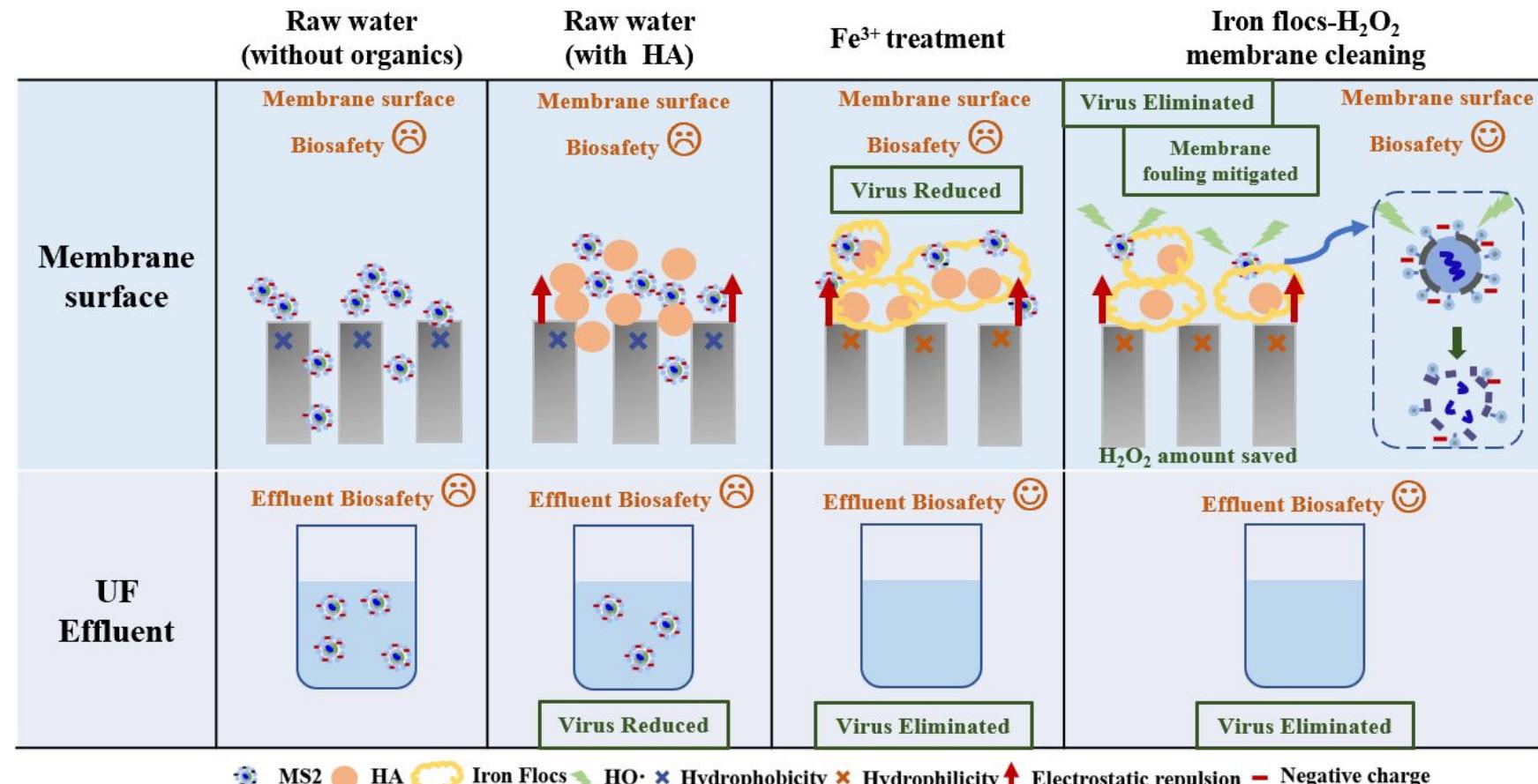


1
2
3
4 1
5
6 2
7
8
9 3 ***In-situ utilization of iron flocs after Fe³⁺ coagulation enhances H₂O₂***
10 4 ***chemical cleaning to eliminate virus and mitigate ultrafiltration***
11
12 5 ***membrane fouling***
13
14

15 6 *Zixiao Ren^a, Huicong Shi^a, Jie Zeng^a, Xu He^a, Guibai Li^a, Huu Hao*

16
17 7 *Ngo^b, Jun Ma^a, Chuyang Y. Tang^c, An Ding^{a*}*

18
19 8 *a. State Key Laboratory of Urban Water Resource and Environment, School of*
20
21 9 *Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China*


22
23 10 *b. Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway,*
24
25 11 *Sydney, NSW 2007, Australia*

26
27 12 *c. Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong*
28
29 13 *Kong 999077, China*

30
31 14
32
33 15
34
35 16
36
37 17 *Corresponding author.

38
39 18 E-mail address: dinganhit@163.com (An Ding)

21 Graphical abstract

1
2
3
4 24 **Abstract**
5
6
7 25 Viruses found in effluent and on membrane surface during ultrafiltration (UF)
8
9 26 processes will introduce hidden biosecurity dangers to drinking water. Fe^{3+} coagulation and
10
11 27 H_2O_2 were combined to create an in-situ membrane cleaning method in this study, and MS2
12
13
14 28 bacteriophage was used as a model to investigate virus removal by UF when humic acid
15
16
17 29 (HA) was present in raw water. The results showed that 0.50 log PFU/mL MS2 was
18
19
20 30 removed by UF when HA concentration was 6 mg/L based on size exclusion,
21
22
23 31 hydrophobicity, and electrostatic repulsion. Meanwhile, HA inhibiting the adsorption of
24
25
26 32 MS2 to the membrane surface, which slightly reduced MS2 accumulation on membrane
27
28
29 33 surface. A 0.08 mmol/L Fe^{3+} pretreatment eliminated MS2 in the effluent by the adsorption
30
31
32 34 and size exclusion of iron flocs. Furthermore, the number of MS2 retained on the
33
34
35 35 membrane surface dropped from 5.84 log PFU/cm² to 3.84 log PFU/cm² through
36
37
38 36 electrostatic repulsion. MS2 on the membrane surface was effectively inactivated with viral
39
40
41 37 protein capsid destroyed by in-situ cleaning of iron flocs- H_2O_2 through HO^\cdot oxidation. The
42
43
44 38 mitigation efficiency of membrane fouling was greatly improved with a flux recovery of
45
46
47 39 97.8%. Moreover, the amount of H_2O_2 was reduced (3%) compared to no Fe^{3+} pretreatment
48
49
50 40 (12%), which could greatly save costs. This study provides a potentially useful and
51
52
53 41 economical enhanced membrane cleaning method for virus-containing water treatment by
54
55
56 42 UF, which could not only eliminate viruses and mitigate membrane fouling in UF system
57
58
59 43 but also reduce the use of membrane cleaning agents to save costs.
6044 **Keywords:** Ultrafiltration; NOM; virus removal; iron flocs- H_2O_2 ; in-situ cleaning

1
2
3
4 45 **1. Introduction**
5
6

7 46 Ultrafiltration (UF) is a promising physico-chemical process to remove virus in
8
9 47 drinking water, showing the advantages of high efficiency and low risks of virus mutation,
10
11 48 drug resistance, etc. ¹⁻⁵. However, some viruses with small diameters, such as adenovirus,
12
13 49 rotavirus, norovirus, bacteriophage, etc., can still pass through the pores of UF membranes
14
15 50 ⁶⁻⁹. Ozone, ultraviolet, and chlorine disinfection are traditional methods to inactivate
16
17 51 pathogens in drinking water plants operation ¹⁰⁻¹³. These methods, however, may not be
18
19 52 effective in the removal of some strongly resistant viruses ⁷. For this reason, how to
20
21 53 improve the virus retention efficiency by UF is an urgent issue that needs to be solved.
22
23
24
25
26
27

28 54 Viruses can be removed during membrane treatment by various mechanisms, such as
29
30 55 electrostatic repulsion, size exclusion, hydrophobic interaction and adsorption ¹⁴⁻¹⁶. Natural
31
32 56 organic matter (NOM) in feedwater can promote virus retention efficiency through multiple
33
34 57 mechanisms ¹⁷⁻²⁰. The accumulation of organics on the membrane surface will increase
35
36 58 virus interception and improve the contribution of size exclusion on virus removal.
37
38 59 ElHadidy et al reported that virus removal was improved by humic substances adhering to
39
40 60 the membrane surface and the increase of negative charge and hydrophobicity ¹⁹. However,
41
42 61 NOM will aggravate membrane fouling and cause increased energy consumption ²⁰⁻²².
43
44 62 Therefore, it is imperative to devise a strategy that can not only reduce viruses in the
45
46 63 effluent but also mitigate membrane fouling.
47
48
49

50 64 Coagulation pre-treatment can be an effective solution to simultaneously reduce
51
52 65 membrane fouling and enhance virus removal ²³⁻²⁶. Kreiβel et al. reported that low dosages
53
54
55
56
57
58
59
60

1
2
3
4 66 of polyaluminum chloride (PACl) coagulation treatment could inactivate MS2 and Q β
5
6 67 bacteriophages ²⁷. Zhu et al. demonstrated over 4-log MS2 removal by iron coagulation
7
8 68 enhanced microfiltration, which was significantly higher than microfiltration alone ²⁸. The
9
10 69 virus removal will be improved by adsorbing onto iron flocs. In addition, the band gap of
11
12 70 iron oxides may play a role in microorganism inactivation ²⁹. However, NOM in raw water
13
14 71 may consume the dosage of coagulant and reduce the virus removal rate, Fe²⁺ oxidation,
15
16 72 precipitation, and virus destabilization will be inhibited. ³⁰. Even if viruses are completely
17
18 73 removed from the effluent by pretreatment, viruses retained on the membrane surface can
19
20 74 still pose a serious biological risk during the disposal process of the discarded membrane or
21
22 75 require large amounts of additional disinfectant consumption.

30
31 76 Chemical cleaning has high efficiency in mitigating membrane fouling and removing
32
33 77 foulants ³¹⁻³⁴. Irreversible fouling resistance is an important contributor to virus interception
34
35 78 ^{35, 36} and can only be effectively removed by chemical cleaning. Hydrogen peroxide (H₂O₂)
36
37 79 is also a commonly used membrane-cleaning agent as well as disinfection, can destroy the
38
39 80 pathogenic microbial structure ^{37, 38}. Li et al. recently proposed a FeOx+MnOx+H₂O₂
40
41 81 membrane cleaning strategy, and it effectively improved membrane flux and reduced
42
43 82 irreversible fouling resistance ³⁹. Hydroxyl radicals (HO[·]) generated by catalyzing H₂O₂
44
45 83 can effectively inactivate MS2 by denaturing protein capsids. Mamane et al. reported that
46
47 84 2.5-logs inactivation of MS2 was obtained after the treatment of UV/H₂O₂ ⁴⁰. H₂O₂
48
49 85 chemical cleaning coupled with iron flocs after coagulation may play a more efficient role
50
51 86 in disinfection and membrane fouling mitigation.

1
2
3
4 87 Therefore, this study aims to create an in-situ cleaning method by utilizing the iron
5
6 88 flocs generated after coagulation combined with H₂O₂ chemical cleaning to guarantee
7
8 89 drinking water biosecurity and alleviate membrane fouling. MS2 bacteriophage with a
9
10 90 similar shape and size to polio and hepatitis viruses ⁴¹ was used as a viral model to study
11
12 91 the following: (1) the influence and mechanism of Fe³⁺ coagulation on MS2 removal in
13
14 92 effluent and on the UF membrane surface when humic acid (HA) presented in feedwater;
15
16 93 (2) performance of iron flocs-H₂O₂ in-situ cleaning on the further removal of MS2
17
18 94 remaining on the membrane surface and membrane fouling mitigation; and (3) the
19
20 95 mechanism contribution on MS2 removal during different treatment stages.
21
22
23
24
25
26
27
28
29 96 **2. Materials and methods**
30
31
32 97 **2.1 MS2 stock preparation**
33
34
35 98 The stock of MS2 bacteriophage was prepared with the method employed by
36
37 99 Anderson et al. ⁴². Liquid LB-medium was used to cultivate E-coli (ATCC 15597) at 37°C
38
39 100 with a shaking speed of 150 rpm. MS2 stock (ATCC 15597-B1) was then put into E-coli
40
41 101 stock (with a concentration of 3×10⁸ cells/mL⁻¹) at the ratio of 1:1 and cultivated in
42
43 102 conditions of 37°C and 150 rpm. The MS2 suspension was centrifuged at 10000 g for 20
44
45 103 min. E-coli cells and cell debris in the supernatant were removed by a 0.22 μm filter
46
47 104 (Jinteng, Tianjin, China). The MS2 stock was obtained with a concentration of 2×10⁹
48
49 105 PFU/mL⁻¹.
50
51
52
53
54
55
56 106 **2.2 Pre-coagulation with FeCl₃**
57
58
59 107 The feed water consisted of MS2 bacteriophage and HA with the dosage of 0.5, 1, 2,
60

1
2
3
4 108 3, 6 mg/L, in which the concentration of MS2 was 1.22×10^6 PFU/mL. FeCl₃ (Basifu,
5
6
7 109 Tianjin, China) was selected as the coagulant. The employed concentrations of FeCl₃ were
8
9
10 110 0.01, 0.02, 0.04, 0.08 mmol/L, respectively. The stirring conditions of coagulation were
11
12 111 700 r/min for 2 min and then 150 r/min for 15 min. The water samples after coagulation
13
14
15 112 were used for the follow-up UF process.
16
17
18 113 **2.3 Membrane filtration**
19
20
21 114 A polyethersulfone UF membrane with a molecular weight cut-off (MWCO) of 150
22
23 115 kDa was employed (UP150, Microdyn-Nadir, Germany). The UF system shown in **Fig. S1**,
24
25
26 116 which consisted of a UF cell to operate filtration (UFSC40001, Millipore Amicon, US), a
27
28 117 nitrogen gas cylinder (provide a constant pressure of 0.04 MPa), and an electronic balance
29
30
31 118 (BSA2202S, Sartorius, Germany) connected to a computer (automatically recorded weight
32
33
34 119 data every 4 s). Preservatives on the membrane surface were removed by immersing virgin
35
36
37 120 membranes in 50% ethanol solution for 15 min. During the UF process, the membranes
38
39
40 121 with a surface area of 39 cm² were put with their smooth side up at the bottom of the UF
41
42
43 122 cell. The pure water flux was calculated by filtering Milli-Q water before and after the UF
44
45
46 123 process. After 450 mL water samples were filtered, a brush was used to clean and collect
47
48
49 124 foulants on the fouled membrane surface. 0.1 mmol/L NaHCO₃ (Tianda, Tianjin, China)
50
51
52 125 solution was used to rinse the membrane surface to collect the foulants that were brushed
53
54
55 126 off. The flushing fluid was used to measure the MS2 numbers that resided on the membrane
56
57
58 127 surface.
59
60

1
2
3
4 128 **2.4 Chemical cleaning for fouled membrane**
5
6

7 129 The fouled membranes were immersed in 100 mL H₂O₂ (Beilian, Tianjin, China)
8
9 130 solution with concentrations of 1%, 3%, 6%, 9%, and 12% for 5 min to conduct chemical
10
11 131 cleaning procedure. After that, the membranes were taken out and washed with Milli-Q
12
13 132 water to remove residual H₂O₂. Subsequently, the membranes after chemical cleaning were
14
15 133 cleaned with a brush and collected flushing fluid to measure the MS2 numbers that resided
16
17 134 on the membrane surface.
18
19
20
21

22 135 **2.5 Analytical methods**
23
24

25 136 **2.5.1 Bacteriophage assays**
26
27

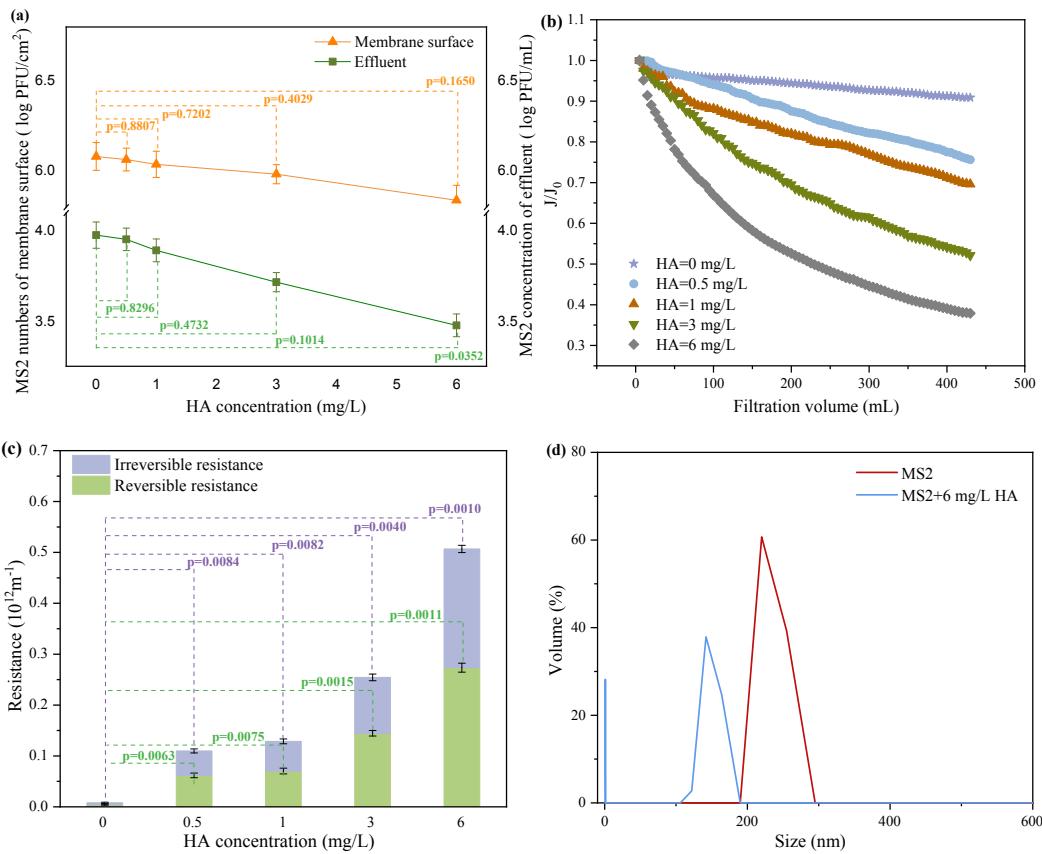
28 137 The standard plaque-forming unit (PFU) assay was employed to determine the
29
30 138 concentration of MS2 in the effluent and the amount of MS2 on the membrane surface.
31
32 139 Briefly, 0.1 mL water sample and 0.1 mL E-coli solution at the logarithmic phase were
33
34 140 mixed with 3 mL semi-solid LB-medium. The mixture was poured onto the solid LB-
35
36 141 medium plates and allowed to solidify. The MS2 plaques were counted after the plates were
37
38 142 incubated at 37°C overnight. The concentration and numbers of MS2 were calculated by
39
40 143 Eq. (1, 2) as written here:
41
42
43
44
45

46
47 144 $\log_c = \log \left(\frac{N_t}{V} \right)$ (1)
48
49

50 145 $\log_n = \log \left(\frac{N_t}{S} \right)$ (2)
51
52

53 146 where: \log_c represents the concentration of MS2 in the effluent (PFU/mL); \log_n
54
55 147 denotes the amount of MS2 remaining on the membrane surface (PFU/cm²); N_t is the total
56
57 148 number of residual MS2 after filtration; V stands for the volume of feed water (450 mL); S
58
59
60

1
2
3
4 149 is the area of UF membrane (39 cm²). The morphology and adsorption of MS2 were
5
6
7 150 observed by Transmission Electron Microscopy (TEM; JEM1400010101).
8
9
10 151 **2.5.2 Water quality analysis**


11
12 152 The UV₂₅₄ values of HA were measured by a UV-Spectrophotometer (UV759CRT,
13
14
15 153 Youke, China). A laser particle size analyzer (S90, Malvern Panalytical, UK) was used to
16
17
18 154 determine the particle size distribution of water samples. A Zetasizer instrument (S90,
19
20
21 155 Malvern Panalytical, UK) was employed to analyze the Zeta potential of water samples.
22
23
24 156 **2.5.3 Analysis of membrane fouling**

25
26 157 The specific flux (J/J_0) showed the trend of flux decline during UF process. **Text S1** in
27
28
29 158 **Supplementary Information** showed the method for calculating membrane fouling
30
31
32 159 resistances, which consist of hydraulic reversible (R_r) and irreversible fouling resistances
33
34
35 160 (R_{ir}). The significant difference between two data groups was analyzed by the T-test. A
36
37
38 161 pore blockage-cake filtration model ⁵ was applied to evaluate membrane fouling
39
40
41 162 mechanism.

42
43 163 **2.5.4 Membrane surface characterization**

44
45 164 Membrane surface zeta potential was observed by SurPASS 3 (Anton Paar, Austria).
46
47
48 165 A contact angle measuring device (SL150, Kino, USA) was used to determine the
49
50
51 166 membrane surface hydrophobicities. The contact angles were measured with three different
52
53
54 167 types of liquid: Milli-Q water, diiodomethane and glycerol. XDLVO theories were used to
55
56
57 168 analyze the interactions between virus and membrane surfaces. The calculation method
58
59
60 169 employed for the XDLVO theories was based on the study by Gentile et al. ⁴³. Fourier

1
2
3
4 170 transform infrared spectroscopy (FTIR) was measured to explore the functional group
5
6 171 changes of membrane surface (Spectrum One PerkinElmer, USA). The transformation of
7
8 172 MS2 capsid protein secondary structures was analyzed by the software of Peakfit 4.12
9
10 173 (Software Inc., USA).
11
12
13
14
15 174 **3. Results and discussion**
16
17 175 **3.1 Contribution of HA in feedwater to MS2 removal**
18
19
20 176 **3.1.1 MS2 removal**
21
22
23 177 The concentration of MS2 in effluent and the amount of MS2 that remained on the
24
25 178 membrane surface are shown in **Fig. 1 (a)**. 3.98 log PFU/mL MS2 passed UF membrane
26
27 179 while 6.08 log PFU/cm² MS2 was retained by the membrane surface when the influent
28
29 180 contained no HA. The large amount of MS2 residing on the membrane surface would mean
30
31 181 that a dangerous biosafety risk may emerge. The retention of MS2 by the membrane surface
32
33 182 fell slightly with the increase of HA concentration, the remaining number dropped to 5.84
34
35 183 PFU/cm² with only 4.0% removal rate at 6 mg/L HA. This phenomenon was attributed to
36
37 184 HA inhibiting the adsorption of viruses on membranes, reducing their ability to retain
38
39 185 viruses during UF ⁴⁴⁻⁴⁶. The increase in HA dosage had a more significant effect on MS2
40
41 186 removal in the effluent, to the extent that MS2 concentration decreased to 3.48 log PFU/mL
42
43 187 and the removal rate reached 12.6%.
44
45
46
47
48
49
50
51
52
53 188 **Fig. 1 (a)** MS2 in effluent and on the membrane surface under different HA dosages
54
55 189 after UF, (b) membrane flux after MS2 and HA fouling; (c) membrane fouling resistance
56
57 190 after MS2 and HA fouling; (d) particle size of MS2 and HA+MS2.
58
59
60

3.1.2 HA and MS2 caused severe membrane fouling

Individual MS2 caused slight membrane fouling, the final flux only declined to 0.91

and the dominant fouling mechanism was intermediate blocking (Table 1). HA exacerbated membrane flux decline and 6 mg/L HA caused the final flux declined to 0.38 (Fig. 1 (b)).

The dominant fouling mechanisms turned into complete blocking and cake filtration with the HA accumulation in the membrane pores and on the membrane surface (Table 1).

Previous studies have proved that irreversible fouling resistance and cake layer will help to enhance the removal rate of virus ^{46,47}.

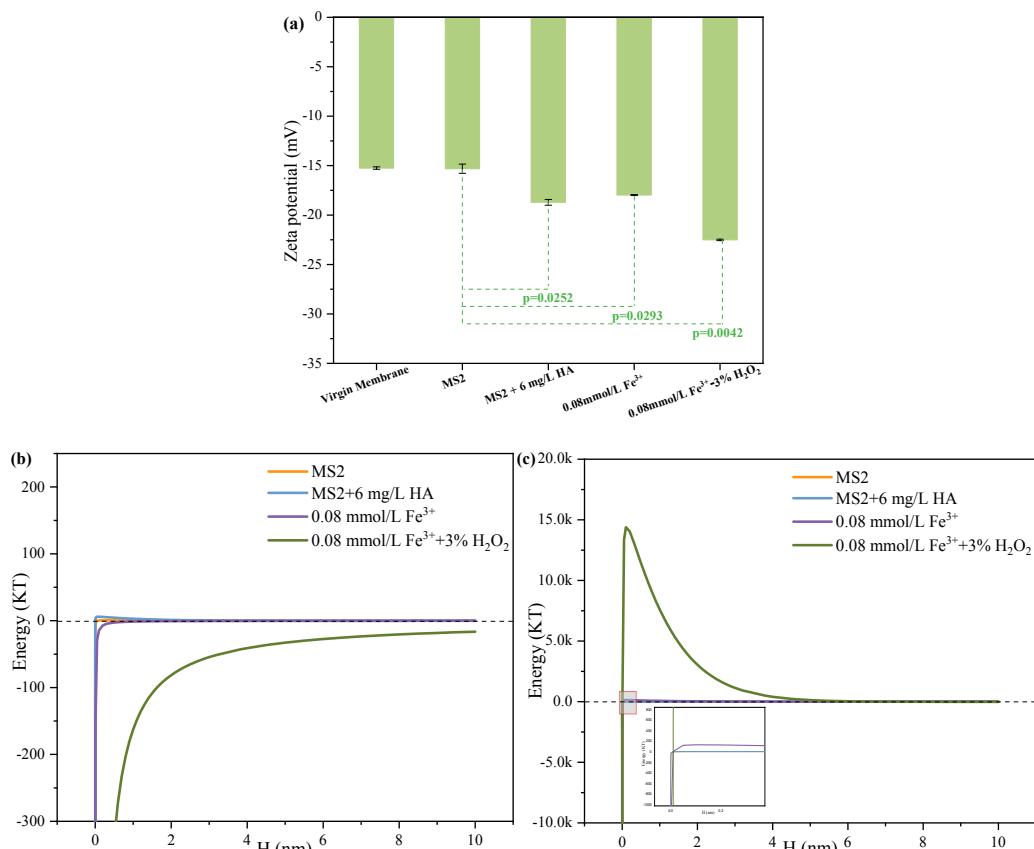
Fig. 1 (c) indicates that the membrane fouling resistance caused by MS2 and HA was dominated by reversible resistance. The reversible & irreversible resistances caused by MS2 were similar, both measured at $0.04 \times 10^{11} \text{ m}^{-1}$. HA greatly increased the fouling

1
2
3
4 204 resistance and reversible reached $2.74 \times 10^{11} \text{ m}^{-1}$, as well as irreversible fouling resistance,
5
6 205 rose up to $2.33 \times 10^{11} \text{ m}^{-1}$ when HA dosage was 6 mg/L. Irreversible fouling has achieved a
7
8 206 higher proportion in total fouling resistance that was beneficial to the retention of MS2. The
9
10 207 greatly improved membrane fouling resistance ($p < 0.05$) blocked MS2 from passing the UF
11
12 208 membrane by size exclusion, which was one of the important factors affecting virus
13
14 209 removal ¹⁹. But the increased irreversible fouling exacerbates membrane fouling and also
15
16 210 improved the difficulty of membrane cleaning.

22 211 **Table 1** Membrane fouling model fitting under different conditions.

R ²	Intermediate Blocking	Standard Blocking	Complete Blocking	Cake Filtration
MS2	0.9881	0.9714	0.9645	0.9680
0.5 mg/L HA +MS2	0.9760	0.9894	0.9796	0.9799
1 mg/L HA +MS2	0.9651	0.9998	0.9762	0.9799
3 mg/L HA +MS2	0.9618	0.9754	0.9868	0.9982
6 mg/L HA +MS2	0.9032	0.9070	0.9801	0.9976
0.01 mmol/L Fe ³⁺ pretreatment	0.9772	0.9847	0.9901	0.9962
0.02 mmol/L Fe ³⁺ pretreatment	0.9728	0.9814	0.9730	0.9810
0.04 mmol/L Fe ³⁺ pretreatment	0.9784	0.9614	0.9981	0.9976
0.08 mmol/L Fe ³⁺ pretreatment	0.8714	0.9545	0.9753	0.9974

39 212 (Bold items represent R² values > 0.98)


40
41 213 **3.1.3 The mechanism of how HA improves virus removal**

42
43
44 214 The above discussion demonstrated that size exclusion due to aggravated membrane
45
46 215 fouling was one of the main mechanisms for removing a virus. MS2 slightly increased the
47
48 216 membrane surface electronegativity from -15.25 mV to -15.31 mV. HA with a negative
49
50 217 charge further improved the electronegativity (**Fig. 2 (a)**) and enhanced the electrostatic
51
52 218 repulsion both in the solution and between MS2 and the membrane surface (**Fig. 2 (b) (c)**),
53
54 219 which contributed to MS2 removal. Changes in membrane surface hydrophilicity and

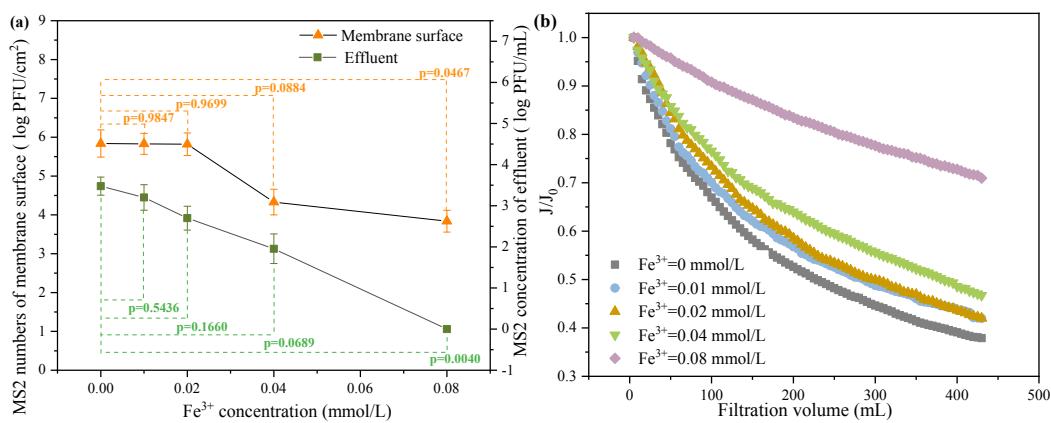
1
2
3
4 220 hydrophobicity have certain effects on virus removal. Hydrophobic MS2 enhanced
5
6 221 membrane surface hydrophobicity after filtration (**Table 2**). The membrane surface
7
8 222 hydrophobicity was further enhanced after 6 mg/L HA and MS2 passed the UF membrane,
9
10 223 which was beneficial for removing the virus^{15, 48}.

11
12 224 Overall, the promotion of virus removal in the effluent and on the membrane surface
13
14 225 was the outcome of the combined enhancement of membrane surface hydrophobicity,
15
16 226 electrostatic, and repulsion size exclusion after HA fouling.

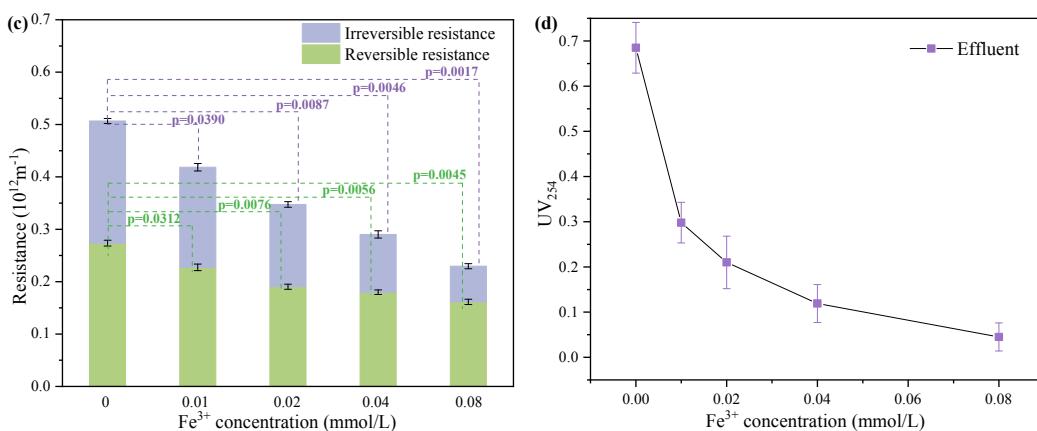
17
18 227 **Fig. 2** (a) Zeta potential of the membrane surface; (b) interaction force in solution; and
19
20 228 (c) interaction force between the membrane surface and foulants.

55
56 231 **Table 2** Effect of different treatments on the contact angle of the membrane surface.

Group	Contact Angle of Water (°)
Virgin membrane	51.61


MS2	52.01
MS2+HA	56.92
0.08mmol/L Fe^{3+} treatment	47.19
0.08mmol/L Fe^{3+} -3% H_2O_2 Cleaning	45.14

232


233 **3.2 Influence and mechanism of MS2 inactivation in effluent and on membrane**234 **surface by Fe^{3+}** 235 **3.2.1 Removal of MS2**

236 The removal of MS2 in the effluent and on the membrane surface after Fe^{3+}
 237 coagulation was shown in **Fig. 3 (a)**. MS2 in the effluent was completely removed at Fe^{3+}
 238 dosage of 0.08 mmol/L, which ensured the biosafety of drinking water. The amount of MS2
 239 residing on the membrane's surface also dropped to 3.84 log PFU/cm². Viruses remaining
 240 were still infectious and would pose risks to the entire water treatment process. Therefore,
 241 chemical cleaning was implemented in the subsequent experiment to eliminate MS2
 242 remaining on the membrane surface.

243 **Fig. 3 (a)** MS2 in effluent and on the membrane surface after different Fe^{3+} dosages
 244 treatment; (b) membrane flux after Fe^{3+} treatment; (c) membrane fouling resistance Fe^{3+}
 245 treatment; (d) UV₂₅₄ removal by Fe^{3+} treatment.

246

3.2.2 Performance of membrane fouling mitigation

The flux decline was effectively mitigated when the Fe^{3+} dosage increased (Fig. 3 (b)).

The final flux rose from 0.38 to 0.71 after the pretreatment with 0.08 mmol/L Fe^{3+} and cake

filtration turned into the dominant fouling mechanism with the accumulation of iron flocs

(Table 1). This proved to be more conducive to retaining MS2.

The reversible & irreversible fouling resistances were mitigated with Fe^{3+} dosage

improvement (Fig. 3 (c)). There was a significant change in the proportion of reversible and

irreversible fouling while the total fouling resistance decreased, with a significant decline in

the proportion of irreversible fouling. This would facilitate pollutant removal in the

membrane cleaning process. 0.08 mmol/L Fe^{3+} decreased reversible fouling resistances to

$1.62 \times 10^{11} \text{ m}^{-1}$ with a removal rate of 41.0%. Irreversible fouling resistance was reduced to

$0.68 \times 10^{11} \text{ m}^{-1}$ and the removal rates reached 70.8%, which meant that Fe^{3+} treatment was

more effective in irreversible fouling alleviation caused by HA and MS2. Fig. 3 (d) also

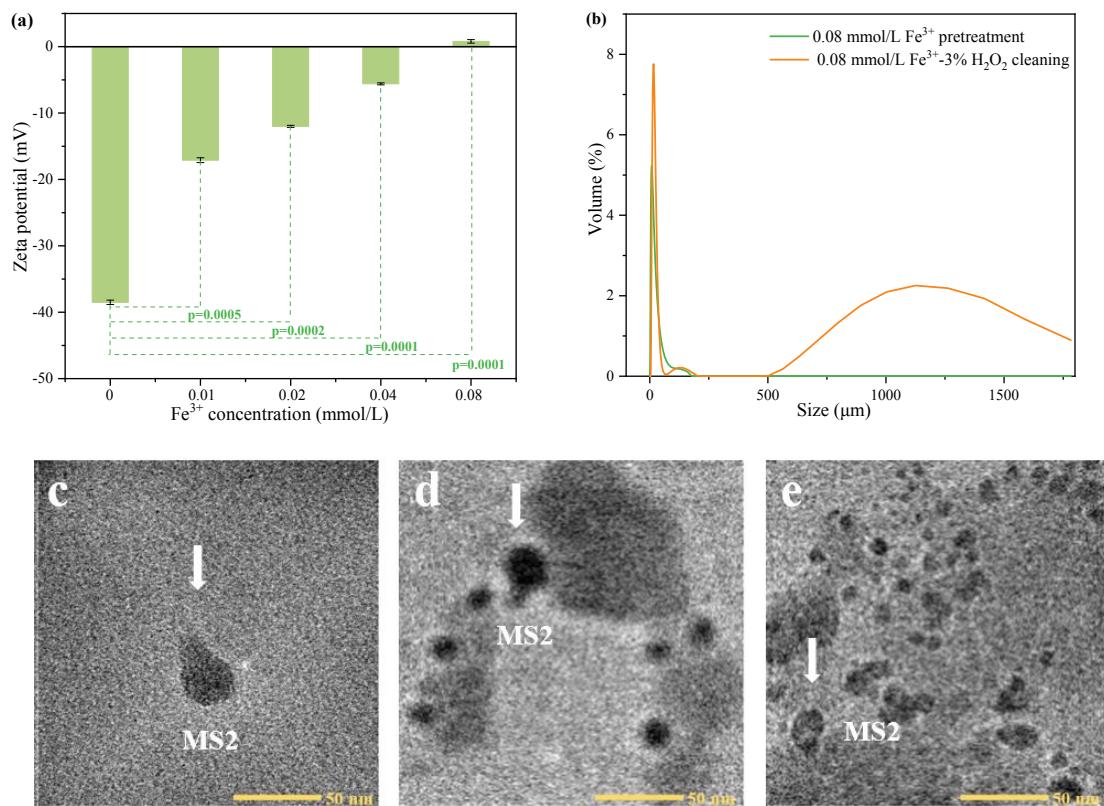
visually proves that organics were effectively removed and the removal rate reached 93.4%

at the Fe^{3+} dosage of 0.08 mmol/L. This in effect reduced the burden of subsequent UF and

alleviated membrane fouling.

1
2
3
4 264 **3.2.3 Solution characteristics changes**
5
6

7 265 The solution Zeta potential got closer to 0 mV with the increase of Fe^{3+} dosage (**Fig. 4**
8
9 266 **(a)**), confirming the enhancement of coagulation performance, which was beneficial to the
10
11 267 formation of iron flocs. Fe^{3+} with high positive charge would neutralize and adsorb
12
13 268 negatively charged MS2 (has an isoelectric point of 3.9), and thereby promote the removal
14
15 269 of MS2 in the solution ⁴⁹. In addition, the electrostatic interactions among MS2 and iron
16
17 270 flocs may cause damage to the viral capsid ^{29, 50}. Significantly increased solution particle
18
19 271 size (**Fig. 4 (b)**) suggested the formation of flocs and promoted coagulation performance.
20
21
22

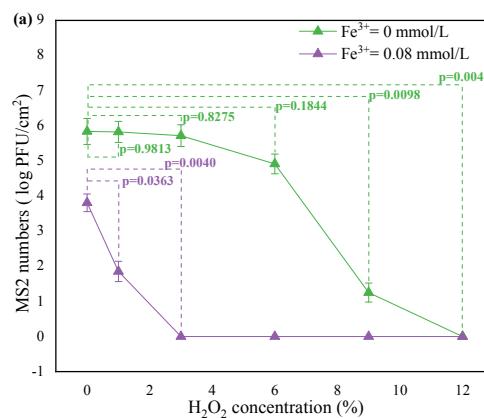

23 272 **3.2.4 Fe^{3+} pretreatment as a virus removal mechanism**
24
25

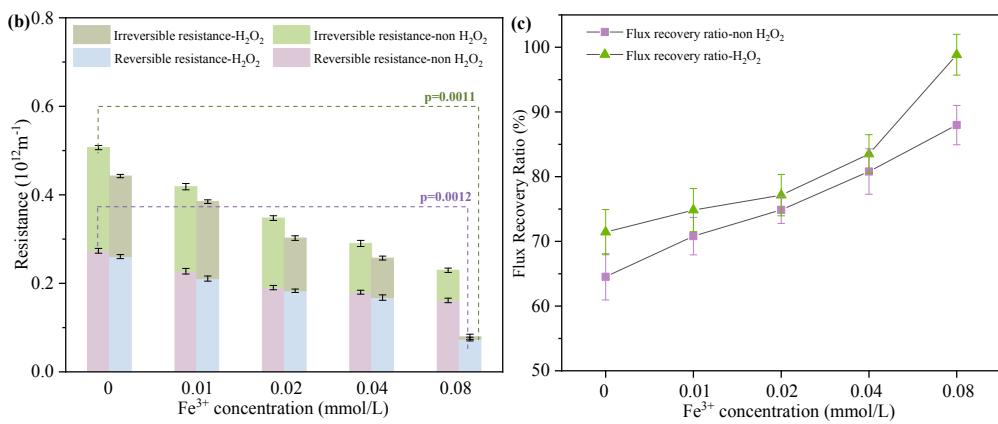
26 273 The cake layer formed by iron flocs can retain more MS2 through size exclusion. Fe^{3+}
27
28 274 neutralized the negative charge of the solution and membrane surface caused by HA (**Fig. 2**
29
30 275 **(a)** and **Fig. 4 (a)**). The interaction force between particles in the solution after Fe^{3+}
31
32 276 treatment became an attractive force, indicating MS2 was removed by the adsorption of
33
34 277 Fe^{3+} (**Fig. 2 (b)**) ³⁰. The TEM image of MS2 proved that MS2 has a distinct head-to-tail
35
36 278 structure with a diameter of about 25 nm (**Fig. 4 (c)**). The head of MS2 has a negative
37
38 279 charge and the tail is positively charged, making the MS2 negatively charged overall ^{51, 52}.
39
40 280 The head of MS2 was adsorbed around the iron flocs and subsequently removed after Fe^{3+}
41
42 281 pretreatment (**Fig. 4 (d)**). In addition, Fe^{3+} pretreatment enhanced electrostatic repulsion
43
44 282 between membrane surface and the foulants (**Fig. 2 (c)**), which was beneficial to MS2
45
46 283 removal. Fe^{3+} treatment increased membrane surface hydrophilicity, indicating two things:
47
48 284 firstly, viruses remaining on the membrane surface diminished; and secondly, the increase
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4 285 in hydrophilicity was conducive to pollutant removal³⁹ (**Table 2**).
5
6

7 286 In summary, MS2 in the solution was removed by the adsorption and size exclusion of
8
9 287 Fe^{3+} , while the main mechanism of MS2 removal on the membrane surface was
10
11 288 electrostatic repulsion. Although the hydrophilicity enhancement of the membrane surface
12
13 289 was not conducive to virus removal, it is beneficial for pollutant removal and membrane
14
15 290 fouling mitigation.
16
17
18

19 291 **Fig. 4** (a) Zeta potential of the effluent after Fe^{3+} treatment; (b) Particle size of Fe^{3+}
20
21 pretreatment and iron flocs- H_2O_2 cleaning; (c) TEM images of MS2; (d) TEM images after
22
23 292 0.08 mmol/L Fe^{3+} treatment; (e) TEM images after 0.08 mmol/L Fe^{3+} and 3% H_2O_2
24
25
26 293 treatment.
27
28
29


1
2
3
4 295 **3.3 Mechanism of iron flocs-H₂O₂ in-situ cleaning on MS2 elimination and membrane**
5
6


7 296 **fouling mitigation**
8
9

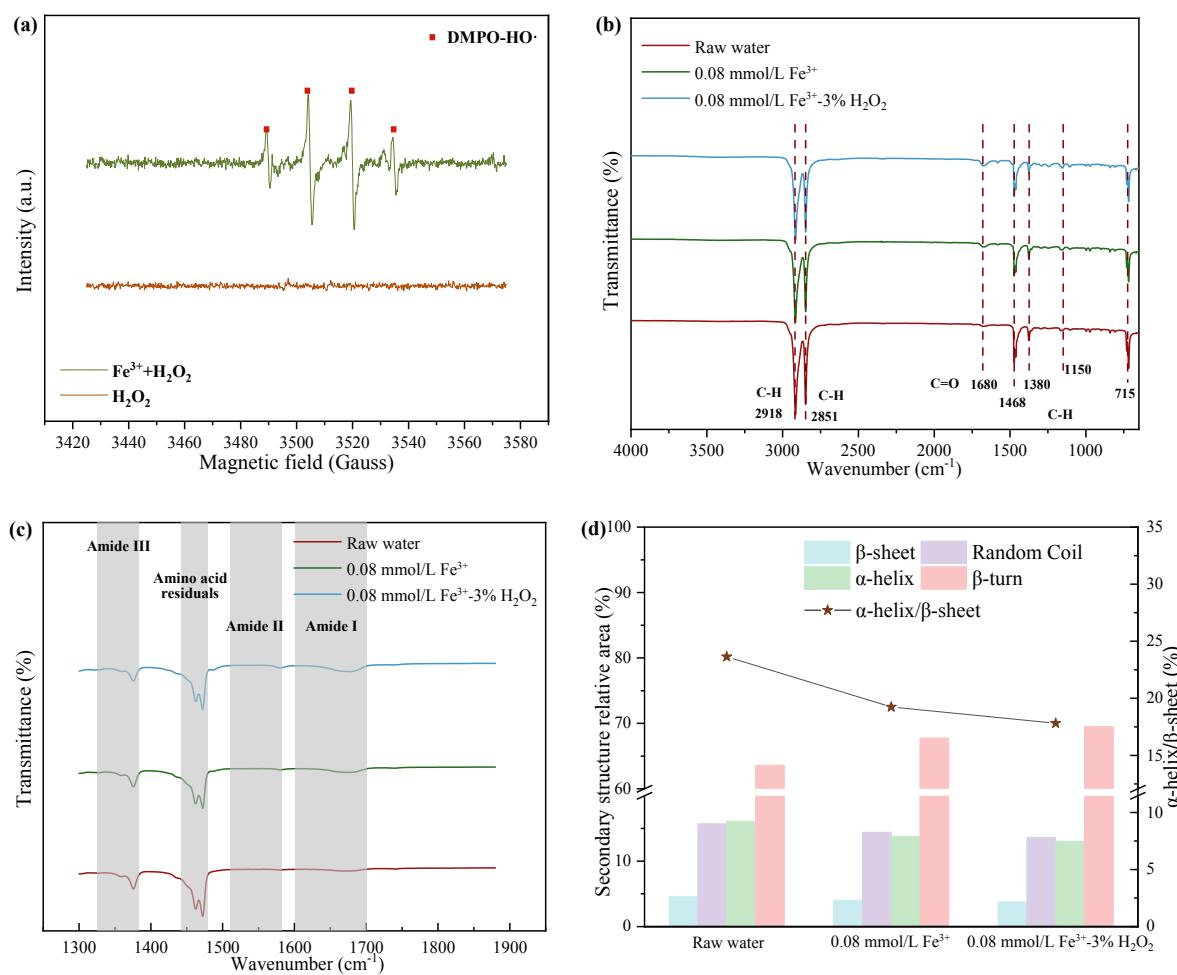
10 297 **3.3.1 MS2 elimination on the membrane surface**
11
12

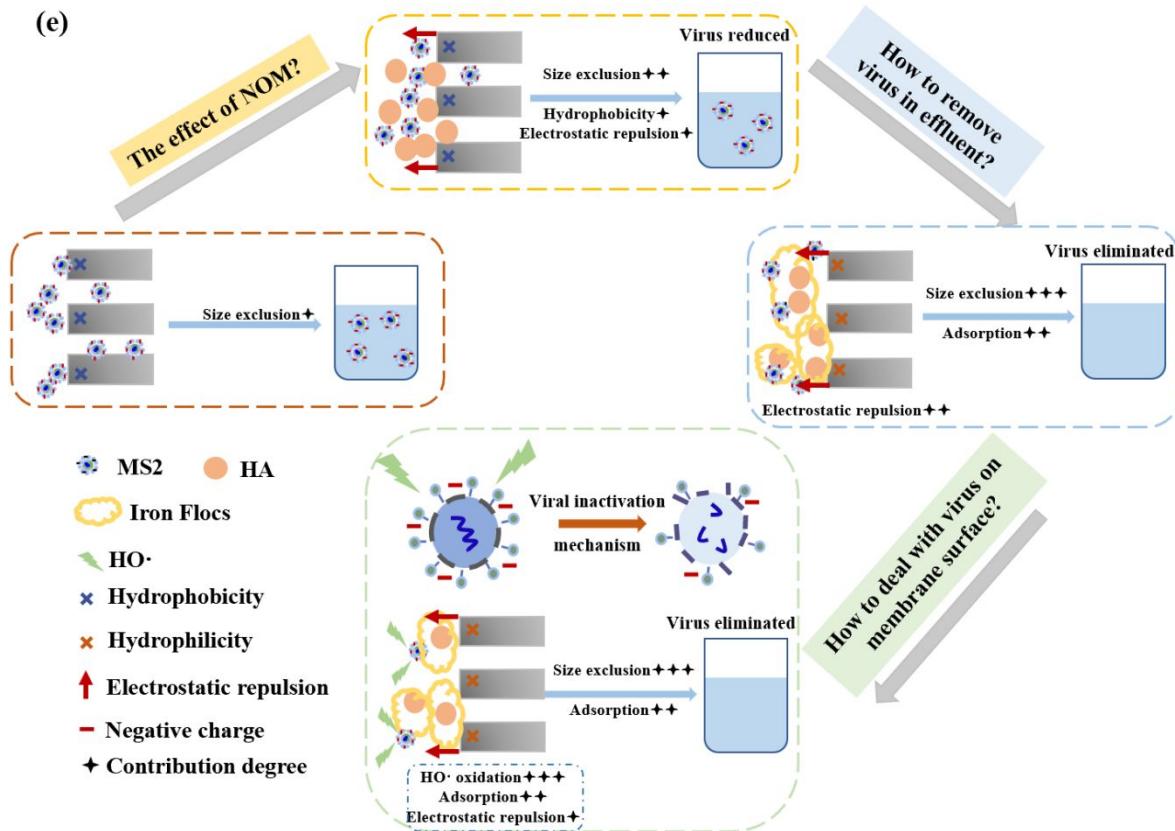
13 298 **Fig. S2** reflected the residual iron on the membrane surface. There was 0.05 mg/cm²
14
15 299 iron remaining on the membrane surface when Fe³⁺ dosage was 0.08 mmol/L. Iron flocs
16
17 300 after coagulation coupled with H₂O₂ cleaning revealed significant removal of MS2
18
19 301 remaining on the membrane's surface (**Fig. 5 (a)**). As well, the overall cost of H₂O₂ was
20
21 302 greatly reduced. H₂O₂ with a concentration of 12% was required to completely inactivate
22
23 303 MS2 on the membrane surface when feedwater was not pretreated with Fe³⁺. Compared to
24
25 304 this, H₂O₂ with a concentration of only 3% could remove all residual MS2 under the
26
27 305 catalysis of iron flocs.
28
29
30

31 306 **Fig. 5 (a)** Virus removal on the membrane surface after iron flocs-H₂O₂ cleaning under
32
33 307 different concentrations; (b) Membrane fouling resistance mitigation and (c) flux recovery
34
35 308 ratio after iron flocs-H₂O₂ cleaning.
36
37
38
39
40

3.3.2 Membrane fouling resistance and flux recovery ratio

Fig. 5 (b) highlights membrane fouling resistance alleviation efficiency under and without 3% H₂O₂ cleaning. Compared to the non-H₂O₂ cleaning groups, both reversible and irreversible fouling resistance were significantly alleviated by iron flocs coupled with H₂O₂ cleaning. 71.5% reversible fouling resistance was mitigated, which declined from $2.60 \times 10^{11} \text{ m}^{-1}$ to $0.74 \times 10^{11} \text{ m}^{-1}$, while irreversible resistance was more effectively mitigated from $1.82 \times 10^{11} \text{ m}^{-1}$ to $0.05 \times 10^{11} \text{ m}^{-1}$ and the removal rate reached 97.3%. As an important contributor to virus removal, irreversible fouling resistance will block membrane pores and retain more viruses³⁵. The efficient removal of irreversible resistance marked high removal rates for viruses. Moreover, irreversible resistance proved to be an important factor that causes membrane aging⁵³, which was significantly reduced by iron flocs-H₂O₂ cleaning. The flux recovery ratio was also effectively promoted and reached 97.8% after iron flocs-H₂O₂ cleaning as displayed in **Fig. 5 (c)**, which was greatly improved compared with individual Fe³⁺ pretreatment (72.9%). Reducing the amount of H₂O₂ not only saved costs but also avoid membrane damage caused by excessive membrane cleaning agent.


1
2
3
4 326 **3.3.3 Virus elimination mechanism using iron flocs-H₂O₂ for in-situ cleaning**
5
6


7 327 H₂O₂ reacted with iron flocs remaining on the membrane surface to generate HO[·] with
8
9 328 strong oxidizing properties (**Fig. 6 (a)**), which could not only effectively inactivate viruses
10
11 329 but also mitigate membrane fouling. Many studies have shown that HO[·] can cause higher
12
13 330 viral deactivation rate, even in the presence of NOM ²⁹. TEM image demonstrates that the
14
15 331 iron flocs had a stronger adsorption capacity for viruses after the addition of H₂O₂, and the
16
17 332 size of flocs improved (**Fig. 4 (e)**). The electronegativity of the membrane surface was
18
19 333 improved by iron flocs-H₂O₂ treatment (-22.51 mV), which contributed to the further
20
21 334 removal of residual MS2 (**Fig. 2 (a)**). Iron flocs-H₂O₂ greatly promoted attractive force in
22
23 335 the solution (**Fig. 2 (b)**), and the results of particle size and TEM image proved that flocs
24
25 336 with larger particle size and specific surface area were formed (**Fig. 2 (c) and Fig. 4 (e)**),
26
27 337 which could adsorb more MS2. Iron flocs-H₂O₂ cleaning formed a strong repulsive force
28
29 338 between MS2 and the membrane surface (**Fig. 2 (c)**) and completely removed all MS2 that
30
31 339 remained on the membrane surface. The enhancement of electrostatic interactions will
32
33 340 cause damage to the viral capsid ⁵⁰. This surface's hydrophilicity was further enhanced by
34
35 341 iron flocs-H₂O₂ cleaning, which contributed to the alleviation of membrane fouling and
36
37 342 flux recovery (**Table 2**).
38
39
40
41
42
43
44
45
46
47
48
49

50 343 **Fig. 6 (a)** EPR signals of Fe³⁺-H₂O₂ reaction with DMPO as the spin trapping agent;
51
52 344 (b) FTIR spectra of the membrane surface after different treatments; (c) FTIR spectra with
53
54 345 a wavenumber field of 1300-1900 cm⁻¹; (d) effect of Fe³⁺ treatment and Fe³⁺-H₂O₂ cleaning
55
56 346 on secondary structures of the MS2 capsid protein; (e) MS2 removal mechanism in each
57
58
59
60

347

treatment stage.

1
2
3
4 360 54-56. Moreover, the ratio decline of α -helix/ β sheet suggested the formation of protein
5
6 361 aggregates and protein acetylation. The results of FTIR demonstrated that the structure of
7
8 362 virus capsid protein was affected by Fe^{3+} treatment and iron flocs- H_2O_2 cleaning and
9
10 363 resulting in capsid damage, which may exacerbate viral genome release and degradation.
11
12
13
14
15 364 The mechanisms for removing MS2 under different treatment stages were summarized
16
17 365 in **Fig. 6 (e)**.
18
19
20 366 **3.4 Application and prospects**
21
22
23 367 During the treatment of pathogenic microorganisms-containing natural surface water
24
25 368 by membrane technology, viruses that pass through the membrane pores and are trapped on
26
27 369 the membrane surface will pose a hidden danger to drinking water biosafety. Therefore,
28
29 370 effective treatment methods for removing a virus in the effluent and on the membrane
30
31 371 surface are required. In our experiments, the viruses in the effluent can be completely
32
33 372 removed by Fe^{3+} coagulation, and the iron flocs catalyze H_2O_2 has both disinfection and
34
35 373 membrane cleaning functions, which will create an enhanced membrane cleaning process to
36
37 374 improve the elimination of viruses that are retained by the membrane and mitigate
38
39 375 membrane fouling. Iron coagulants are not only inexpensive but also 'green' and
40
41 376 environmentally friendly, which can guarantee the biosafety of effluent and effectively
42
43 377 alleviate membrane fouling. Furthermore, the iron flocs remaining on the membrane
44
45 378 surface will react with H_2O_2 to generate $HO\cdot$, which can further inactivate viruses and
46
47 379 prevent membrane fouling.
48
49
50 380 Different degrees of damage to the membrane will be caused by chemical cleaning.
51
52
53
54
55
56
57
58
59
60

1
2
3
4 381 NaOCl is the most likely to cause membrane aging, which can lead to membrane
5
6 382 degradation and structural damage, and even a small amount of addition will show a greater
7
8 383 impact on the performance of UF membrane ^{38, 57}. The amount of H₂O₂ is greatly reduced
9
10 384 when coupled with Fe³⁺ pretreatment, which will save membrane cleaning costs and avoid
11
12 385 damage to the membrane caused by too much chemical cleaning agent. The results of our
13
14 386 experiment can provide useful technical references for the treatment of virus-containing
15
16 387 raw water in practical applications. Furthermore, the method not only can ensure the
17
18
19 388 biosafety of drinking water but also reduce the usage of disinfectants after membrane
20
21 389 treatment process, thereby curtailing the disinfection by-products (DBPs) generation.
22
23 390 Future research on the effect of multiple coagulants and membrane cleaning agents on virus
24
25 391 removal during membrane treatment can be undertaken, the degree of membrane damage
26
27 392 and aging caused by chemical cleaning can also be explored, and provide more treatment
28
29 393 methods for improving the biosafety of drinking water.
30
31
32
33
34
35
36
37
38
39 394 **5. Conclusion**
40
41
42 395 In this study, iron flocs after Fe³⁺ coagulation were used to enhance H₂O₂ cleaning for
43
44 396 virus removal in the UF process when HA was presented. MS2 in the effluent can be
45
46 397 eliminated by pre-coagulation. Meanwhile, the in-situ cleaning of iron flocs-H₂O₂ ensured
47
48 398 all MS2 retained by the membrane could be inactivated. This method has practical
49
50 399 application potential and can significantly save operating costs and extend the service life
51
52 400 of the membrane. The mechanism for removing and inactivating the virus was also
53
54 401 investigated. The main conclusions are as follows:
55
56
57
58
59
60

1
2
3
4 402 1. Virus removal in UF effluent was partly promoted through size exclusion,
5
6 403 hydrophobicity, and electrostatic repulsion in the presence of HA. As well, HA increased
7
8 404 the repulsion between membrane surface and MS2, slightly decreasing the residual virus
9
10 405 found on the membrane surface.
11
12
13
14

15 406 2. Fe^{3+} coagulation reduced the burden of UF and enhanced membrane surface
16
17 407 hydrophilicity, which effectively alleviated membrane fouling. MS2 in the effluent was
18
19 408 completely removed by 0.08 mmol/L Fe^{3+} through adsorption and size exclusion. Any MS2
20
21 409 retained on the membrane surface was reduced by electrostatic repulsion.
22
23
24

25 410 3. Iron flocs after coagulation enhanced H_2O_2 cleaning and formed in-situ oxidation,
26
27 411 which completely inactivated MS2 remaining on the membrane surface with low
28
29 412 concentration H_2O_2 (3%). Membrane fouling was further alleviated and the maximum flux
30
31 413 recovery rate reached 97.8%.
32
33
34
35

36 414 4. Iron flocs- H_2O_2 inactivated virus by generating HO^\cdot oxidation and causing virus
37
38 415 capsid protein damage. The electrostatic repulsion and adsorption mechanism also
39
40 416 contributed to virus removal.
41
42
43

44 417 **Author information**

45 418 **Corresponding Author**

46 419 **An Ding - State Key Laboratory of Urban Water Resource and Environment, School
47
48 51
49
50
52
53
54
55
56
57
58
59
60
of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China; E-mail:
dinganhit@163.com**

422 **Author**

1
2
3
4 423 **Zixiao Ren** - *State Key Laboratory of Urban Water Resource and Environment,*
5
6
7 424 *School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China*
8
9
10 425 **Huicong Shi** - *State Key Laboratory of Urban Water Resource and Environment,*
11
12 426 *School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China*
13
14
15 427 **Jie Zeng** - *State Key Laboratory of Urban Water Resource and Environment, School*
16
17
18 428 *of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China*
19
20
21 429 **Xu He** - *State Key Laboratory of Urban Water Resource and Environment, School of*
22
23 430 *Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China*
24
25
26 431 **Guibai Li** - *State Key Laboratory of Urban Water Resource and Environment, School*
27
28
29 432 *of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China*
30
31
32 433 **Huu Hao Ngo** - Faculty of Engineering, University of Technology Sydney, P.O. Box
33
34 434 123, Broadway, Sydney, NSW 2007, Australia
35
36
37 435 **Jun Ma** - *State Key Laboratory of Urban Water Resource and Environment, School of*
38
39 436 *Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China*
40
41
42 437 **Chuyang Y. Tang** - *Department of Civil Engineering, The University of Hong Kong,*
43
44
45 438 *Pokfulam, Hong Kong 999077, China*
46
47
48 439 **Author contributions**
49
50
51 440 **Zixiao Ren:** Data curation, Data analyses, Writing. **Huicong Shi:** Data curation, Data
52
53 441 analyses. **Jie Zeng:** Data curation, Data analyses. **Xu He:** Conceptualization, Methodology,
54
55
56 442 Editing. **Guibai Li:** Conceptualization, Methodology, Supervision. **Huu Hao Ngo:**
57
58
59 443 Conceptualization, Methodology, Editing. **Jun Ma:** Conceptualization, Methodology,
60

1
2
3
4 444 Editing. **Chuyang Y. Tang**: Revision, Editing. **An Ding**: Conceptualization, Methodology,
5
6
7 445 Editing, Supervision.
8
9
10 446 **Acknowledgments**

11
12 447 The work was supported by National Natural Science Foundation of China (No.
13
14

15 448 52070058); State Key Laboratory of Urban Water Resource and Environment (Harbin
16
17

18 449 Institute of Technology) (No. 2021TS17); Heilongjiang Touyan Innovation Team Program
19
20 450 (HIT-SE-01).
21
22 451
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

452 **References:**

453 1. Cheng, X.; Zhang, Y.; Fan, Q.; Wang, L.; Shi, S.; Luo, X.; Zhu, X.; Wu, D.;

454 Liang, H., Preparation of Co₃O₄@carbon nanotubes modified ceramic membrane for

455 simultaneous catalytic oxidation and filtration of secondary effluent. *Chemical Engineering*

456 *Journal* **2023**, *454*, 140450.

457 2. Ferrer, O.; Casas, S.; Galvañ, C.; Lucena, F.; Bosch, A.; Galofré, B.; Mesa, J.;

458 Jofre, J.; Bernat, X., Direct ultrafiltration performance and membrane integrity monitoring

459 by microbiological analysis. *Water Research* **2015**, *83*, 121-131.

460 3. Lian, J.; Cheng, X.; Zhu, X.; Luo, X.; Xu, J.; Tan, F.; Wu, D.; Liang, H., Mutual

461 activation between ferrate and calcium sulfite for surface water pre-treatment and

462 ultrafiltration membrane fouling control. *Science of The Total Environment* **2023**, *858*,

463 159893.

464 4. Ding, A.; Ren, Z.; Zhang, Y.; Ma, J.; Bai, L.; Wang, B.; Cheng, X., Evaluations of

465 holey graphene oxide modified ultrafiltration membrane and the performance for water

466 purification. *Chemosphere* **2021**, *285*, 131459.

467 5. Ren, Z.; Cheng, X.; Li, P.; Luo, C.; Tan, F.; Zhou, W.; Liu, W.; Zheng, L.; Wu, D.,

468 Ferrous-activated sodium percarbonate pre-oxidation for membrane fouling control during

469 ultrafiltration of algae-laden water. *Science of The Total Environment* **2020**, *739*, 140030.

470 6. Lee, S.; Ihara, M.; Yamashita, N.; Tanaka, H., Improvement of virus removal by

471 pilot-scale coagulation-ultrafiltration process for wastewater reclamation: Effect of

472 optimization of pH in secondary effluent. *Water research* **2017**, *114*, 23-30.

1
2
3
4 473 7. Shirasaki, N.; Matsushita, T.; Matsui, Y.; Murai, K., Assessment of the efficacy of
5
6 membrane filtration processes to remove human enteric viruses and the suitability of
7
8
9 475 bacteriophages and a plant virus as surrogates for those viruses. *Water research* **2017**, *115*,
10
11 476 29-39.
12
13
14
15 477 8. Prevost, B.; Goulet, M.; Lucas, F.; Joyeux, M.; Moulin, L.; Wurtzer, S., Viral
16
17 persistence in surface and drinking water: Suitability of PCR pre-treatment with
18
19
20 479 intercalating dyes. *Water research* **2016**, *91*, 68-76.
21
22
23 480 9. Leisi, R.; Widmer, E.; Gooch, B.; Roth, N. J.; Ros, C., Mechanistic insights into
24
25 flow-dependent virus retention in different nanofilter membranes. *Journal of Membrane
26
27
28
29 Science* **2021**, *636*, 119548.
30
31
32 483 10. Al-Hazmi, H. E.; Shokrani, H.; Shokrani, A.; Jabbour, K.; Abida, O.; Mousavi
33
34
35
36
37 485 Badawi, M., Recent advances in aqueous virus removal technologies. *Chemosphere* **2022**,
38
39 486 305, 135441.
40
41
42 487 11. Symonds, E. M.; Verbyla, M. E.; Lukasik, J. O.; Kafle, R. C.; Breitbart, M.;
43
44
45
46
47 488 Mihelcic, J. R., A case study of enteric virus removal and insights into the associated risk of
48
49
50
51 490 water reuse for two wastewater treatment pond systems in Bolivia. *Water Research* **2014**,
52
53
54 491 65, 257-270.
55
56
57
58
59 493 12. Goswami, K. P.; Pugazhenthi, G., Credibility of polymeric and ceramic membrane
60
filtration in the removal of bacteria and virus from water: A review. *Journal of
Environmental Management* **2020**, *268*, 110583.

1
2
3
4 494 13. Domagała, K.; Jacquin, C.; Borlaf, M.; Sinnet, B.; Julian, T.; Kata, D.; Graule, T.,
5
6
7 495 Efficiency and stability evaluation of Cu₂O/MWCNTs filters for virus removal from water.
8
9 496 *Water Research* **2020**, *179*, 115879.
10
11
12 497 14. Kreißel, K.; Bösl, M.; Lipp, P.; Franzreb, M.; Hambsch, B., Study on the removal
13
14
15 498 efficiency of UF membranes using bacteriophages in bench-scale and semi-technical scale.
16
17
18 499 *Water Science and Technology* **2012**, *66*, (6), 1195-1202.
19
20
21 500 15. Zhu, Y.; Chen, R.; Li, Y.-Y.; Sano, D., Virus removal by membrane bioreactors: A
22
23 review of mechanism investigation and modeling efforts. *Water Research* **2021**, *188*,
24
25
26 502 116522.
27
28
29 503 16. Palika, A.; Armanious, A.; Rahimi, A.; Medaglia, C.; Gasbarri, M.; Handschin, S.;
30
31
32 504 Rossi, A.; Pohl, M. O.; Busnadio, I.; Gübeli, C., An antiviral trap made of protein
33
34
35 505 nanofibrils and iron oxyhydroxide nanoparticles. *Nature Nanotechnology* **2021**, *16*, (8),
36
37 506 918-925.
38
39
40 507 17. Shen, M.-H.; Yin, Y.-G.; Booth, A.; Liu, J.-F., Effects of molecular weight-
41
42 dependent physicochemical heterogeneity of natural organic matter on the aggregation of
43
44
45 509 fullerene nanoparticles in mono-and di-valent electrolyte solutions. *Water Research* **2015**,
46
47
48 510 *71*, 11-20.
49
50
51 511 18. Szermer-Olearnik, B.; Drab, M.; Mąkosa, M.; Zembala, M.; Barbasz, J.;
52
53
54 512 Dąbrowska, K.; Boratyński, J., Aggregation/dispersion transitions of T4 phage triggered by
55
56
57 513 environmental ion availability. *Journal of nanobiotechnology* **2017**, *15*, (1), 1-15.
58
59
60 514 19. ElHadidy, A. M.; Peldszus, S.; Van Dyke, M. I., Effect of hydraulically reversible

1
2
3
4 515 and hydraulically irreversible fouling on the removal of MS2 and ϕ X174 bacteriophage by
5
6 516 an ultrafiltration membrane. *Water Research* **2014**, *61*, 297-307.
7
8 517 20. Ren, Z.; Cao, H.; Desmond, P.; Liu, B.; Ngo, H. H.; He, X.; Li, G.; Ma, J.; Ding,
9
10 518 A., Ions play different roles in virus removal caused by different NOMs in UF process:
11
12 519 Removal efficiency and mechanism analysis. *Chemosphere* **2023**, *313*, 137644.
13
14 520 21. Kloster, N.; Brigante, M.; Zanini, G.; Avena, M., Aggregation kinetics of humic
15
16 521 acids in the presence of calcium ions. *Colloids and Surfaces A: Physicochemical and*
17
18 522 *Engineering Aspects* **2013**, *427*, 76-82.
19
20
21
22
23
24 523 22. Bai, Z.; Gao, S.; Yu, H.; Liu, X.; Tian, J., Layered metal oxides loaded ceramic
25
26
27
28 524 membrane activating peroxymonosulfate for mitigation of NOM membrane fouling. *Water*
29
30
31 525 *Research* **2022**, *222*, 118928.
32
33
34 526 23. Zhu, B.; Clifford, D. A.; Chellam, S., Comparison of electrocoagulation and
35
36
37 527 chemical coagulation pretreatment for enhanced virus removal using microfiltration
38
39
40 528 membranes. *Water Research* **2005**, *39*, (13), 3098-3108.
41
42
43 529 24. Ding, A.; Ren, Z.; Hu, L.; Zhang, R.; Ngo, H. H.; Lv, D.; Nan, J.; Li, G.; Ma, J.,
44
45
46 530 Oxidation and coagulation/adsorption dual effects of ferrate (VI) pretreatment on organics
47
48
49 531 removal and membrane fouling alleviation in UF process during secondary effluent
50
51
52 532 treatment. *Science of The Total Environment* **2022**, *850*, 157986.
53
54
55 533 25. Chen, M.; Nan, J.; Ji, X.; Wu, F.; Ye, X.; Ge, Z., Effect of adsorption and
56
57
58 534 coagulation pretreatment sequence on ultrafiltration membrane fouling: Process study and
59
60 535 targeted prediction. *Desalination* **2022**, *540*, 115967.

1
2
3
4 536 26. Gan, Y.; Zhang, L.; Zhang, S., The suitability of titanium salts in coagulation
5
6 removal of micropollutants and in alleviation of membrane fouling. *Water Research* **2021**,
7
8 538 205, 117692.

9
10
11
12 539 27. Kreißel, K.; Bösl, M.; Hügler, M.; Lipp, P.; Franzreb, M.; Hambsch, B.,
13
14
15 Inactivation of F-specific bacteriophages during flocculation with polyaluminum chloride—a
16
17
18 541 mechanistic study. *Water Research* **2014**, *51*, 144-151.

19
20
21 542 28. Zhu, B.; Clifford, D. A.; Chellam, S., Virus removal by iron coagulation–
22
23 microfiltration. *Water Research* **2005**, *39*, (20), 5153-5161.

24
25
26 544 29. Giannakis, S.; Liu, S.; Carratalà, A.; Rtimi, S.; Talebi Amiri, M.; Bensimon, M.;
27
28
29 545 Pulgarin, C., Iron oxide-mediated semiconductor photocatalysis vs. heterogeneous photo-
30
31
32 546 Fenton treatment of viruses in wastewater. Impact of the oxide particle size. *Journal of*
33
34 547 *Hazardous Materials* **2017**, *339*, 223-231.

35
36
37 548 30. Tanneru, C. T.; Chellam, S., Mechanisms of virus control during iron
38
39 electrocoagulation–Microfiltration of surface water. *Water research* **2012**, *46*, (7), 2111-
40
41
42 550 2120.

43
44
45 551 31. Gan, X.; Lin, T.; Jiang, F.; Zhang, X., Impacts on characteristics and effluent
46
47 safety of PVDF ultrafiltration membranes aged by different chemical cleaning types.
48
49
50 553 *Journal of Membrane Science* **2021**, *640*, 119770.

51
52
53 554 32. He, X.; Li, B.; Wang, P.; Ma, J., Novel H₂O₂–MnO₂ system for efficient physico-
54
55
56 555 chemical cleaning of fouled ultrafiltration membranes by simultaneous generation of
57
58
59 556 reactive free radicals and oxygen. *Water Research* **2019**, *167*, 115111.

1
2
3
4 557 33. Bao, X.; Liu, Q.; Yang, J.; Wang, F.; Yu, F.; Yu, J.; Yang, Y., Cascading in-situ
5
6 generation of H₂O₂ and Fenton-like reaction in photocatalytic composite ultrafiltration
7
8
9 559 membrane for high self-cleaning performance in wastewater treatment. *Journal of*
10
11 560 *Membrane Science* **2022**, *660*, 120866.

12
13
14 561 34. Tobias, A.; Bérubé, P. R., Contribution of biofilm layer to virus removal in
15
16 gravity-driven membrane systems with passive fouling control. *Separation and Purification*
17
18 562 *Technology* **2020**, *251*, 117336.

19
20
21 563 35. Martí, E.; Monclús, H.; Jofre, J.; Rodriguez-Roda, I.; Comas, J.; Balcázar, J. L.,
22
23 564 Removal of microbial indicators from municipal wastewater by a membrane bioreactor
24
25 565 (MBR). *Bioresource Technology* **2011**, *102*, (8), 5004-5009.

26
27
28 566 36. ElHadidy, A. M.; Peldszus, S.; Van Dyke, M. I., An evaluation of virus removal
29
30 mechanisms by ultrafiltration membranes using MS2 and φX174 bacteriophage. *Separation*
31
32 567 *and Purification Technology* **2013**, *120*, 215-223.

33
34
35
36 568 37. Cai, W.; Liu, Y., Comparative study of dissolved organic matter generated from
37
38 activated sludge during exposure to hypochlorite, hydrogen peroxide, acid and alkaline:
39
40 569 Implications for on-line chemical cleaning of MBR. *Chemosphere* **2018**, *193*, 295-303.

41
42
43 570 38. Regula, C.; Carretier, E.; Wyart, Y.; Gésan-Guiziou, G.; Vincent, A.; Boudot, D.;
44
45 571 Moulin, P., Chemical cleaning/disinfection and ageing of organic UF membranes: A
46
47 572 review. *Water Research* **2014**, *56*, 325-365.

48
49
50 573 39. Li, B.; Ma, J.; Qiu, W.; Li, W.; Zhang, B.; Ding, A.; He, X., In-situ utilization of
51
52 membrane foulants (FeOx+MnOx) for the efficient membrane cleaning. *Water Research*
53
54 574
55
56 575
57
58 576
59
60 577

1
2
3
4 578 2022, 210, 118004.
5
6
7 579 40. Mamane, H.; Shemer, H.; Linden, K. G., Inactivation of E. coli, B. subtilis spores,
8
9 580 and MS2, T4, and T7 phage using UV/H₂O₂ advanced oxidation. *Journal of hazardous*
10
11 581 *materials* **2007**, 146, (3), 479-486.
12
13
14
15 582 41. Gutierrez, L.; Li, X.; Wang, J.; Nangmenyi, G.; Economy, J.; Kuhlenschmidt, T.
16
17 583 B.; Kuhlenschmidt, M. S.; Nguyen, T. H., Adsorption of rotavirus and bacteriophage MS2
18
19
20 584 using glass fiber coated with hematite nanoparticles. *Water Research* **2009**, 43, (20), 5198-
21
22
23 585 5208.
24
25
26 586 42. Anderson, W. B.; DeLoyde, J. L.; Van Dyke, M. I.; Huck, P. M., Influence of
27
28 587 design and operating conditions on the removal of MS2 bacteriophage by pilot-scale
29
30
31 588 multistage slow sand filtration. *Journal of Water Supply: Research and Technology—*
32
33
34 589 *AQUA* **2009**, 58, (7), 450-462.
35
36
37 590 43. Gentile, G. J.; Cruz, M. C.; Rajal, V. B.; de Cortalezzi, M. M. F., Electrostatic
38
39 591 interactions in virus removal by ultrafiltration membranes. *Journal of environmental*
40
41
42 592 *chemical engineering* **2018**, 6, (1), 1314-1321.
43
44
45 593 44. Zheng, X.; Liu, J., Virus rejection with two model human enteric viruses in
46
47 594 membrane bioreactor system. *Science in China Series B: Chemistry* **2007**, 50, (3), 397-404.
48
49
50 595 45. Xiang, Z.; Wenzhou, L.; Min, Y.; Junxin, L., Evaluation of virus removal in MBR
51
52
53 596 using coliphages T4. *Chinese Science Bulletin* **2005**, 50, (9), 862-867.
54
55
56 597 46. Yin, Z.; Tarabara, V. V.; Xagoraraki, I., Human adenovirus removal by hollow
57
58
59 598 fiber membranes: Effect of membrane fouling by suspended and dissolved matter. *Journal*
60

599 of *Membrane Science* **2015**, *482*, 120-127.

600 47. Wu, B.; Liu, H.; Liu, Z.; Zhang, J.; Zhai, X.; Zhu, Y.; Sano, D.; Wang, X.; Chen,
601 R., Interface behavior and removal mechanisms of human pathogenic viruses in anaerobic
602 membrane bioreactor (AnMBR). *Water Research* **2022**, *219*, 118596.

603 48. Li, X.; Cai, M.; Wang, L.; Niu, F.; Yang, D.; Zhang, G., Evaluation survey of
604 microbial disinfection methods in UV-LED water treatment systems. *Science of the Total
605 Environment* **2019**, *659*, 1415-1427.

606 49. Park, J. A.; Kim, S. B.; Lee, C. G.; Lee, S. H.; Choi, J. W., Adsorption of
607 bacteriophage MS2 to magnetic iron oxide nanoparticles in aqueous solutions.
608 *Environmental Letters* **2014**, *49*, (9-10), 1116-1124.

609 50. Mayer, B. K.; Yang, Y.; Gerrity, D. W.; Abbaszadegan, M., The Impact of Capsid
610 Proteins on Virus Removal and Inactivation During Water Treatment Processes.
611 *Microbiology Insights* **2015**, *8*, (Suppl 2), 15.

612 51. Armanious, A.; Aeppli, M.; Jacak, R.; Refardt, D.; Sigstam, T.; Kohn, T.; Sander,
613 M., Viruses at solid–water interfaces: a systematic assessment of interactions driving
614 adsorption. *Environmental science & technology* **2016**, *50*, (2), 732-743.

615 52. Michen, B.; Graule, T., Isoelectric points of viruses. *Journal of applied
616 microbiology* **2010**, *109*, (2), 388-397.

617 53. Antony, A.; Branch, A.; Leslie, G.; Le-Clech, P., Impact of membrane ageing on
618 reverse osmosis performance – Implications on validation protocol. *Journal of Membrane
619 Science* **2016**, *520*, 37-44.

1
2
3
4 620 54. Yang, H.; Min, X.; Wu, J.; Lin, X.; Gao, F.-Z.; Hu, L.-X.; Zhang, L.; Wang, Y.;
5
6 621 Xu, S.; Ying, G.-G., Removal and Inactivation of Virus by Ceramic Water Filters Coated
7
8 622 with Lanthanum (III). *ACS ES&T Water* **2022**, 2, (10), 1811-1821.
9
10
11
12 623 55. Barraza-Garza, G.; Castillo-Michel, H.; de la Rosa, L. A.; Martinez-Martinez, A.;
13
14 624 Pérez-León, J. A.; Cotte, M.; Alvarez-Parrilla, E., Infrared spectroscopy as a tool to study
15
16 625 the antioxidant activity of polyphenolic compounds in isolated rat enterocytes. *Oxidative*
17
18
19 626 *Medicine and Cellular Longevity* **2016**, 2016.
20
21
22
23 627 56. Hu, L.-X.; Xiong, Q.; Shi, W.-J.; Huang, G.-Y.; Liu, Y.-S.; Ying, G.-G., New
24
25 628 insight into the negative impact of imidazolium-based ionic liquid [C10mim] Cl on Hela
26
27 629 cells: From membrane damage to biochemical alterations. *Ecotoxicology and*
28
29
30 630 *Environmental Safety* **2021**, 208, 111629.
31
32
33
34 631 57. Gitis, V.; Haught, R. C.; Clark, R. M.; Gun, J.; Lev, O., Application of nanoscale
35
36 632 probes for the evaluation of the integrity of ultrafiltration membranes. *Journal of*
37
38
39 633 *Membrane Science* **2006**, 276, (1), 185-192.
40
41
42 634
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60