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ABSTRACT 
 

This study analyzed the impact of a range of policies that restrict travel accessibility and mobility on 
infection rates for the original strain of the virus during the first year of the COVID-19 crisis. We 
constructed a multidimensional dataset and developed an effective data-driven predictive model to 
investigate causality between a policy, mobility, and an infection, drawing upon spatiotemporal 
perspectives. The multidimensional dataset included daily infections, daily restriction policies, and 
daily and hourly multimodal travel patterns. We quantified and normalized the dataset in relation to 
pre-COVID-19 policies and travel activities. A machine learning framework that integrated principal 
component analysis (PCA) and a Gaussian process regression (GPR) was formulated to evaluate the 
effectiveness of mobility restriction policies and their optimal implementation time during the infancy 
stage of the pandemic. In a case study, we selected Seoul in South Korea and Sydney in Australia for 
model calibrations and validations. Both countries deployed comprehensive urban restriction policies 
during the worldwide pandemic. The proposed model produced better performance than diverse non-
parametric and parametric models to estimate the daily number of infections in the two areas. 
Furthermore, we discovered effective restriction policies and the best times to implement them to 
minimize the number of acquired COVID-19 cases by analyzing coefficients in PCA and GPR kernel 
functions. Our finding has far-reaching policy implications. First, the proposed methods can be used for 
formulating restriction policies for other regions with diverse population densities as the chosen cities 
in this case study. Second, our finding contributes to evidence-based policymaking.  

Keywords: COVID-19, the stringency of restriction policy, multimodal travel patterns, machine 
learning approach, evidence-based policymaking. 

1. Introduction 

The advanced development of information and communication technologies (ICT) has allowed one to 
efficiently collect high-quality multivariate data from multiple sources in recent years. It has derived 
the advancement of a data-driven approach in transportation domains, which mainly depends on the 
quality and the amount of available data. Mitchell (1997) defined a machine learning (ML) approach as 
a technique of computer algorithms that allows computer programs to improve through experience 
automatically. The ML approach has played a significant role in forecasting and classifying a variety 
of quantified features due to its excellent performance in the tasks, which do not need to explain 
causality and sensitivity between variables and parameters. In particular, the ML approach has been 
adopted in the public policy area in recent years. Diverse ML techniques are used to assess the impacts 
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of policies on environmental management (Firebanks et al., 2022; Rana & Miller, 2019), to support 
healthcare with accurate information (Ashrafian & Darzi, 2018), to monitor financial fraud (Aziz & 
Dowling, 2019), to deliver public services and facilitate administrative decisions (Veale & Brass, 2019), 
to inform development aid decisions (Pincet et al., 2019), and to identify individual incentives for 
environment-friendly consumption decisions (de Rubens, 2019). 

In the realm of macroscopic transportation domains, the ML has been used for modeling travel 
behaviors and demands (Koushik et al., 2020 and reference therein). For instance, they are increasingly 
used to examine activity-travel behavior to propose the optimal routes for the users using their previous 
choices (Cantarella & de Luca, 2005; Doherty & Mohammadian, 2003; Golshani et al., 2018; 
Hagenauer & Helbich, 2017). Furthermore, they can be employed to collect travel behavior data from 
various sources (Lin et al., 2009, Wang et al., 2018, and reference therein). In microscopic traffic 
modeling, Lee et al. (2019a, 2019b) proposed innovative methods to estimate queue lengths and lane 
changing maneuvers in an individual lane and reference therein.  

While the ML techniques are frequently applied to conduct regression and classification 
problems in transportation studies, they are rarely used for transport policy-making processes.  
Particularly, this study focuses on the part of policy-making processes, and policy evaluation. To fill 
this research gap, we assess the relations between restriction policy and infection rates during the initial 
response to the COVID -19 crisis in Seoul and Greater Sydney. We aim to analyze the impact of a range 
of policies that restrict travel accessibility and mobility from spatiotemporal perspectives.  In doing so, 
this study moves beyond the use of ML techniques as identifying patterns and predicting behaviors and 
extends its direct applicability to the evaluation of transportation policy.  

Meanwhile, we note a caveat in its use in transportation policy analysis. Although ML can 
contribute to using an evidence-based policy, the policy decisions made with the ML techniques can 
reflect systematic biases in society as ML is based on the data gained from our experience (Coyle & 
Weller, 2020). This challenge relates to explainability. There is a growing demand to explain ML in 
policy analysis (Coyle & Weller, 2020). This means that policymakers need to be overt about policy 
goals that embed their political interests.  

We subdivided multivariate datasets into a detailed level of travel patterns and policies to 
mitigate this challenge, including urban mobility and restriction policies under the COVID-19 crisis. 
We adopted the ML framework, including principal component analysis (PCA) and a Gaussian process 
regression (GPR), using a quantified and normalized data-set on pre-COVID-19 policies and travel 
activities. It enables one to maximize the explainability of the ML techniques in analyzing the impacts 
of instantaneously deployed policies from multiple perspectives. In a technical aspect, the PCA 
decreases a dimension of the time-series features to remain uncorrelated variables for modeling the 
GPR in the following stage. The GPR model was implemented to forecast the number of transmitted 
COVID-19 cases. Thus, we fused the PCA and GPR model of a pandemic causality of policy-mobility-
infection to predict the number of infections. Moreover, the model identifies critical spatiotemporal 
features in restriction policies and multimodal mobility patterns to reduce locally confirmed cases of 
COVID-19 at the early stage of the pandemic before vaccinations. The study makes five primary 
contributions:  

• We subdivided and normalized policies that restrict travel accessibility and mobility and 
multimodal travel patterns to investigate spatiotemporal aspects of each policy for the initial 
year of the COVID-19 crisis using a ML framework with maximized explainability. 
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• We calibrated and validated the ML approach using open data collected from two different 
metropolitan areas, Greater Sydney and Seoul, to cope with future pandemic scenarios in other 
metropolitan areas. 

• Fusing PCA and GPR identifies which policies are effective and when policies should be 
imposed in response to the pandemic for the initial period to control instantaneously increasing 
rates of COVID-19 acquisitions. 

• The framework identifies the specific policies and mobility patterns that significantly influence 
the number of locally transmitted COVID-19 cases. 

• This study moves beyond the use of ML techniques as identifying patterns and predicting 
behaviors and extends its direct applicability to the evaluation of transportation policy. 

The remainder of this paper is organized as follows. A literature review is provided in Section 
2. We illustrate the policy-mobility-infection data profiles in Section 3. Section 4 describes the 
integrated method, including data normalization, the PCA, and Gaussian process regressions. Empirical 
results are presented and interpreted in Section 5. Finally, Section 6 presents the conclusions and 
suggests future research directions. 

2. Related works 

The World Health Organization (WHO) reported that there were 84.5 million confirmed cases and 1.9 
million deaths in 2020 after the rapid spreading of the original strain of the virus, Coronavirus disease 
2019 (COVID-19).1 In response to the outbreak, several countries deployed a range of policies that 
restrict travel accessibility and mobility; these policies have transformed diverse aspects of society and 
daily life.  

Policies in response to the COVID-19 crisis have included school and workplace closures, the 
cancelation of public events and gatherings, stay-at-home restrictions, and international and domestic 
travel restrictions (Han et al., 2020). While the policy responses share similarities in controlling the 
movement of individuals, countries have chosen to implement these policies with varying degrees of 
scope and stringency.2 Some local governments have implemented stricter policies than those applied 
at the national level because the pandemic had especially severe impacts in their jurisdictions (Goolsbee 
and Syverson, 2021). Major cities such as New York, Paris, and London3 introduced lockdown orders, 
which were the highest levels of travel restrictions over the last year in response to the COVID-19 
outbreak. 4 The COVID-19 epidemic led to a reduction in the use of public transit. For instance, 
individuals changed their transport modes from public transit to others, including walking, cycling, or 
using private cars in Germany (Anke et al., 2021). Furthermore, there is a decrease in the percentages 
of individuals using public transit in China, whereas the percentages of those using cars and walking 
were increased (Jiang et al., 2020). However, the empirical evidence suggests that the demand for public 
transit has increased (Cho and Park, 2021), although the recovery may depend on psychological factors 

                                                      
 

1 https://covid19.who.int/  
2 https://ourworldindata.org/policy-responses-covid#  
3 https://www.nytimes.com/2020/12/19/world/europe/coronavirus-uk-new-variant.html  
4 https://www.bbc.com/news/uk-56158405 
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(Zhao and Gao, 2022). Similarly, major South Korean cities such as Seoul and Daegu and major 
Australian cities such as Melbourne and Sydney designed and implemented restriction orders in 
response to the first confirmed cases of COVID-19 in January and February 2020, respectively.  

We summarize the related works dealing with the causality between policies, mobility, and 
infections during the COVID-19 crisis. Then, we demonstrate the research gaps tackled by this study. 
Recent studies have focused on the economic effects of policies that restrict mobility. The stringency 
of such policies has been viewed as a trade-off between the economy and lives, as limiting individual 
mobility and access invariably affects economic activity. In this sense, lockdown policies appear to be 
the primary driver of economic recessions, although social distancing has also played a role in economic 
downturns (IMF, 2020). In addition to policy stringency, the timing of policy implementation has also 
affected economic costs. For example, a less stringent lockdown in the USA, allowing people to leave 
their homes for essential needs, lowered deaths “at a lower economic price than mandatory business 
shutdowns” during the early months of the pandemic (Arnon et al., 2020).5 

2.1 Travel restriction policy during the COVID-19 crisis 

Ku et al. (2021) presented that the several policies for controlling the spread of COVID-19, 
which are based on suppressing the movement of people and goods, have led to remarkable changes in 
mobility patterns in multimodal transport systems around the world. Gibbs et al. (2020) investigated the 
spatiotemporal changes in human mobility caused by travel restrictions in the early stages of the 
pandemic. Wei et al. (2021) stimulated the spatiotemporal characteristics of COVID-19 using a city-
based epidemic and mobility model. Beck and Hensher (2020) examined infection data, policy data, 
and survey results to provide comprehensive insights into the impact of COVID-19 on household travel 
and activities in Australia. Hensher et al. (2021) emphasized that working from home (WFH) became 
the new normal during the COVID-19 crisis. They used a logit model linked to a zero-inflated Poisson 
regression model to identify the incidence of WFH and its effect on commuting trips. Hu et al. (2021) 
used mobile data of over 150 million trip records to assess mobility patterns during the COVID-19 crisis. 
Chan et al. (2021) modeled the relationship between mobility patterns, the number of locally acquired 
COVID-19 cases, and the stringency of government responses. They argued that Hong Kong 
communities reacted faster than implementing health interventions, although the government policies 
effectively decreased the number of local infections. Similarly, Liu and Yamamoto (2022) indicated 
that the government-declared state of emergency significantly reduced travel, despite the fact that 
mobility restriction policies (i.e., stay-at-home requests) were not mandatory in Japan. To further 
examine the effect of government policies on mobility behavior, Bian et al. (2021) quantified the time-
lag effect reflected in transportation systems when the government implemented new restriction policies 
in response to the COVID-19 pandemic. They found that the national declaration of emergency had no 
time-lag effect reflected in transportation systems, although stay-at-home and reopening policies 
affected mobility. These studies indicate that stringent measures in response to the COVID-19 outbreak 
are closely related to fluctuations in travel behavior patterns in metropolitan areas.  

Changing mobility patterns have fluctuated with the number of daily confirmed cases 
worldwide. Nouvellet et al. (2021) investigated the relationship between COVID-19 transmission and 
mobility in 52 countries. They found that transmission remarkably declined with the initial decrease in 

                                                      
 

5 https://www.brookings.edu/bpea-articles/epidemiological-and-economic-effects-of-lockdown/  
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mobility in 73% of countries. In contrast, there was a decoupling of transmission and mobility following 
the relaxation of restriction measures for 80% of countries. Badr et al. (2021) used aggregated, and 
anonymized mobile phone data to analyze daily mobility patterns and found that mobility patterns were 
strongly correlated with decreased COVID-19 case growth rates for the most affected counties in the 
USA.  

2.2 Machine learning approach 

The Gaussian process has been used in non-parametric probabilistic modeling. Sun and Xu 
(2010) developed mixtures of Gaussian processes to reduce the deficiency of the computationally cubic 
complexity of a single Gaussian process regression (GPR) model for traffic flow prediction. Jabari and 
Liu (2013) developed a Gaussian approximation of a stochastic traffic flow model that includes 
covariance matrices of traffic variables computed using only a few parameters, regardless of system 
size. Zhang and Wang (2014) introduced a non-parametric distribution model with Gaussian kernel 
functions to model vehicle headways on urban multi-lane freeways. They extracted intrinsic patterns 
from observed headways using Gaussian kernel models, which performed better than parametric 
methods in diverse flow conditions in their experiments. Shin et al. (2017) used Gaussian processes to 
enhance segmentation accuracy in a real-time object segmentation algorithm for 3D point clouds 
collected from LiDAR sensors on a vehicle. The concept of multiplicative Gaussian white noise has 
been used to illustrate the acceleration profiles of the following vehicle toward the leading vehicles’ 
speed profiles in the form of stochastic car-following models (Laval et al., 2014; Ngoduy et al., 2019; 
Lee et al., 2019; Lee et al., 2021). 

In addition, a variety of studies have validated the excellent predictive performance of GPR 
compared to other models. Murça and Hansman (2018) used a GPR model to create an airport capacity 
prediction model capable of translating predictions of external features into probabilistic arrival 
capacity predictions for strategic time horizons. They compared the performance of the GPR model 
with that of Bayesian linear regression and random forest models. The GPR produced more accurate 
point predictions and uncertainty quantification. Rodrigues and Pereira (2018) proposed the use of 
heteroscedastic Gaussian processes to model non-constant observation noise in traffic speed modeling 
for imputing missing observations and real-time forecasting. Liu et al. (2019) used a GPR model to 
estimate spatially heterogeneous traffic volume and fleet compositions based on heterogeneous datasets, 
including taxi GPS data, license plate recognition data, and geographical features in a large-scale urban 
network. Gammelli et al. (2020) constructed a flexible non-parametric GPR model incorporating a 
censored likelihood function to handle the censoring problem inherent in travel demand forecasting 
models. 

PCA is one of the most popular and oldest multivariate statistical techniques. The goals of PCA 
are (a) to extract the most critical information from a data table, (b) to compress the size of the dataset 
by keeping only this vital information, (c) to simplify the description of the dataset, and (d) to analyze 
the structure of the observations and the variables (Abdi and Williams, 2010).  

Wang and Lien (2008) developed novel automatic vehicle detection methods based on local 
features located within three significant subregions of an image by using PCA to model the low-
frequency components of the eigenspace. Qu et al. (2009) used probabilistic PCA to impute missing 
traffic flow data based on historical data mining. Their probabilistic PCA outperformed conventional 
methods in their experiments. García et al. (2010) used PCA to validate obstacle detection on high-
speed railways and to improve the efficiency of the system. Guardiola et al. (2014) adopted functional 
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PCA to project the original dataset into a low-dimensional space. Jenelius and Koutsopoulos (2017) 
proposed a multivariate probabilistic PCA to develop a network travel time prediction methodology 
based on probe data. Lasisi and Attoh-Okine (2018) used PCA to find a low dimensional representation 
of a given dataset of track quality indices used to obtain an average-based assessment of track segments 
and schedule track maintenance. Wang et al. (2018) used PCA to reduce the dimensions of variables 
for the short-term trajectory prediction problem in a terminal maneuvering area. Saffari et al. (2020) 
presented a novel network-wide approach to identifying critical links and estimating average traffic 
flow and density. They reduced a dataset containing variables that were potentially interrelated to a 
smaller dataset of uncorrelated variables using PCA. Kumar and Khani (2020) evaluated special event 
transit demand using a robust PCA to reduce the dimension of automatic passenger count data. 

2.3 Main findings from literature review 

We derived the following two main findings from our review of the literature. First, recent 
studies, e.g., those of Guzman et al. (2021), Pawar et al. (2021), Chen et al. (2022), De-Toledo et al. 
(2022), and Zhao and Gao (2022), have used diverse methodologies based on both dynamic and static 
data sources to separately investigate the relationships during the early stage of the COVID-19 
pandemic between restriction measures and mobility patterns, and between mobility patterns and 
infections. However, no recent studies have used ML algorithms and considered multiple time-lags to 
simultaneously investigate the relationships during this period between infections, restriction policies, 
and multimodal urban mobilities. Moreover, to the best of our knowledge, predictive models of locally 
transmitted COVID-19 cases based on the policy–mobility–infection cycle have not been captured from 
a spatiotemporal perspective. Furthermore, complex restriction policies have not been decomposed to 
identify the policies that are effective and when these policies should be imposed in response to the 
pandemic. In this study, we conducted real-world empirical modeling based on datasets collected from 
two regions that had implemented restriction policies to validate the effectiveness of our models in 
explaining policy–mobility–infection relationships under different circumstances.  

Furthermore, we used GPR, a widely used ML algorithm, with PCA based on a spatiotemporal 
multivariate dataset. Rasmussen and Williams (2006) noted that “a Gaussian process is a generalization 
of the Gaussian probability distribution, which describes a finite-dimensional random variable, to 
functions” (pp. 13-16). Thus, a GPR framework enables the simple implementation of a flexible data-
driven approach and stochastic forecasting with a confidence interval. As a result, GPR has exhibited 
excellent performance as a non-parametric kernel-based probability model in prediction procedures 
involving a small number of datasets. Because of its simplicity and reliability, PCA has been widely 
used in transport engineering to decrease the dimensions of original datasets and identify combinations 
of non-correlated variables. 

3. Data 

To examine the applicability of ML techniques to various policies, we chose Greater Sydney in 
Australia and Seoul in South Korea as cases to calibrate and validate the proposed ML framework for 
demonstrating causality between pandemic policy, mobility, and infection. Sydney and Seoul adapted 
their COVID-19 related policies to instantaneously restrict the transmission of the COVID-19 in the 
community under the varied circumstance. The geographic and demographic specifications of each city 
have shaped how they have deployed restriction policies in response to COVID-19. By comparing their 
policies, we identified the best (i.e., most generalizable, flexible, and applicable) method for modeling 
the causality between policies, mobility, and infection rates. 
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3.1 Study area 

In designing effective response policies, the two governments varied in their timings for policy 
implementation and the stringency of restrictions within the constraints of their unique conditions. The 
restriction policies on mobility were deployed by New South Wales (NSW) government based on the 
framework of the COVID-19 guidelines offered by the Australian government for the first year of the 
COVID-19 crisis. In contrast, the Seoul government mainly followed Korea’s national COVID-19 
guidelines, which sought to end transmission cycles in the middle via “Test-Trace-Treatment” (3T) 
strategies rather than placing stringent restrictions on mobility in the first year of the pandemic. 
Australia thoroughly and quickly banned international arrivals from China: the Australian government 
confirmed the first coronavirus case in Victoria on January 25, 2020, and announced a ban on air flight 
arrivals from all areas of China six days later. South Korea reported its first coronavirus case on January 
20, 2020, and 15 days later, it imposed a travel ban on foreign nationals who had stayed in Hubei 
province in the previous 14 days. While international arrivals were still allowed to enter, Seoul utilized 
testing and tracing to minimize the transmission risks posed by these arrivals. Furthermore, domestic 
mobility restrictions were stricter for Sydney than for Seoul. After the first surge, Sydney announced 
stay-at-home orders and lockdown when the second wave of COVID-19 infections arrived. In contrast, 
Seoul announced more strict social distancing and mask-wearing rules rather than imposing stringent 
measures on mobility. 

These differences in response policies are related to differences in the demographic and 
geographic conditions of the two regions. Greater Sydney and Seoul are profiled in Table 1. Greater 
Sydney covers an area 20 times larger than Seoul, although Seoul has approximately twice the 
population and a population density 37 times greater. Therefore, limited human resources, connectivity, 
and accessibility led Sydney to seek to inhibit the development of COVID-19 transmission cycles by 
deploying high levels of restrictions on mobility at an early stage, whereas Seoul’s highly dense 
population and daily mobility—approximately ten times larger than Sydney’s—(see Table 1) led to the 
imposition of 3T strategies to disrupt transmission cycles. 

With some similarities in their restrictions, Australia and South Korea are listed among the top 
10 best countries in terms of response to the COVID-19 crisis before vaccination, according to 
Bloomberg’s Covid Resilience Ranking 6  based on comprehensive review processes 7 . Australia’s 
ranking is in part because it closed its international borders to contain COVID-19. In contrast, South 
Korea did not implement a stringent mobility policy, such as a lockdown. Instead, it focused on contact 
tracing to prevent further community transmission. The information gained from contact tracing was 
rapidly disseminated to the public and encouraged voluntary compliance with the government’s 
guidelines (You, 2020). 

The availability of policy information and multimodal travel patterns for Sydney and Seoul 
made this study feasible. These extensive metropolitan areas play significant roles in politics, the 
economy, education, and transportation in their respective countries. We were easily able to mine the 

                                                      
 

6 https://www.bloomberg.com/graphics/covid-resilience-ranking/  
7 https://www.bloomberg.com/news/articles/2020-11-24/inside-bloomberg-s-covid-resilience-ranking 
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required dataset from 33 and 25 local government areas in Sydney and Seoul, respectively, as their 
governments provide time-series infection, policy, and mobility data to the public on their websites. 
The NSW government also established archives of news and media releases related to COVID-19 crisis8. 
Transport for NSW (TfNSW) operates an open data website9 that provides daily and hourly Opal card 
usage for all public transport modes and road traffic counts at designated on-road sensors. South Korea’s 
Ministry of Health and Welfare provides webpages10 detailing infections, restrictions, news and media 
releases, and government briefings. In Seoul, the Transport Operation and Information Service (TOPIS) 
records and provides high-resolution traffic volume data and public transport usage11. These open data 
sources through which government agencies document and deliver information to the public are highly 
reliable and valuable resources for developing and analyzing macroscopic estimation models based on 
ML algorithms. 

Table 1. Profiles of the Greater Sydney and Seoul study areas 
 Greater Sydney Seoul 

Map 

 
 

Country Australia South Korea (Republic of Korea) 
Population 5,312,163 (2019) 9,575,355 (2021) 

Area 12,367.7 km2 605.2 km2 
Population density 423/km2 15,821.8/km2 

Local government areas 33 25 
Number of suburbs 658 424 

CBD The City of Sydney Jongno-gu, Jung-gu, Yongsan-gu 
First COVID-19 case March 1, 2020 January 30, 2020 

Analysis period March 1, 2020 – February 28, 2021 February 1, 2020 – January 31, 2021 
Pre-COVID-19 period for 

normalizing features February 1, 2020 – February 29, 2020 January 1, 2020 – January 31, 2020 

 
The policies in Sydney and Seoul differed in their timings for implementing the restrictions on 

international arrivals and the stringency of such approaches, but they were similar in that they 
introduced restrictions before vaccinations. The policies successfully evolved over the study period to 
control community transmission of COVID-19 under different constraints. Comparing the two cities 
can provide insights into how demographic and geographical conditions may influence the effectiveness 
of mobility policy decisions. 

 

                                                      
 

8 https://www.nsw.gov.au/covid-19/news-and-media  
9 https://opendata.transport.nsw.gov.au/  
10 http://ncov.mohw.go.kr/en/  
11 https://topis.seoul.go.kr/  

https://www.nsw.gov.au/covid-19/news-and-media
https://opendata.transport.nsw.gov.au/
http://ncov.mohw.go.kr/en/
https://topis.seoul.go.kr/
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3.2 Multiple data profiles 

We illustrate multivariate data profiles and structures used as input data to a ML framework. The data 
processing model is described in Figure 1. The multivariate time-series dataset involves data profiles 
on road traffic counts and transit passenger counts in multimodal transport systems, restriction policy 
profiles, and COVID-19 related profiles for Seoul, South Korea and Greater Sydney, Australia. The 
study period is an initial year from when the first locally acquired COVID-19 case was observed in each 
city. We set the dependent variable as the number of daily COVID-19 cases in the designated area. The 
independent variables contain the mobility and the policy-related variables defined by divisions, 
features, and dates. The normalization process required defining the independent features to numbers 
from 0.0 to 1.0 based on their ratio to pre-COVID-19 mobility behavior and policy stringency, 
respectively. We transform the normalized input dataset to the principal component set in a ML 
framework to reduce structural dimensions using PCA. It helps to improve the efficiency of the GPR 
model. In the data-driven model, we apply the integrated framework of the GPR and PCA methods, as 
devised by Lee and Chen (2022). The principal components are defined as the independent variables to 
estimate the number of daily acquired COVID-19 cases in Seoul and Sydney. We present the specific 
data pre-processing and mathematical frameworks in the Method section. Analysis periods for Greater 
Sydney and Seoul cases are presented in Table 2.  

 
Figure 1. The overall framework for model construction 

 

Table 2. Analysis periods for Greater Sydney and Seoul 
 Greater Sydney Seoul 

First COVID-19 case Mar 1, 2020 Jan 30, 2020 
Analysis period Mar 1, 2020 – Feb 28, 2021 Feb 1, 2020 – Jan 31, 2021 

Pre-COVID-19 period for 
normalizing features Feb 1, 2020 – Feb 29, 2020 Jan 1, 2020 – Jan 31, 2020 
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3.2.1 Policies 

This section provides an overview of the travel restriction policies of Seoul and Greater Sydney and 
describes our procedure for coding their policies into ordinal indicators. We distinguished between 
policies for international and domestic travel restrictions to understand the similarities and differences 
between Australian and Korean policies. 

The international travel restrictions of Seoul and Sydney varied in terms of timing and target 
areas. Australia implemented an international travel ban earlier than Korea, designating mainland China 
as a travel restriction area. The Australian government confirmed the first cases of coronavirus on 
January 25, 2020, in Victoria. Responding to the spread of the virus, Australia announced a ban on air 
flight arrivals from China on February 1, 2020. While it took six days from Australia’s first case to its 
international travel ban from China, Korea announced a ban on arrivals from Hubei province 15 days 
after identifying its first case. Korea reported the first case of coronavirus in Daegu on January 20, 2020, 
and imposed a travel ban on foreign nationals who had stayed in Hubei province in the previous 14 days 
on February 4, 2020, later expanding this ban to the rest of China and other countries. 

To suppress and control the local transmission of the COVID-19, Seoul and Sydney 
instantaneously organized and subdivided policies limiting mobility and accessibility. The 
unprecedented pandemic and uncertainty about the nature of the virus derived that the governments 
reactively modified and adjusted response strategies. While some of the orders and measures were 
specific and devised on an ad hoc basis after the transmission of infections (e.g., restrictions on 
corporate gatherings in Sydney and coin karaoke in Seoul), the Australian and Korean governments 
provided comprehensive guides to their responses to the outbreak. 

On March 2, 2020, the Korean government launched a “Temporary Stop” campaign to 
encourage the public to engage in voluntary social distancing by avoiding face-to-face meetings, 
communicating online, and adhering to sanitation rules. On May 3, 2020, the government relaxed the 
level of social distancing to “social distancing in daily life” (i.e., this level prompts individual adherence 
to COVID Safe steps while maintaining social and economic activities and daily routines)12 effective 
from May 6, 2020, because the number of infections had decreased. A social distancing framework was 
introduced on June 28, 2020, to differentiate three levels of social distancing—(1) daily life, (2) 
intermediate, and (3) strict—depending on the severity of the outbreak. In response to a surge in 
infections in August 2020, the government added more robust measures for intermediate social 
distancing into the existing framework. On November 7, 2020, the social distancing regulations were 
revised to five levels (1, 1.5, 2, 2.5, and 3; see Table 3). The regulations defined distancing requirements 
for each level, such as the capacity of indoor and outdoor activities and the closure or reopening of 
cultural and arts facilities and privately owned education facilities and gyms. We used publicly available 
data from the Seoul Metropolitan Government website to find indicators such as regulations on 
compulsory mask-wearing, social distancing rules, and capacity restrictions for indoor and outdoor 
household activities, restaurants, schools, and public gatherings. 

Table 3. Criteria for social distancing levels in Seoul1) 

                                                      
 

12 Central Disaster and Safety Countermeasures Headquarters (2020, May 3). Government announces the 
change to the social distancing level to ‘social distancing in daily life’. Republic of Korea Policy Briefing 
https://www.korea.kr/news/policyNewsView.do?newsId=148872066  

https://www.korea.kr/news/policyNewsView.do?newsId=148872066
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Social 
distancing 

level 
1 1.5 2 2.5 3 

Severity of 
outbreak 

Low Community-wide Countrywide 

Social distancing in 
daily life 

Initial phase of 
community-wide 

outbreak 

Transmission phase of 
the outbreak and 
initial phase of 

countrywide outbreak 

Large-scale 
countrywide outbreak 

Countrywide 
pandemic 

Indicator 

Fewer than 100 cases 
in the metropolitan 
area, fewer than 30 
cases in other areas 
(fewer than 10 cases 

in Gangwon and Jeju) 

More than 100 cases 
in the metropolitan 
area, more than 30 
cases in other areas 
(more than 10 cases 
Gangwon and Jeju) 

One of the following 
conditions to be met 

- a twofold increase of 
cases indicated in the 

1.5 level 
- more than two areas 
persisting at the 1.5 

level 
- more than 300 cases 

in total 

More than 400-500 
cases, or a surge of 

cases (e.g., a doubled 
rate) 

 

More than 800-1,000 
cases or a surge of 

cases (e.g., a doubled 
rate) 

 

1)Source: Seoul Metropolitan Government (https://news.seoul.go.kr/welfare/archives/524124)  
 

The Australian government nationally demonstrated a guideline detailing safety measures, 
including limited operation hours and capacity of public gatherings (see Table 4). In May 2020, it laid 
out a three-step guide for responding to the outbreak in daily life settings. Step 1 was critical first small 
steps, allowing friends and family to connect and groups of people to be together in homes and the 
community. Step 2 contains slightly larger gatherings and more businesses reopening, while higher-risk 
activities have tighter restrictions. In Step 3, it is suggested to reopen business and the community with 
minimal restrictions but underpinned by COVID-safe ways of living.  

Table 4. Australian national guidelines in response to the COVID-19 outbreak1) 

Step 1 Critical first small steps: allowing friends and family to connect and groups of people to be together in homes and 
the community. 

Step 2 Slightly larger gatherings and more businesses reopening. Higher-risk activities have tighter restrictions. 

Step 3 A commitment to reopening business and the community with minimal restrictions but underpinned by COVID-
safe ways of living. 

1)Source: Department of Health, the Australian government (https://www.health.gov.au/resources/publications/3-step-
framework-for-a-covidsafe-australia) 

While both governments provided step-wise guidance to respond to the outbreak, their urban 
policies differed. In the case of Australia, states and territories can implement changes based on their 
COVID-19 conditions, so state governments have the flexibility to adapt their policies. Rather than 
pinpointing the number of infections for each level of the outbreak as in Korea’s policy framework, the 
Australian government offered more general recommendations to state governments. For this reason, 
the NSW government policy appears to be more detailed than the national policy in terms of how the 
restrictions were imposed. For instance, Sydney banned dance floors at weddings on December 20, 
2020, whereas it had allowed dance floors with up to 20 dancers on September 24, 2020. We captured 
indicators for compulsory mask-wearing, social distancing, and capacity restrictions for indoor, outdoor, 
and household activities, restaurants, pubs, schools, and public gatherings; capacity restrictions for 
public transport, weddings, hospitality, funerals, and worship; and permissions for regional and 
interstate travels. We used binary coding for these indicators and coded full restrictions as 0 and 1 
otherwise. For instance, the closure and reopening of facilities were coded as 0 and 1, respectively. 
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3.2.2 Mobility 

TOPIS and TfNSW, which were open data web services in Seoul and Sydney, respectively, store and 
provide high-dimensional time-series mobility data via in multimodal urban transport systems. Opal 
patronage data is available in TfNSW for train, bus, ferry, and light rail transit (LRT). The data structure 
involves the number of Opal hourly taps on and taps off, the date of the trip, and modes. In addition, 
TfNSW categorizes travel insights regionally into the whole of NSW, Sydney CBD, Parramatta, 
Chatswood, Macquarie Park, North Sydney, Strathfield, Newcastle, and surrounds, Wollongong and 
surrounds, and Other. We describe the overall aggregated trips of each mode in Greater Sydney in 
Appendix I(a). We integrated 455 files of Opal patronages, organized by 685 rows and six columns, 
into one spreadsheet to establish the data structure of multimodal mobility in Sydney. The usage patterns 
in the transit systems have not been quickly recovered until the end of our study period due to the 
remaining 1.5 m social distancing rules and recommended WFH policies. 

TOPIS provides the number of hourly and daily taps on and taps off at individual bus and metro 
stations per bus and train. The dataset includes station number, station name, route number (or bus 
number), and hourly taps on and taps off for 24 hours. Appendix I(b) describes the daily bus and metro 
trips for the year after the first confirmed COVID-19 case and the pre-COVID-19 period to normalize 
the features. We integrated three bus patronage files organized by 469,133 rows and 56 columns and 
17 metro patronage files organized by 202,281 rows and 25 columns into one spreadsheet to establish 
the mobility data structure for the transit system in Seoul. Although road traffic counts did not 
significantly fluctuate throughout the study period, three valleys in road traffic count patterns in off-
peak hours correspond to patterns in policies and infections in Seoul. The use of the transit system had 
significantly recovered at the end of the study period, although the level of infections was higher than 
that in Greater Sydney. 

In addition to daily and hourly patterns of passengers in transit systems, we demonstrated road 
traffic counts from TfNSW and TOPIS. TfNSW provides road traffic volume count data, including 
traffic direction, vehicle classification, date, year, month, day of week, holiday index, hourly road traffic 
counts for 24 hours, and road traffic count station data, including station ID, road name, intersection, 
road number, road hierarchy, number of lanes, road classification, region, LGA, suburb, post code, 
latitude-longitude coordinates, and direction. We utilized an application programming interface (API) 
to combine these data into one spreadsheet organized in 381,820 rows and 16 columns. Appendix I(c) 
illustrates the aggregated daily road traffic counts in Sydney CBD and Greater Sydney for morning 
peak hours from 6:00 am to 9:00 am, afternoon peak hours from 4:00 pm to 7:00 pm, and off-peak 
hours. Road traffic counts significantly decreased after the first travel restrictions were imposed and 
then recovered, at times exceeding the counts for the pre-COVID-19 period. Due to social distancing 
rules, Sydney residents appear to have changed their commuting mode from public transit to private 
vehicles on weekdays. 

TOPIS also provides hourly and daily road traffic counts collected from 135 inductive loop 
detectors installed across Seoul. We downloaded road traffic count files organized by 8,371 rows and 
30 columns for 13 months and integrated them into one spreadsheet. The files contained the date, 
location of data collection points, location ID, directions, road name, and hourly road traffic counts for 
24 hours. Appendix I(d) shows the aggregated daily road traffic counts in the CBD and Seoul for 
morning peak hours from 7:00 am to 10:00 am, afternoon peak hours from 4:00 pm to 7:00 pm, and 
off-peak hours. Although road traffic counts did not significantly fluctuate across the study period, three 
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valleys in road traffic count patterns for off-peak hours correspond to patterns for policies and infections 
in Seoul. 

We divided daily multimodal patronage data in the CBD and metropolitan areas into morning 
peak hours, afternoon peak hours, and off-peak hours according to taps on and off and by mode. The 
CBD and metropolitan road traffic counts were categorized into morning peak hours, afternoon peak 
hours, and off-peak hours according to the road hierarchy in both regions. The designated data structure 
is described as a set of independent variables in the following section. 

3.2.3 Infections 

Greater Sydney and Seoul announced daily COVID-19 news, including overseas and locally acquired 
COVID-19 cases, after observing the first case of the COVID-19 infection. A trend in COVID-19 
infections in Sydney and Seoul is illustrated in Appendix II. Appendix II(a) presents that overseas and 
locally acquired COVID-19 cases surged dramatically in Sydney in the first wave of the COVID-19 
infection, March 2020. After the initial wave of infections, locally acquired cases did not increase above 
30 cases per day in Sydney in the following waves because the federal government closed the Australian 
borders to non-residents on March 20, 2020. 

Appendix II(b) shows that Seoul avoided high infection rates for several months after the first 
confirmed cases in January 2020. The peak of the first wave was below 50 locally confirmed cases per 
day. However, locally transmitted cases in Seoul increased rapidly from August 2020. Daily infections 
were continuously above 100 cases per day after the peak of the third wave and over 500 cases toward 
the end of the study period. Overseas cases were below 15 cases per day during the first wave and below 
10 cases per day afterwards. Appendix II(c) compares the total accumulated cases in Greater Sydney 
and Seoul, including overseas and locally transmitted COVID-19 cases, to illustrate the differences in 
infection trends between the two regions. Although the total number of locally acquired COVID-19 
cases in Sydney was around 5,000 after an initial jump, the number in Seoul was approximately 25,000 
after two jumps toward the end of the study period. 

The number of locally transmitted COVID-19 cases in Seoul and Sydney was used as dependent 
variables to demonstrate causality between mobility, policy, and infections. The policy-related variables 
and mobility-related variables were normalized to explain the number of local transmissions in Sydney 
and Sydney through the integrated PCA and GPR model without a modeling bias. 

4. machine learning framework 

We describe the data normalization and the ML algorithms in this section. We developed the integrated 
PCA and GPR to predict the number of COVID-19 cases in Lee and Chen (2022). The developed 
framework was modified to explain the causality between infections, policies, and mobility in this study. 
The PCA is used to reduce data dimensions for modeling the GPR because the GPR model is more 
effective for low-dimensional data in an estimation process. As described in the previous section, the 
number of acquired COVID-19 cases in a local, Y = {yi}, ∀i ∈ I, is an outcome variable given policy 
and mobility features, X = {xi,j,k}, ∀i, j, k ∈ I, J, K, where I, J, and K denote the number of days since 
the first confirmed case, policy and mobility indicators, and time lags, respectively, in Greater Sydney 
and Seoul.  
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4.1 Data pre-processing: normalization 

This section illustrates the data process and structure for normalizing the dependent and independent 
variables in the PCA and the GPR models. We constructed two sets of dependent and independent 
variables for the Seoul and Greater Sydney areas. The dependent variable is the number of locally 
acquired cases shown in Figure 1. The independent features are mobility and policy-related indicators. 

4.1.1 The first set of independent variables: policy indicators 

The Oxford COVID-19 Government Response Tracker proposed a stringency index (SI). Chan et al. 
(2021) used the SI to quantify and normalize a qualitative form of variables, the stringency of 
government responses to COVID-19 in Hong Kong. Hale et al. (2020) provided detailed procedures 
and organizations. The basic concept of the SI was enhanced in this study to identify the relatively 
effective restriction policies and best timings for imposing the identified policies to suppress local 
transmission. The index table of the original SI was reversed from 0.0 (no restriction) to 1.0 (full 
restriction). The reverse SI was applied to each individual category of policies. This new SI was defined 
as individual inverse SI (IISI) in this study. 

Restriction policies in response to the COVID-19 crisis in NSW were categorized into 17 
variables in Table 5. The IISI from 0.0 (full restriction) to 1.0 (no restriction) was utilized to normalize 
the stringency of an individual categorized policy. The number of classes is varied across the number 
of stringency levels in each policy. For example, the mask policy has three stringency levels: not 
mandatory, partially mandatory, and mandatory. Therefore, there were three classes in the IISI for the 
mask policy, with 1.0 indicating not mandatory, 0.5 partially mandatory, and 0.0 mandatory. Table 5 
describes all policies and their stringency levels, imposition and release dates, and IISI values. The 
household capacity restriction had 11 classes in the IISI, whereas the capacity policies for public 
gatherings and transit had two classes. 

Table 5. Inverse individual stringency index (IISI) for Greater Sydney 
Policy variable Stringency level From To IISI 

(0.0-1.0) 
Mask Not mandatory   1/3/2021 1.00 

Mandatory 1/4/2021 1/29/2021 0.00 
Partially mandatory 1/30/2021   0.50 

Social distancing No social distance   3/17/2020 1.00 
Social distancing measures of 1.5 m (2.25 m2) 3/18/2020 5/31/2020 0.50 
One person per 4 m2 6/1/2020 12/25/2020 0.75 
Residents do not leave this zone (“stay-at-home” restriction) 12/26/2020 1/9/2021 0.00 
2 m2 except gym 2/10/2021   0.25 

Indoor (capacity) Unlimited   3/17/2020 1.00 
100 3/18/2020 11/23/2020 0.75 
50 11/24/2020 12/17/2020 0.50 
0 12/18/2020 12/19/2020 0.00 
No singing/chatting/dancefloors 12/20/2020 12/25/2020 0.00 
0 12/26/2020 1/1/2021 0.00 
30 1/2/2021 2/23/2021 0.25 
50 2/24/2021   0.50 

Household (capacity) Unlimited   5/14/2020 1.00 
5 5/15/2020 6/10/2020 0.20 
20 6/11/2020 12/17/2020 0.60 
0 12/18/2020 12/19/2020 0.00 
10 12/20/2020 12/23/2020 0.40 
5 12/24/2020 1/1/2020 0.20 
0 1/2/2021 1/9/2021 0.00 
10 1/10/2021 1/28/2021 0.40 
30 1/29/2021 2/23/2021 0.60 
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50 2/24/2021 3/28/2021 0.80 
Unlimited 3/29/2021   1.00 

Restaurant (group) Unlimited   5/14/2020 1.00 
10 5/15/2020 5/30/2020 0.33 
50 6/1/2020 7/16/2020 0.66 
10 7/17/2020 12/17/2020 0.33 
0 12/18/2020 12/20/2020 0.00 
10 12/21/2020   0.33 

Pub (group) Unlimited   5/31/2020 1.00 
50 6/1/2020 7/13/2020 0.75 
10 7/14/2020 10/22/2020 0.25 
30 10/23/2020 12/17/2020 0.50 
0 12/18/2020 12/20/2020 0.00 
30 12/21/2020   1.00 

School Unlimited   5/10/2020 1.00 
1 5/11/2020 6/14/2020 0.33 
2 6/15/2020 3/4/2021 0.66 
Unlimited 3/5/2021   1.00 

Outdoor (group) Unlimited   3/17/2020 1.00 
499 3/18/2020 5/14/2020 0.83 
10 5/15/2020 6/10/2020 0.00 
20 6/11/2020 10/22/2020 0.17 
30 10/23/2020 11/24/2020 0.33 
50 11/25/2020 12/29/2020 0.50 
30 12/30/2020 1/28/2021 0.33 
50 1/29/2021 3/28/2021 0.50 
200 3/29/2021   0.67 

Public gathering (capacity) Unlimited   6/30/2020 1.00 
20 7/1/2020   0.00 

Transit (capacity) Unlimited   6/30/2020 1.00 
50% 7/1/2020   0.00 

Regional travel Unlimited   3/30/2020 1.00 
No essential trip 3/31/2020 5/31/2020 0.00 
Unlimited 6/1/2020   1.00 

Interstate travel Unlimited   6/30/2020 1.00 
14 days self-isolation 7/1/2020 8/4/2020 0.33 
Hotel quarantine 8/5/2020 9/3/2020 0.00 
Permit required 9/4/2020 11/22/2020 0.66 
Unlimited 11/23/2020   1.00 

International travel Unlimited   3/17/2020 1.00 
14 days self-isolation 3/18/2020 7/7/2020 0.66 
450 7/8/2020 7/19/2020 0.33 
350 7/20/2020   0.00 

Weddings Unlimited   5/14/2020 1.00 
10 5/15/2020 5/31/2020 0.14 
20 6/1/2020 7/16/2020 0.29 
150 7/17/2020 9/23/2020 0.71 
20 9/24/2020 12/19/2020 0.29 
0 12/20/2020 1/1/2021 0.00 
100 1/2/2021 1/28/2021 0.57 
300 1/29/2021 3/28/2021 0.86 
Unlimited 3/29/2021   1.00 

Hospitality Unlimited   10/15/2020 1.00 
2 m2 10/16/2020 12/19/2020 0.66 
4 m2 12/20/2020   0.33 

Funerals Unlimited   5/14/2020 1.00 
30 5/15/2020 5/31/2020 0.00 
50 6/1/2020 7/16/2020 0.25 
100 7/17/2020 1/28/2021 0.50 
300 1/29/2021 3/28/2021 0.75 
Unlimited 3/29/2021   1.00 

Worship Unlimited   5/14/2020 1.00 
10 5/15/2020 5/31/2020 0.00 
50 6/1/2020 7/16/2020 0.25 
100 7/17/2020 10/20/2020 0.50 
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300 10/21/2020 1/1/2021 0.75 
100 1/2/2021 3/28/2021 0.50 
Unlimited 3/29/2021   1.00 

 
Our IISI table for restriction policies in Seoul is shown in Table 6. The Seoul Metropolitan 

Government followed the national social distancing regulations developed by the Korean government. 
Although the national social distancing regulations include a mask policy, the capacity of public 
gathering in complex facilities, the capacity of indoor facilities, private study and tutoring restrictions, 
childcare restrictions and restaurant restrictions, we separately developed the IISI for these six policies 
because the government imposed these policies individually when they observed COVID-19 clusters 
related to specific locations and facilities. Therefore, we introduced seven policy variables with 
corresponding IISI values to develop independent variables for the Seoul modeling. Table 6 contains 
the policy variables, stringency levels, corresponding imposition and release dates, and IISI value. 

Table 6. Inverse individual stringency index (IISI) in Seoul 
Policy variable Stringency level From To IISI 

(0.0-1.0) 
Mask 0   8/23/2020 1.00 

1 8/24/2020   0.00 
Public gathering in complex 
facilities 

Unlimited   2/24/2020 1.00 
Closed 2/25/2020 7/19/2020 0.00 
Open 7/20/2020 10/11/2020 1.00 
Partially closed 10/12/2020   0.50 

Seoul cultural center: indoor Unlimited   4/30/2020 1.00 
Closed 5/1/2020 7/22/2020 0.00 
Open 7/23/2020   1.00 

Private 
tutoring/study/sports/school 

Unlimited   8/29/2020 1.00 
Closed 8/30/2020 9/13/2020 0.00 
Open 9/14/2020   1.00 

Childcare Unlimited   2/24/2020 1.00 
Closed 2/25/2020 7/20/2020 0.00 
Open 7/21/2020   1.00 

Restaurant Unlimited   8/29/2020 1.00 
Restricted 8/30/2020 9/13/2020 0.00 
Open 9/14/2020   1.00 

Social distancing Unlimited   3/1/2020 1.00 
Phase 1.0 3/2/2020 8/15/2020 0.80 
Phase 2.0 8/16/2020 11/18/2020 0.40 
Phase 1.5 11/19/2020 12/2/2020 0.60 
Phase 2.5 12/3/2020 12/28/2020 0.00 
Phase 2.0 12/29/2020   0.20 

 
Figure 2 shows the IISI for an individual policy in Sydney and Seoul. The NSW and Seoul 

governments reactively updated the stringency levels of each policy to reduce the number of local 
acquisitions in Sydney and Seoul during the first year of the pandemic. The comprehensive inverse SIs 
for Sydney and Seoul, shown as thick red lines in Figure 2, have been maintained due to continuing a 
social distancing rule after the initial year of the COVID-19 crisis. 
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(a) Greater Sydney 

 
(b) Seoul 
Figure 2. Inverse individual stringency index (SI) and comprehensive SI for the initial period of the 
pandemic 

4.1.2 The second set of independent variables: mobility indicators 

This section describes the mobility indicators for Sydney and Seoul. We categorized the overall study 
areas into metropolitan and CBD regions. Hourly multimodal patronage and road traffic counts were 
aggregated into four groups, including AM peak, PM peak, off-peak, and daily total. Moreover, the 
patronage data is grouped into boarding and alighting groups. The road traffic count data is categorized 
into five levels of road hierarchy: arterial, distributor road, local road, motorway, primary road, and 
aggregated counts from all roads. The categorization of mobility indicators is shown in Table 7. 

Table 7. Categorization of mobility indicators 
Mobility type Category 1 Category 2 Category 3 Category 4 

Transit 
patronage 

• Greater Sydney: train, 
bus, ferry, LRT 

• Seoul: metro, bus 

Metropolitan 
CBD 

AM peak 
PM peak 
Off-peak 

Total 

Boarding 
Alighting 

Road traffic 
count All vehicles Metropolitan 

CBD 

AM peak 
PM peak 
Off-peak 

Total 

Arterial 
Distributor 
Local road 
Motorway 

Primary road 
Aggregated 
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In addition to the local mobility indicators, we added the number of daily international flights 
worldwide to measure the significance of international transportation. Furthermore, we included 7-day 
moving averages in the number of international flights to minimize random variations in international 
travel behavior. The constructed variables are described in Appendix III. We used 93 and 58 variables 
to explain the causality between infection, mobility, and policy in Sydney and Seoul, respectively. 

Mobility patterns before the era of the pandemic were used to normalize the established initial 
features. We defined the pre-COVID-19 periods as from February 1, 2020, to February 29, 2020, for 
Sydney modeling and from January 1, 2020, to January 31, 2020, for Seoul modeling. Mobility features 
were normalized by the average values for the pre-COVID-19 period corresponding features for 
weekdays and holidays. The normalized mobility features demonstrate how much each mobility feature 
varied during the pandemic compared to the pre-COVID-19 period. For example, 1.0 for a normalized 
mobility feature means that the level of the corresponding mobility was maintained even after the first 
confirmed case of the virus, whereas 0.5 means that the corresponding mobility halved during the 
COVID-19 crisis and 1.5 of the normalized mobility features means that the corresponding mobility 
increased by 50% compared to the pre-COVID-19 period. 

The normalized mobility features for Greater Sydney and Seoul are given in Figure 3. The gray 
lines denote all normalized mobility features, and the colored lines represent the average values of 
normalized mobility features per mode, including international flights. 

 
(a) Greater Sydney 

 
(b) Seoul 
Figure 3. Averages of normalized mobility features for each transport mode 
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Figure 3(a) demonstrates that road traffic counts in the CBD and metropolitan areas of Sydney 
dramatically decreased compared to the pre-COVID-19 period. They, however, increased to over 1.0, 
which means larger road traffic counts than during the pre-COVID-19 period before the arrival of the 
second wave of infections. Patterns of transit patronages constantly retained below 0.5 of mobility 
indicators due to the continuing social distancing rules in NSW. Figure 3(b) shows that road traffic 
counts in Seoul slightly increased to over 1.0 of mobility indicators and then decreased below 1.0 after 
October 2020 as the infection rates of COVID-19 continuously fell for the 2020-2021 winter season. 
Unlike in Greater Sydney, transport patronage in Seoul did not significantly decline because 1.5 m 
social distancing was not mandatory on public transport. 

4.1.3 Multivariate time-series features 

In this section, we construct multivariate time-series features. Our feature matrix, X, comprises I 
observations described by J variables for K time-lags. It is represented by the I × J × K matrix X, whose 
generic element is xi,j,k. In this study, I denotes 381 and 384 days for Greater Sydney and Seoul, 
respectively, which are the number of days since the first confirmed case. J indicates the 110 and 65 
variables, including IISI for policy indicators and mobility indicators, for Greater Sydney and Seoul, 
respectively. The policy and mobility features dimension allow us to investigate which policies and 
mobility patterns significantly influence the number of local acquisitions. K is 14 in this study, which 
represents the time lag from days 1 to 14 before the instant at which the governments officially employ 
the number of locally transmitted COVID-19 cases as a dependent variable. The time-lag dimension 
enables us to identify the best moments for imposing various restriction policies to manage rapidly 
surging infections. The multivariate time-series features are described in Figure 4. 

Figure 4. The framework of multidimensional time-series features (improved from Lee and Chen, 2022) 

Figure 4 illustrates the framework of the multivariate time-series features linked to Figure 1. 
The red single column denotes daily infections, a set of dependent variables for model training and 
validating in the following sections. Y = {yi}, ∀i ∈ I illustrates the set of dependent variables. The 
multivariate time-series features consist of IISI for all policies in the yellow-colored groups and 
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normalized indicators for all mobilities in the green sets. X = {xi,j,k}, ∀i, j, k ∈ I, J, K denotes the set of 
independent features; 1,540 (110 × 14) and 910 (65 × 14) features are used to predict the daily number 
of local COVID-19 acquisitions in Sydney and Seoul, respectively. 

4.2 Principal component analysis 

We used PCA to reduce the dimensions of our constructed datasets, as PCA reconstructs the given data 
structure to maximize the variance over a set of linear combinations. We modified the traditional PCA 
mathematical framework described in Abdi and Williams (2010) to establish a set of indexes and 
parameters for the data structure proposed in this article. Rank L was defined for matrix X = {xi,j,k}, ∀i, 
j, k ∈ I, J, K, where L ≤ min{I, J, K}. The number of time-lags, K, is combined into the number of the 
independent variables, J, (i.e., X = {x1,1,1, …, x1,1,K, …, x1,J,K, …, xI,J,K}  X = {x1,1×1, …, x1,1×K, …, 
x1,J×K, …, xI,J×K}) to promote the mathematical processes in the PCA and GPR model. The mean of each 
column was located at zero to center the X columns. The matrix X has the following singular value 
decomposition: 

X = PΔQT (1) 
 

where  

P = the I × L matrix of left singular vectors,  

Q = the J × K × L matrix of right singular vectors, and  

Δ = the diagonal matrix of singular values.  

The detailed mathematical methods are described in Lee and Chen (2022).  

4.3 Gaussian process regressions 

The GPR model was utilized to forecast the number of acquired cases given the matrix of features, X, 
from the PCA. Y = {yi}, ∀i ∈ I was defined as the set of dependent variables and X = {xi,j,k}, ∀i, j, k ∈ 
I, J, K was defined as the set of independent variables in the PCA. We formulate a general form of a 
linear regression model as Equation (2) for the training set {(xi,j×k, yi), ∀i ∈ I}, where xi,j×k ∈ ℝd and yi 
∈ ℝ. 

Y = XTβ + ε, (2) 
 

where ε ∼ N (0, σ2). Latent variables, f (xi,j×k), ∀i ∈ I were derived from a Gaussian process, and explicit 
basis functions, h, to demonstrate the dependent variable in the GPR model. Rasmussen and Williams 
(2006) presented the overall mathematical equations for GPR, and Lee and Chen (2022) explained the 
calculations for the latent variables, f (xi,j×k), on pp. 8–9. 

5. Results 

The results of the established ML approach are illustrated in this section. We used PCA to reduce the 
dimensions of the data structure and identify the most effective strategies to reduce local infections in 
Greater Sydney and Seoul. Furthermore, we verified the excellent performance of the proposed method 
in predicting locally transmitted COVID-19 cases in the two regions compared to other methods. 
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5.1 Cross-validation 

Cross-validation methods (Stone, 1974) were used to assess the accuracy of the devised ML model over 
the given datasets to avoid overfitting and selection bias. The datasets from Sydney and Seoul were 
folded and shuffled five times (i.e., we used a five-fold cross-validation method) to reduce their 
variability and clarify the generalizability of the ML model over future unknown datasets. The root-
mean-square-error (RMSE) was used to measure the accuracy of the models and was determined as 
follows: 

𝜀𝜀𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)𝑖𝑖
2

∀𝑖𝑖

𝐼𝐼
 (3) 

 

where i ∈ I and 𝑦𝑦�𝑖𝑖 are the predictions. We compared the RMSE of the ML model with those of other 
models (Table 8). Specifically, we used the regression learner app13 in MATLAB R2020b to produce 
six groups of ML approaches: linear regression models, regression trees, support vector machines, 
Gaussian process regression models, ensembles of regression trees, and neural network regression 
models. Several configurations were designed, as indicated in the second column in Table 8. Moreover, 
we examined the accuracy of the predictions with and without PCA in the ML model and in other 
models for the Seoul and Greater Sydney areasj, respectively. 

Table 8. Comparing RMSE values of the constructed model and alternative models 
  RMSE 

Without PCA With PCA 
Group Model option Seoul Sydney Seoul Sydney 

Linear regression 
models 

Basic linear 208.340 32.516 41.3271) 6.277 
Interactions linear n/a n/a 261.280 32.111 
Robust linear n/a n/a 42.825 6.806 

Regression trees 
Fine 40.277 12.068 55.377 9.025 
Medium 39.210 11.480 50.074 8.319 
Coarse 57.510 10.202 65.829 9.885 

Support 
vector 

machines 

Linear 57.985 8.108 62.898 9.834 
Quadratic 37.931 6.081 44.123 8.064 
Cubic 43.847 6.146 39.534 7.169 
Fine Gaussian 101.870 11.818 74.626 11.103 
Medium Gaussian 50.633 8.656 93.439 11.702 
Coarse Gaussian 80.097 10.826 109.100 12.514 

Gaussian process 
regression models 

Rational quadratic 37.107 5.500 35.550 6.165 
Squared exponential 37.205 11.673 36.588 6.165 
Matern 5/2 40.514 5.460 35.624 6.096 
Exponential2) 32.477 5.448 30.0593) 4.508 

Ensembles of 
regression trees 

Boosted 29.270 7.662 38.387 6.791 
Bagged 31.371 8.012 50.794 7.756 

Neural network 
regression models 

Narrow 34.546 6.247 44.895 6.049 
Medium 37.282 6.007 41.855 5.915 
Wide 36.128 5.882 37.331 5.859 

                                                      
 

13 https://au.mathworks.com/help/stats/choose-regression-model-options.html  

https://au.mathworks.com/help/stats/choose-regression-model-options.html
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Bilayered 35.970 5.813 45.151 6.137 
Trilayered 34.197 5.814 43.769 8.758 

1) The bold notations present the proposed GPR model with exponential kernel functions in both areas.  
2) The underlined notations present the RMSE values of three models illustrated in Figures 5-6 and Table 9. 
3) The red notations present the RMSE values of the integrated PCA and GPR models in both areas. 
 

As shown in Table 8, the integrated PCA and GPR models outperformed the other models and 
achieved the lowest RMSE (30.059 and 4.508 for Seoul and Sydney, respectively). The calculation 
times for the PCA+GPR model were 411.65 s and 204.58 s for Greater Sydney and Seoul, respectively. 
These results indicate that the dimensions of the original data structure were decreased, which improved 
the predication accuracy, and the integrated model was superior to the other ML algorithms in 
forecasting the number of local acquisitions of COVID-19.  

The GPR model with exponential kernel functions also performed well, as indicated by the low 
RMSEs (32.477 and 5.448 for Seoul and Greater Sydney, respectively). The RMSE of the tri-layered 
neural network regression model without PCA (34.197 and 5.814 for Seoul and Greater Sydney, 
respectively) were lower than those of the linear regression models, regression trees, support vector 
machines, and ensembles of regression trees, which did not accurately predict the number of daily 
COVID-19 infections from the datasets. Figure 5 presents a comparison of the performances of the four 
best models: the basic linear regression model (the reference model), the tri-layered neural network 
regression model, the Gaussian process regression model, and out developed PCA+GPR model.  

  
(a) Greater Sydney (b) Seoul 
Figure 5. Scatter plots of predictions by the developed models. LR = basic linear regression, NN = 
trilayered neural network regression, GPR = Gaussian process regression, PCA+GPR = integrated PCA 
and GPR 
 

In Figures 5(a) and (b), estimates generated by our framework are densely distributed on the 
periphery of the ideal prediction lines. In contrast, the other models produce estimates that are widely 
scattered around the graphs as the size of the predictions increases. Our methods produced R-squared 
values of 0.848 and 0.911 for Sydney and Seoul, respectively. The statistical results of the selected four 
models are presented in Table 9. 

Table 9. Statistical results of the four best-performing models 
  Greater Sydney Seoul 
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  Observa
tion LR NN GPR PCA+ 

GPR 
Observa

tion LR NN GPR PCA+ 
GPR 

MOE 

RMSE n/a 6.28 5.81 5.76 4.511) n/a 41.33 34.20 32.48 30.06 
R-squared n/a 0.708 0.755 0.760 0.848 n/a 0.831 0.885 0.901 0.911 
Pearson 

Correlation n/a 0.84 0.87 0.87 0.92 n/a 0.91 0.94 0.95 0.95 

Stats 

Observation 381 384 
Variables n/a 45 1,540 1,540 45 n/a 32 910 910 32 

Mean 5.71 5.57 5.37 5.64 5.55 60.68 59.04 57.35 62.03 59.86 
Standard 

error 0.59 0.54 0.57 0.57 0.53 5.16 4.83 4.92 5.27 4.81 

Median 1.00 3.27 1.05 1.84 1.72 14.00 31.08 9.38 13.25 14.37 
Standard 
deviation 11.54 10.49 11.12 11.18 10.36 100.69 94.29 96.07 102.82 93.93 

Sample 
variance 133.19 110.01 123.65 124.98 107.39 10139.2 8891.13 9229.42 10571.9 8823.15 

Kurtosis 14.80 8.51 15.76 19.04 13.88 6.15 2.61 4.90 7.24 4.81 
Skewness 3.57 2.53 3.74 4.13 3.52 2.41 1.70 2.29 2.58 2.24 

Range 81.00 68.60 78.02 77.66 65.98 584.00 469.85 506.83 566.03 497.61 
Minimum 0.00 -11.06 -0.97 -2.10 -1.43 0.00 -79.50 -2.34 -1.35 -7.59 
Maximum 81.00 57.54 77.06 75.56 64.55 584.00 390.36 504.48 564.68 490.02 

Sum 2177.0 2123.4 2045.9 2149.3 2115.7 23120.0 22494.9 21851.6 23634.7 22806.2 
Largest 81.00 57.54 77.06 75.56 64.55 584.00 390.36 504.48 564.68 490.02 
Smallest 0.00 -11.06 -0.97 -2.10 -1.43 0.00 -79.50 -2.34 -1.35 -7.59 

1)The bold and red notations indicate the measure of effectiveness (MOE) values of the proposed model. 
 

The RMSEs of the established model (4.51 for Greater Sydney and 30.06 for Seoul) are smaller 
than those of the other models. Moreover, compared with the R-squared values of the other models, 
those of the PCA+GPR model (0.848 in Greater Sydney and 0.911 in Seoul) are higher, which 
demonstrates its superiority. The high Pearson correlations of the PCA+GPR model (0.92 for Greater 
Sydney and 0.95 for Seoul) indicate that the values predicted by the PCA+GPR model are strongly 
correlated with the observed number of acquisition cases in Sydney and Seoul. Figure 6 compares the 
observations and estimates of daily COVID-19 cases with the model validations. 

 
(a) Greater Sydney 
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(b) Seoul 
Figure 6. Daily locally transmitted COVID-19 cases, LR = basic linear regression, NN = tri-layered 
neural network regression, GPR = Gaussian process regression, PCA+GPR = integrated PCA and GPR 
 

Our framework describes the global waves of COVID-19 case acquisitions and locally 
fluctuating waves of acquisitions in both regions during the first year of the COVID-19 pandemic with 
minor errors. The estimates yielded by the PCA+GPR model are identical to the observations in all 
periods. The linear regression model tends to overestimate the infections when the number of infections 
is small in both regions, and the neural network model underestimates the number of infections in the 
large waves in both areas. The comparison results demonstrate that our data processing, normalization, 
and estimation framework adequately estimates the number of acquired COVID-19 cases in Seoul and 
Sydney. 

5.2 Principal component analysis 

We used MATLAB R2020b packages to find the matrix Q based on the proposed data structure. The 
PCA computes 127 and 97 components for Greater Sydney and Seoul, respectively, to explain 99% of 
the inertia of the data structure. The top 10 principal components explain 81.8% of the variance (42.1%, 
17.1%, 6.3%, 4.4%, 2.8%, 2.7%, 1.9%, 1.7%, 1.5%, and 1.3%, respectively) for Greater Sydney. For 
Seoul, the top 10 principal components explain 81.9% of the inertia (34.5%, 17.9%, 6.2%, 4.1%, 4.0%, 
3.5%, 3.5%, 3.4%, 2.5%, and 2.3%, respectively). The scatter plots in Figure 7 illustrate how the top 
three principal components, explaining 65.5% and 58.6% of the variance in Greater Sydney and Seoul, 
respectively, capture the inertia of the given data structure. 

  
(a) Greater Sydney (1,540 features) (b) Seoul (910 features) 
Figure 7. The inertia of the data structure explained by the top three principal components 



 
 

25 
 
 

The 1,540 features for Greater Sydney and 910 features for Seoul are represented in a series of 
biplots by a vector in Figure 7. The first principal component explains the largest variability. We 
conducted a covariance analysis of the transformed variables, and the covariance matrixes are presented 
in Table 10. None of the principal components for Greater Sydney and Seoul were larger than zero 
except for those presented as diagonal values. 

Table 10 (a). Covariance table of the top-10 principal components for Greater Sydney  
PCA01 PCA02 PCA03 PCA04 PCA05 PCA06 PCA07 PCA08 PCA09 PCA10 

PCA01 48.21 
         

PCA02   19.62 
        

PCA03     7.19 
       

PCA04       5.06 
      

PCA05         3.21 
     

PCA06           3.10 
    

PCA07             2.16 
   

PCA08               1.90 
  

PCA09                 1.69 
 

PCA10                 
 

1.54 
 
Table 10 (b). Covariance table of the top-10 principal components for Seoul  

PCA01 PCA02 PCA03 PCA04 PCA05 PCA06 PCA07 PCA08 PCA09 PCA10 
PCA01 11.01          
PCA02   5.69         
PCA03     1.99        
PCA04       1.30       
PCA05         1.27      
PCA06           1.11     
PCA07             1.10    
PCA08               1.07   
PCA09                 0.80  
PCA10                  0.73 

 
We decomposed the first principal component to identify which and when mobility and policy 

indicators effectively reduced the number of locally transmitted cases. We compared the loading values 
in matrix Q to comprehensively understand the distributed loadings of each feature, although it is 
impossible to define causal relationships between features through the PCA. Figure 8 presents loading 
fluctuations in policy indicators with regard to a time-lag in the first and second principal components. 
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(a) PC 1 for Sydney (b) PC 2 for Sydney (c) PC 1 for Seoul (d) PC 2 for Seoul 
Figure 8. Loading fluctuations in the policy indicators  

Figure 8(a) shows that the regional travel ban, the social distancing rule, and the capacity 
limitation of outdoor activities significantly contributed to building the first principal component for 
Greater Sydney. These three policies were relatively more effective at reducing the number of local 
transmissions in Sydney than other policies. According to the loading tendency, the best timings for the 
regional travel ban, the social distancing rule, and the limitation of outdoor activities were one day, one 
day, and seven days prior to the base date, respectively, even if the loadings in these three policies did 
not change significantly as the time-lag increased. Figure 8(b) shows that capacity limitations on public 
transport and public gatherings, and the international travel ban contributed to the second principal 
component in Greater Sydney under the constraint of being orthogonal to the first principal component. 
The best timings for these three policies were two days, two days, and six days before the base date.  

Figure 8(c) shows that the mask policy and social distancing rules effectively reduce the number 
of locally transmitted cases in Seoul, as indicated by the first principal component. The best timing for 
both policies is one day before the base date. Figure 8(d) shows that restrictions on public gatherings 
and child care significantly contributed to building the second principal component. Their best timings 
were eight and six days prior to the base date, respectively. Figure 9 illustrates the loading fluctuations 
for the mobility indicators. 

    
(a) PC 1 for Sydney (b) PC 2 for Sydney (c) PC 1 for Seoul (d) PC 2 for Seoul 
Figure 9. Loading fluctuations in the mobility indicators 

Figure 9(a) shows that a decline in transit patronage in the CBD for five to ten days before the 
base date significantly decreased the number of locally acquired COVID-19 cases in Sydney. 
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Furthermore, decreases in transit patronage eight to nine days prior to the base date in the metropolitan 
area reduced the locally confirmed cases. Decreased road traffic counts had an insignificant impact on 
the number of infections in Greater Sydney. In Figure 12(b), the loading distribution in the second 
principal component is similar to that in the first principal component. Transit patronage patterns had a 
more significant influence on decreasing the number of infections than road traffic counts in Greater 
Sydney. In contrast, road traffic counts had a negative impact on the number of infections. We can 
assume that vehicular traffic increased because of the capacity limitations on public transport and 
personal preferences during the COVID-19 crisis in Greater Sydney. 

As shown in Figure 9(c), reduced road traffic counts in the CBD for one to four days prior to 
the base date significantly decreased the number of local acquisitions of the COVID-19 in Seoul. In 
addition, declining transit patronage did not significantly reduce infections in the first principal 
component. Figure 9(d) shows that the second principal component mainly explains the influences of 
reduced transit patronages on infections. The reduced transit patronage in the CBD for 11–14 days 
before the base date significantly contributed to building the second principal component. 

In summary, we used PCA to reduce the dimensions of the data structure. Moreover, we 
examined the loading values in the matrix Q to understand which and when policy and mobility 
indicators effectively reduced the number of COVID-19 transmissions in Sydney and Seoul. Our policy 
analysis suggests that the regional travel ban, the social distancing rules, and the limitation of outdoor 
activities imposed respectively one day, one day, and seven days before the base date were effective in 
Greater Sydney. In Seoul, the mask policy and the social distancing rules imposed one day before the 
base date were the most effective for reducing the number of locally transmitted cases. Our mobility 
analysis suggests that reduced transit patronage was the most critical mobility factor in reducing 
COVID-19 infections in Greater Sydney and Seoul. 

5.3 Gaussian process regressions 

Using the Gaussian process regression model with the exponential option and without PCA, as 
illustrated in Table 8, we obtain the length scales σm and signal standard deviation σf. The set of 
optimized length scales based on the log of length scales enable determination of the features that 
decreased the number of locally transmitted COVID-19 cases in our study areas. The number of 
predictors below the inflection point in the graph of the log of length scales was 45 for Greater Sydney 
and 32 for Seoul. Complete lists of predictors that are adequate to explain infections according to the 
log of length scales are presented in Appendixes IV and V. Table 11 presents the log of length scales 
with the ten features most effective at reducing the number of infections in each region. 

Table 11. A graph of the log of length scales of the top ten features most effective at reducing infection 
Greater Sydney Seoul 
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P/M Feature Time-lag 
Log of 
length 
scale 

P/M Feature Time-lag 
Log of 
length 
scale 

Policy School closure 3 -12.54 Policy Public gathering 14 -4.14 
Policy International travel 7 0.26 Policy Public gathering 13 -3.61 
Policy International travel 3 0.26 Policy Public gathering 12 -2.60 
Policy International travel 11 0.51 Policy Childcare 12 0.04 
Policy International travel 13 0.68 Policy Childcare 13 0.06 
Policy Regional travel 9 0.73 Policy Social distancing 4 0.22 
Policy Regional travel 5 0.75 Policy Mask 7 0.57 
Policy Social distancing 14 0.96 Policy Social distancing 13 0.65 
Policy Social distancing 4 0.97 Policy Social distancing 9 0.75 
Policy Social distancing 5 1.15 Policy Social distancing 6 0.93 

 
Table 11 shows that the school closure restriction, the international travel ban, the regional 

travel ban, and the social distancing rule effectively reduced the number of locally transmitted COVID-
19 cases in Greater Sydney. The most effective timings for all policies are scattered between 3 and 14 
days before the base date. In Seoul, the public gathering restriction, the childcare closure restriction, the 
social distancing rule, and the mask rule effectively reduced the number of infections. Their most 
effective dates are distributed between 4 and 14 days before the base date. Although mobility indicators 
are included in the complete lists of features provided in Appendixes I and II, their impacts were not 
significant relative to the influences of policy indicators. 

6. Conclusions and discussion 

In this study, we investigate the spatiotemporal relationships between COVID-19 infections, urban 
travel restriction policies, and multimodal travel behavior patterns for the original strain of the virus 
during the first year of the COVID-19 crisis before vaccinations. We established time-series 
multidimensional features involving daily local, quarantined, and international infections and death 
rates from the acquisition of COVID-19, several restriction levels of policies related to COVID-19, and 
daily and hourly travel patterns in multiple transport modes in selected areas, Greater Sydney and Seoul. 
Specifically, the ML approach describes spatiotemporal causality between restriction policies, mobility, 
and the acquisition of COVID-19. The PCA was employed to discover effective COVID-19 related 
policies and travel patterns at the first level. The PCA was also used to demonstrate the most effective 
timings for implementing such policies to reduce the number of transmitted COVID-19 cases in Sydney 
and Seoul. 
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The contributions of this study can be summarized as follows. 1) We subdivided and normalized 
policies that restrict travel accessibility and mobility and multimodal travel patterns to investigate the 
spatiotemporal aspects of each policy for the first year of the COVID-19 pandemics. 2) We calibrated 
and validated the ML approach using open data collected from two metropolitan areas, Greater Sydney 
and Seoul, to address future pandemic scenarios in other metropolitan areas. 3) PCA and GPR were 
integrated to identify the effective policies and the timings at which they should be imposed in response 
to the pandemic in the initial period to control instantaneously increasing rates of COVID-19 
acquisitions. 4) Our framework could identify the specific policies and mobility patterns that 
considerably affect the number of locally transmitted COVID-19 cases. 

The technical contributions of our ML approach can be summarized as follows. Open-source 
datasets were used to construct multi-dimensional time-series datasets incorporating mobility and 
restriction policy-related features. Because of the immense size of the data features, we applied PCA to 
decrease the dimensions of the data structure. PCA also allowed us to analyzing loadings in the first 
and second principal components, thereby enabling us to determine the policy and mobility indicators 
and the corresponding implementation timings that helped to decrease the number of local COVID-19 
transmissions in Sydney and Seoul, respectively. Our policy analysis indicated that the regional travel 
ban, physical distancing rule, and limitations on outdoor activities imposed 1 day, 1 day, and 7 days 
before the base date, respectively, were effective in Greater Sydney. The mask policy and physical 
distancing rules imposed 1 day before the base date were the most effective policies for reducing the 
number of locally transmitted cases in Seoul. The mobility analysis indicated that reduced transit 
patronage was effective at reducing the spread of COVID-19 infections in Greater Sydney and Seoul. 

A GPR model was used to define the effective restriction policy and mobility indicators and 
their most effective imposition dates in Greater Sydney and Seoul. The school closure, international 
travel ban, regional travel ban, and physical distancing rule effectively reduced the number of local 
acquisitions in Sydney. The most effective timings for all of the policies were ranged from 3 to 14 days 
before the base date. In Seoul, the public gathering restriction, childcare closure, physical distancing 
rule, and mask rule effectively reduced the number of infections. The effective dates were ranged from 
4 and 14 days prior to the base date. Although mobility indicators are included in the lists of features 
provided in Appendixes I and II, their effects were not significant relative to the influence of the policy 
indicators. 

The proposed method paves the way for the application of integrated ML algorithms to 
effectively impose restriction policies in response to the spread of COVID-19 in temporal and spatial 
dimensions. Moreover, we demonstrated the time-lag findings to decide when and which specific 
restriction policies should be imposed to respond to upcoming pandemic shocks depending on the 
demographic and geographic conditions of the target areas before introducing vaccinations. For 
example, sparsely populated countries with a vast geographic area, such as Australia, could impose an 
international travel ban, regional travel ban, and social distancing rules, in that order. In contrast, 
densely populated countries with highly developed technology infrastructure, such as Korea, should 
impose public gathering restrictions, childcare restrictions, mask rules, and social distancing rules, in 
that order.  

Our findings, based on PCA and GPR modeling, have far-reaching policy implications. We 
identified the largest proportion of variance explained in each PC in the PCA by interpreting PCA 
coefficients. Moreover, based on the GPR framework, we demonstrated the set of optimized length 
scales using the log of length scales, which helped to identify the features that contributed to decreasing 
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the number of locally transmitted COVID-19 cases in our study areas. First, our methods can be used 
for formulating restriction policies for other regions with population densities different to those of the 
cities selected in this case study. This generalizability can help policymakers to better implement and 
enforce effective restriction policies. Second, our finding contributes to evidence-based policymaking. 
Restriction policies inherently create socio-economic challenges. By increasing the objectivity and 
effectiveness of restriction policies, our framework can help to alleviate any socio-economic challenges 
and increase the probability of achieving policy goals. Future research can be focused on the addition 
of vaccination indicators into the model to construct long-term policies and mobility responses to 
COVID-19 variants. Moreover, data pertaining to vaccines, daily percentages of citizens vaccinated, 
and daily infections of diverse variants can be added to the established multivariate time-series datasets. 
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Appendix I. Mobility patterns in Greater Sydney and Seoul for the initial year of the COVID-19 crisis 

 
(a) Daily transit trips in Greater Sydney 

 
(b) Daily transit trips in Seoul 

 
(c) Daily road traffic counts in Greater Sydney 

 
(d) Daily road traffic counts in Seoul 
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Appendix II. Daily COVID-19 cases in the initial period of the COVID-19 crisis 

 
(a) Sydney 

 
(b) Seoul 

 
(c) Accumulated total infections 
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Appendix III. Constructed variables used for modeling the infection-mobility-policy cycle 

Mode Variable 
Greater Sydney Seoul 

Metropolitan CBD Metropolitan CBD 
Number of daily international flights O1) X2) O X 

7-day moving averages in international flights O X O X 

Bus 

Boarding AM peak hour O O O X 
Boarding PM peak hour O O O X 
Boarding off-peak hour O O O X 

Total boarding O O O O 
Alighting AM peak hour O O O X 
Alighting PM peak hour O O O X 
Alighting off-peak hour O O O X 

Total alighting O O O O 

Train 

Boarding AM peak hour O O O O 
Boarding PM peak hour O O O O 
Boarding off-peak hour O O O O 

Total boarding O O O O 
Alighting AM peak hour O O O O 
Alighting PM peak hour O O O O 
Alighting off-peak hour O O O O 

Total alighting O O O O 

Ferry 

Boarding AM peak hour O O X X 
Boarding PM peak hour O O X X 
Boarding off-peak hour O O X X 

Total boarding O O X X 
Alighting AM peak hour O O X X 
Alighting PM peak hour O O X X 
Alighting off-peak hour O O X X 

Total alighting O O X X 

Light rail 

Boarding AM peak hour O O X X 
Boarding PM peak hour O O X X 
Boarding off-peak hour O O X X 

Total boarding O O X X 
Alighting AM peak hour O O X X 
Alighting PM peak hour O O X X 
Alighting off-peak hour O O X X 

Total alighting O O X X 

Vehicle counts 
for AM peak 

Arterial O O O O 
Distributor O X O O 

Local O X O O 
Motorway O O O X 
Primary O X O X 

Aggregated O O O O 

Vehicle counts 
for PM peak 

Arterial O O O O 
Distributor O X O O 

Local O X O O 
Motorway O O O X 
Primary O X O X 

Aggregated O O O O 

Vehicle counts 
for off-peak 

Arterial O O O O 
Distributor O X O O 

Local O X O O 
Motorway O O O X 
Primary O X O X 

Aggregated O O O O 
1)O indicates that the corresponding variable is included in the constructed mobility data structure. 
1)X indicates that the corresponding variable is not included in the constructed mobility data structure. 
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Appendix IV. Predictors below the inflection point in a graph of the log of length scales in Greater 
Sydney 

Log of 
length scale 

Attributes of features 
Time-

lag Policy/Mobility Indicator Tap 
on/off Time Region Road 

hierarchy 
-12.54 3 Policy School n/a n/a Metropolitan n/a 
0.26 7 Policy International Travel n/a n/a Metropolitan n/a 
0.26 3 Policy International Travel n/a n/a Metropolitan n/a 
0.51 11 Policy International Travel n/a n/a Metropolitan n/a 
0.68 13 Policy International Travel n/a n/a Metropolitan n/a 
0.73 9 Policy Regional Travel n/a n/a Metropolitan n/a 
0.75 5 Policy Regional Travel n/a n/a Metropolitan n/a 
0.96 14 Policy Social Distancing n/a n/a Metropolitan n/a 
0.97 4 Policy Social Distancing n/a n/a Metropolitan n/a 
1.15 5 Policy Social Distancing n/a n/a Metropolitan n/a 
1.16 1 Policy Indoor n/a n/a Metropolitan n/a 
1.21 1 Policy Pub n/a n/a Metropolitan n/a 
1.24 2 Policy International Travel n/a n/a Metropolitan n/a 
1.27 5 Policy Interstate Travel n/a n/a Metropolitan n/a 
1.27 10 Policy Social Distancing n/a n/a Metropolitan n/a 
1.33 4 Policy Regional Travel n/a n/a Metropolitan n/a 
1.33 12 Policy Transit n/a n/a Metropolitan n/a 
1.33 12 Policy Public Gathering n/a n/a Metropolitan n/a 
1.63 12 Policy International Travel n/a n/a Metropolitan n/a 
1.81 11 Policy Regional Travel n/a n/a Metropolitan n/a 
1.82 1 Policy Interstate Travel n/a n/a Metropolitan n/a 
1.94 12 Mobility LRT Tap on PM peak CBD n/a 
1.97 6 Policy International Travel n/a n/a Metropolitan n/a 
1.98 13 Mobility Bus Tap on AM peak CBD n/a 
2.09 3 Mobility Ferry Tap off PM peak Metropolitan n/a 
2.10 13 Mobility Road traffic counts n/a PM peak CBD Total 
2.14 5 Mobility Road traffic counts n/a Off peak Metropolitan Primary 
2.15 12 Mobility Bus Tap off PM peak CBD n/a 
2.18 2 Mobility Ferry Tap off PM peak Metropolitan n/a 
2.19 4 Mobility Ferry Tap on PM peak Metropolitan n/a 
2.20 11 Mobility Ferry Tap on Off peak CBD n/a 
2.20 6 Mobility Road traffic counts n/a  Off peak Metropolitan Primary 
2.24 10 Mobility LRT Tap off AM peak CBD n/a 
2.29 3 Mobility Ferry Tap on AM peak Metropolitan n/a 
2.30 2 Policy School n/a n/a Metropolitan n/a 
2.31 14 Policy Interstate Travel n/a n/a Metropolitan n/a 
2.32 12 Mobility Road traffic counts n/a Off peak Metropolitan Primary 
2.34 7 Mobility Road traffic counts n/a PM peak Metropolitan Primary 
2.38 3 Mobility Road traffic counts n/a Off peak Metropolitan Distributor 
2.39 9 Mobility Road traffic counts n/a Off peak Metropolitan Total 
2.40 4 Mobility Road traffic counts n/a PM peak Metropolitan Arterial 
2.54 6 Mobility Road traffic counts n/a AM peak Metropolitan Primary 
2.79 11 Mobility Road traffic counts n/a PM peak Metropolitan Total 
2.83 2 Mobility Road traffic counts n/a PM peak Metropolitan Primary 
3.35 3 Mobility Road traffic counts n/a PM peak Metropolitan Motorway 
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Appendix V. Predictors below the inflection point in a graph of the log of length scales in Seoul 

Log of 
length scale 

Attributes of features 
Time 
lag Policy/Mobility Indicator Tap 

on/off Time Region Road 
hierarchy 

-4.14 14 Policy Public Gathering n/a n/a  Metropolitan n/a 
-3.61 13 Policy Public Gathering n/a n/a Metropolitan n/a 
-2.60 12 Policy Public Gathering n/a n/a Metropolitan n/a 
0.04 12 Policy Childcare n/a n/a Metropolitan n/a 
0.06 13 Policy Childcare n/a n/a Metropolitan n/a 
0.22 4 Policy Social Distancing n/a n/a Metropolitan n/a 
0.57 7 Policy Mask n/a n/a Metropolitan n/a 
0.65 13 Policy Social Distancing n/a n/a Metropolitan n/a 
0.75 9 Policy Social Distancing n/a n/a Metropolitan n/a 
0.93 6 Policy Social Distancing n/a n/a Metropolitan n/a 
1.00 11 Policy Mask n/a n/a Metropolitan n/a 
1.13 13 Mobility Bus Tap off AM peak Metropolitan n/a 
1.16 1 Policy Social Distancing  n/a n/a  Metropolitan n/a 
1.19 7 Mobility Road traffic counts n/a  Off peak Metropolitan Motorway 
1.24 1 Mobility Road traffic counts n/a AM peak CBD Local 
1.25 11 Mobility Road traffic counts n/a PM peak Metropolitan Distributor 
1.31 10 Mobility Road traffic counts n/a PM peak Metropolitan Arterial 
1.36 11 Mobility Road traffic counts n/a  Off peak Metropolitan Arterial 
1.37 14 Mobility Bus Tap off AM peak Metropolitan n/a 
1.37 2 Policy Social Distancing n/a n/a Metropolitan n/a 
1.38 6 Policy Mask n/a n/a Metropolitan n/a 
1.65 6 Mobility Road traffic counts n/a AM peak Metropolitan Motorway 
1.88 11 Mobility Road traffic counts n/a AM peak Metropolitan Arterial 
2.12 12 Policy Mask n/a n/a  Metropolitan n/a 
2.14 5 Mobility Bus Tap off AM peak CBD n/a 
2.17 4 Policy Restaurant n/a n/a Metropolitan n/a 
2.17 4 Policy School n/a n/a Metropolitan n/a 
2.26 5 Mobility Road traffic counts n/a AM peak CBD Local 
2.60 12 Policy School n/a n/a Metropolitan n/a 
2.60 12 Policy Restaurant n/a n/a Metropolitan n/a 
3.12 11 Policy Restaurant n/a n/a Metropolitan n/a 
3.12 11 Policy School n/a n/a Metropolitan n/a 
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