

1 **Oil-water receiving membrane with sub-10 nm surfactant layer for**
2 **long-lasting oil-water separation**

3

4 Yajie Ding^{a†}, Nianxiang Qiu^{d†}, Jianqiang Wang^{a,b*}, Zhe Yang^c, Fu Liu^{a,b*}, Chuyang Y.
5 Tang^c

6

7 ^aKey Laboratory of Marine Materials and Related Technologies, Zhejiang Key
8 Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of
9 Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, P. R.
10 China;

11 ^bUniversity of Chinese Academy of Sciences, Beijing, P. R. China;

12 ^cThe University of Hong Kong, Hong Kong, P. R. China.

13 ^dEngineering Laboratory of Nuclear Energy Materials, Ningbo Institute of Materials
14 Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang,
15 315201, PR China.

16

17 E-mail: wangjianqiang@nimte.ac.cn; fu.liu@nimte.ac.cn

18

19

20

21

22

23

24

25

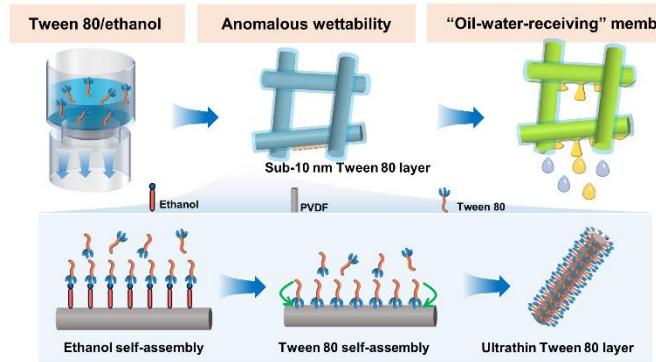
26

27

28

29

30


31

32

33

34

Graphical Abstract

"Oil-water-receiving" membrane with anomalous wettability for durable oil/water separation

35

36 **Abstract:** Oil fouling is an inherent threat of membrane-based separation of oil-
37 water emulsion, while common physical sieving membrane separation and
38 coalescence demulsification fail to achieve long term applications and combat severe
39 water flux declines. We hereby report an “oil-water-receiving” membrane with
40 anomalous wettability constructed by sub-10 nm Tween 80 assembly on hydrophobic
41 PVDF nanofibers to establish independent water and oil transmembrane passageway.
42 Water can go through the membrane freely along the hydrophilic nanofiber surface.
43 While emulsified oils were diverted beneath the ultra-thin hydrophilic layer and
44 captured by PVDF bulk to form coalesced oil phase and discharged out of the
45 nanofibrous membrane as continuous macroscopic oil phase. The membrane showed
46 stable permeate flux as high as $536 \pm 40 \text{ L m}^{-2} \text{ h}^{-1} \text{ bar}^{-1}$ after 10 h of continuously
47 filtering oil-in-water emulsions. The conformation assembly of surfactants with
48 hydrophilic and hydrophobic chains provides a new strategy to fabricate anti-fouling
49 membranes for oil/water separation.

50

51 **Key words**

52 Oil fouling, “oil-water-receiving” membrane, anomalous wettability, independent
53 water and oil transmembrane passageway

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71 **1. Introduction**

72 Membranes with superwetting interfaces have been widely exploited in recent
73 years[1]. Commonly, superhydrophilic or superhydrophobic interface exhibited
74 underwater superoleophobic property or under oil superhydrophobic property. Based
75 on this unique characteristic, superwetting membranes have been widely used for
76 oil/water separation[2]. Quite high membrane flux and separation efficiency can be
77 obtained by manipulating physicochemical properties of membranes. However,
78 membrane fouling is a huge challenge in the oil/water separation process, which
79 causes a rapid reduction in membrane permeability within minutes[3, 4]. Therefore,
80 continuous emulsion separation process calls for a novel antifouling strategy due to
81 the inevitable constraints.

82

83 Membrane fouling in oil/water separation process was mainly caused by the physical
84 sieving mechanism, where the dispersed phase tends to absorb on membrane
85 surface[5, 6]. For removing the fouling layer, several coupling strategies have been
86 reported[7, 8], such as physical/chemical cleaning[9, 10], catalytic degradation[11-17],
87 *in-situ* microbubbles[18-20] and pyrolysis[21, 22] etc. Notwithstanding high
88 permeance recovery, requirements of additional chemicals, off-line operations, and
89 thermal resistance of membrane materials greatly limited the application. Membrane
90 coalescence demulsification offers an alternative method of decontamination[23-26].
91 In this process, emulsified oil is adsorbed/collided on the hydrophobic/hydrophilic
92 pore surface, coalesced and subsequently flowed away from membrane by continuous
93 water phase.

94

95 Unfortunately, the coalesced oils cannot be completely removed because the
96 coalesced oil droplets are easily deformed and have strong affinity towards
97 hydrophobic channel surfaces. We proposed that membranes with tunable hydrophilic

98 component (e.g., polyhydroxyethyl methylacrylate, PHEMA) could restrain oil
99 fouling during coalescence demulsification process[27]. Separation permeance of
100 membrane was stable during 2 h of continuous separation without cleaning.
101 Incorporated PHEMA played an important role of enhancing antifouling property of
102 membrane due to hydration layer formed by PHEMA, similar to the case of
103 superhydrophilic membranes[28-32]. The hydrated channel wall repelled demulsified
104 oils and forced them to aggregate in membrane channels (hydrophilic and oil-
105 repellent)[33]. However, membrane channels occupied 60%-95% of the membrane
106 volume and once membrane channels were blocked by the oils, fouling occurred.
107 Therefore, the avoiding of oil aggregation in membrane channels is the gold key for
108 solving membrane fouling. To achieve this target, the anomalous wettability of
109 membrane pore surface needs be designed different from common hydrophilic or/and
110 underwater oleophobic property.

111

112 In this study, membrane with anomalous superhydrophilic and underwater
113 superoleophilic property was constructed by sub-10 nm hydrophilic layer on PVDF
114 nanofibers through simple surfactant molecular assembly. Benefit from this unique
115 wetting property, water and demulsified oils can freely go through membrane (“oil-
116 water-receiving”) without oil retention. Meanwhile, demulsified oils can be diverted
117 to the beneath PVDF nanofiber surface through the ultrathin surfactant layer for
118 further coalescence and release. Therefore, the pore plugging by oils are facilely
119 liberated for enhanced membrane antifouling performance. The ultrathin hydrophilic
120 layer strategy offered new understanding for oil/water separation through coalescence
121 demulsification and will significantly advance its practical applications.

122

123 **2. Experimental**

124 **2.1 Chemicals and materials**

125 Poly(vinylidene fluoride) (PVDF, average Mw: 180000, pellets), polystyrene (PS,
126 average Mw: 192000), polycaprolactone (PCL, Mw: 80000) were ordered from

127 Sigma-Aldrich (America). Decamethylcyclopentasiloxane (D5), dodecane,
128 hexadecane, Span 80, Span 20, Span 85, Tween 20, Rhodamine B, sodium
129 laurylsulfonate (SLS, 98%), dopamine hydrochloride was purchased from Aladdin
130 Biochemical Technology Co., Ltd. (China). Polyurethane (PU, 1180A) was brought
131 from BASF Corporation (Germany). Tween 80, N, N-dimethylformamide (DMF),
132 anhydrous ethanol, trifluoroethanol (TFEA), chloroform, n-butanol, toluene,
133 hydrochloric acid, sodium hydroxide was obtained from Sinopharm Chemical
134 Reagent Co., Ltd (China), Tween 85 was purchased from Shanghai Macklin
135 Biochemical Co., Ltd (China). Decamethylcyclopentasiloxane (D5, $\geq 97\%$) was
136 purchased from Trellis Trade Inc. (China). All chemicals were used as received
137 without further purification.

138 **Nanofibrous membrane preparation.** Different nanofibrous membranes were
139 fabricated via electrospinning method. PVDF nanofibrous membrane was prepared
140 based on our previously reported method[34]. Typically, 25 wt% homogeneous
141 PVDF/DMF solution was used for electrospinning. The injection speed, applied
142 voltage and receiving distance are 1.0 mL h^{-1} , 16 kV and 15 cm, respectively. Speed
143 of the receiver is 80 rpm. The thickness of nanofibrous membrane in this work is
144 $120 \pm 5 \text{ } \mu\text{m}$. Preparation parameters of other nanofibrous membrane (PS, PSF, PCL,
145 PU) were shown in Table S2.

146 **2.2 Preparation of the TPVDF nanofibrous membrane**

147 Electrospun PVDF nanofibrous membrane was sandwiched between two filter cups,
148 and then a certain concentration of Tween 80/ethanol solution (0.1, 0.5, 1.0, 1.5, 2.0,
149 3.0, 5.0, 7.0, 10.0 g L^{-1}) was filtered through the membrane under gravity condition
150 for a certain time (5, 10, 30, 60, 90, 120, 150 min). Without special instructions,
151 Tween 80 concentration and filtration time is 5 g L^{-1} and 2 h respectively. The
152 obtained membrane was named as TPVDF. For comparison, ethanol treated PVDF
153 nanofibrous membrane in the same way for 2 h was named as EPVDF. A schematic
154 diagram of the preparation process of TPVDF membrane was presented in Figure 1a.

155 **2.3 Preparation of the HTPVDF nanofibrous membrane**

156 5 g L⁻¹ Tween 80/hexane solution was filtered through the membrane under gravity
157 condition for 2 h. The obtained membrane was named as HTPVDF.

158 **2.4 Characterizations**

159 Surface morphologies of membranes were photographed by cold-field emission
160 scanning electron microscopy (SEM, S4800, Hitachi, Japan). Transmission electron
161 microscopy (TEM, Talos F200X, Thermo Fisher, USA) with EDAX was used to
162 observe structure and element distribution of nanofibers. To prepare TEM samples,
163 firstly, we stick the aluminum foil paper onto the receiving device and keep the end at
164 a certain distance from the receiving device. Secondly, electrospun for 30 s according
165 to the corresponding parameters. Thirdly, use a copper mesh to pick up the nanofibers
166 between the aluminum foil paper and the receiving device. Finally, the copper mesh
167 containing nanofibers was modified using the same method. Contact angle meter
168 (OCA25, Dataphysics, Germany) was employed to analyze wetting property. Vis
169 spectrophotometer (Lambda 950, PerkinElmer, USA) and microscopic infrared
170 spectrometer (Micro-FTIR, Cary660+620, Agilent, USA) was used to analyze
171 functional group of the membranes. Thermogravimetry analyzer/differential thermal
172 comprehensive thermal (Diamond TG/DTA, PerkinElmer, USA) was used to analyze
173 the content of surfactant on nanofibrous membrane. X-ray powder diffractometer
174 (XRD, D8 ADVANCE, BRUKER AXS, Germany) was used to measure the crystal
175 form of PVDF. Quartz crystal microbalance (QCM-D, Biolin Scientific, Sweden) was
176 used to measure adsorption and desorption of surfactants on membrane. Polarized hot
177 stage microscope (BX51, OLYMPUS, Japan) and dynamic light scattering particle
178 size analyzer (Zetasizer Nano ZS, Malvern, Britain) was applied to measure size
179 distribution of emulsion. TOC Analyzer (Multi N/C 3100, Analytik Jena AG,
180 Germany) was employed to detect the content of oil in feed and filtrate.

181 **2.5 Determination of thickness and content of surfactant on nanofibers**

182 PVDF nanofibers coated sensors were obtained by electrospinning 25 wt%
183 PVDF/DMF solution onto a gold sensor at the rate of 1.0 mL h⁻¹ for 4 h. The sensor
184 was then put into an open test cell (Biolin Scientific). Before tests, ethanol or hexane

185 was passed over the sensor until a stable baseline was acquired. After that, kinetic
186 experiments were conducted by flowing 5 g L⁻¹ Tween 80/ethanol or Tween
187 80/hexane solution through the QCM-D for 2 h. Desorption experiments were
188 conducted by changing the test solution to deionized water for 8 h. The mass and
189 thickness of the loaded Tween 80 was characterized by the frequency change through
190 the Sauerbrey equation.

$$191 \quad \Delta m = \frac{-C\Delta f}{n}$$
$$192 \quad \Delta \delta = \frac{\Delta m}{100}$$

193 where Δf is the frequency change (Hz), C is a constant (17.7 ng cm⁻² Hz⁻¹), n is the
194 resonance overtone number, Δm (ng cm⁻²) and $\Delta \delta$ (nm) is the mass and thickness of
195 loaded surfactant, respectively.

196 **2.6 Oil-in-water emulsion separation**

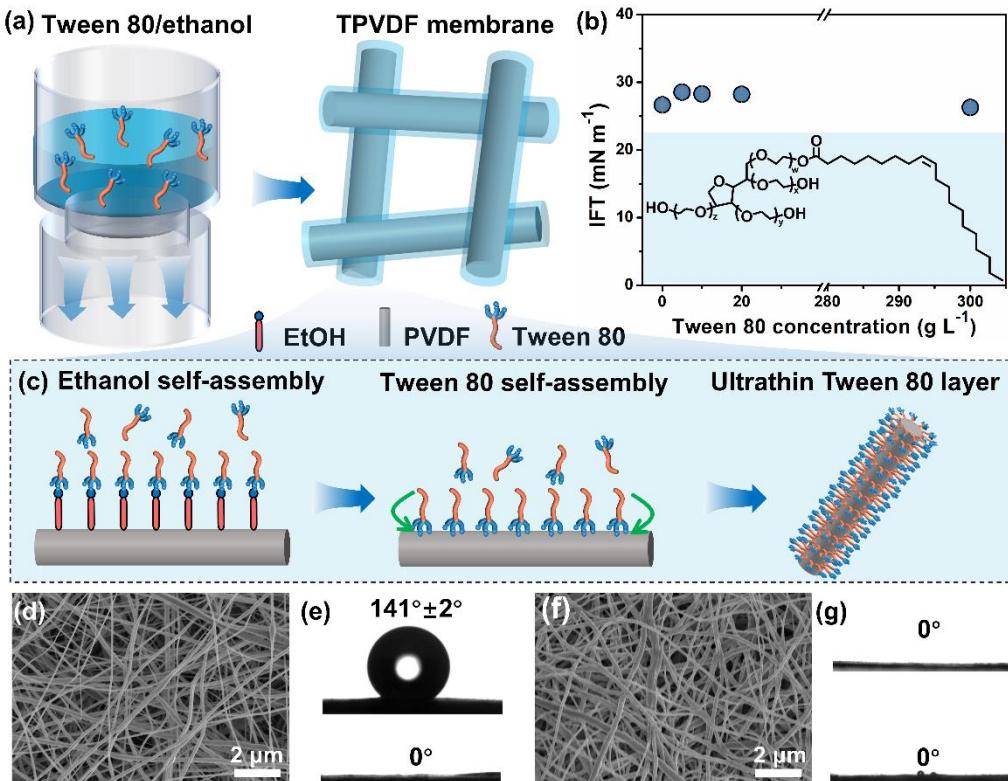
197 SLS-stabilized oil-in-water emulsion was firstly prepared before separation.
198 Concentration of SLS and oil was 0.1 g L⁻¹ and 1.0 vol% respectively. The mixed
199 solution was mechanically stirred for 6 h to form a milky white stable emulsion
200 (stable at least 24 h). A home-made cross-flow filter apparatus with a cell of 2.8 cm in
201 diameter was used to estimate the separation performance of membranes. The
202 membrane needs to be pre-impregnated with water before separation and the
203 operating pressure was set at 0.2 bar. Volume of filtrate was recorded every 20 min to
204 evaluate permeation flux.

205 **2.7 Molecular dynamics simulation**

206 All molecular dynamics (MD) simulations were performed using large scale
207 atomic/molecular massively parallel simulator, distributed as an open code for
208 massively parallel simulations[35]. Molecular visualization was performed using
209 Visual Molecular Dynamics (VMD) tool[36] and Materials Studio software. The
210 simulation configurations for molecular dynamics simulations were created by
211 packing optimization via the Packmol code[37]. Short-range interactions were
212 calculated with a cutoff distance of 12 Å, whereas the coulombic long-range

213 interactions were calculated using the PPPM algorithm[38]. Nose-Hoover
214 thermostat[39] was used to control the temperature of 300 K, and Berendsen
215 barostat[40] was applied to control the pressure of 1 atm for MD simulations. The
216 simulation time step was set to 1 fs. Periodic boundary conditions were imposed in all
217 three Cartesian directions.

218 Polyvinylidene fluoride (PVDF) chain ($C_{100}H_{102}F_{100}$, shown in Figure S26,
219 Supporting Information) was modeled as a 50-mer unit. The bonded and non-bonded
220 parameters of PVDF were taken from an explicit-hydrogen all-atom model based on
221 the OPLS-AA force-field of $C_{16}H_{18}F_{16}$ molecule[41, 42]. However, in order to
222 maintain the zero charge of each subunit and allow the connection between these
223 subunits, the partial charge of each atom of PVDF was adjusted as shown in Figure
224 S25, Supporting Information. The molecular structures of (a) PVDF chain, (b) Tween
225 80, (c) ethanol and (d) hexane. White, red, cyan and gray colors represent the H, O, F
226 and C atoms, respectively. An amorphous cell comprised of 60 PVDF chains was
227 constructed and minimized, followed by a 5 ns NPT run to reach the real density and
228 obtain equilibrium PVDF structure.

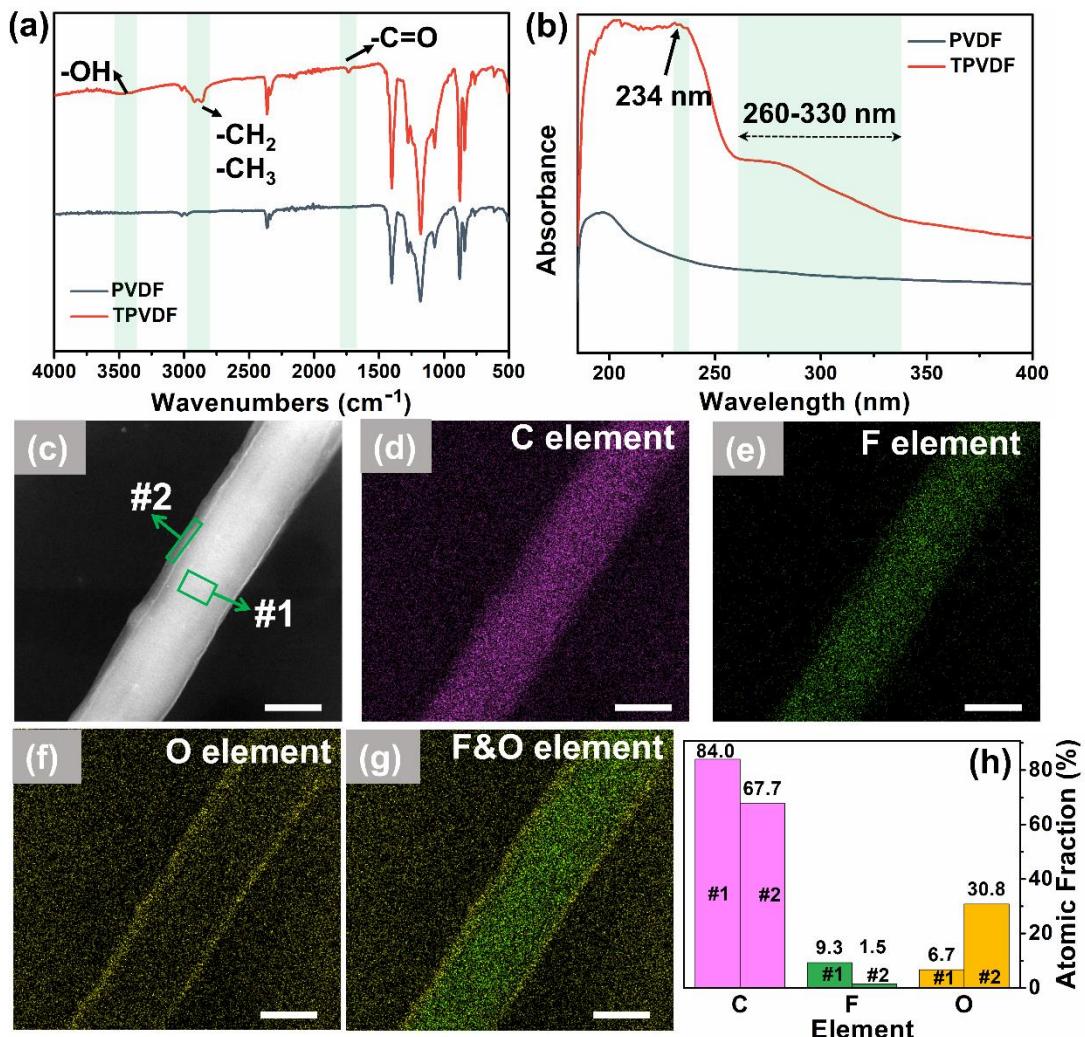

229 Tween 80, hexane and ethanol molecules were all represented by the OPLS-AA force-
230 field, while the partial charge per atom of Tween 80 were determined by an automated
231 force field Topology Builder (ATB) method[43]. Three PVDF-Tween 80-solvent
232 initial MD systems were constructed, all containing the PVDF structure and 20 Tween
233 80 molecules placed on PVDF surface in a simulation box with dimensions of $80 \text{ \AA} \times$
234 $80 \text{ \AA} \times 180 \text{ \AA}$, the first one with an additional 5000 ethanol molecules to solvate the
235 Tween 80 molecules (Figure S27a, Supporting Information), the second one with an
236 additional 5000 hexane molecules (Figure S27b, Supporting Information), and the
237 third one without any solvent molecules (Figure S27c, Supporting Information). After
238 that, the three MD models were minimized and then performed through a 50 ns NVT
239 simulation to mimic the adsorption of Tween 80 molecules onto the PVDF polymers.

240

241 **3. Results and discussion**

242 **3.1. Superhydrophilic and underwater superoleophilic interface construction.**

243 Interfaces with superhydrophilic and underwater superoleophobic properties are easily
244 realized and have been widely reported[44-48]. However, interfaces with
245 superhydrophilic and underwater superoleophilic properties are anomalous. However,
246 we are able to achieve this unique surface property simply by elaborately tuning the
247 thickness of hydrophilic layer on PVDF nanofibers. Surfactant (e.g., Tween
248 80)/ethanol solution was filtrated through a hydrophobic PVDF nanofibrous
249 membrane under gravity (Figure 1a). Ethanol was chosen as the solvent due to its fast-
250 wetting property to PVDF (Figure S1a, Supporting Information) and high solubility
251 for Tween 80 (Figure S1b, Supporting Information). The interfacial tension of Tween
252 80/ethanol solution was stable in a wide concentration range (5-300 g L⁻¹, Figure
253 1b)[49]. During filtration, ethanol molecules adsorbed on PVDF nanofiber through
254 hydrophilic hydroxyl groups exposed to the solution. Herein, ethanol exhibited feature
255 of surfactant to some extent due to its ethyl and hydroxyl group in chemical
256 structure[50]. Hydrophilic segments of Tween 80 molecules then contacted with the
257 exposed hydroxyl groups of ethanol due to their strong interaction[51]. After filtration,
258 a little amount of Tween 80/ethanol solution was left on the surface of PVDF
259 nanofiber. Ultrathin Tween 80 molecules were finally assembled on PVDF nanofiber
260 surface due to the evaporation of ethanol. Binding force between Tween 80 and PVDF
261 might be the hydrophobic interaction (detailed information can be found in molecular
262 dynamic simulation section). A schematic diagram about the Tween 80 coating on
263 PVDF nanofiber was shown in Figure 1c.


264

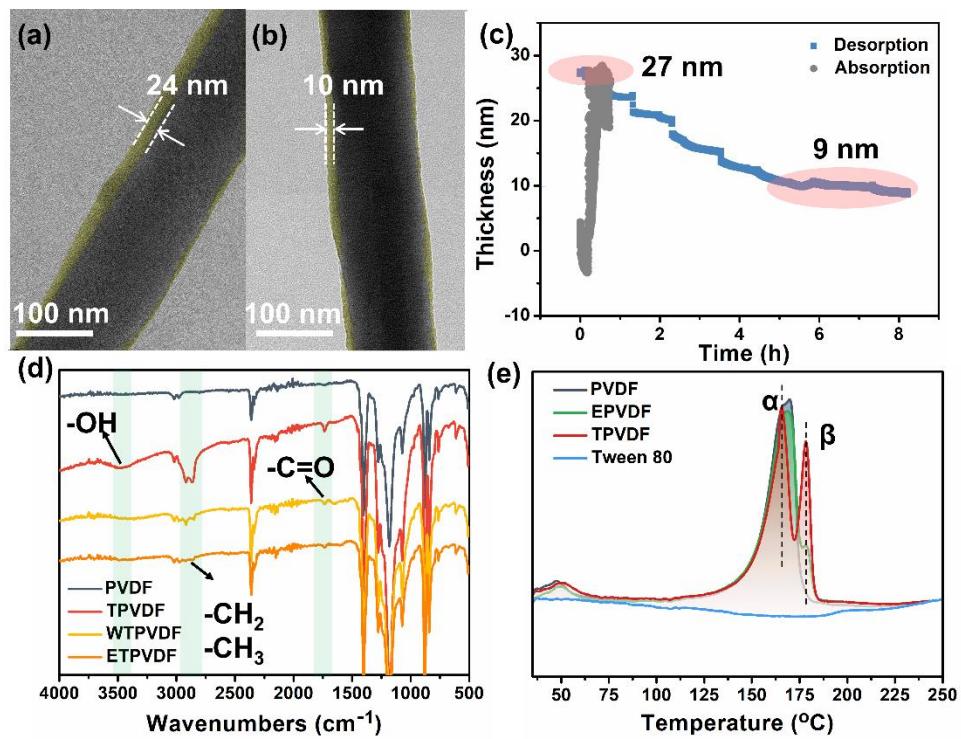
265 **Figure 1.** Tween 80 assembly on hydrophobic PVDF nanofibrous membrane to form
 266 oil-water-receiving membrane with superhydrophilic in air and superlipophilic
 267 underwater. Schematic illustrations of (a) preparation of TPVDF nanofibrous
 268 membrane, (b) Surface tension of ethanol as a function of Tween 80 concentration. (c)
 269 Tween 80 was self-assembled on the surface of hydrophobic PVDF nanofiber to form
 270 an ultrathin surfactant layer. SEM micrographs of (d) pristine PVDF and (f) TPVDF
 271 nanofibrous membrane. Water/oil contact angles of (e) PVDF and (g) TPVDF
 272 nanofibrous membrane in air/underwater.

273

274 PVDF nanofibrous membrane was composed of randomly stacked nanofibers (Figure
 275 1d). Water contact angle and underwater oil contact angle of PVDF nanofibrous
 276 membrane was about $141^\circ \pm 2^\circ$ and 0° respectively (Figure 1e). After filtration of
 277 Tween 80/ethanol solution, TPVDF exhibited a more tightly packed structure (Figure
 278 1f). The water (upper) and underwater oil (below) contact angle was all 0° (Figure 1g,
 279 SV1), which was anomalous to common sense[52-56]. The formation may be due to
 280 the presence of an ultrathin hydrophilic Tween 80 layer on the surface of hydrophobic

281 PVDF nanofiber: 1) A self-assembly of Tween 80 with the hydrophilic segments
282 exposing to the external environment at the interface of PVDF nanofibers (super-
283 hydrophilic in air); 2) Ultrathin hydrophilic Tween 80 layer and hydrophobic PVDF
284 nanofiber matrix form Janus-like structure, which allows underwater oil droplets enter
285 the hydrophobic PVDF nanofiber from the ultrathin hydrophilic Tween 80 layer
286 through the Laplace force (directional penetration, underwater superlipophilic). This
287 unique wetting property can be obtained in a wide range of Tween 80 concentration
288 ($1.5\text{-}10.0\text{ g L}^{-1}$, Figure S2a, Supporting Information). Water wetting time was
289 significantly decreased from 140 ms to 5 ms with increasing the concentration (Figure
290 S2b, Supporting Information). Moreover, if relatively high Tween 80 concentration
291 was used (e.g., 5 g L^{-1}), the filtration time can be decreased to 5 min for obtaining
292 superhydrophilic and underwater superoleophilic property (Figure S2c, Supporting
293 Information). In addition, no obvious surface morphology change was found at
294 different Tween 80 concentrations (Figure S3, Supporting Information). Notably,
295 superhydrophilic and underwater superoleophilic property cannot be achieved if
296 Tween 80 concentration was lower than 1.5 g L^{-1} (e.g., $0.1\text{-}1.0\text{ g L}^{-1}$, Figure S2a,
297 Supporting Information).

298

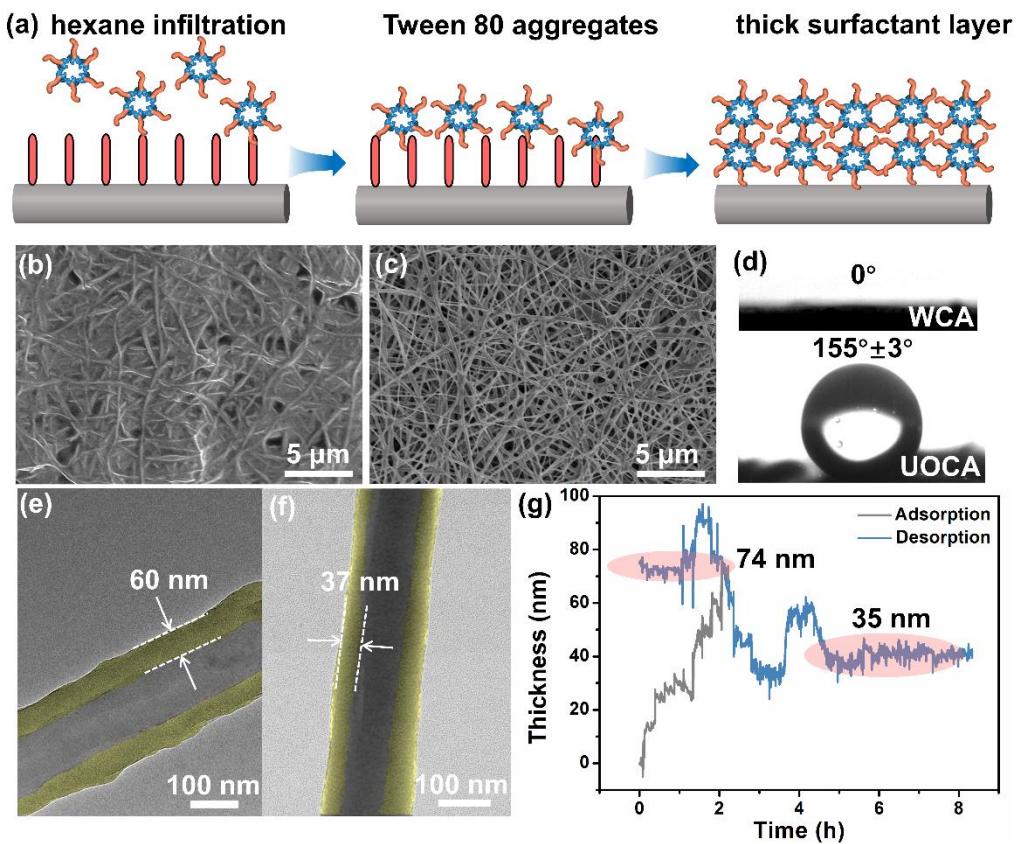

299 **Figure 2.** Chemical composition of TPVDF nanofibrous membrane. ATR-FTIR (a)
300 and (b) UV-Vis spectra of the PVDF and TPVDF nanofibrous membranes. (c-g) EDX
301 scanning images of TPVDF nanofibrous membrane: (d) C element, (e) F element, (f)
302 O element, and (g) F, O double element on the surface. (h) The content of elements at
303 different positions in Figure 2c. The scale bar in Figure 2c-2g is 100 nm.

304

305 New stretching vibration peak of -OH and -C=O group at 3440 and 1735 cm⁻¹ in
306 ATR-FTIR spectrum suggested the appearance of Tween 80 molecules on PVDF
307 nanofiber (Figure 2a)[57, 58]. In addition, new absorption peaks at 234 nm and the
308 peaks in the region of 260 nm to 330 nm also suggested the presence of Tween 80
309 (Figure 2b). To get a more visible and direct observation of Tween 80 layer on PVDF

310 nanofiber, TEM-EDX elemental mapping was carried out. Results in Figure 2c-2g
 311 indicated that a uniform Tween 80 layer was anchored on the surface of PVDF
 312 nanofiber. Compared to PVDF nanofibrous membrane (O: 4.0 wt%, F: 14.5 wt%,
 313 Figure S4, Supporting Information), the content of O element in TPVDF nanofibrous
 314 membrane was increased to 6.7 wt% and 30.8 wt% in #1 and #2 area respectively.
 315 Meanwhile, the content of F element was decreased to 9.3 wt% and 1.5 wt%
 316 correspondingly (Figure 2h). Moreover, a clear enrichment of O element in the outer
 317 surface can be observed in Figure 2f, while F and C element was mainly distributed
 318 on the main nanofiber (Figure 2d, e and g). Benefit from the interaction between
 319 Tween 80 and RB[59], RB was used to validate the Tween 80 loading on membrane
 320 surface. CLSM results in Figure S5, Supporting Information showed that bright green
 321 fluorescence covered the whole surface of the TPVDF, while weak fluorescence exists
 322 in PVDF. The reason was mainly attributed to the hydrophobic property of PVDF
 323 membrane. All the results confirmed the presence of Tween 80 layer on PVDF
 324 nanofiber.

325


326

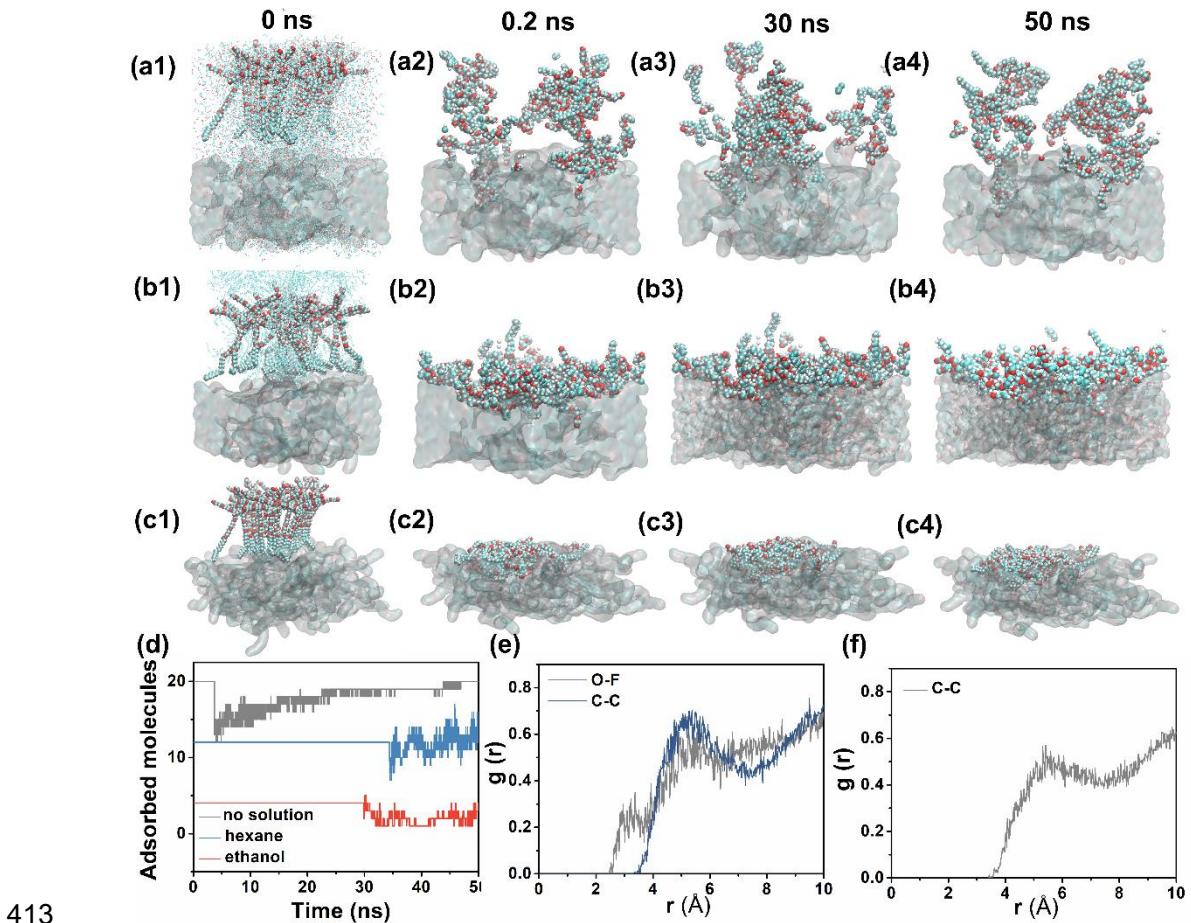
327 **Figure 3.** Thickness and stability of Tween80 on PVDF nanofibers. TEM images of
328 TPVDF nanofibrous membrane before (a) and after (b) cleaning. (c) Adsorption and
329 desorption of Tween 80 onto PVDF nanofibrous membrane in ethanol measured by
330 QCM-D. (d) ATR-FTIR spectrums of the TPVDF membrane after being washed in
331 water/ethanol (WTPVDF/ETPVDF) at 120 rpm for 7 days. (e) DSC spectra of PVDF,
332 EPVDF, TPVDF and Tween 80. The yellow stained area is the Tween 80 layer.

333

334 Thickness of Tween 80 layer on PVDF nanofiber was directly observed by TEM,
335 which was about 24 nm (Figure 3a). The experimental results fit the Freundlich
336 isotherm model ($R^2=0.99198$) as compared to the Langmuir model ($R^2=0.9888$)
337 (Figure S6a, Supporting Information). After thorough cleaning with ethanol for 24 h,
338 the isotherm adsorption curve conforms to Langmuir model ($R^2=0.96898$) and the
339 final thickness of Tween 80 layer was about 10 nm (Figure S6b, Supporting
340 Information, Figure 3b). To further quantitatively explore the thickness and mass of
341 Tween 80 on PVDF nanofibrous membrane, QCM-D testing was carried out. Results
342 in Figure 3c indicated that an initial thickness of 27 nm over the course of 2 h of
343 adsorption. Then, it was leveled off at about 9 nm after 8 h desorption. This
344 phenomenon suggests that there was a maximum and stabilized value for the Tween
345 80 thickness, which was basically consistent with the results of TEM results. The
346 quantitative results of Tween 80 on PVDF nanofibrous membrane were decreased
347 from 2700 to 900 ng cm⁻² correspondingly (Figure S7, Supporting Information). TEM
348 and QCM-D results confirmed that the assembled Tween 80 layer on PVDF nanofiber
349 was quite thin (~ 10 nm). The long-term stability of Tween 80 layer was evaluated
350 through thorough water and ethanol washing at 120 rpm for 7 days. ATR-FTIR results
351 in Figure 4d indicated that characteristic absorption peaks (3440 and 1735 cm⁻¹) of
352 Tween 80 can be clearly identified after water or ethanol washing. Water contact angle
353 and underwater oil contact angle of membrane after washing was unchanged (Figure
354 S8, Supporting Information). It is revealed that the superhydrophilic and underwater
355 superoleophilic feature could stably maintain even after 10 h of cross-flow filtration

356 (Figure S9, Supporting Information).
357 To understand the mechanism of stable anchoring of Tween 80 on PVDF membrane,
358 we examined the changes in PVDF crystalline shape after ethanol and Tween 80
359 treatment by XRD and DSC. PVDF membrane (Figure S10, Supporting Information)
360 are mainly in the α phase and β phase, as shown by the intense peaks at 14.6° and
361 20.7° , corresponding to the crystal of nonpolar α -phase and the orthorhombic β -phase
362 reflections in 100 and 110/200 planes[60, 61]. The relative quantities of the β -phase
363 and α -phase in the PVDF nanofibrous membrane were determined as a function of
364 ethanol and Tween 80. The β -phase/ α -phase ratio of PVDF nanofibrous membrane
365 was enhanced after ethanol and ethanol-Tween 80 treatment (Figure S11, Supporting
366 Information)[62]. These results indicated that the ethanol and Tween 80 played a
367 significant role in enhancing the β -phase content of the crystals. Ethanol was
368 negatively charged due to the presence of hydroxyl-groups. The positive CH_2 dipoles
369 (δ^+) in the PVDF chains forms an ion-dipole interaction with the negatively charged
370 ethanol, facilitating the formation of β -phase crystals[63, 64]. Tween 80 is an
371 amphiphilic molecule and its hydrophobic group has hydrophobic interaction with
372 PVDF[65]. Further, Tween 80 reduced the surface energy of PVDF and promoted the
373 interaction between ethanol-Tween 80 and PVDF[66]. Therefore, Tween 80 could be
374 stably attached to β -PVDF due to the polar interaction. Figure 3e illustrates DSC
375 heating curves of pure PVDF, EPVDF, and TPVDF nanofibrous membrane. For
376 PVDF, the melting point was 169.9°C and the crystallinity was 25.2%. A wide peak
377 containing strong α phase and weak β phase. Melting endotherms of EPVDF and
378 TPVDF show a strong melting peak at 166.4°C and 165.6°C , separately. The
379 crystallinity decreases to 21.6% and 20.1%, respectively. Meanwhile, PVDF showed a
380 new β -phase peak at 181.3°C , which was attributed to ethanol and Tween 80 effect on
381 the melting point, crystallinity and crystallite shapes.
382

383


384 **Figure 4.** (a) Tween 80 was aggregated on the surface of hydrophobic PVDF
 385 nanofiber in hexane solution to form a thick surfactant layer. SEM images of
 386 HTPVDF membrane before (b) and after cleaning (c). (d) Air and underwater contact
 387 angles of HTPVDF membrane. TEM images of HTPVDF membrane before (e) and
 388 after cleaning (f). (g) Adsorption and desorption of Tween 80 onto PVDF nanofibrous
 389 membrane in hexane measured by QCM-D. The yellow stained area is the Tween 80
 390 layer.

391

392 **3.2. Effect of solvent on superhydrophilic and underwater superoleophilic
 393 interface construction.**

394 As discussed above, ethanol played an important role in Tween 80 assembly on PVDF
 395 nanofiber surface. Solvent that can be used in this process must satisfy two
 396 prerequisites: 1) the solvent can wet PVDF nanofibrous membrane and 2) dissolve or
 397 disperse Tween 80. PVDF nanofibrous membrane was hydrophobic, therefore, it can

398 be wetted using either low surface tension polar solvent (e.g., alcohols) or low surface
399 tension non-polar solvent (e.g., hexane, Figure S12a, Supporting Information).
400 However, Tween 80 cannot be dissolved in hexane, which caused Tween 80
401 aggregates dispersed in hexane (Figure S12b, Supporting Information). Meanwhile,
402 hydrophobic segments were exposed to the hexane solvent and hydrophilic segments
403 trapped in the center of the aggregates (Figure 4a). Thus, a welded nanofiber structure
404 with much crosslinking point between nanofibers was obtained (Figure 4b). By
405 further thorough cleaning with water for 24 h, few weld structure appeared. PVDF
406 nanofibrous membrane is hydrophilic and underwater superoleophobic (Figure 4d,
407 WCA=0°, UOCA=155°±3°) due to the presence of thick Tween 80 layer on PVDF
408 nanofiber (60 nm after filtration and 37 nm after cleaning, Figure 4e and 4f, Figure
409 S13, Supporting Information) on PVDF nanofiber. Equally, after 2 h of adsorption
410 (Tween 80/hexane) and 8 h of desorption (water) using QCM-D, the initial thickness
411 of Tween 80 was 74 nm and the final thickness was 35 nm (Figure 4g), which was
412 basically consistent with the results of TEM results.

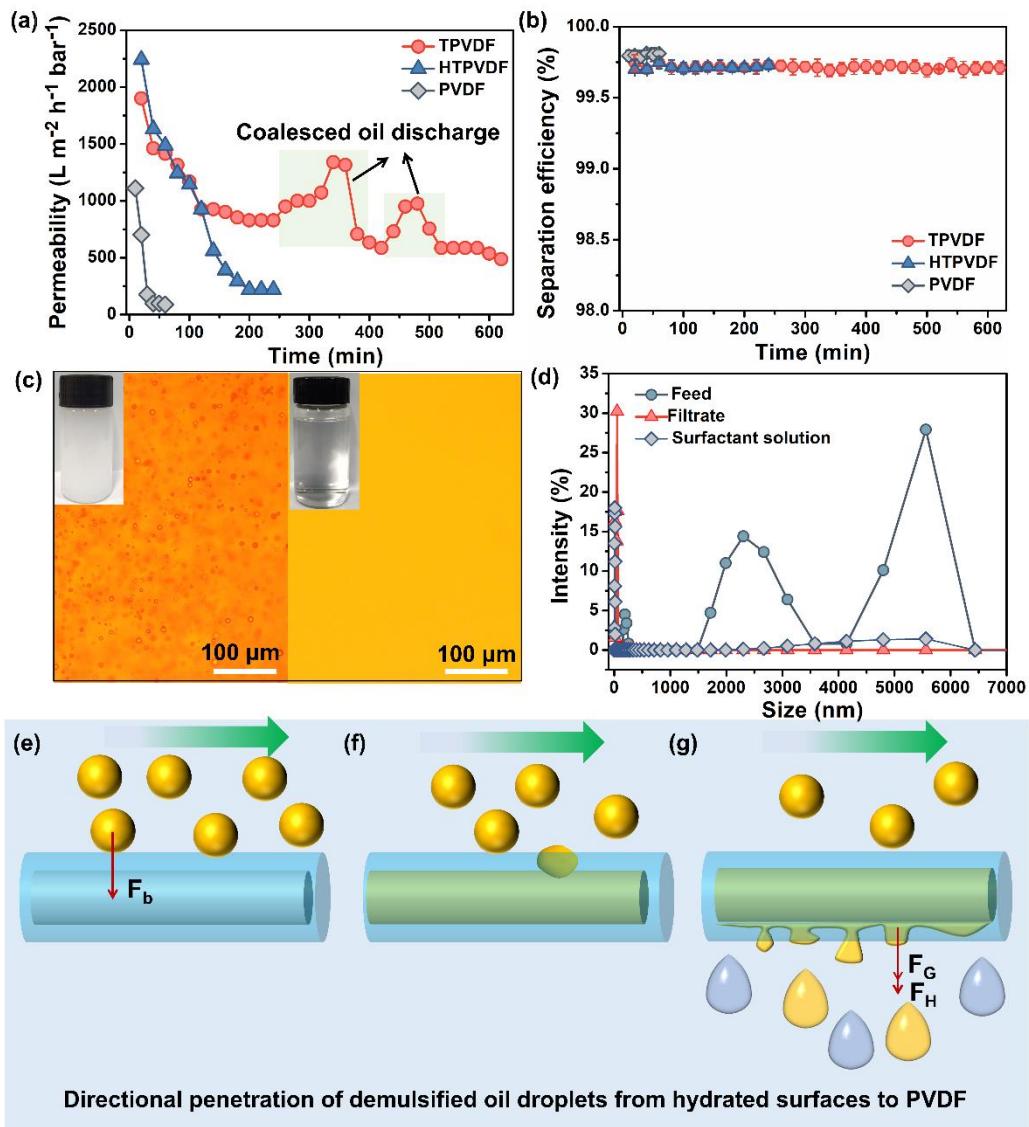
413 **Figure 5.** MD models of Tween 80 molecular formation on PVDF polymers at
 414 different time for (a1-a4) Tween80/ethanol, (b1-b4) Tween 80/hexane and (c1-c4)
 415 Tween 80. White, red, cyan and pink colors represent the H, O, C and F atoms,
 416 respectively. (d) Number of adsorbed Tween 80 molecules within 1 nm from the
 417 surface of PVDF for Tween80/ethanol, Tween 80/hexane and Tween 80. (e) Radial
 418 pair distribute function of O-F and C-C pairs between ethanol and PVDF. (f) Radial
 419 pair distribute function of C-C pairs between hexane and PVDF.

421
 422 To further reveal the underlying effect of solvent on Tween 80 deposition thickness,
 423 we performed MD simulations with Tween 80-solvent (ethanol and hexane)-
 424 deposited PVDF. Figure 5a1-a4 show the snapshots in the deposition process of
 425 Tween 80 in ethanol solution on the PVDF surface. The results indicate that few
 426 Tween 80 molecules were deposited/embedded on the PVDF surface and most of
 427 them went into ethanol solution, which agrees well with our experimental

428 observations. However, when ethanol was replaced with hexane or pure Tween 80
429 was used, almost all Tween 80 molecules are deposited on PVDF surface in Figure 5b,
430 c.

431 To quantitatively analyze the deposition process of Tween 80 on PVDF, the number of
432 adsorbed Tween 80 molecules (within 1 nm distance from PVDF top surface) during
433 the deposition process was recorded (Figure 5d). It indicated that pure Tween 80 has
434 20 molecules adsorbed on PVDF in 5 ns (all the added Tween 80 was adsorbed),
435 Tween 80/hexane has 15 Tween 80 molecules adsorbed on PVDF in 34 ns and the
436 Tween 80/ethanol has only 4 Tween 80 molecules adsorbed on PVDF in 30 ns. From
437 the radial distribution function, the CH_3CH_2 group in ethanol has a significant
438 hydrophobic interaction with PVDF, which is in contrast to OH in ethanol (Figure 5e).
439 Therefore, PVDF has a hydrophobic interaction with the CH_3CH_2 group of ethanol
440 with its OH group facing outwards, preventing the hydrophobic group of Tween 80
441 from interacting with PVDF and resulting in few numbers of Tween 80 being
442 deposited on PVDF. In contrast, the alkane chain of n-hexane promotes the interaction
443 of the hydrophobic segment of Tween 80 with PVDF, increasing the amount of Tween
444 80 adsorbed (Figure 5f).

445
446 To further verify this phenomenon, we conducted polydopamine coating on PVDF
447 nanofibrous membrane due to its well relationship between coating time and coating
448 thickness[67]. Results in Figure S14a, Supporting Information, indicated that PVDF
449 nanofibrous membrane with superhydrophilic and underwater superoleophilic
450 property can be obtained when dopamine coating time was less than 1 min. However,
451 if the coating time was longer than 1 min, superhydrophilic and underwater
452 superoleophobic property was obtained (Figure S14b, Supporting Information,
453 $\text{WCA}=0^\circ$, $\text{UOCA}=143^\circ \pm 4^\circ$). Since the chemical structure of polydopamine layer is
454 unlikely to change in a few s minutes, the main reason might be the difference in
455 thickness (Figure S14c, Supporting Information). As indicated in Figure S14d,
456 Supporting Information, a uniform PDA layer of about 11 nm can be observed, which


457 is consistent with the previous conclusion. A clear enrichment of O and N element in
458 the outer surface can be observed in Supplementary Figure 14 g, h, while F and C
459 element was mainly distributed on the main nanofiber (Figure S14e, f, Supporting
460 Information).

461

462 **3.3. Effect of surfactant and substrate on superhydrophilic and underwater**
463 **superoleophilic interface construction.**

464 Actually, surfactant is a very big family with different hydrophilic and hydrophobic
465 segments. Tween 80 is typical water-soluble surfactant with a HLB value of 15.0. To
466 verify the universality of this strategy to fabricate superhydrophilic and underwater
467 superoleophilic interface, surfactants with different HLB value (1.8-16.7, details can
468 be found in Table S1, Figure S15, 16, Supporting Information) were evaluated.
469 Results showed that superhydrophilic and underwater superoleophilic property can be
470 obtained for surfactants with HLB value higher than 4.3 (e.g., Tween 20: 16.7, Tween
471 80: 15.0, Tween 85: 11.0 and Span 20: 8.6, Figure S17, Supporting Information).
472 Water contact angle of Span 80 (HLB: 4.3) and Span 85 (HLB: 1.8) treated membrane
473 was $107^\circ \pm 2^\circ$ and $130^\circ \pm 3^\circ$ respectively, failing to achieve the above abnormal wetting
474 property.

475 Moreover, different hydrophobic nanofibrous membranes (PSF, PU, PCL and PS)
476 could be modified by ultrathin hydrophilic layer strategy to achieve superhydrophilic
477 and underwater superoleophilic property (Table S2, Figure S18, 19, Supporting
478 Information), verifying the universality of this strategy.

479

480 **Figure 6.** Permselectivity of TPVDF nanofibrous membranes. (a) Permeability and (b)
481 separation efficiency of TPVDF, HTPVDF and PVDF membrane for hexane-in-water
482 emulsion. (c) Optical images of the feed and filtrate solution. (d) Particle size
483 distribution of surfactant, feed liquid and filtrate. (e-g) Schematic illustration of oil-
484 water separation mechanism for TPVDF membrane.

485

486 **3.4. Separation performance and antifouling mechanism of membrane.**

487 Separation performance of the fabricated membrane for oil-in-water emulsion was
488 evaluated (Figure S20, Supporting Information). After separation, milky emulsion was
489 separated into incompatible aqueous phase and oil phase. Figure 6a showed that initial

490 water permeability of TPVDF (around $1901 \text{ L m}^{-2} \text{ h}^{-1} \text{ bar}^{-1}$) and HTPVDF (around
491 $2242 \text{ L m}^{-2} \text{ h}^{-1} \text{ bar}^{-1}$) membrane was much higher than PVDF (around $1111.4 \text{ L m}^{-2} \text{ h}^{-1}$
492 bar^{-1}) membrane. Hydrophobic PVDF nanofibrous membrane was transformed into
493 superhydrophilic membrane due to the self-assembly of Tween 80, where hydrophilic
494 fragments are exposed to the external environment at the interface of PVDF
495 nanofibers. These hydrophilic groups make the membrane hydrophilic, which is
496 beneficial for promoting the rapid water flow. TPVDF and HTPVDF exhibit
497 superhydrophilicity in air, which is conducive to continuous water phase entering the
498 membrane and improving water permeability during the separation of oil in water
499 emulsion (as shown in Figure 1 and 4). Moreover, permeability of PVDF membrane
500 was rapidly decreased within 10 min due to the strong affinity between PVDF and oils
501 and therefore membrane pores were blocked. Benefiting from the unique “oil-water-
502 receiving” properties, the permeability of the TPVDF membrane remained as high as
503 $500 \text{ L m}^{-2} \text{ h}^{-1} \text{ bar}^{-1}$ even after 10 h of continuous separation, although permeability of
504 TPVDF membrane was also declined. Oil passes through the membrane and floats on
505 the aqueous phase of the filtrate, making the layered oil-water mixture easy to
506 separate (Figure S21, Supporting Information). The rise in permeation flux was due to
507 the outflow of accumulated oil droplets away from the membrane. Besides, the
508 TPVDF membrane also showed favorable separation performances for hexadecane-
509 in-water emulsion, D5-in-water emulsion and dodecane-in-water emulsion (Figure
510 S22, Supporting Information). The TPVDF membrane showed highly separation
511 efficiency for various emulsions ($> 99.2\%$). And the permeability of the membrane
512 slightly decreases due to the increase in oil viscosity. Compared with HTPVDF and
513 other membranes, few membranes could operate continuously for 10 h (Table S3).
514 Permeability of HTPVDF membrane decreased to near zero in about 200 min due to
515 membrane pore was blocked by oil droplets. Separation efficiency of all membranes
516 was greater than 99.5% (Figure 6b). The milky feed emulsion solution with numerous
517 oil droplets turns into transparent filtrate solution in water phase (Figure 6c). Particle
518 size distribution in the filtrate is consistent with that of surfactant solution, indicating

519 that the surfactant in emulsion enters the filtrate solution (Figure 6d). PVDF
520 membranes modified by surfactants with different HLB values also showed excellent
521 separation performance (Figure S23, Supporting Information). Such an excellent
522 antifouling performance was mainly attributed to the superhydrophilic and underwater
523 superoleophilic property of TPVDF membrane. Firstly, the membrane was prewetted
524 by water to form a hydrated layer on membrane surface due to its superhydrophilic
525 property, which could allow the water phase to permeate through freely. Secondly, the
526 underwater superoleophilic property benefited the oil capture (demulsification) from
527 oil-in water emulsion solution. Once the emulsified oils got into the membrane, they
528 can easily pass through the hydrated layer due to the Laplace force (directional
529 penetration) and coalesced on the hydrophobic PVDF nanofiber (Figure 6e). Finally,
530 the coalesced oil droplets leaved the PVDF nanofiber by the applied hydration
531 pressure. Dispersed oil droplets were diverted beneath the ultra-thin hydrophilic layer
532 and captured by PVDF bulk to form coalesced oil phase and discharged out of the
533 nanofibrous membrane as continuous macroscopic oil phase. Therefore, water and
534 emulsified oil transport across the membrane without mutual interference. However,
535 the oil phase cannot be completely transferred from PVDF nanofibers due to the high
536 affinity of PVDF nanofibers for the oil phase. Therefore, the flux recovery is low after
537 oil removal (Figure S24, Supporting Information). The independent transport pathway
538 sorted out the common membrane fouling issue for oil/water separation, which is a
539 totally different oil/water separation mechanism form previously reported
540 superwetting membranes.

541

542 **4. Conclusion**

543 Poly (vinylidene fluoride) nanofibrous membrane with superhydrophilic and
544 underwater superoleophilic property for enhanced membrane antifouling was
545 fabricated. The obtained membrane exhibited high permeability and emulsion
546 treatment capacity for surfactant-stabilized oil-in-water emulsions based on a
547 coalescence demulsification mechanism. High emulsion treatment capacity was

548 realized by preventing hydration layer contamination on membrane surface and in
549 membrane pores. Water and emulsified oils can penetrate in membrane much easier
550 (“oil-water-receiving” membrane). Meanwhile, emulsified oils were collected and
551 transported beneath the ultra-thin hydrophilic layer and captured by hydrophobic
552 PVDF bulk to form coalesced oil phase and discharged out of the nanofibrous
553 membrane as continuous macroscopic oil phase. The optimized TPVDF nanofibrous
554 membrane showed long-lasting permeability (10 h) for emulsions. The ultrathin
555 hydrophilic layer strategy offered new understanding for coalescence demulsification
556 and might advance its practical applications.

557

558 **Acknowledgements**

559 This work is financially supported by National Natural Science Foundation of China
560 (Grant No. 22205248), China Postdoctoral Science Foundation (2022M713240),
561 Natural Science Foundation of Ningbo (2022J303), “Science and Technology
562 Innovation 2025” Major Project of Ningbo (2020Z105), Nature Science Foundation of
563 Ningbo-Key Project (202003N4031), Zhejiang Provincial Natural Science Foundation
564 of China for Distinguished Young Scholars (LR20E030002), Ten thousand plan-high
565 level talents special support plan of Zhejiang province, China (ZJWR0108020).
566 Thanks to Dr. Zhe Yang of the University of Hong Kong for providing the QCM-D
567 test and Dr. Nianxiang Qiu for providing simulation data.

568

569 **Conflict of Interest**

570 The authors declare no conflict of interest.

571

572 **References**

573 [1] X. Wang, J. Yu, G. Sun, B. Ding, *Electrospun Nanofibrous Materials: A Versatile Medium for*
574 *Effective Oil/Water Separation*, *Mater. Today*, 19 (2016) 403-414.
575 [2] S. Zarghami, T. Mohammadi, M. Sadrzadeh, B. Van der Bruggen, *Superhydrophilic and Underwater*
576 *Superoleophobic Membranes - a Review of Synthesis Methods*, *Prog. Polym. Sci.*, 98 (2019) 101166.
577 [3] E. Tummons, Q. Han, H. Tanudjaja, C. Hejase, J. Chew, V. Tarabara, *Membrane Fouling by*

578 Emulsified Oil: A Review, *Sep. Purif. Technol.*, 248 (2020) 116919.

579 [4] H.J. Tanudjaja, C.A. Hejase, V.V. Tarabara, A.G. Fane, J.W. Chew, Membrane-Based Separation for
580 Oily Wastewater: A Practical Perspective, *Water Res.*, 156 (2019) 347-365.

581 [5] D. Dong, Y. Zhu, W. Fang, M. Ji, A. Wang, S. Gao, H. Lin, R. Huang, J. Jin, Double- Defense
582 Design of Super- Anti- Fouling Membranes for Oil/Water Emulsion Separation, *Adv. Funct. Mater.*,
583 (2022) 2113247.

584 [6] B. Wang, X. Luo, Y. Feng, L. Yang, C. Zhang, Z. Dong, L. Jiang, H. Dai, Turbo-Synergistic Oily
585 Wastewater Remediation in Bio-Inspired Cone Array Barrel, *Adv. Sci.*, 9 (2022) 2204244.

586 [7] Y. Zhao, Y. Gu, G. Gao, Piezoelectricity Induced by Pulsed Hydraulic Pressure Enables in Situ
587 Membrane Demulsification and Oil/Water Separation, *Water Res.*, 215 (2022) 118245.

588 [8] Q. Lin, G. Zeng, G. Yan, J. Luo, X. Cheng, Z. Zhao, H. Li, Self-Cleaning Photocatalytic Mxene
589 Composite Membrane for Synergistically Enhanced Water Treatment: Oil/Water Separation and Dyes
590 Removal, *Chem. Eng. J.*, 427 (2022) 131668.

591 [9] T. Zsirai, P. Buzatu, P. Aerts, S. Judd, Efficacy of Relaxation, Backflushing, Chemical Cleaning and
592 Clogging Removal for an Immersed Hollow Fibre Membrane Bioreactor, *Water Res.*, 46 (2012) 4499-
593 4507.

594 [10] E. Mavredaki, A. Stathoulopoulou, E. Neofotistou, K.D. Demadis, Environmentally Benign
595 Chemical Additives in the Treatment and Chemical Cleaning of Process Water Systems: Implications
596 for Green Chemical Technology, *Desalination*, 210 (2007) 257-265.

597 [11] Y. Liu, Y. Su, J. Guan, J. Cao, R. Zhang, M. He, K. Gao, L. Zhou, Z. Jiang, 2d Heterostructure
598 Membranes with Sunlight-Driven Self Cleaning Ability for Highly Efficient Oil-Water Separation, *Adv.*
599 *Funct. Mater.*, 28 (2018) 1706545.

600 [12] A. Xie, J. Cui, J. Yang, Y. Chen, J. Dai, J. Lang, C. Li, Y. Yan, Photo-Fenton Self-Cleaning
601 Membranes with Robust Flux Recovery for an Efficient Oil/Water Emulsion Separation, *J. Mater.*
602 *Chem. A*, 7 (2019) 8491-8502.

603 [13] Y.H. Cai, D.Y. Chen, N.J. Li, Q.F. Xu, H. Li, J.H. He, J.M. Lu, A Self-Cleaning Heterostructured
604 Membrane for Efficient Oil-in-Water Emulsion Separation with Stable Flux, *Adv. Mater.*, 32 (2020)
605 2001265.

606 [14] H.R. Zhang, A.U. Mane, X.B. Yang, Z.J. Xia, E.F. Barry, J.Q. Luo, Y.H. Wan, J.W. Elam, S.B.
607 Darling, Visible-Light-Activated Photocatalytic Films toward Self-Cleaning Membranes, *Adv. Funct.*
608 *Mater.*, 30 (2020) 2002847.

609 [15] Y. Yang, S. Qiao, J.T. Zhou, X. Quan, Mitigating Membrane Fouling Based on in Situ Center Dot
610 Oh Generation in a Novel Electro-Fenton Membrane Bioreactor, *Environ. Sci. Technol.*, 54 (2020)
611 7669-7676.

612 [16] J.Q. Sun, C.Z. Hu, B.C. Wu, J.H. Qu, Fouling Mitigation of a Graphene Hydrogel Membrane
613 Electrode by Electrical Repulsion and in Situ Self-Cleaning in an Electro-Membrane Reactor, *Chem.*
614 *Eng. J.*, 393 (2020) 124817.

615 [17] D.N. Pei, C. Liu, A.Y. Zhang, X.Q. Pan, H.Q. Yu, In Situ Organic Fenton-Like Catalysis Triggered
616 by Anodic Polymeric Intermediates for Electrochemical Water Purification, *Proc. Natl. Acad. Sci. U. S.*
617 *A.*, 117 (2020) 30966-30972.

618 [18] Y. Wang, J. Wang, Y. Ding, S. Zhou, F. Liu, In Situ Generated Micro-Bubbles Enhanced
619 Membrane Antifouling for Separation of Oil-in-Water Emulsion, *J. Membr. Sci.*, 621 (2021) 119005.

620 [19] E. Lee, Y. Kim, M. Jeon, H. Kim, The Effect of Aeration Types on Foulant Removal in Ex-Situ
621 Chemical Cleaning in Place (Cip) with Membranes Fouled by Secondary Effluents, *Chem. Eng. J.*, 333

622 (2018) 730-738.

623 [20] R. Li, L. Rao, J. Zhang, L. Shen, Y. Xu, X. You, B.-Q. Liao, H. Lin, Novel in-Situ Electroflotation
624 Driven by Hydrogen Evolution Reaction (Her) with Polypyrrole (Ppy)-Ni-Modified Fabric Membrane
625 for Efficient Oil/Water Separation, *J. Membr. Sci.*, 635 (2021) 119502.

626 [21] Z. Zhu, W. Wang, D. Qi, Y. Luo, Y. Liu, Y. Xu, F. Cui, C. Wang, X. Chen, Calcinable Polymer
627 Membrane with Revivability for Efficient Oily-Water Remediation, *Adv. Mater.*, 30 (2018) 1801870.

628 [22] D. Li, W. Xu, Y. Mu, H. Yu, H. Jiang, J. Crittenden, Remediation of Petroleum-Contaminated Soil
629 and Simultaneous Recovery of Oil by Fast Pyrolysis, *Environ. Sci. Technol.*, 52 (2018) 5330-5338.

630 [23] N.M. Kocherginsky, C.L. Tan, W.F. Lu, Demulsification of Water-in-Oil Emulsions Via Filtration
631 through a Hydrophilic Polymer Membrane, *J. Membr. Sci.*, 220 (2003) 117-128.

632 [24] M. Kukizaki, M. Goto, Demulsification of Water-in-Oil Emulsions by Permeation through
633 Shirasu-Porous-Glass (SpG) Membranes, *J. Membr. Sci.*, 322 (2008) 196-203.

634 [25] X.F. You, Y. Liao, M. Tian, J.W. Chew, R. Wang, Engineering Highly Effective Nanofibrous
635 Membranes to Demulsify Surfactant-Stabilized Oil-in-Water Emulsions, *J. Membr. Sci.*, 611 (2020)
636 118398.

637 [26] X. Zhu, L. Zhu, H. Li, C.Y. Zhang, J.W. Xue, R. Wang, X.R. Qiao, Q.Z. Xue, Enhancing Oil-in-
638 Water Emulsion Separation Performance of Polyvinyl Alcohol Hydrogel Nanofibrous Membrane by
639 Squeezing Coalescence Demulsification, *J. Membr. Sci.*, 630 (2021) 119324.

640 [27] J. Wang, B. He, Y. Ding, T. Li, W. Zhang, Y. Zhang, F. Liu, C. Tang, Beyond Superwetting
641 Surfaces: Dual-Scale Hyperporous Membrane with Rational Wettability for "Nonfouling" Emulsion
642 Separation Via Coalescence Demulsification, *ACS Appl. Mater. Interfaces*, 13 (2021) 4731-4739.

643 [28] Y. Ding, B. Hu, L. Zhuang, J. Wang, J. Wu, F. Liu, J. Wang, Confined Channels Induced
644 Coalescence Demulsification and Slippery Interfaces Constructed Fouling Resist-Release for Long-
645 Lasting Oil/Water Separation, *ACS Appl. Mater. Interfaces*, 13 (2021) 30224-30234.

646 [29] Y. Zhu, J. Wang, F. Zhang, S. Gao, A. Wang, W. Fang, J. Jin, Zwitterionic Nanohydrogel Grafted
647 Pvdf Membranes with Comprehensive Antifouling Property and Superior Cycle Stability for Oil-in-
648 Water Emulsion Separation, *Adv. Funct. Mater.*, 28 (2018) 1804121.

649 [30] X. Zhao, Y. Su, J. Cao, Y. Li, R. Zhang, Y. Liu, Z. Jiang, Fabrication of Antifouling Polymer-
650 Inorganic Hybrid Membranes through the Synergy of Biomimetic Mineralization and Nonsolvent
651 Induced Phase Separation, *J. Mater. Chem. A*, 3 (2015) 7287-7295.

652 [31] S.X. Zhang, G.S. Jiang, S.J. Gao, H.L. Jin, Y.Z. Zhu, F. Zhang, J. Jin, Cupric Phosphate
653 Nanosheets-Wrapped Inorganic Membranes with Superhydrophilic and Outstanding Anticrude Oil-
654 Fouling Property for Oil/Water Separation, *ACS Nano*, 12 (2018) 795-803.

655 [32] L. Hou, N. Wang, J. Wu, Z. Cui, L. Jiang, Y. Zhao, Bioinspired Superwettability Electrospun
656 Micro/Nanofibers and Their Applications, *Adv. Funct. Mater.*, 28 (2018) No.1801114.

657 [33] Y. Lu, Y. Zhu, F. Yang, Z. Xu, Q. Liu, Advanced Switchable Molecules and Materials for Oil
658 Recovery and Oily Waste Cleanup, *Adv. Sci.*, 8 (2021) 2004082.

659 [34] J. Wu, Y. Ding, J. Wang, T. Li, H. Lin, J. Wang, F. Liu, Facile Fabrication of Nanofiber- and
660 Micro/Nanosphere-Coordinated Pvdf Membrane with Ultrahigh Permeability of Viscous Water-in-Oil
661 Emulsions, *J. Mater. Chem. A*, 6 (2018) 7014-7020.

662 [35] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, *J. Comput. Phys.*, 117
663 (1995) 1-19.

664 [36] A.D. William Humphrey, Klaus Schulten, Vmd: Visual Molecular Dynamics, *J. Mol. Graphics*, 14
665 (1996) 33-38.

666 [37] L. Martinez, R. Andrade, E.G. Birgin, J.M. Martinez, Packmol: A Package for Building Initial
667 Configurations for Molecular Dynamics Simulations, *J. Comput. Chem.*, 30 (2009) 2157-2164.

668 [38] R.W. Hockney, Eastwood, J.W, Computer Simulation Using Particles, CRC Press, 87 (1988)
669 28779.

670 [39] B. Leimkuhler, E. Noorizadeh, O. Penrose, Comparing the Efficiencies of Stochastic Isothermal
671 Molecular Dynamics Methods, *J. Stat. Phys.*, 143 (2011) 921-942.

672 [40] H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, Molecular Dynamics
673 with Coupling to an External Bath, *J. Chem. Phys.*, 81 (1984) 3684-3690.

674 [41] J.T.-R. William L. Jorgensen, Potential Energy Functions for Atomic-Level Simulations Ofwater
675 and Organic and Biomolecular Systems, *PNAS*, 102 (2005) 6665-6670.

676 [42] L.S. Dodd, J.Z. Vilseck, J. Tirado-Rives, W.L. Jorgensen, 1.14*Cm1a-Lbcc: Localized Bond-
677 Charge Corrected Cm1a Charges for Condensed-Phase Simulations, *J. Phys. Chem. B*, 121 (2017)
678 3864-3870.

679 [43] A.K. Malde, L. Zuo, M. Breeze, M. Stroet, D. Poger, P.C. Nair, C. Oostenbrink, A.E. Mark, An
680 Automated Force Field Topology Builder (Atb) and Repository: Version 1.0, *J. Chem. Theory Comput.*,
681 7 (2011) 4026-4037.

682 [44] M. Tao, L. Xue, F. Liu, L. Jiang, An Intelligent Superwetting Pvdf Membrane Showing Switchable
683 Transport Performance for Oil/Water Separation, *Adv. Mater.*, 26 (2014) 2943-2948.

684 [45] S. Gao, J. Sun, P. Liu, F. Zhang, W. Zhang, S. Yuan, J. Li, J. Jin, A Robust Polyionized Hydrogel
685 with an Unprecedented Underwater Anti-Crude-Oil-Adhesion Property, *Adv. Mater.*, 28 (2016) 5307-
686 5314.

687 [46] W. Lv, Q. Mei, J. Xiao, M. Du, Q. Zheng, 3d Multiscale Superhydrophilic Sponges with Delicately
688 Designed Pore Size for Ultrafast Oil/Water Separation, *Adv. Funct. Mater.*, 27 (2017) 1704293.

689 [47] J.C. Zhang, L.F. Liu, Y. Si, J.Y. Yu, B. Ding, Electrospun Nanofibrous Membranes: An Effective
690 Arsenal for the Purification of Emulsified Oily Wastewater, *Adv. Funct. Mater.*, 30 (2020) 2002192.

691 [48] Z.X. Bai, K. Jia, C.C. Liu, L.L. Wang, G. Lin, Y.M. Huang, S.N. Liu, X.B. Liu, A Solvent
692 Regulated Hydrogen Bond Crosslinking Strategy to Prepare Robust Hydrogel Paint for Oil/Water
693 Separation, *Adv. Funct. Mater.*, 31 (2021) 2104701.

694 [49] G.M. Meconi, N. Ballard, J.M. Asua, R. Zangi, Adsorption and Desorption Behavior of Ionic and
695 Nonionic Surfactants on Polymer Surfaces, *Soft Matter*, 12 (2016) 9692-9704.

696 [50] A. Zdziennicka, B. Janczuk, Modification of Adsorption, Aggregation and Wetting Properties of
697 Surfactants by Short Chain Alcohols, *Adv. Colloid Interface Sci.*, 284 (2020) 102249.

698 [51] N. Chithralekha, A. Panneerselvam, Surfactant - Alcohol Interactions: An Ultrasonic, Uv and Ftir
699 Analysis, *Vacuum*, 168 (2019) 108835.

700 [52] S. Gao, Y. Zhu, J. Wang, F. Zhang, J. Li, J. Jin, Layer-by-Layer Construction of Cu²⁺/Alginate
701 Multilayer Modified Ultrafiltration Membrane with Bioinspired Superwetting Property for High-
702 Efficient Crude-Oil-in-Water Emulsion Separation, *Adv. Funct. Mater.*, 28 (2018) 1801944.

703 [53] H.C. Yang, Y.S. Xie, H. Chan, B. Narayanan, L. Chen, R.Z. Waldman, S.K.R.S. Sankaranarayanan,
704 J.W. Elam, S.B. Darling, Crude-Oil-Repellent Membranes by Atomic Layer Deposition: Oxide
705 Interface Engineering, *ACS Nano*, 12 (2018) 8678-8685.

706 [54] X.B. Yang, P. Sun, H.R. Zhang, Z.J. Xia, R.Z. Waldman, A.U. Mane, J.W. Elam, L. Shao, S.B.
707 Darling, Polyphenol-Sensitized Atomic Layer Deposition for Membrane Interface Hydrophilization,
708 *Adv. Funct. Mater.*, 30 (2020) 1910062.

709 [55] X.Q. Cheng, Y. Jiao, Z.K. Sun, X.B. Yang, Z.J. Cheng, Q. Bai, Y.J. Zhang, K. Wang, L. Shao,

710 Constructing Scalable Superhydrophobic Membranes for Ultrafast Water-Oil Separation, ACS Nano,
711 15 (2021) 3500-3508.

712 [56] X.S. Xie, Z.Z. Zheng, X.Q. Wang, D.L. Kaplan, Low-Density Silk Nanofibrous Aerogels:
713 Fabrication and Applications in Air Filtration and Oil/Water Purification, ACS Nano, 15 (2021) 1048-
714 1058.

715 [57] J. Jin, H. Wang, Y. Jing, M. Liu, D. Wang, Y. Li, M. Bao, An Efficient and Environmental-Friendly
716 Dispersant Based on the Synergy of Amphiphilic Surfactants for Oil Spill Remediation, Chemosphere,
717 215 (2019) 241-247.

718 [58] V. Krstonošić, M. Milanović, L. Dokić, Application of Different Techniques in the Determination
719 of Xanthan Gum-Sds and Xanthan Gum-Tween 80 Interaction, Food Hydrocolloids, 87 (2019) 108-118.

720 [59] C.V.H. Chen, Y. Liu, H.A. Stone, R.K. Prud'homme, Visualization of Surfactant Dynamics to and
721 Along Oil-Water Interfaces Using Solvatochromic Fluorescent Surfactants, Langmuir, 34 (2018)
722 10512-10522.

723 [60] F. Orudzhev, S. Ramazanov, D. Sobola, P. Kaspar, T. Trcka, K. Castkova, J. Kastyl, I. Zvereva,
724 C.Y. Wang, D. Selimov, R. Gulakhmedov, M. Abdurakhmanov, A. Shuaibov, M. Kadiev, Ultrasound
725 and Water Flow Driven Piezophototronic Effect in Self-Polarized Flexible Alpha-Fe₂O₃ Containing
726 Pvdf Nanofibers Film for Enhanced Catalytic Oxidation, Nano Energy, 90 (2021) 106586.

727 [61] S. Cheon, H. Kang, H. Kim, Y. Son, J.Y. Lee, H.J. Shin, S.W. Kim, J.H. Cho, High-Performance
728 Triboelectric Nanogenerators Based on Electrospun Polyvinylidene Fluoride-Silver Nanowire
729 Composite Nanofibers, Adv. Funct. Mater., 28 (2018) 1703778.

730 [62] G. Mago, D.M. Kalyon, F.T. Fisher, Membranes of Polyvinylidene Fluoride and Pvdf
731 Nanocomposites with Carbon Nanotubes Via Immersion Precipitation, J. Nanomater., 2008 (2008)
732 759825.

733 [63] P. Sukitpaneenit, T.-S. Chung, Molecular Elucidation of Morphology and Mechanical Properties of
734 Pvdf Hollow Fiber Membranes from Aspects of Phase Inversion, Crystallization, and Rheology, in:
735 Hollow Fiber Membr., 2021, pp. 333-360.

736 [64] M. Ishiguro, L.K. Koopal, Surfactant Adsorption to Soil Components and Soils, Adv. Colloid
737 Interface Sci., 231 (2016) 59-102.

738 [65] W. Zhu, F.S. Romanski, X. Meng, S. Mitra, M.S. Tomassone, Atomistic Simulation Study of
739 Surfactant and Polymer Interactions on the Surface of a Fenofibrate Crystal, Eur. J. Pharm. Sci., 42
740 (2011) 452-461.

741 [66] A. Barati-Harooni, A. Najafi-Maghmaleki, A. Tatar, A.H. Mohammadi, Experimental and
742 Modeling Studies on Adsorption of a Nonionic Surfactant on Sandstone Minerals in Enhanced Oil
743 Recovery Process with Surfactant Flooding, J. Mol. Liq., 220 (2016) 1022-1032.

744 [67] H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Mussel-Inspired Surface Chemistry for
745 Multifunctional Coatings, Science, 318 (2007) 426.

746