cortex), BA20 (the infe-
rior temporal gyrus) and BA24 (the cingulate cortex) showed high 
degrees of connection. These brain regions were largely aligned with 
the regions found in previous studies (Supplementary Table 36; details 
discussed in Supplementary Materials). We further explored whether 
network strength differed between groups. As expected, the three 
groups demonstrated significant differences in the network strength 
of FC and SC profiles (Fig. 4).

Support vector machine (SVM) classification
To examine whether FC and SC profiles improved prediction when clas-
sifying SA, IP or NS groups (Fig. 1), we utilized the linear SVM. The demo-
graphic and clinical variables, questionnaire scores and brain features 
(FC and/or SC) were added as training features to the SVM models step 
by step (models A to G, Supplementary Materials). The classification 
results are shown in Fig. 5 and Supplementary Table 7. In general, models 

in suicidality beyond group categorization9. Suicide-questionnaire 
scores may reflect dimensional variations of affective and behavioral 
dysregulation10.

Suicidality adds to depression heterogeneity11. Moreover, consid-
erable heterogeneity could also exist within groups of individuals with 
suicidality. No single factor has been so far identified that is sufficient 
and necessary in predicting suicidality12. This could result from varia-
tions in the triggers of suicidality and can be particularly challenging 
for patient management. Therefore, developing biological markers 
of the degree and intensity of suicide risk using brain-based data has 
great promise for supplementing suicide risk assessment in clinical 
management and eventually may assist in developing practical and tar-
geted suicide-prevention intervention programs. Although research on 
suicidal patients with LLD is scarce, studies have identified altered spon-
taneous neural activity among suicidal patients in the cognitive control 
network, such as the lateral prefrontal cortex, the orbitofrontal cortex, 
the superior parietal lobule and the cerebellum13, and in somatosensory 
cortices such as the postcentral gyrus14,15. The altered functioning of the 
cognitive control network in patients with suicidal behavior could be 
closely related to the dysregulated emotions13,16. In contrast, changes 
in the somatosensory cortex could be related to mental pain associated 
with recalling bodily sensations resulting from self-harm actions17. The 
cognitive control network regions, such as the prefrontal and orbito-
frontal cortex, also demonstrate white matter abnormalities among 
people with suicidal ideation and behaviors18. Altogether, these findings 
illustrate that functional and structural brain imaging features can be 
used to identify suicidality-related neural markers.

Recently, many studies have been dedicated to predicting psycho-
logical processes using brain network features. Resting-state functional 
magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging 
(DTI) are two techniques that consistently show high test–retest reliabil-
ity and generalizability across study contexts19,20. Specifically, rs-fMRI 
and DTI provide complementary indices informing individuals’ func-
tional and structural network connectivity profiles in a task-free state21. 
Evidence has been accumulated on the use of circuit-level connectiv-
ity profiles to identify discrete depression subtypes22. Nonetheless, 
only a few reports exist on brain-based predictions of the continuous 
individual differences in suicide risk23,24, which is essential for studying 
variations among individuals’ cognitive and affective processes and 
the heterogeneity of behavioral characteristics in clinical populations.

In this study, we aimed to predict the suicide risk among people 
with LLD using connectome-based predictive modelling (CPM). The 
CPM approach is a robust and generalizable data-driven approach that 
can successfully predict individual differences in emotional, cognitive 
and behavioral dysregulation, with high external validity21,25. We have 
verified the utility of CPM in brain–behavior prediction among older 
adults25. We hypothesized that the cognitive control neural network 
would predict individual suicide risk scores among LLD patients using 
several suicide behavior questionnaires. To formally test the predictive 
strength of the identified structural and functional connectivity (FC) 
profiles, we also employed a machine learning method with internal 
cross-validation to derive the prediction accuracy of the neural models.

Results
Brain–behavior prediction
To develop CPM models that predicted history of suicide risk, we 
acquired brain imaging data and behavioral variables that assessed sui-
cide risk from 91 LLD patients (female/male 74/17; mean age 66.64 ± 5.69 
years old). The LLD patients were further classified into three groups. 
Patients who had never thought of suicide or attempted suicide in their 
lifetime were in the non-suicidal (NS) group (N = 37). Patients who had 
seriously thought about attempting suicide, and/or planned for suicide 
in their lifetime but without past history of suicide attempts, were in the 
ideation/plan (IP) group (N = 24). Patients who had ever attempted sui-
cide in their lifetime were in the suicide-attempt (SA) group (N = 30). The 
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with questionnaire scores and brain features (models D, E and F) per-
formed better than those with only demographic and clinical variables 
(model A), questionnaire scores (model B) or brain features (model C). 
The highest accuracy of SA/NS classification was 90.63% (Ppermu < 0.001), 
achieved with questionnaires and SC. The highest accuracy of SA/IP 
classification was 78.62% (Ppermu < 0.001), achieved with questionnaires 
and FC. The highest accuracy of IP/NS group classification was 82.37% 
(Ppermu < 0.001), achieved with all features. When classifying the SA/NS, 
SA/IP and IP/NS groups, the accuracy was improved by 5.72%, 8.19% and 
7.05% when using questionnaire scores and brain features, compared 
with the models with only questionnaires. Nonetheless, model B with 
only questionnaire scores still achieved a relatively high accuracy of 
84.91% (Ppermu < 0.001) in the SA/NS classification. However, it should 
be noted that the improvement in overall classification accuracy was 
largely due to the increase in specificity rather than sensitivity for the 
SA/NS and SA/IP classification. Moreover, although linear algorithms 
and cross-validation were applied, model G, which included all features, 
might have overfitting issues due to a relatively large number of train-
ing features (N = 15). Thus, the best classification performance of IP/
NS should be interpreted with caution.

The feature weights are shown in Supplementary Table 8. On the 
basis of the absolute value of the weights, the SPS and its connectivity 
profiles showed a larger contribution than did the other two question-
naires, while TSII showed the smallest contribution. We conducted 

two additional analyzes to explore how the three questionnaires 
and their profiles contributed to the group classification. First, we  
tested the SVM performance using different combinations of the ques-
tionnaire features (BSS, SPS, TSII, BSS + SPS, BSS + TSII, SPS + TSII and 
BSS + SPS + TSII). Results (Supplementary Tables 9 and 10) showed that 
SPS showed the highest accuracy when classifying SA/NS and IP/NS, 
while BSS showed the highest accuracy when classifying SA/IP. Sec-
ond, we tested all combinations of the questionnaire-related features 
and reported the optimal model that reached the highest accuracy. 
Results (Supplementary Tables 11 and 12) demonstrated that TSII and its  
profiles showed contributions when classifying the three groups,  
but the contribution was not as large as for the other two question-
naires. When classifying SA/NS, two out of the three models did  
not include FC profiles. These findings might suggest that question-
naires that assessed more recent suicide status (within 6 months) and 
SC profiles may be more sensitive in classifying people with differ-
ent levels of suicide risk. FC and SC profiles derived from the three  
questionnaires contributed differently when classifying the three 
groups. SPS and its profiles (that is, negative network of FC and posi-
tive network of SC) contributed more than the other two question-
naires, while the TSII contributed the least. Some optimal models did  
not include FC profiles when classifying SA/NS. When classifying IP/
NS, combining FC and SC features achieved better performance than  
using a single modality. These results have two implications. First,  

Table 1 | Demographic and clinical information and between-group effects

Variables NS (N = 37) IP (N = 24) SA (N = 30) Statistical tests

Mean s.d. Mean s.d. Mean s.d.

Sex (female) Female = 25 (67.75%) Female = 20 (83.33%) Female = 29 (96.67%) χ2 = 9.32, P = 0.009

Sex (male) Male = 12 (32.25%) Male = 4 (16.67%) Male = 1 (3.33%) χ2 = 9.32, P = 0.009

Age (years) 67.97 5.83 67.13 5.98 64.60 4.79 H = 5.94, P = 0.051

Ethnicity Chinese = 37 (100%) Chinese = 24 (100%) Chinese = 30 (100%)

Education (years) 7.41 2.68 8.08 3.56 8.27 3.55 H = 1.03, P = 0.598

MMSE 26.81 2.08 27.29 1.68 27.33 2.17 H = 2.30, P = 0.317

HAMD 8.78 6.80 9.96 6.91 8.87 6.38 H = 0.51, P = 0.775

HAMA 11.97 9.45 14.13 8.21 11.13 9.13 H = 3.43, P = 0.180

LLD characteristics

  Onset of LLD (years) 59.38 8.31 54.42 13.59 51.27 9.53 F = 5.27, P = 0.007

  Episode of LLD 1.70 0.85 2.58 1.50 3.33 3.39 H = 15.87, P = 3.6 × 10−4

  Duration of LLD (months) 103.14 78.92 151.00 132.26 155.80 108.35 H = 4.14, P = 0.126

Medication

  SSRIs 48.65% 41.67% 36.67% χ2 = 0.99, P = 0.610

  SNRIs 10.81% 20.83% 30.00% χ2 = 3.87, P = 0.145

  Agomelantine 21.62% 16.67% 16.67% χ2 = 0.35, P = 0.837

  NaSSA, NDRI and TCA 18.92% 25.00% 16.67% χ2 = 0.61, P = 0.736

  Non-antidepressants 89.19% 95.83% 86.67% χ2 = 1.32, P = 0.518

  Number of medication types 1.89 0.52 2.00 0.42 1.87 0.43 H = 1.24, P = 0.538

  Medication load 3.59 1.12 3.79 1.10 3.64 1.03 H = 0.43, P = 0.808

Questionnaires

  BSS 2.76 4.21 4.21 5.02 7.27 5.43 H = 17.16, P = 1.9 × 10−4

  SPS 3.38 1.01 4.71 1.23 5.43 1.14 H = 38.30, P = 4.8 × 10−9

  TSII 2.32 1.78 3.50 1.96 2.40 1.87 H = 5.42, P = 0.067

One-way analyzes of variance (ANOVAs) (F), chi-square tests (χ2), non-parametric Kruskal–Wallis tests (H) and Bonferroni tests were conducted for the variables (two tailed, unadjusted; 
Bonferroni tests were used to correct for multiple comparisons for post hoc analysis) since these tests were performed only for descriptive purposes. Medication percentages refer to the 
proportion of patients in the group taking the medication. MMSE, Mini-Mental State Examination; HAMD, Hamilton Depression Rating Scale; HAMA, Hamilton Anxiety Rating Scale. Entries in 
bold indicate a significant difference between groups.
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it might be worth exploring how to improve the classification  
accuracy using different questionnaires and modalities. Second, inte-
grating multimodal features could offer useful information when 
classifying IP/NS.

We also tested the best classification performance using only 
FC and SC profiles. SVM analyzes were conducted by entering all the 
combinations of the connectivity profiles, and optimal models that 
reached the highest accuracy were reported. Results showed that the 
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Fig. 2 | CPM prediction results. a, Coefficients of determination of all CPM 
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CPM prediction results after head motion correction. Values are standardized 
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highest accuracy was 80.53% for classifying SA/NS (Ppermu < 0.001), 
71.96% for classifying SA/IP (Ppermu = 0.0040) and 67.45% for classifying 
IP/NS (Ppermu = 0.0056). All the connectivity profiles (BSS, negative FC 

profile and positive SC profile; SPS, negative FC profile and positive SC 
profile; TSII, positive and negative FC profiles) showed contributions 
in the optimal models.
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Fig. 3 | FC and SC profiles of different behavioral measurements derived from 
the CPM models. a, FC; b, SC. These edges are the common edges that appeared 
in all of the iterations. Shen’s 268 nodes are shown in ten macroscale regions, and 

the AAL-116 are shown in seven macroscale regions55. The connectivity figures 
were generated using ggraph (https://cran.r-project.org/web/packages/ggraph/
index.html).
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External-validation results
To test the generalizability of our CPM models, we validated models 
in two independent datasets. Dataset 1, from Zhang et al.28, comprises 
rs-fMRI and DTI data from 44 middle-aged major depressive disorder 
(MDD) patients (female/male 26/18; mean age 30.50 ± 8.78 years old). 
Dataset 2, from Shao et al.29, comprises data from 24 middle-aged MDD 
patients (female/male 19/5; mean age 51.38 ± 5.17 years old). Patients 

in these two datasets were divided into three groups (SA, IP and NS). 
We extracted the connectivity profiles from the two datasets and con-
ducted SVM analyzes to classify three groups (details in Supplementary 
Materials). The SVM classification performance and coefficients of the 
features in the two independent datasets are shown in Supplementary 
Tables 15–18. In dataset 1, the highest accuracy was 87.50% for classify-
ing SA/NS (Ppermu < 0.05), 70.13% for classifying SA/IP (Ppermu = 0.1520) 
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biologically independent samples) and SC (n = 90 biologically independent 
samples) profiles. One-way ANOVA and non-parametric Kruskal–Wallis tests 
based on normality testing using the Kolmogorov–Smirnov test (two tailed) 
were used. False-discovery rate correction was conducted to correct for multiple 
comparisons. Post hoc analyzes were Bonferroni corrected. Regarding FC, the 
negative network profiles of BSS and SPS showed significant group differences 
(BSS, H(2) = 9.94, Pcorr = 0.016; SPS, H(2) = 31.38, Pcorr = 9.2 × 10−7), while that of TSII 
did not (all P > 0.65, false-discovery rate corrected). Follow-up Dunn–Bonferroni 
tests revealed that the SA group showed significantly lower network strength 
compared with the NS (BSS, H = 19.24, Pcorr = 0.009; SPS, H = 36.25, Pcorr = 7.0 × 10−8) 
and IP groups (BSS, H = 17.36, Pcorr = 0.049; SPS, H = 17.42, Pcorr = 0.048), and the 
IP group showed lower network strength compared with the NS group (SPS, 
H = 18.84, Pcorr = 0.020). Regarding SC, only the positive network profiles of 

SPS demonstrated significant group differences (SPS, H(2) = 9.65, Pcorr = 0.016). 
Follow-up analyzes revealed that the NS group had significantly lower network 
strength than the SA group (SPS, H = −19.07, Pcorr = 0.009). These results remained 
unchanged after controlling for sex, age, education, MMSE, HAMD/A, onset time 
of LLD, number of episodes of LLD, duration of LLD, the five types of medication, 
number of medication types, medication load or mean frame-wise displacement 
(FD). Moreover, these connectivity profiles were not significantly correlated with 
age or medication load (Supplementary Table 5). The network strength values 
were standardized for visualization. The lower and upper bounds of the box 
inside the violin represent the first and third quartiles. The length of the whiskers 
represents no more than 1.5 times the interquartile range from the bound to the 
maxima (upper whisker) or to the minima (lower whisker). Data beyond the end 
point of the whiskers are shown as individual dots. ‘n.s.’ indicates no significant 
difference between the two groups. ***P < 0.001, **P < 0.01, *P < 0.05.
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and 73.75% for classifying IP/NS (Ppermu = 0.1596). In dataset 2, results 
showed that the highest accuracy for classifying IP/NS was 83.46% (all 
Ppermu < 0.01). These findings suggest that our CPM models can be vali-
dated in two datasets, although there was only a trend to be significant 
when predicting SA/IP and IP/NS in dataset 1. Moreover, the contributed 
connectivity profiles were largely consistent with our findings. Given 
that our sample consisted of mainly female patients and there was a 
significant difference in sex ratio between the SA and NS groups, we 
replicated our main results using only female patients and the results 
are shown in Extended Data Figs. 2–4.

Discussion
By using multimodal neuroimaging data and a well established machine 
learning approach, we demonstrated that brain connectivity features 
could be used to predict the severity of suicide risk in a heterogeneous 
population with LLD. We further proved that network strength of FC 
and SC profiles showed discriminant between-group differences and 
improved the classification-prediction accuracy. The CPM models were 
further generalized to classify groups with different levels of suicide risk 
in the external datasets. This study applies connectome-based models 
to predict the intensity of suicide risk among LLD patients and to assess 
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Fig. 5 | SVM classification results. Training features of model A, age, sex, 
education, onset of LLD, episode of LLD and duration of LLD; model B, BSS, 
SPS and TSII scores; model C, functional positive network strength of TSII and 
negative network strengths of BSS, SPS and TSII, structural positive network 

strengths of BSS and SPS; model D, questionnaires + FC profiles; model E, 
questionnaires + SC profiles; model F, questionnaires + FC + SC; model G, all 
features. The star indicates the best performance.

http://www.nature.com/NatMentHealth


Nature Mental Health | Volume 1 | February 2023 | 100–113 108

Article https://doi.org/10.1038/s44220-022-00007-7

the effectiveness of connectome profiles for solving a classification-pre-
diction problem. Our findings suggest that brain connectivity derived 
from a data-driven procedure might provide valuable information about 
an LLD patient’s past and current suicide risk. Furthermore, CPM models 
might have a potential to be applied to brain imaging data to screen for 
affective vulnerability, leading to efficient implementation of in-depth 
clinical assessment for appropriate management.

Remarkably, CPM models using FC and SC can capture the vari-
ability of suicide risk among LLD patients. First, our findings extend the 
utility of brain connectome-based models for assessments of suicide 
risk. As suggested by McHugh and Large12, it would be beneficial to con-
sider suicide risk as a continuous, rather than static, variable, because 
doing so may allow clinicians to check for fluctuations in suicide risk 
among patients over time. Furthermore, we found that the connectivity 
profiles extracted from the predictive models can capture group-level 
differences. These results suggest that the connectivity profiles derived 
from CPM models could be considered as potential suicide-related 
neuromarkers. However, the predictive models are currently difficult to 
practically implement due to several factors. For instance, the diagnosis 
and management of patients with suicide risk may not allow the acquisi-
tion and analysis of imaging data. Second, clinicians need to receive train-
ing in using the predictive methods. Also, it should be noted that there 
was no longitudinal assessment of suicide risk in our study. Therefore, 
our results could not be interpreted to predict future risk for suicide-
related ideation. Future studies need to apply a longitudinal design, 
test our models or develop further models to predict future suicide risk.

Brain connectivity has been thought to be unique in different 
individuals, and appears to be a trait-like measure and relatively sta-
ble over time27. Structural measures show high test–retest reliability 
over 6 months in young adults30, and FC is moderately stable over 12 
months in older adults31. However, the reliability of FC decreases with 
increasing intervals between two scans32. Moreover, scan length of the 
imaging data also affects the reliability of the connectivity analyzes. 
Previous studies found that the reliability of resting-state FC can be 
enhanced by increasing the scanning time33. To minimize the effect of 
head motion, the duration of rs-fMRI data collection after regressing 
nuisance variables in the current study was around 4 min. Therefore, 
it is vital to consider acquiring brain imaging data with a longer scan 
length to improve reliability. Additionally, brain connectivity might 
be affected by various factors, such as age, treatment and stress. Older 
adults show decreased within-network connectivity, especially in the 
default-mode network34. Connectivity between the default-mode net-
work and cortical and limbic regions seems to be consistently changed 
after treatment in depressed patients35. Given that the connectivity 
profiles were not significantly correlated with age or antidepressant 
load in our data, our results were less likely to be affected by these fac-
tors. Moreover, the acute stress response can induce increased FC in 
the default-mode and salience networks36. In contrast, chronic stress 
is associated with functional and structural changes in the amygdala 
and prefrontal cortex37. Therefore, these factors need to be considered 
when validating the connectivity profiles.

Several other factors have to be taken into account when interpret-
ing our findings. First, suicide risk increases among older adults with 
medical illnesses that cause disability, such as cancer, neurological 
disorders, liver disease and physical and psychological pain38. The 
relationships between suicide risk and brain connectivity in these 
populations are probably different from that observed in our sample. 
In addition, overlapping neural circuits have been found to be associ-
ated with pain and suicide, such as those involving prefrontal and 
cingulate cortices39. Therefore, it is critical to investigate the effect of 
pain on suicide risk in LLD patients. Second, medical and psychiatric 
medications might also affect suicide risk and brain connectivity in 
older adults. Patients treated with anti-inflammatory treatments40 and 
antidepressants41 may have decreased suicide risk. Third, sex-related 
differences in suicide risk and brain connectivity have been widely 

explored in the literature. While females demonstrate higher rates 
of suicide ideation and behavior, males have higher suicide-attempt 
lethality42. Stronger resting-state FCs in the frontal, parietal and tem-
poral regions are reported in females when compared with males43. 
Males exhibit greater within-hemispheric SC while females have higher 
between-hemispheric FC44. It should be noted that our results were 
acquired from mainly female LLD patients, and therefore remain to be 
validated in male patients. Future studies should consider recruiting 
samples with a more balanced sex ratio.

The current study has several potential limitations. First, the cur-
rent sample size was small, although the models have been validated. 
Furthermore, we excluded patients with comorbid psychiatric disor-
ders (other than GAD) or major medical illnesses to study a relatively 
homogeneous sample. Importantly, patients with comorbidities had 
a higher suicide risk than those without comorbidities. Future studies 
are encouraged to verify the effect of comorbidities on suicide risk. 
Meanwhile, caution must be applied when generalizing our results to 
clinical groups different from the current sample. Second, one of the 
external validations used the sample collected by our team, which is not 
a perfectly stringent out-of-sample validation. Future work is encour-
aged to validate our CPM models in other datasets that are collected 
by other institutions. Third, while we carried out the short structured 
interview, the information on depression, such as the age of onset and 
number of episodes, was difficult to measure reliably. Moreover, we 
did not identify the specific time when patients had suicide ideation, 
resulting in heterogeneity in the IP group. Future work should consider 
grouping patients on the basis of their time with suicide ideation. 
Fourth, the duration of usable rs-fMRI data after preprocessing in the 
current study was only around 4 min. Future study should consider 
increasing the scan length of imaging data to improve the reliability of 
the connectivity analysis. Finally, although our cross-sectional study 
provides useful information during clinical screening, prospective 
studies on monitoring future suicidal behavior are needed.

In summary, our study demonstrated that brain connectome 
models can predict suicide risk in LLD patients. The FC and SC profiles 
improved the classification accuracy when distinguishing LLD patients 
with higher suicide risk from those with lower suicide risk. Our results 
suggest that brain connectivity features provide valuable informa-
tion about LLD patients’ past and current suicide risks. The predictive 
models reported in this study provide notable insight into the potential 
development of a cost-effective screening instrument to supplement 
clinical suicide risk assessment and management.

Methods
Participants
This study was approved by the ethics committee in Taiwan, which is 
the Institutional Review Board of Chang Gung Memorial Hospital of 
Taiwan (IRB no. 201601753B0). The trial registration number for this 
study is ChiCTR2200066356. We recruited 116 Chinese older adults 
(aged 60–79 years old) diagnosed with MDD by two board-certified 
geriatric psychiatrists (C.L. and S.-H.L.) through diagnostic interviews 
based on the DSM-5. Patients were recruited randomly from psychiatric 
in- or out-patient services by advertisement and bulletin with inclu-
sion and exclusion criteria on the poster. The Mini-International Neu-
ropsychiatric Interview45 was carried out to evaluate the disease and 
lifetime history of suicide. The clinical information was also collected 
from the medical chart review, caregiver and incidental report of the 
patients. We excluded four patients who had severe medical illnesses 
in the initial assessment. The excluded sample did not show any signifi-
cant differences in the demographic information or behavioral scores 
compared with the present sample (all P > 0.125), suggesting that our 
findings were unlikely to be affected by participant selection bias. None 
of the included participants had comorbidity of bipolar, psychotic or 
substance use disorders or any major physical or neurological illness. 
However, two patients were also diagnosed with GAD. All participants 
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were taking medications at the time of the study and provided written 
informed consent to participate in the study, waive participation in 
the study at any time for no reason and allow their information to be 
used for research and publication. Each participant received NT$500 
in cash for compensation. Details of the medications can be found in 
Supplementary Materials.

Participants were further excluded due to low score on the MMSE46, 
missing behavioral and brain data and excessive head motion. The 
remaining 91 participants were included in the following analyzes (74 
females, mean age = 66.39 yr, s.d.age = 5.45, all Chinese; 17 males, mean 
age = 67.71 yr, s.d.age = 6.70, all Chinese). No statistical methods were 
used to predetermine sample sizes but our sample sizes are similar 
to those reported in previous publications on suicidality14,17. We car-
ried out a post hoc power analysis using G*Power 3.1.9.7. For the CPM 
analysis using correlation between the predicted and observed values, 
we found that a sample size of N = 91 and correlation coefficients of 0.3 
can achieve a statistical power of 0.83, and a sample size of N = 92 and 
correlation of 0.4 can achieve a statistical power of 0.98. Our sample 
size N = 91 with correlation coefficients from 0.3 to 0.6 obtained from 
the CPM models could achieve a statistical power from 0.83 to 0.98. 
For the group-comparison analysis, to achieve a large effect size of 
f = 0.4 and a power of 0.92, the total sample size for the three groups 
estimated by G*Power was N = 90.

The remaining LLD patients were classified into three groups on 
the basis of suicide-related information collected during the clinical 
interviews. Patients who had never thought of suicide or attempted 
suicide in their lifetime were in the NS group (N = 37). Patients who had 
seriously thought about attempting suicide and/or planned suicide 
in their lifetime but without past history of suicide attempts were in 
the IP group (N = 24). Patients who had ever attempted suicide in their 
lifetime were in the SA group (N = 30). We further classified patients 
in the IP group into two subgroups on the basis of their scores on item 
3 of HAMD-17, which assessed whether the patients had suicide idea-
tion/plans or attempts within the previous week. Patients who scored 
1 or more on item 3 were considered as having current ideation. There 
were 10 patients with both current and past ideation (CPI group), 
and 14 patients with only past ideation (PI group). The grouping was 
not randomized as these patients were not assigned to any experi-
mental conditions. The SA group scored greater than 0 and had an 
average of 2.4 suicide attempts (range from 1 to 6). They made their 
first attempt at an average age of 51.67 years old with an s.d. of 11.91. 
Details of the suicide-related information of the SA group can be found 
in Supplementary Table 23. To examine between-group effects in the 
demographic, clinical and behavioral variables, we conducted one-
way ANOVAs, chi-square tests, non-parametric Kruskal–Wallis tests 
and Bonferroni tests using SPSS v.26. Statistical significance was set 
at P < 0.05 (two tailed).

Suicide risk questionnaires
We implemented three questionnaires to evaluate participants’ levels of 
suicide risk. The Chinese version of the BSS was used to quantify the cur-
rent intensity of a patient’s suicidal attitudes, behavior and plans over 
the previous week7. The participants’ suicide risk factors were assessed 
using the Chinese SPS to estimate a patient’s suicide risk level over the 
previous 6 months8. The TSII was implemented to detect the triggers 
of suicidal ideation over the past 12 months among older adults26. The 
questionnaires assessed the suicide risk retrospectively within the 
previous 12 months, while the history of suicide was collected by ask-
ing whether patients had suicide ideation or attempts in their lifetime.

MRI data acquisition and connectivity matrix construction
We acquired MRI data using a 3 T MRI scanner (Discovery MR750, 
GE Healthcare) with an eight-channel head coil. Resting-state fMRI 
images were acquired from participants while they were awake but 
with closed eyes. A total of 180 volumes were acquired using the 

following parameters in 6 min: repetition time TR = 2,000 ms, echo 
time TE = 30 ms, flip angle = 90°, field of view (FOV) = 220 × 220 mm2 
and voxel size = 3.44 × 3.44 × 4 mm3. A total of 160 sagittal slices 
of the high-resolution structural images weighted by spin–lattice 
relaxation time (T1) were acquired using the following parameters: 
TR = 8.2 ms, TE = 3.2 ms, flip angle = 12°, FOV = 250 × 250 mm2 and voxel 
size = 0.98 × 0.98 × 1 mm3. DTI data were acquired in 32 diffusion-gradi-
ent directions (b = 1,000) with two non-diffusion-weighted (b = 0) refer-
ences using the following parameters: TR = 7,500 ms, TE = 82.6 ms, flip 
angle = 90°, FOV = 220 × 220 mm2 and voxel size = 1.7 × 1.7 × 2.2 mm3.

The rs-fMRI data were preprocessed using SPM 12 (https://www.
fil.ion.ucl.ac.uk/spm/) and DPABI 3.1 (http://rfmri.org/dpabi) with the 
following procedures: (1) the first five volumes were deleted, followed 
by (2) slice-timing correction and (3) head motion correction. Then, 
(4) nuisance variables were regressed (Friston 24 motion parameters, 
white matter, cerebral–spinal fluid signals and global signals) with 
volumes with a mean FD of > 0.5 mm. The volume before these volumes 
and the two subsequent volumes were all added as covariates. After-
wards, we conducted (5) spatial smoothing using a Gaussian kernel of 
6 mm full-width at half-maximum, and (6) band-pass temporal filtering 
using a 0.01–0.1 Hz frequency bandwidth. Global signal regression was 
performed to strengthen the association between FC and the behav-
ioral variables47. Three groups did not significantly differ in mean FD 
(P = 0.59) or the number of scans being regressed (P = 0.55), as evaluated 
by the Kruskal–Wallis test. All participants had less than 20% volumes 
with FD larger than 0.5 mm. Brain FC nodes were defined using the Shen 
268-node functional brain atlas, encompassing the cortex, subcortical 
areas and cerebellum21. The Shen 268-node atlas was chosen as it has 
been commonly adopted in previous CPM studies21,25,27. For each par-
ticipant, we calculated mean time series of each node by averaging time 
series of all voxels in that node. We then correlated the mean time series 
of each pair of nodes using Pearson correlation and applied Fisher’s 
r-to-z transformation to the correlation coefficients to construct one 
268 × 268 matrix for each participant for use in the prediction analyzes.

The DTI images were corrected for eddy current distortions and 
head motions for each participant using FMRIB’s Diffusion Toolbox 
(FSL 6.0; http://www.fmrib.ox.ac.uk/fsl). One subject (from the IP 
group) was excluded because of an incomplete DTI scan, leaving 90 
subjects in SC analyzes. Diffusion tensor models were estimated with 
the linear least-squares fitting approach for each voxel using Diffu-
sion Toolkit 0.6.4 (http://trackvis.org/). Whole-brain fibre tracking 
was conducted in native DTI space with the fibre assignment by con-
tinuous tracking algorithm in TrackVis 0.6.1 (http://trackvis.org/). 
The fibre tracking was terminated if the fractional anisotropy was 
less than 0.15 or the angle between two paths was larger than 35°, as 
adopted in previous studies48. Brain SC nodes were defined using 
AAL-116, which has been previously applied (for example, in ref. 48). 
We computed the number of streamlines for edges between any two 
regions of the participant-specific DTI atlas as that participant’s SC, 
resulting in a 116 × 116 matrix for each participant. We further applied 
a group threshold of 50% to the matrices to remove false-positive and 
negative connections. This threshold was chosen on the basis of the 
work by de Reus and van den Heuvel49, which showed that the numbers 
of false positives and negatives were estimated to be equal at a group 
threshold of approximately 54%. This threshold has also been adopted 
by other studies50,51. To further explore whether selection of different 
group thresholds influenced our findings, we reran prediction analyzes 
using three other thresholds (15%, 25% and 75%). Results showed that 
prediction performance remained largely unchanged (Supplementary 
Table 24), suggesting that threshold selection did not substantially 
affect our results.

Brain–behavior-prediction analyzes
To predict the suicide risk using FC and SC, we adopted the CPM method 
using LOOCV21,25 and performed analyzes in MATLAB (MathWorks, 
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2017b). LOOCV was used to ensure that a sufficient sample was included 
in the training process because we had relatively small sample sizes 
for each group representing different suicidal characteristics of LLD 
patients. Here, we briefly summarize the CPM pipeline for each modal-
ity (Fig. 1). For each training set of n − 1 participants, the FC and SC 
features were correlated with true behavioral scores using Spear-
man correlation, controlling for sex, age and education. None of the 
three behavioral scores followed a normal distribution (Kolmogorov–
Smirnov test, P < 0.05), so we used Spearman’s partial correlations. Age 
and sex were significantly associated with BSS scores (both |ρ| > 0.23, 
both P < 0.025), and education was associated with SPS scores (ρ = 0.21, 
P = 0.047). To maintain consistency, we controlled for three variables 
in all CPM analyzes. Then, we extracted features that were positively 
correlated with behavior that passed an optimal Pthreshold

+ to be the 
positive network, and features that were negatively correlated with the 
behavior that passed an optimal Pthreshold

− to be the negative network 
(see Extended Data Fig. 5 for optimal P thresholds). To maximize the 
predictive accuracy, we acquired the optimal P thresholds by testing a 
range of P values from 0.0001 to 0.05 (ref. 50) for each model. Features in 
the positive and negative networks were summed and fitted separately 
into two linear regression models. The left-out participant’s features 
were fitted into the linear models to obtain the predicted scores. To 
assess the predictive performance, we calculated Spearman’s corre-
lation (ρtrue) and R2 between the true and predicted values. To test the 
significance of the predictive models, we randomized the true scores 
and performed identical CPM analyzes 5,000 times. The Ppermu value 
was calculated as (sum(ρnew > ρtrue) + 1)/5,001, where ρnew comprised 
the newly generated correlation coefficients.

Head motion control
To explore the potential confound of head motion on CPM models, we 
first tested correlations between mean FD and behavior. Mean FD was 
not correlated with any behavioral variables (all |𝜌| < 0.16, all P > 0.13). 
Additionally, we ran CPM analyzes of resting-state FC using mean FD, age, 
sex and education as covariates in the edge-selection procedure. Most 
of the results remained largely unchanged after controlling for mean FD 
(Supplementary Table 4). The edges selected in the FD-control models 
overlapped considerably with edges in the original models (from 77.42% 
to 100%). However, the positive network (that is, FC edges positively cor-
related with behavior) did not predict BSS scores (R2 dropped from 8.08% 
to 0.06%). We also assessed whether the predicted values generated 
from resting-state FC were associated with the mean FD. Results revealed 
that the predicted BSS values generated from the positive network were 
correlated significantly with mean FD (𝜌 = 0.24, P = 0.02), while other pre-
dicted values were not associated with mean FD (all |𝜌| < 0.15, all P > 0.16). 
These results suggest that the mean FD did not affect significantly most 
of our results but may have affected BSS prediction from the positive 
network. Thus, in subsequent analyzes, we did not consider the posi-
tive network CPM model of BSS. We also applied volume censoring on 
the preprocessed fMRI data to minimize the motion-induced changes 
in BOLD signals. The CPM results obtained from the censored fMRI 
data remained largely unchanged compared with those in our original 
analysis, the details of which can be found in Supplementary Materials.

Connectivity profile extraction
To construct each participant’s FC and SC profiles, we extracted and 
summed the edges of the positive and negative networks that appeared 
in all of the cross-validated significant CPM models, denoted as net-
work strength of connectivity profiles. We further explored whether 
network strength differed between groups using one-way ANOVA and 
non-parametric Kruskal–Wallis tests in SPSS v.26, based on normality 
testing using the Kolmogorov–Smirnov test. False-discovery rate cor-
rection was conducted on the number of tests. We also explored whether 
results were affected by the participants’ demographic and clinical 
characteristics using linear regression models with these variables 

added as covariates. We further explored whether connectivity profiles 
were associated with the number of suicide attempts in the SA group. 
Results showed that the negative FC network profile of BSS significantly 
correlated with the number of suicide attempts (𝜌 = −0.49, P = 0.01) while 
others did not (all P > 0.07). This finding may suggest that the negative FC 
profile of BSS might provide potential information about the frequency 
of suicide attempts in LLD patients who have attempted suicide. To 
investigate how different nodes contributed to these connectivity pro-
files, we identified brain nodes with three or more connections to other 
nodes52. Because the functional and structural atlases were different, we 
labelled brain nodes in each atlas using the BA labels27 to make inferences 
across modalities. We acquired the node degree by summing each BA 
region’s total number of edges in the positive or negative network and 
then dividing the sum by the total number of nodes of the BA region 
in the atlas (Shen-268 or AAL-116) to control for the different numbers 
of nodes in one atlas. For example, there are eight nodes belonging to 
BA11 in the Shen-268 atlas27. In the FC negative network predicting BSS 
scores, we extracted seven edges of BA11 (connectivity between the BA11 
regions and between the BA11 and other regions). The node degree was 
calculated as 7/8 = 0.88 (Supplementary Table 36).

SVM classification
We utilized linear SVM using the scikit-learn 0.32.2 package in Python 
3.6.2 to examine whether FC and SC profiles for suicide risk added 
predictive values when classifying the SA, IP or NS groups (Fig. 1). SVM 
is a robust classification method used extensively and successfully to 
predict neurological and psychiatric diseases and has demonstrated 
higher accuracy than many other classifiers53. For the model param-
eters, we adopted the default settings in the linear support vector 
classification function (penalty = ‘l2’, tol = 0.0001, C = 1.0). Similarly 
to CPM analyzes, we adopted a LOOCV internal-validation procedure. 
The demographic and clinical variables, questionnaire scores and 
brain features (FC and/or SC) were added to SVM models as training 
features step by step (models A to G, Supplementary Materials). Model 
performance was assessed using balanced accuracy54, sensitivity and 
specificity, and model significance was tested using non-parametric 
testing by randomly assigning group labels to the features 5,000 times.

External-validation analyzes
To test the generalizability of our CPM models, we validated the mod-
els in two independent datasets. Dataset 1, from Zhang et al.28, com-
prises rs-fMRI and DTI data from 44 middle-aged MDD patients (26 
females, mean age = 30.12 yr, s.d.age = 8.10, all Chinese; 18 males, mean 
age = 31.06 yr, s.d.age = 9.91, all Chinese). Dataset 2, from Shao et al.29, 
comprises data from 24 middle-aged MDD patients (19 females, mean 
age = 51.16 yr, s.d.age = 5.30, all Chinese; 5 males, mean age = 52.20 yr, 
s.d.age = 5.19, all Chinese). Participants in the two datasets provided 
written informed consent. Demographic information on the partici-
pants is shown in Supplementary Table 25. Patients in the two datasets 
were divided into three groups (SA, IP and NS) on the basis of their 
scores from Item 3 in the HAMD-17, which asked whether the patients 
had suicide ideation/plans or attempts. A score of 0 was considered 
as NS. Scores between 1 and 3 were considered as IP. A score of 4 was 
considered as SA. Data preprocessing and connectivity matrix con-
struction were identical to the methods and parameters used in our 
own sample. The scanner and scanning parameters of dataset 2 were 
the same as for our sample, while the scanner and scanning parameters 
of dataset 1 were different from our sample. Imaging data of dataset 1 
were acquired on a 3 T MRI scanner (Achieva X-series, Philips Medical 
Systems) with an eight-channel head coil using the following param-
eters. For rs-fMRI images, a total of 240 volumes were acquired in 8 min 
with TR = 2,000 ms, TE = 30 ms, flip angle = 90°, FOV = 220 × 220 mm2 
and voxel size = 3.44 × 3.44 × 4 mm3. For T1-weighted structural images, 
a total of 188 sagittal slices were acquired with TR = 8.2 ms, TE = 3.7 ms, 
flip angle = 7°, FOV = 256 × 256 mm2 and voxel size = 1 × 1 × 1 mm3. 
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The DTI images were acquired in 32 diffusion-gradient directions 
(b = 1,000) with one non-diffusion-weighted (b = 0) reference with 
TR = 10,100 ms, TE = 90 ms, flip angle = 90°, FOV = 256 × 256 mm2 and 
voxel size = 2 × 2 × 2 mm3. We then extracted the FC and SC profiles 
from the two datasets on the basis of the CPM models derived from 
our sample and conducted SVM analyzes to classify the three groups 
in the two datasets separately (details in Supplementary Materials).

Effects of medications
To explore the potential effects of medications on our neural findings, 
we built CPM models to predict the number of medication types and 
medication load. We found that almost all the connectivity profiles 
associated with suicide risk did not overlap with profiles associated 
with medications (the overlapping percentage is around 0%), except 
the negative FC profiles of BSS with an overlapping percentage of 
13.33% (Supplementary Table 6). These results could indicate that 
the connectivities associated with medications were largely different 
from those associated with suicide risk, which further suggested that 
our neural findings were unlikely to be confounded by medications 
taken by the patients.

Effects of current and past suicide ideation in the 
classification models
Given that the IP group included patients with both CPI and PI, we tested 
each model’s prediction performance on distinguishing CPI from SA 
and NS groups and PI from SA and NS groups. We classified the patients 
in the IP group into two subgroups on the basis of their scores on item 
3 of HAMD-17, which assessed whether patients had suicidal ideation/
plans or attempts within the previous week. Patients who scored 1 or 
more on item 3 were considered as having current ideation. There were 
10 patients in the CPI group, and 14 patients in the PI group. These two 
groups did not show significant differences in most of the behavioral 
variables or brain profiles, while they were significantly different in sex 
ratio and the CPI group had significantly higher scores in HAMD and 
TSII compared with the PI group (Supplementary Table 13). The SVM 
analyzes showed that models achieved relatively high classification 
accuracy in distinguishing SA from CPI (model G: 78.33%), PI from CPI 
(model F: 78.46%), CPI from NS (model B: 77.3%) and PI from NS (model 
G: 85.76%), but did not achieve high accuracy in distinguishing SA and 
PI (model B: 64.74%). These results (Supplementary Table 14) might 
suggest either that patients who only had past ideation shared similar 
features with patients who had suicide attempts or that our predictors 
were not sensitive enough to identify these two groups. Future studies 
could examine brain features that are useful in classifying SA and PI.

Replicated findings obtained from only female patients
Given that our sample consisted of mainly female patients and there 
was a significant difference in sex ratio between the SA and NS groups 
(χ² = 8.97, P = 0.003), we conducted several analyzes using only female 
patients to explore the potential effect of sex imbalance on our main 
findings. First, we reran the original SVM analysis using only female 
patients. Results showed that high accuracy for three groups was well 
preserved (Supplementary Table 19). The highest accuracy for the SA/
NS classification was 92.83%, that for the SA/IP classification was 78.22% 
and that for the IP/NS classification was 81.47% (all Ppermu < 0.001). As 
external dataset 2 also had imbalanced sex distribution (although the 
sex ratio was not significant between the IP and NS groups, P = 0.86), 
we reran the external-validation analysis using only female patients in 
dataset 2. The classification accuracy remained high when classifying 
IP from NS females (accuracy 90%, sensitivity 100%, specificity 80%; 
all Ppermu < 0.033). These results indicated that our initial classification 
success was less likely to be due to the difference in sex ratio between 
groups.

Second, we repeated internal CPM and SVM analysis using only 
female patients (N = 74), and validated CPM models in external datasets 

1 and 2. CPM analyzes (Extended Data Fig. 2) showed that FC signifi-
cantly predicted BSS scores (positive network, R2 = 5.04%, Ppermu = 0.01; 
negative network, R2 = 6.02%, Ppermu = 0.02) and SPS scores (positive 
network, R2 = 17.30%, Ppermu = 0.01). There were only trends to be sig-
nificant when predicting SPS using negative network (positive net-
work R2 = 12.49%, Ppermu = 0.06), and predicting TSII using positive and 
negative networks (positive network R2 = 5.86%, Ppermu = 0.15; negative 
network, R2 = 12.85%, Ppermu = 0.08). The SC significantly predicted BSS 
scores (positive network, R2 = 5.35%, Ppermu = 0.03) and SPS scores (posi-
tive network, R2 = 12.46%, Ppermu = 0.01) but did not predict TSII scores 
(all R2 ≤ 4.17%, all Ppermu ≥ 0.23). None of the significant models were 
significantly affected by head motion, as the models remained effec-
tively unchanged after adding mean FD as a covariate (Supplementary 
Table 20) and none of the predicted values were associated with mean 
FD (all P > 0.07). The brain nodes contributing to the female-only CPM 
models were largely overlapping with those obtained from the whole 
sample (Extended Data Fig. 3; Supplementary Table 21).

We then explored whether the FC and SC profiles derived from the 
female-only CPM models added predictive value when classifying the 
SA, IP and NS groups (all female LLD patients). Given that none of the 
TSII models was significant, this questionnaire was not entered into 
all SVM models. The classification results are shown in Extended Data 
Fig. 4 and Supplementary Table 22. Similarly to our original findings, 
models with FC or SC features performed better than other models for 
the SA/NS (accuracy 90.83%, Ppermu < 0.001) and IP/NS (accuracy 81.47%, 
Ppermu < 0.001) classifications. However, for the SA/IP classification, 
none of the models achieved high accuracy (highest accuracy 65.97%, 
Ppermu < 0.001). We further validated the female-only CPM models in 
the two independent datasets. In dataset 1, the highest accuracy for 
classifying SA/NS was 100.00% (Ppermu < 0.001), that for classifying SA/
IP was 72.25% (Ppermu = 0.1426) and that for classifying IP/NS was 81.25% 
(Ppermu = 0.0706). In dataset 2, results showed that the highest accuracy 
for classifying IP/NS was 92.31% (Ppermu < 0.001). These results showed 
that our main analyzes using only female patients largely replicated 
our original findings obtained from the whole sample.

Ethics statement
This study was approved by the Institutional Review Board of Chang 
Gung Memorial Hospital of Taiwan (IRB no. 201601753B0) and was 
conducted in accordance with the Declaration of Helsinki guidelines. 
All participants provided written informed consent to participate in 
the study, waive participation in the study at any time for no reason 
and allow their information to be used for research and publication.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The Shen 268-node functional brain atlas is available at https://www.
nitrc.org/frs/?group_id=51. The AAL-116 atlas is available at http://rfmri.
org/dpabi (in the Templates folder). The minimum anonymized data 
that support the findings of this study are available upon reasonable 
request from the corresponding authors. The participants did not 
consent to the sharing of the raw data to the public. Source data are 
provided with this study.

Code availability
The MATLAB scripts for CPM analysis are available at https://github.
com/YaleMRRC/CPM and https://github.com/MengxiaGAO/Neu-
roimage2020. The parameters of the CPM models are available at 
https://github.com/MengxiaGAO/LLD_suicide. Code for SVM analysis 
is available at https://scikit-learn.org/stable/modules/svm.html. The 
other custom codes for this study are available at https://github.com/
MengxiaGAO/LLD_suicide.

http://www.nature.com/NatMentHealth
https://www.nitrc.org/frs/?group_id=51
https://www.nitrc.org/frs/?group_id=51
http://rfmri.org/dpabi
http://rfmri.org/dpabi
https://github.com/YaleMRRC/CPM
https://github.com/YaleMRRC/CPM
https://github.com/MengxiaGAO/Neuroimage2020
https://github.com/MengxiaGAO/Neuroimage2020
https://github.com/MengxiaGAO/LLD_suicide
https://scikit-learn.org/stable/modules/svm.html
https://github.com/MengxiaGAO/LLD_suicide
https://github.com/MengxiaGAO/LLD_suicide


Nature Mental Health | Volume 1 | February 2023 | 100–113 112

Article https://doi.org/10.1038/s44220-022-00007-7

References
1.	 Zhong, B.-L., Ruan, Y.-F., Xu, Y.-M., Chen, W.-C. & Liu, L.-F. 

Prevalence and recognition of depressive disorders among 
Chinese older adults receiving primary care: a multi-center cross-
sectional study. J. Affect. Disord. 260, 26–31 (2020).

2.	 Nelson, J. C., Delucchi, K. & Schneider, L. S. Efficacy of second 
generation antidepressants in late-life depression: a meta-
analysis of the evidence. Am. J. Geriatr. Psychiatry 16, 558–567 
(2008).

3.	 Vannoy, S. D. et al. The relationship between suicide ideation 
and late-life depression. Am. J. Geriatr. Psychiatry 15, 1024–1033 
(2007).

4.	 Cukrowicz, K. C. et al. Course of suicide ideation and predictors 
of change in depressed older adults. J. Affect. Disord. 113, 30–36 
(2009).

5.	 Just, M. A. et al. Machine learning of neural representations of 
suicide and emotion concepts identifies suicidal youth. Nat. Hum. 
Behav. 1, 911–919 (2017).

6.	 García de la Garza, Á., Blanco, C., Olfson, M. & Wall, M. M. 
Identification of suicide attempt risk factors in a national US 
survey using machine learning. JAMA Psychiatry 78, 398–406 
(2021).

7.	 Chang, H. Chinese Manual for the Beck Scale for Suicide Ideation 
(Psychological Corporation Harcourt Brace & Company Press, 
Taipei, 1990).

8.	 Wu, C., Lin, W. & Yu, H. Evaluation of the use of a short suicide risk 
assessment tool: the ‘SAD PERSONS’ focus group study: EAFONS 
CS-D-011. Int. J. Nurs. Pract. 18(s1), 37 (2012).

9.	 Oh, J., Yun, K., Hwang, J.-H. & Chae, J.-H. Classification of 
suicide attempts through a machine learning algorithm based 
on multiple systemic psychiatric scales. Front. Psychiatry 8, 192 
(2017).

10.	 Neacsiu, A. D., Fang, C. M., Rodriguez, M. & Rosenthal, M. Z. 
Suicidal behavior and problems with emotion regulation. Suicide 
Life Threat. Behav. 48, 52–74 (2018).

11.	 Taylor, W. D. Depression in the elderly. N. Engl. J. Med. 371, 
1228–1236 (2014).

12.	 McHugh, C. M. & Large, M. M. Can machine-learning methods 
really help predict suicide? Curr. Opin. Psychiatry 33, 369–374 
(2020).

13.	 Schmaal, L. et al. Imaging suicidal thoughts and behaviors: a 
comprehensive review of 2 decades of neuroimaging studies. 
Mol. Psychiatry 25, 408–427 (2020).

14.	 Bohaterewicz, B. et al. Machine learning-based identification 
of suicidal risk in patients with schizophrenia using multi-level 
resting-state fMRI features. Front. Neurosci. 14, 605697 (2020).

15.	 Cao, J. et al. Resting-state functional MRI of abnormal baseline 
brain activity in young depressed patients with and without 
suicidal behavior. J. Affect. Disord. 205, 252–263 (2016).

16.	 Serafini, G., Pardini, M., Pompili, M., Girardi, P. & Amore, M. 
Understanding suicidal behavior: the contribution of recent 
resting-state fMRI techniques. Front. Psychiatry 7, 69 (2016).

17.	 Kang, S.-G. et al. Differences in brain surface area and cortical 
volume between suicide attempters and non-attempters with 
major depressive disorder. Psychiatry Res. Neuroimaging 297, 
111032 (2020).

18.	 Zanghì, E., Corallo, F. & Lo Buono, V. Diffusion tensor imaging 
studies on subjects with suicidal thoughts and behaviors: a 
descriptive literature review. Brain Behav. 12, e2711 (2022).

19.	 Palacios, E. M. et al. Toward precision and reproducibility of 
diffusion tensor imaging: a multicenter diffusion phantom and 
traveling volunteer study. Am. J. Neuroradiol. 38, 537–545 (2017).

20.	 Jin, D. et al. Grab‐AD: generalizability and reproducibility of 
altered brain activity and diagnostic classification in Alzheimer’s 
disease. Hum. Brain Mapp. 41, 3379–3391 (2020).

21.	 Shen, X. et al. Using connectome-based predictive modeling to 
predict individual behavior from brain connectivity. Nat. Protoc. 
12, 506–518 (2017).

22.	 Drysdale, A. T. et al. Resting-state connectivity biomarkers define 
neurophysiological subtypes of depression. Nat. Med. 23, 28–38 
(2017).

23.	 Ho, T. C. et al. Smaller caudate gray matter volume is associated 
with greater implicit suicidal ideation in depressed adolescents. J. 
Affect. Disord. 278, 650–657 (2021).

24.	 Ho, T. C. et al. Reduced dorsal striatal gray matter volume predicts 
implicit suicidal ideation in adolescents. Soc. Cogn. Affect. 
Neurosci. 13, 1215–1224 (2018).

25.	 Gao, M. et al. Connectome-based models can predict processing 
speed in older adults. NeuroImage 223, 117290 (2020).

26.	 Lee, S. H., Tsai, Y. F., Wang, Y. W., Chen, Y. J. & Tsai, H. H. 
Development and psychometric testing of the Triggers of Suicidal 
Ideation Inventory for assessing older outpatients in primary care 
settings. Int. J. Geriatr. Psychiatry 32, 1114–1121 (2017).

27.	 Finn, E. S. & Bandettini, P. A. Movie-watching outperforms rest for 
functional connectivity-based prediction of behavior. NeuroImage 
235, 117963 (2021).

28.	 Zhang, R. et al. Rumination network dysfunction in 
major depression: a brain connectome study. Prog. 
Neuropsychopharmacol. Biol. Psychiatry 98, 109819 (2020).

29.	 Shao, R. et al. Loneliness and depression dissociated on parietal-
centered networks in cognitive and resting states. Psychol. Med. 
50, 2691–2701 (2020).

30.	 Lin, Q. et al. A connectivity-based test–retest dataset of multi-
modal magnetic resonance imaging in young healthy adults. Sci. 
Data 2, 150056 (2015).

31.	 Guo, C. C. et al. One-year test–retest reliability of intrinsic 
connectivity network fMRI in older adults. NeuroImage 61, 
1471–1483 (2012).

32.	 Noble, S., Scheinost, D. & Constable, R. T. A decade of test–retest 
reliability of functional connectivity: a systematic review and 
meta-analysis. NeuroImage 203, 116157 (2019).

33.	 Birn, R. M. et al. The effect of scan length on the reliability of 
resting-state fMRI connectivity estimates. NeuroImage 83, 
550–558 (2013).

34.	 Damoiseaux, J. S. Effects of aging on functional and structural 
brain connectivity. NeuroImage 160, 32–40 (2017).

35.	 Gudayol-Ferré, E., Peró-Cebollero, M., González-Garrido, A. A. & 
Guàrdia-Olmos, J. Changes in brain connectivity related to the 
treatment of depression measured through fMRI: a systematic 
review. Front. Hum. Neurosci. 9, 582 (2015).

36.	 Van Oort, J. et al. How the brain connects in response to acute 
stress: a review at the human brain systems level. Neurosci. 
Biobehav. Rev. 83, 281–297 (2017).

37.	 Lupien, S. J., Juster, R.-P., Raymond, C. & Marin, M.-F. The effects 
of chronic stress on the human brain: from neurotoxicity, to 
vulnerability, to opportunity. Front. Neuroendocrinol. 49, 91–105 
(2018).

38.	 Fässberg, M. M. et al. A systematic review of physical illness, 
functional disability, and suicidal behaviour among older adults. 
Aging Ment. Health 20, 166–194 (2016).

39.	 Rizvi, S. J., Iskric, A., Calati, R. & Courtet, P. Psychological and 
physical pain as predictors of suicide risk: evidence from clinical 
and neuroimaging findings. Curr. Opin. Psychiatry 30, 159–167 
(2017).

40.	 Brundin, L., Bryleva, E. Y. & Rajamani, K. T. Role of 
inflammation in suicide: from mechanisms to treatment. 
Neuropsychopharmacology 42, 271–283 (2017).

41.	 Barak, Y., Olmer, A. & Aizenberg, D. Antidepressants reduce 
the risk of suicide among elderly depressed patients. 
Neuropsychopharmacology 31, 178–181 (2006).

http://www.nature.com/NatMentHealth


Nature Mental Health | Volume 1 | February 2023 | 100–113 113

Article https://doi.org/10.1038/s44220-022-00007-7

42.	 Dombrovski, A. Y. et al. Sex differences in correlates of suicide 
attempt lethality in late life. Am. J. Geriatr. Psychiatry 16, 905–913 
(2008).

43.	 Zhang, C. et al. Sex and age effects of functional connectivity in 
early adulthood. Brain Connect. 6, 700–713 (2016).

44.	 Ingalhalikar, M. et al. Sex differences in the structural connectome 
of the human brain. Proc. Natl Acad. Sci. USA 111, 823–828 (2014).

45.	 Sheehan, D. V. et al. The Mini-International Neuropsychiatric 
Interview (MINI): the development and validation of a structured 
diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. 
Psychiatry 59, 22–33 (1998).

46.	 Katzman, R. et al. A Chinese version of the Mini-Mental State 
Examination; impact of illiteracy in a Shanghai dementia survey. J. 
Clin. Epidemiol. 41, 971–978 (1988).

47.	 Li, J. et al. Global signal regression strengthens association 
between resting-state functional connectivity and behavior. 
NeuroImage 196, 126–141 (2019).

48.	 Zhang, Z. et al. Altered functional–structural coupling of large-
scale brain networks in idiopathic generalized epilepsy. Brain 134, 
2912–2928 (2011).

49.	 de Reus, M. A. & van den Heuvel, M. P. Estimating false positives 
and negatives in brain networks. NeuroImage 70, 402–409 (2013).

50.	 Yu, J. et al. The individualized prediction of cognitive test scores 
in mild cognitive impairment using structural and functional 
connectivity features. NeuroImage 223, 117310 (2020).

51.	 Buchanan, C. R. et al. The effect of network thresholding and 
weighting on structural brain networks in the UK Biobank. 
NeuroImage 211, 116443 (2020).

52.	 Lake, E. M. et al. The functional brain organization of an 
individual allows prediction of measures of social abilities 
transdiagnostically in autism and attention-deficit/hyperactivity 
disorder. Biol. Psychiatry 86, 315–326 (2019).

53.	 Fernández-Delgado, M., Cernadas, E., Barro, S. & Amorim, D. Do 
we need hundreds of classifiers to solve real world classification 
problems? J. Mach. Learn. Res. 15, 3133–3181 (2014).

54.	 Brodersen, K. H. et al. Generative embedding for model-based 
classification of fMRI data. PLoS Comput. Biol. 7, e1002079  
(2011).

55.	 Wang, K. et al. Altered functional connectivity in early Alzheimer’s 
disease: a resting‐state fMRI study. Hum. Brain Mapp. 28, 967–978 
(2007).

Acknowledgements
The project was supported by NMRPG3G6031/32 and NMRPG3J0121 
from the Ministry of Science and Technology of Taiwan to S.-H.L., 
medical research grant CRRPG2K0021 from Chang Gung Memorial 
Hospital and NRRPG2K6011 from the Ministry of Science and 
Technology of Taiwan to C.L., the Hong Kong Research Grants 
Council Collaborative Research Fund (C7069-19G) and the University 
of Hong Kong May Endowed Professorship in Neuropsychology to 
T.M.C.L. and the Research Grants Council Postdoctoral Fellowship 
Scheme (PDFS2122-7H04) to M.G. The funding bodies played no role 

in the original study conductance or the preparation of the present 
manuscript. Part of this paper is from the first author’s PhD thesis (Gao, 
M. Connectome-Based Predictive Modelling of Neurocognitive and 
Affective Processes (HKU Theses Online, 2021)).

Author contributions
S.-H.L. and T.M.C.L. conceived the research idea. S.-H.L. designed 
the study. C.L. and S.-H.L. carried out the study and collected the 
data. M.G. analysed the data. M.G., N.M.L.W. and T.M.C.L. interpreted 
the results. All authors discussed the findings. M.G. produced the 
first draft of the manuscript. M.G., N.M.L.W., C.L., C.-M.H., H.-L.L., 
C.-H.T., C.W., Y.-F.T., S.-H.L. and T.M.C.L. revised the manuscript. All 
authors approved the final version to be published and agreed to be 
accountable for the integrity and accuracy of all aspects of the work.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper athttps://doi.org/10.1038/
s44220-022-00007-7.

Supplementary information The online version contains supplemen
tary material available athttps://doi.org/10.1038/s44220-022-00007-7.

Correspondence and requests for materials should be addressed to 
Shwu-Hua Lee or Tatia M. C. Lee.

Peer review information Nature Mental Health thanks the anonymous 
reviewers for their contribution to the peer review of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023

1State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China. 2Laboratory of Neuropsychology & Human 
Neuroscience, The University of Hong Kong, Hong Kong, China. 3Department of Psychiatry, Chang Gung Memorial Hospital, Keelung, Taiwan. 4College 
of Medicine,  Chang Gung University, Taoyuan City, Taiwan. 5Community Medicine Research Center,  Chang Gung Memorial Hospital, Keelung, Taiwan. 
6Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan. 7Department of Imaging Physics, 
University of Texas MD Anderson Cancer Center, Houston, TX, USA. 8Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital 
at Linkou, Taoyuan City, Taiwan. 9Brain and Consciousness Research Center, Shuang-Ho Hospital, New Taipei, Taiwan. 10Graduate Institute of Mind, Brain 
and Consciousness, Taipei Medical University, Taipei, Taiwan. 11School of Nursing, College of Medicine, Chang Gung University, Taoyuan City, Taiwan. 
12Department of Nursing, Chang Gung University of Science and Technology, Taoyuan City, Taiwan. 13Department of Psychiatry, Linkou Chang Gung 
Memorial Hospital, Taoyuan City, Taiwan. 14Guangdong–Hong Kong–Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, 
Guangzhou, China.  e-mail: shlee@cgmh.org.tw; tmclee@hku.hk

http://www.nature.com/NatMentHealth
https://doi.org/10.1038/s44220-022-00007-7
https://doi.org/10.1038/s44220-022-00007-7
https://doi.org/10.1038/s44220-022-00007-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:shlee@cgmh.org.tw
mailto:tmclee@hku.hk


Nature Mental Health

Article https://doi.org/10.1038/s44220-022-00007-7

Extended Data Fig. 1 | Functional connectivity (A) and structural connectivity (B) profiles of different behavioral measurements derived from the 
nonsignificant CPM models using the whole sample. These edges are the common edges that appeared in all of the iterations.
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Extended Data Fig. 2 | CPM-prediction results obtained from female patients. 
(a) Coefficients of determination of all the CPM models. The coefficients of 
determination between the predicted and true scores were calculated for all 
the CPM models. Significance was decided using the percentage of permuted 
predictive values (5000 times) equal or larger than the true predictive value (one-
tailed). The CPM models were hypothesis-driven and results were not adjusted. 
(b) Significant CPM prediction results after being corrected for head motion. 

Values are standardized for visualization. BSS: Beck Scale for Suicidal Ideation; 
SPS: SAD PERSONS Scale; TSII: Triggers of Suicidal Ideation Inventory; FC: 
functional connectivity; SC: structural connectivity. NS: non-suicidal group; IP: 
ideation/plan group; SA: suicide-attempt group. ‘*’ indicates that the functional 
connectivity or structural connectivity significantly predicted the observed 
behavioral scores. * p < 0.05.
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Extended Data Fig. 3 | Functional connectivity (A) and structural 
connectivity (B) profiles of different behavioral measurements derived from 
the CPM models using female patients. These edges are the common edges that 
appeared in all of the iterations. Shen’s 268 nodes are shown in ten macroscale 

regions, and the AAL-116 are shown in seven macroscale regions. The connectivity 
figures were generated using ggraph (https://cran.r-project.org/web/packages/
ggraph/index.html). BSS: Beck Scale for Suicidal Ideation; SPS: SAD PERSONS 
Scale; TSII: Triggers of Suicidal Ideation Inventory.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Support vector machine (SVM) classification results 
obtained from female patients. NS: non-suicidal group; IP: ideation/plan group; 
SA: suicide-attempt group. Training features of Model A: age, sex, education, 
onset of LLD, episode of LLD and duration of LLD; Model B: BSS, SPS and TSII 
scores; Model C: functional positive network strength of TSII and negative 

network strengths of BSS, SPS and TSII, structural positive network strengths 
of BSS and SPS; Model D: questionnaires + FC profiles; Model E: questionnaires 
+ SC profiles; Model F: questionnaires + FC + SC; Model G: all features. The star 
indicates the highest performance.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Spearman coefficients of the CPM prediction for a 
range of p values (from 0.0001 to 0.05 with an interval of 0.0001). Spearman 
correlations between the true and predicted values were calculated (two-tailed, 
unadjusted). This analysis was used to select models with optimal performance 
using a range of p values and the select models with selected p values were used 
for the final CPM analysis. Therefore, these p values were not unadjusted. For 
the functional connectivity positive network, the optimal p thresholds for BSS, 
SPS and TSII are 0.0013, 0.0001,0.0013; for the negative network, the optimal p 

thresholds for BSS, SPS and TSII are 0.0057, 0.0014, 0.0004. For the structural 
connectivity positive network, the optimal p thresholds for BSS, SPS and TSII 
are 0.0069, 0.0067, 0.0179; for the negative network, the optimal p thresholds 
for BSS, SPS and TSII are 0.0441, 0.0067, 0.0373. BSS: Beck Scale for Suicidal 
Ideation; SPS: SAD PERSONS Scale; TSII: Triggers of Suicidal Ideation Inventory. 
Y axis denotes the Spearman coefficients between the predicted scores and the 
observed behavioral scores. X axis denotes the different p values.
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