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Abstract

Viruses found in effluent and on membrane surface during ultrafiltration (UF)
processes will introduce hidden biosecurity dangers to drinking water. Fe3* coagulation and
H,0, were combined to create an in-situ membrane cleaning method in this study, and MS2
bacteriophage was used as a model to investigate virus removal by UF when humic acid
(HA) was present in raw water. The results showed that 0.50 log PFU/mL MS2 was
removed by UF when HA concentration was 6 mg/L based on size exclusion,
hydrophobicity, and electrostatic repulsion. Meanwhile, HA inhibiting the adsorption of
MS?2 to the membrane surface, which slightly reduced MS2 accumulation on membrane
surface. A 0.08 mmol/L Fe** pretreatment eliminated MS2 in the effluent by the adsorption
and size exclusion of iron flocs. Furthermore, the number of MS2 retained on the
membrane surface dropped from 5.84 log PFU/cm? to 3.84 log PFU/cm? through
electrostatic repulsion. MS2 on the membrane surface was effectively inactivated with viral
protein capsid destroyed by in-situ cleaning of iron flocs-H,O, through HO- oxidation. The
mitigation efficiency of membrane fouling was greatly improved with a flux recovery of
97.8%. Moreover, the amount of H,O, was reduced (3%) compared to no Fe** pretreatment
(12%), which could greatly save costs. This study provides a potentially useful and
economical enhanced membrane cleaning method for virus-containing water treatment by
UF, which could not only eliminate viruses and mitigate membrane fouling in UF system
but also reduce the use of membrane cleaning agents to save costs.

Keywords: Ultrafiltration; NOM; virus removal; iron flocs-H,O,; in-situ cleaning
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1. Introduction

Ultrafiltration (UF) is a promising physico-chemical process to remove virus in
drinking water, showing the advantages of high efficiency and low risks of virus mutation,
drug resistance, etc. '3, However, some viruses with small diameters, such as adenovirus,
rotavirus, norovirus, bacteriophage, etc., can still pass through the pores of UF membranes
69 Ozone, ultraviolet, and chlorine disinfection are traditional methods to inactivate
pathogens in drinking water plants operation %13, These methods, however, may not be
effective in the removal of some strongly resistant viruses 7. For this reason, how to
improve the virus retention efficiency by UF is an urgent issue that needs to be solved.

Viruses can be removed during membrane treatment by various mechanisms, such as
electrostatic repulsion, size exclusion, hydrophobic interaction and adsorption 416, Natural
organic matter (NOM) in feedwater can promote virus retention efficiency through multiple
mechanisms 720, The accumulation of organics on the membrane surface will increase
virus interception and improve the contribution of size exclusion on virus removal.
ElHadidy et al reported that virus removal was improved by humic substances adhering to
the membrane surface and the increase of negative charge and hydrophobicity !°. However,
NOM will aggravate membrane fouling and cause increased energy consumption 2022,
Therefore, it is imperative to devise a strategy that can not only reduce viruses in the
effluent but also mitigate membrane fouling.

Coagulation pre-treatment can be an effective solution to simultaneously reduce

membrane fouling and enhance virus removal 23-26, Kreifel et al. reported that low dosages
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of polyaluminum chloride (PACIl) coagulation treatment could inactivate MS2 and Qf
bacteriophages 2’. Zhu et al. demonstrated over 4-log MS2 removal by iron coagulation
enhanced microfiltration, which was significantly higher than microfiltration alone 28. The
virus removal will be improved by adsorbing onto iron flocs. In addition, the band gap of
iron oxides may play a role in microorganism inactivation 2°. However, NOM in raw water
may consume the dosage of coagulant and reduce the virus removal rate, Fe?* oxidation,
precipitation, and virus destabilization will be inhibited. 3°. Even if viruses are completely
removed from the effluent by pretreatment, viruses retained on the membrane surface can
still pose a serious biological risk during the disposal process of the discarded membrane or
require large amounts of additional disinfectant consumption.

Chemical cleaning has high efficiency in mitigating membrane fouling and removing
foulants 31-34, Irreversible fouling resistance is an important contributor to virus interception
33,36 and can only be effectively removed by chemical cleaning. Hydrogen peroxide (H,0,)
is also a commonly used membrane-cleaning agent as well as disinfection, can destroy the
pathogenic microbial structure 37 38, Li et al. recently proposed a FeOx+MnOx+H,0,
membrane cleaning strategy, and it effectively improved membrane flux and reduced
irreversible fouling resistance 3°. Hydroxyl radicals (HO*) generated by catalyzing H,O,
can effectively inactivate MS2 by denaturing protein capsids. Mamane et al. reported that
2.5-logs inactivation of MS2 was obtained after the treatment of UV/H,0, “°. H,0,
chemical cleaning coupled with iron flocs after coagulation may play a more efficient role

in disinfection and membrane fouling mitigation.
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Therefore, this study aims to create an in-situ cleaning method by utilizing the iron
flocs generated after coagulation combined with H,O, chemical cleaning to guarantee
drinking water biosecurity and alleviate membrane fouling. MS2 bacteriophage with a
similar shape and size to polio and hepatitis viruses 4! was used as a virual model to study
the following: (1) the influence and mechanism of Fe3* coagulation on MS2 removal in
effluent and on the UF membrane surface when humic acid (HA) presented in feedwater;
(2) performance of iron flocs-H,O, in-situ cleaning on the further removal of MS2
remaining on the membrane surface and membrane fouling mitigation; and (3) the
mechanism contribution on MS2 removal during different treatment stages.

2. Materials and methods
2.1 MS2 stock preparation

The stock of MS2 bacteriophage was prepared with the method employed by
Anderson et al. 2. Liquid LB-medium was used to cultivate E-coli (ATCC 15597) at 37°C
with a shaking speed of 150 rpm. MS2 stock (ATCC 15597-B1) was then put into E-coli
stock (with a concentration of 3x10% cells/mL") at the ratio of 1:1 and cultivated in
conditions of 37°C and 150 rpm. The MS2 suspension was centrifuged at 10000 g for 20
min. E-coli cells and cell debris in the supernatant were removed by a 0.22 um filter
(Jinteng, Tianjin, China). The MS2 stock was obtained with a concentration of 2x10°
PFU/mL-.

2.2 Pre-coagulation with FeCl;

The feed water consisted of MS2 bacteriophage and HA with the dosage of 0.5, 1, 2,
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3, 6 mg/L, in which the concentration of MS2 was 1.22x10° PFU/mL. FeCl; (Basifu,
Tianjin, China) was selected as the coagulant. The employed concentrations of FeCl; were
0.01, 0.02, 0.04, 0.08 mmol/L, respectively. The stirring conditions of coagulation were
700 r/min for 2 min and then 150 r/min for 15 min. The water samples after coagulation
were used for the follow-up UF process.
2.3 Membrane filtration

A polyethersulfone UF membrane with a molecular weight cut-off (MWCO) of 150
kDa was employed (UP150, Microdyn-Nadir, Germany). The UF system shown in Fig. S1,
which consisted of a UF cell to operate filtration (UFSC40001, Millipore Amicon, US), a
nitrogen gas cylinder (provide a constant pressure of 0.04 MPa), and an electronic balance
(BSA22028S, Sartorius, Germany) connected to a computer (automatically recorded weight
data every 4 s). Preservatives on the membrane surface were removed by immersing virgin
membranes in 50% ethanol solution for 15 min. During the UF process, the membranes
with a surface area of 39 cm? were put with their smooth side up at the bottom of the UF
cell. The pure water flux was calculated by filtering Milli-Q water before and after the UF
process. After 450 mL water samples were filtered, a brush was used to clean and collect
foulants on the fouled membrane surface. 0.1 mmol/L NaHCO; (Tianda, Tianjin, China)
solution was used to rinse the membrane surface to collect the foulants that were brushed
off. The flushing fluid was used to measure the MS2 numbers that resided on the membrane

surface.
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2.4 Chemical cleaning for fouled membrane

The fouled membranes were immersed in 100 mL H,O, (Beilian, Tianjin, China)
solution with concentrations of 1%, 3%, 6%, 9%, and 12% for 5 min to conduct chemical
cleaning procedure. After that, the membranes were taken out and washed with Milli-Q
water to remove residual H,O,. Subsequently, the membranes after chemical cleaning were
cleaned with a brush and collected flushing fluid to measure the MS2 numbers that resided
on the membrane surface.
2.5 Analytical methods
2.5.1 Bacteriophage assays

The standard plaque-forming unit (PFU) assay was employed to determine the
concentration of MS2 in the effluent and the amount of MS2 on the membrane surface.
Briefly, 0.1 mL water sample and 0.1 mL E-coli solution at the logarithmic phase were
mixed with 3 mL semi-solid LB-medium. The mixture was poured onto the solid LB-
medium plates and allowed to solidify. The MS2 plagues were counted after the plates were
incubated at 37°C overnight. The concentration and numbers of MS2 were calculated by
Eq. (1, 2) as written here:

log. = log (%) (D
log,= log (%) (2

where: log, represents the concentration of MS2 in the effluent (PFU/mL); log,

denotes the amount of MS2 remaining on the membrane surface (PFU/cm?); N, is the total

number of residual MS2 after filtration; V stands for the volume of feed water (450 mL); S
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is the area of UF membrane (39 cm?). The morphology and adsorption of MS2 were
observed by Transmission Electron Microscopy (TEM; JEM1400010101).
2.5.2 Water quality analysis

The UV;s4 values of HA were measured by a UV-Spectrophotometer (UV759CRT,
Youke, China). A laser particle size analyzer (S90, Malvern Panalytical, UK) was used to
determine the particle size distribution of water samples. A Zetasizer instrument (S90,
Malvern Panalytical, UK) was employed to analyze the Zeta potential of water samples.
2.5.3 Analysis of membrane fouling

The specific flux (J/.Jy) showed the trend of flux decline during UF process. Text S1 in
Supplementary Information showed the method for calculating membrane fouling
resistances, which consist of hydraulic reversible (Rr) and irreversible fouling resistances
(Rir). The significant difference between two data groups was analyzed by the T-test. A
pore blockage-cake filtration model ° was applied to evaluate membrane fouling
mechanism.
2.5.4 Membrane surface characterization

Membrane surface zeta potential was observed by SurPASS 3 (Anton Paar, Austria).
A contact angle measuring device (SL150, Kino, USA) was used to determine the
membrane surface hydrophobicities. The contact angles were measured with three different
types of liquid: Milli-Q water, dilodomethane and glycerol. XDLVO theories were used to
analyze the interactions between virus and membrane surfaces. The calculation method

employed for the XDLVO theories was based on the study by Gentile et al. 4. Fourier
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transform infrared spectroscopy (FTIR) was measured to explore the functional group
changes of membrane surface (Spectrum One PerkinElmer, USA). The transformation of
MS?2 capsid protein secondary structures was analyzed by the software of Peakfit 4.12
(Software Inc., USA).
3. Results and discussion
3.1 Contribution of HA in feedwater to MS2 removal
3.1.1 MS2 removal

The concentration of MS2 in effluent and the amount of MS2 that remained on the
membrane surface are shown in Fig. 1 (a). 3.98 log PFU/mL MS2 passed UF membrane
while 6.08 log PFU/cm? MS2 was retained by the membrane surface when the influent
contained no HA. The large amount of MS2 residing on the membrane surface would mean
that a dangerous biosafety risk may emerge. The retention of MS2 by the membrane surface
fell slightly with the increase of HA concentration, the remaining number dropped to 5.84
PFU/cm? with only 4.0% removal rate at 6 mg/L HA. This phenomenon was attributed to
HA inhibiting the adsorption of viruses on membranes, reducing their ability to retain
viruses during UF 446, The increase in HA dosage had a more significant effect on MS2
removal in the effluent, to the extent that MS2 concentration decreased to 3.48 log PFU/mL
and the removal rate reached 12.6%.

Fig. 1 (a) MS2 in effluent and on the membrane surface under different HA dosages
after UF, (b) membrane flux after MS2 and HA fouling; (¢) membrane fouling resistance

after MS2 and HA fouling; (d) particle size of MS2 and HA+MS2.

10
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3.1.2 HA and MS2 caused severe membrane fouling

Individual MS2 caused slight membrane fouling, the final flux only declined to 0.91
and the dominant fouling mechanism was intermediate blocking (Table 1). HA exacerbated
membrane flux decline and 6 mg/L HA caused the final flux declined to 0.38 (Fig. 1 (b)).
The dominant fouling mechanisms turned into complete blocking and cake filtration with
the HA accumulation in the membrane pores and on the membrane surface (Table 1).
Previous studies have proved that irreversible fouling resistance and cake layer will help to
enhance the removal rate of virus 447,

Fig. 1 (¢) indicates that the membrane fouling resistance caused by MS2 and HA was
dominated by reversible resistance. The reversible & irreversible resistances caused by

MS2 were similar, both measured at 0.04 x 10'! m-!. HA greatly increased the fouling

11



oNOYTULT D WN =

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

resistance and reversible reached 2.74 x 10! m!, as well as irreversible fouling resistance,
rose up to 2.33x10'"! m'! when HA dosage was 6 mg/L. Irreversible fouling has achieved a
higher proportion in total fouling resistance that was beneficial to the retention of MS2. The
greatly improved membrane fouling resistance (p<0.05) blocked MS2 from passing the UF
membrane by size exclusion, which was one of the important factors affecting virus
removal !°. But the increased irreversible fouling exacerbates membrane fouling and also
improved the difficulty of membrane cleaning.

Table 1 Membrane fouling model fitting under different conditions.

R2 Intermediate  Standard Complete Cake
Blocking Blocking Blocking Filtration
MS2 0.9881 0.9714 0.9645 0.9680
0.5 mg/L HA +MS2 0.9760 0.9894 0.9796 0.9799
1 mg/L HA +MS2 0.9651 0.9998 0.9762 0.9799
3 mg/L HA +MS2 0.9618 0.9754 0.9868 0.9982
6 mg/L HA +MS2 0.9032 0.9070 0.9801 0.9976
0.01 mmol/L Fe3* pretreatment ~ 0.9772 0.9847 0.9901 0.9962
0.02 mmol/L Fe3* pretreatment  0.9728 0.9814 0.9730 0.9810
0.04 mmol/L Fe3* pretreatment  0.9784 0.9614 0.9981 0.9976
0.08 mmol/L Fe3* pretreatment ~ 0.8714 0.9545 0.9753 0.9974

(Bold items represent R? values > 0.98)

3.1.3 The mechanism of how HA improves virus removal

The above discussion demonstrated that size exclusion due to aggravated membrane
fouling was one of the main mechanisms for removing a virus. MS2 slightly increased the
membrane surface electronegativity from -15.25 mV to -15.31 mV. HA with a negative
charge further improved the electronegativity (Fig. 2 (a)) and enhanced the electrostatic
repulsion both in the solution and between MS2 and the membrane surface (Fig. 2 (b) (¢)),

which contributed to MS2 removal. Changes in membrane surface hydrophilicity and

12
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hydrophobicity was further enhanced after 6 mg/LL HA and MS2 passed the UF membrane,

which was beneficial for removing the virus 548,

Overall, the promotion of virus removal in the effluent and on the membrane surface

was the outcome of the combined enhancement of membrane surface hydrophobicity,

electrostatic, and repulsion size exclusion after HA fouling.

Fig. 2 (a) Zeta potential of the membrane surface; (b) interaction force in solution; and

(c) interaction force between the membrane surface and foulants.
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Table 2 Effect of different treatments on the contact angle of the membrane surface.

Group

Contact Angle of Water (°)

Virgin membrane

51.61
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0.08mmol/L Fe?" treatment 47.19
0.08mmol/L Fe3"-3% H,0, Cleaning 45.14

3.2 Influence and mechanism of MS2 inactivation in effluent and on membrane
surface by Fe*
3.2.1 Removal of MS2
The removal of MS2 in the effluent and on the membrane surface after Fe’*
coagulation was shown in Fig. 3 (a). MS2 in the effluent was completely removed at Fe*
dosage of 0.08 mmol/L, which ensured the biosafety of drinking water. The amount of MS2
residing on the membrane’s surface also dropped to 3.84 log PFU/cm?. Viruses remaining
were still infectious and would pose risks to the entire water treatment process. Therefore,
chemical cleaning was implemented in the subsequent experiment to eliminate MS2
remaining on the membrane surface.
Fig. 3 (a) MS2 in effluent and on the membrane surface after different Fe** dosages
treatment; (b) membrane flux after Fe3* treatment; (¢) membrane fouling resistance Fe3*

treatment; (d) UV,s4 removal by Fe3* treatment.
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3.2.2 Performance of membrane fouling mitigation

The flux decline was effectively mitigated when the Fe3* dosage increased (Fig. 3 (b)).
The final flux rose from 0.38 to 0.71 after the pretreatment with 0.08 mmol/L Fe3* and cake
filtration turned into the dominant fouling mechanism with the accumulation of iron flocs
(Table 1). This proved to be more conducive to retaining MS2.

The reversible & irreversible fouling resistances were mitigated with Fe3* dosage
improvement (Fig. 3 (c¢)). There was a significant change in the proportion of reversible and
irreversible fouling while the total fouling resistance decreased, with a significant decline in
the proportion of irreversible fouling. This would facilitate pollutant removal in the
membrane cleaning process. 0.08 mmol/L Fe’" decreased reversible fouling resistances to
1.62x10'"" m'! with a removal rate of 41.0%. Irreversible fouling resistance was reduced to
0.68x 10! m'! and the removal rates reached 70.8%, which meant that Fe?* treatment was
more effective in irreversible fouling alleviation caused by HA and MS2. Fig. 3 (d) also
visually proves that organics were effectively removed and the removal rate reached 93.4%

at the Fe** dosage of 0.08 mmol/L. This in effect reduced the burden of subsequent UF and

alleviated membrane fouling.
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3.2.3 Solution characteristics changes

The solution Zeta potential got closer to 0 mV with the increase of Fe3™ dosage (Fig. 4
(a)), confirming the enhancement of coagulation performance, which was beneficial to the
formation of iron flocs. Fe** with high positive charge would neutralize and adsorb
negatively charged MS2 (has an isoelectric point of 3.9), and thereby promote the removal
of MS2 in the solution #°. In addition, the electrostatic interactions among MS2 and iron
flocs may cause damage to the viral capsid 2% >°. Significantly increased solution particle
size (Fig. 4 (b)) suggested the formation of flocs and promoted coagulation performance.
3.2.4 Fe** pretreatment as a virus removal mechanism

The cake layer formed by iron flocs can retain more MS2 through size exclusion. Fe3*
neutralized the negative charge of the solution and membrane surface caused by HA (Fig. 2
(a) and Fig. 4 (a)). The interaction force between particles in the solution after Fe*
treatment became an attractive force, indicating MS2 was removed by the adsorption of
Fe3™ (Fig. 2 (b)) 3°. The TEM image of MS2 proved that MS2 has a distinct head-to-tail
structure with a diameter of about 25 nm (Fig. 4 (c)). The head of MS2 has a negative
charge and the tail is positively charged, making the MS2 negatively charged overall 3! 32,
The head of MS2 was adsorbed around the iron flocs and subsequently removed after Fe3*
pretreatment (Fig. 4 (d)). In addition, Fe3" pretreatment enhanced electrostatic repulsion
between membrane surface and the foulants (Fig. 2 (c¢)), which was beneficial to MS2
removal. Fe3* treatment increased membrane surface hydrophilicity, indicating two things:

firstly, viruses remaining on the membrane surface diminished; and secondly, the increase
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3.3 Mechanism of iron flocs-H,0, in-situ cleaning on MS2 elimination and membrane
fouling mitigation
3.3.1 MS2 elimination on the membrane surface

Fig. S2 reflected the residual iron on the membrane surface. There was 0.05 mg/cm?
iron remaining on the membrane surface when Fe3* dosage was 0.08 mmol/L. Iron flocs
after coagulation coupled with H,O, cleaning revealed significant removal of MS2
remaining on the membrane’s surface (Fig. 5 (a)). As well, the overall cost of H,O, was
greatly reduced. H,O, with a concentration of 12% was required to completely inactivate
MS?2 on the membrane surface when feedwater was not pretreated with Fe3*. Compared to
this, H,O, with a concentration of only 3% could remove all residual MS2 under the
catalysis of iron flocs.

Fig. 5 (a) Virus removal on the membrane surface after iron flocs-H,O, cleaning under
different concentrations; (b) Membrane fouling resistance mitigation and (c) flux recovery

ratio after iron flocs-H,O, cleaning.
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18 311  3.3.2 Membrane fouling resistance and flux recovery ratio
19
;? 312 Fig. 5 (b) highlights membrane fouling resistance alleviation efficiency under and
22

23 313 without 3% H,0,; cleaning. Compared to the non-H,O, cleaning groups, both reversible and
26 314  irreversible fouling resistance were significantly alleviated by iron flocs coupled with H,O,
29 315  cleaning. 71.5% reversible fouling resistance was mitigated, which declined from 2.60 %
31 316 10" m™ to 0.74x10!'" m™!, while irreversible resistance was more effectively mitigated from
34 317 1.82%10" m! to 0.05% 10" m'! and the removal rate reached 97.3%. As an important
37 318  contributor to virus removal, irreversible fouling resistance will block membrane pores and
39 319  retain more viruses *. The efficient removal of irreversible resistance marked high removal
42 320 rates for viruses. Moreover, irreversible resistance proved to be an important factor that
45 321  causes membrane aging >3, which was significantly reduced by iron flocs-H,0, cleaning.
48 322 The flux recovery ratio was also effectively promoted and reached 97.8% after iron flocs-
30 323 H,0, cleaning as displayed in Fig. 5 (c), which was greatly improved compared with
53 324  individual Fe3* pretreatment (72.9%). Reducing the amount of H,O, not only saved costs

56 325  but also avoid membrane damage caused by excessive membrane cleaning agent.
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3.3.3 Virus elimination mechanism using iron flocs-H,O, for in-situ cleaning
H,0, reacted with iron flocs remaining on the membrane surface to generate HO- with
strong oxidizing properties (Fig. 6 (a)), which could not only effectively inactivate viruses
but also mitigate membrane fouling. Many studies have shown that HO- can cause higher
viral deactivation rate, even in the presence of NOM %°. TEM image demonstrates that the
iron flocs had a stronger adsorption capacity for viruses after the addition of H,O,, and the
size of flocs improved (Fig. 4 (e)). The electronegativity of the membrane surface was
improved by iron flocs-H,O, treatment (-22.51 mV), which contributed to the further
removal of residual MS2 (Fig. 2 (a)). Iron flocs-H,O, greatly promoted attractive force in
the solution (Fig. 2 (b)), and the results of particle size and TEM image proved that flocs
with larger particle size and specific surface area were formed (Fig. 2 (¢) and Fig. 4 (e)),
which could adsorb more MS2. Iron flocs-H,O, cleaning formed a strong repulsive force
between MS2 and the membrane surface (Fig. 2 (¢)) and completely removed all MS2 that
remained on the membrane surface. The enhancement of electrostatic interactions will
cause damage to the viral capsid *°. This surface’s hydrophilicity was further enhanced by
iron flocs-H,O, cleaning, which contributed to the alleviation of membrane fouling and
flux recovery (Table 2).
Fig. 6 (a) EPR signals of Fe3*-H,0, reaction with DMPO as the spin trapping agent;
(b) FTIR spectra of the membrane surface after different treatments; (c) FTIR spectra with
a wavenumber field of 1300-1900 cm!; (d) effect of Fe3* treatment and Fe**-H,0, cleaning

on secondary structures of the MS2 capsid protein; (€) MS2 removal mechanism in each

20
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The changes of functional groups and protein structure of MS2 were analyzed by

FTIR. The two peaks on the left of the FTIR

spectrum (2918 and 2851 cm™') represented C-

H stretching vibration, which was related to humic substances (Fig. 6 (b)). The peaks in the

amide I region represented C=0, which was related to the changes in protein substances

(Fig. 6 (c¢)). There were obvious changes in

this region compared with the raw water after

iron flocs-H,O; cleaning, indicating that the MS2 capsid protein structure and properties

have changed. In addition, the peaks at the

amide II and III regions decreased after iron

flocs-H,0O, treatment, while the amino acid residues increased. It also proved that the

protein structure of the virus capsid was destroyed °*. Fig. 6 (d) analyzed the transformation

in the secondary structure of proteins after Fe3* treatment and iron flocs-H,O; cleaning. a-

helix that could maintain the conformational stability of protein decreased after treatment
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1

2

3

4 360 %%, Moreover, the ratio decline of a-helix/p sheet suggested the formation of protein
5

6 . .

7 361  aggregates and protein acetylation. The results of FTIR demonstrated that the structure of
8

?o 362  virus capsid protein was affected by Fe’" treatment and iron flocs-H,O, cleaning and

12 363  resulting in capsid damage, which may exacerbate viral genome release and degradation.

15 364 The mechanisms for removing MS2 under different treatment stages were summarized
18 365 in Fig. 6 (e).

20 366 3.4 Application and prospects

23 367 During the treatment of pathogenic microorganisms-containing natural surface water
26 368 by membrane technology, viruses that pass through the membrane pores and are trapped on
369 the membrane surface will pose a hidden danger to drinking water biosafety. Therefore,
31 370  effective treatment methods for removing a virus in the effluent and on the membrane
34 371  surface are required. In our experiments, the viruses in the effluent can be completely
37 372  removed by Fe*' coagulation, and the iron flocs catalyze H,O, has both disinfection and
39 373  membrane cleaning functions, which will create an enhanced membrane cleaning process to
42 374 improve the elimination of viruses that are retained by the membrane and mitigate
45 375 membrane fouling. Iron coagulants are not only inexpensive but also ‘green’ and
48 376  environmentally friendly, which can guarantee the biosafety of effluent and effectively
>0 377  alleviate membrane fouling. Furthermore, the iron flocs remaining on the membrane

53 378  surface will react with HO, to generate HO-, which can further inactivate viruses and

56 379  prevent membrane fouling.

57

gg 380 Different degrees of damage to the membrane will be caused by chemical cleaning.
60
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NaOCl is the most likely to cause membrane aging, which can lead to membrane
degradation and structural damage, and even a small amount of addition will show a greater
impact on the performance of UF membrane 3% >7. The amount of H,0, is greatly reduced
when coupled with Fe** pretreatment, which will save membrane cleaning costs and avoid
damage to the membrane caused by too much chemical cleaning agent. The results of our
experiment can provide useful technical references for the treatment of virus-containing
raw water in practical applications. Furthermore, the method not only can ensure the
biosafety of drinking water but also reduce the usage of disinfectants after membrane
treatment process, thereby curtailing the disinfection by-products (DBPs) generation.
Future research on the effect of multiple coagulants and membrane cleaning agents on virus
removal during membrane treatment can be undertaken, the degree of membrane damage
and aging caused by chemical cleaning can also be explored, and provide more treatment
methods for improving the biosafety of drinking water.
5. Conclusion

In this study, iron flocs after Fe’* coagulation were used to enhance H,O, cleaning for
virus removal in the UF process when HA was presented. MS2 in the effluent can be
eliminated by pre-coagulation. Meanwhile, the in-situ cleaning of iron flocs-H,0O, ensured
all MS2 retained by the membrane could be inactivated. This method has practical
application potential and can significantly save operating costs and extend the service life
of the membrane. The mechanism for removing and inactivating the virus was also

investigated. The main conclusions are as follows:

24
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1. Virus removal in UF effluent was partly promoted through size exclusion,
hydrophobicity, and electrostatic repulsion in the presence of HA. As well, HA increased
the repulsion between membrane surface and MS2, slightly decreasing the residual virus
found on the membrane surface.

2. Fe*" coagulation reduced the burden of UF and enhanced membrane surface
hydrophilicity, which effectively alleviated membrane fouling. MS2 in the effluent was
completely removed by 0.08 mmol/L Fe3* through adsorption and size exclusion. Any MS2
retained on the membrane surface was reduced by electrostatic repulsion.

3. Iron flocs after coagulation enhanced H,0O, cleaning and formed in-situ oxidation,
which completely inactivated MS2 remaining on the membrane surface with low
concentration H,O, (3%). Membrane fouling was further alleviated and the maximum flux
recovery rate reached 97.8%.

4. Iron flocs-H,O, inactivated virus by generating HO- oxidation and causing virus
capsid protein damage. The electrostatic repulsion and adsorption mechanism also
contributed to virus removal.
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