

1

2 **Polyelectrolyte assisted interfacial polymerization for polyamide**

3 **nanofiltration membrane with enhanced separation and anti-**

4 **biofouling properties in groundwater treatment**

5

6 **Ying Mei^{a,b}*, Zhe Yang^b, Peng-Fei Sun^{b,c}, Shenghua Zhou^b, Hao Guo^b, Lu Elfa Peng^b,**

7 **Zhikan Yao^{b,d}, Wulin Yang^{b,e}, Chuyang Y. Tang^b**

8

9 *^aResearch and Development Center for Watershed Environmental Eco-Engineering,*
10 *Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, PR*
11 *China*

12 *^bDepartment of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong*
13 *SAR, PR China*

14 *^cSchool of Civil, Environmental and Architectural Engineering, Korea University, Seoul*
15 *02841, South Korea*

16 *^dMOE Engineering Research Center of Membrane and Water Treatment Technology,*
17 *College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027,*
18 *PR China*

19 *^eCollege of Environmental Sciences and Engineering, Peking University, Beijing 100871,*
20 *PR China*

21

22 * Corresponding author address:

23 *B504 Muduo Building, Beijing Normal University, Zhuhai, 18 Jinfeng Road, Zhuhai,*
24 *Guangdong, PR China.*

25

26 *Tel: (+86) 15034117623;*

27 *E-mail address: meiying@bnu.edu.cn (Ying Mei)*

28

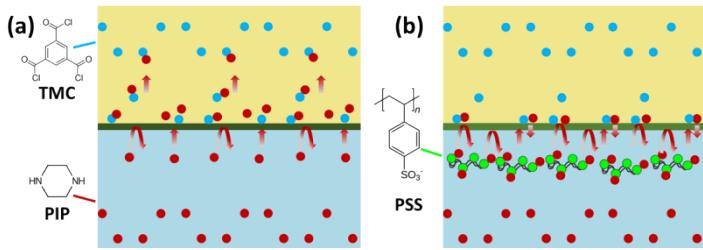
29 **Abstract**

30 We proposed a facile method of using polyelectrolyte additive to tune interfacial
31 polymerization reaction and tailor polyamide NF membrane with better separation
32 performance and lower bio-fouling potential for groundwater treatment. A moderate
33 concentration of negatively charged poly(4-styrene sulfonate) (PSS) was introduced to the
34 aqueous phase solution during the interfacial polymerization of piperazine (PIP) and
35 trimesoyl chloride (TMC). The presence of PSS confined the diffusion of PIP, leading to the
36 formation of polyamide layer with a looser structure, increased thickness, and additional
37 negative charges on the membrane surface. The fabricated TFC-P₆ membrane possessed
38 enhanced water permeance ($21.8 \pm 0.7 \text{ L m}^{-2} \text{ h}^{-1} \text{ bar}^{-1}$) and better selectivity of calcium
39 chloride over sodium sulfate which can be beneficial to achieve higher water recovery
40 compared to the control TFC membrane. In addition, the TFC-P₆ membrane demonstrated
41 enhanced rejection of perfluorooctane sulfonate (~95%) and the biofouling was inhibited by
42 its additional negative charge and smoother surface. Our results introduced a robust and
43 scalable strategy of polyelectrolyte assisted interfacial polymerization for designing high
44 performance NF membranes in groundwater treatment.

45

46 **Keywords:** Nanofiltration, Polyamide membrane, Interfacial polymerization,
47 Polyelectrolyte, Biofouling

48


49 **1. Introduction**

50 Safety of drinking water generated from groundwater resources has been recognized as the
51 main worldwide challenge. However, it has been widely contaminated by emerging
52 contaminants which would threaten the public health even at low concentrations [1-6].
53 Among them, perfluoroalkyl substances (PFASs) present a diverse group of persistent,
54 accumulative and toxic trace contaminants comprising perfluoroalkyl groups. They are
55 extensively produced and commonly applied in manufacturing industrial products, such as
56 fighting foams and protective coatings [7-9]. Although the usage of PFASs has been strictly
57 regulated by many countries, its environmental concentrations are still noticeable (e.g., at
58 the range of several ppt to ppm) [10, 11]. For example, perfluorooctane sulfonate (PFOS),
59 one of the most commonly regulated PFASs, is ubiquitously detected with averaged
60 concentrations up to a few ppt in the aquatic environments [11-13]. It is highly resistant to
61 conventional chemical and biological wastewater treatment technologies, attributing to the
62 strong carbon-fluorine bonds [14, 15]. Physical separation and sequestration processes,
63 including membrane separation and adsorption, are mostly applied for removing PFOS from
64 polluted water resources [3, 16].

65

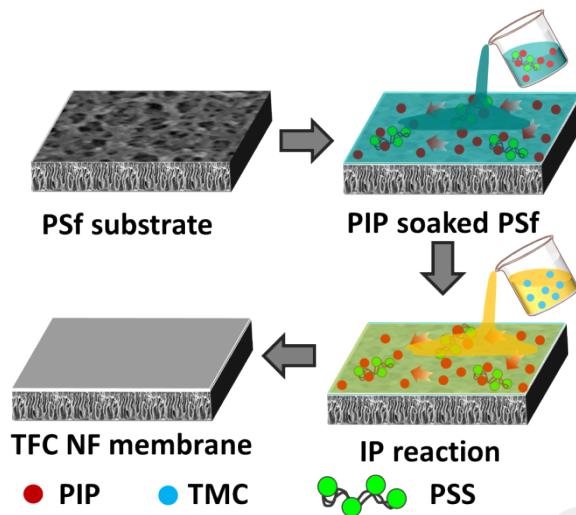
66 Nanofiltration (NF) has been validated to be a promising membrane-based separation
67 technology for treating PFOS contaminated water [3, 17, 18]. It can be operated in relatively
68 low-pressure with a typical molecular weight cut off at the range of 200-1000 Da. NF
69 separation is mainly based on the combined effects of size exclusion and electrostatic
70 repulsion [8, 19-22]. PFOS has a relatively high molecular weight of 500 Da and is generally
71 dissociated into negatively charged ion at natural waters that high retention rates of PFOS
72 (e.g., $\geq 90\%$) were reported in previous researches [9, 17, 23]. Nevertheless, the practical

73 implementation of NF for PFASs contaminated groundwater resources is still inhibited by
74 its limited water recovery (e.g., 75-80%) due to potential membrane scaling and bio-fouling
75 problems [8]. Polyamide (PA) based thin film composite membranes are dominant NF
76 membranes of which the PA rejection layer is normally fabricated by interfacial
77 polymerization (IP) of piperazine (PIP) and trimesoyl chloride (TMC) at aqueous and
78 organic interface and have an averaged pore size of 0.2-2 nm. The TFC NF membranes can
79 well retain scale-forming ions (e.g., Ca^{2+} , Mg^{2+} , SO_4^{2-} etc.), leading to severe concentrating
80 of these ions and precipitation of scalant on membrane surface, especially at high water
81 recovery. On the other hand, mineral ions in drinking water resources would be favorable
82 for human body and agricultural crops and should be retained in the permeate. In addition,
83 membrane bio-fouling is another critical concern of NF technology which would also
84 deteriorate membrane separation performance [24-26]. Therefore, developing novel NF
85 membranes is of critical importance to realize the asymmetric selectivity of mineral ions
86 toward reduced scaling potential and less bio-fouling risks while maintaining high PFOS
87 rejection. Previous research has presented a membrane design with increased pore size and
88 surface negative charges that provides enhanced anti-scaling property and high rejection of
89 PFOS [27]. It was realized by tailoring a loose PA layer through incorporating NaOH into
90 the aqueous solution during IP reaction. Recently, another facile method of controlling the
91 reaction-diffusion IP process has attracted people's attention that nonreactive additives of
92 aqueous phase, such as macromolecule and amphiphilic surfactant, can regulate the trans-
93 interface diffusion of aqueous monomer by hydrogen bonding, changing solution viscosity
94 and electrostatic interaction, thus determining the IP reaction process [28].

95 **Fig. 1. Schematic diagram illustrating diffusion process of (a) the conventional IP reaction where piperazine
96 molecules diffuse randomly through the interface between water and hexane and (b) negatively charged PSS
97 assisted IP reaction where PIP molecules are adsorbed by PSS and diffuse in the more controllable manner.**

98
99
100 In this study, we proposed a simple anionic polyelectrolyte assisted IP reaction for
101 fabricating a loose and negatively charged TFC NF membrane toward high selectivity for
102 calcium over sulfate and high rejection of PFOS while less bio-fouling occurred.
103 Poly(sodium-4-styrene sulfonate) (PSSNa) was applied as the model anionic polyelectrolyte
104 additive for PIP/water solution due to its wide commercial availability. We envisioned that
105 this negatively charged macromolecule is able to slow-down the PIP diffusion via
106 electrostatic interaction and regulate the distribution of PIP monomer at the interface, thus
107 obtaining PA layer with more homogeneous distribution of large pores compared to
108 conventional TFC membranes (Fig. 1). Varied concentrations of PSSNa additives were
109 investigated for their impacts on the physicochemical properties and the separation
110 performance of PA layer. The virgin and modified membranes were evaluated for their
111 performance in selectively rejection of inorganic salts and PFOS. Finally, the biofouling
112 experiments were performed on both virgin and modified membranes to comparatively
113 investigate their anti-biofouling behaviors. This study presents a simple and facile method
114 of tailoring NF membrane for PFAS contaminated groundwater treatment at higher
115 freshwater recovery and with decreased biofouling phenomenon.

117 **2. Materials and methods**


118 **2.1. Materials and reagents**

119 Polysulfone (PSf, Mw 35000, Sigma-Aldrich) dissolved in N,Ndimethylformamide (DMF,
120 99.8%, Sigma-Aldrich) were applied for membrane substrates preparation. PIP (flakes, 99%,
121 Sigma-Aldrich) in deionized (DI) water and TMC (98%, Sigma-Aldrich) in *n*-hexane (\geq
122 95%, HPLC grade, Sigma-Aldrich) were applied for interfacial polymerization reaction to
123 synthesize PA rejection layer on the PSf support. PSSNa (MW \sim 70,000 Da, Sigma-Aldrich)
124 was chosen as the model PIP/water solution additive in the current study. Inorganic salts,
125 including NaCl, Na₂SO₄, MgCl₂, MgSO₄, and CaCl₂ were all provided by Uni-Chem.
126 Neutral organic molecules, including D-Glucose (MW 180 Da, Coolaber), D-raffinose (MW
127 504 Da, Aladdin), dextran (MW 1000 Da, OKA), and (MW 2000 Da, OKA) were applied
128 to test membrane rejection for its pore size estimation. PFOS was supplied by Sigma-Aldrich.
129 InvitrogenTM DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) was used to stain the
130 biofilm for fluorescent observation.

131

132 **2.2. TFC and TFC-P_n membranes preparation**

133 The synthesis of PSf substrate was completed using a nonsolvent-induced phase separation
134 technique based on our previous study [29, 30]. Briefly, an automatic film applicator
135 (Elcometer 4340, Elcometer) was used to spread a PSf solution (15 wt.% in DMF) onto a
136 glass plate with a controlled thickness of 150 μ m. Subsequently, the PSf substrate was
137 immersed in a water coagulation bath at about 25°C. Finally, the obtained substrates were
138 rinsed and stored in DI water before further use.

Fig. 2. Schematic diagram illustrating PSS assisted interfacial polymerization for the synthesis of polyamide thin film composite nanofiltration membrane.

As reported in our previous study, interfacial polymerization (IP) was performed on the PSf support to form the PA rejection layer [30, 31]. PIP/water solution (2 wt.%) without and with PSSNa additives of varied concentrations (i.e., 0.2, 2, 6, 12 wt.%) were prepared to investigate the role of anionic polyelectrolyte on PA formation (Fig. 2). To synthesis the PA layer, a PSf substrate (20×12 cm) was primarily placed in a container and immersed in PIP/water solution for 3 min. Extra aqueous solution was gently removed by a rubber roller. Then, 0.1 wt.% TMC/hexane solution was poured onto the PIP impregnated PSf substrate to initiate IP reaction and maintained for 1 min. The resulting NF membrane was thoroughly rinsed with *n*-hexane and thermal cured in a 60°C-water bath for 10 min. The obtained membranes were then stored in DI water at 4 °C overnight. The prepared membranes without and with varied concentrations of polyelectrolyte additive were named as TFC and TFC-P_n, respectively, where *n* denoted to the mass concentrations of the PSSNa additive in aqueous phase solutions.

2.3. Membrane characterization

158 Before all the measurements, membrane samples were thoroughly vacuum dried. Membrane
159 surface was sputter-coated with a thin layer of gold and platinum. Field-emission scanning
160 electron microscopy (FE-SEM, LEO 1530, UK) was performed using an accelerating
161 voltage of 5.0 kV for the surface morphologies imaging. Transmission electron microscopy
162 (TEM, Philips CM100) was applied to obtain microphotographs from cross-sections of the
163 membrane specimens following the procedures reported in our previous study [32]. The
164 thickness of polyamide layer was measured using ImageJ. Briefly, an Ultracut
165 Ultramicrotome (Reichert, Inc. Depew) was used for sectioning the resin (Epon, Ted Pella)
166 embedded TEM specimens with a thickness of approximately 100 nm. TEM measurements
167 were performed at an accelerating voltage of 100 kV. The topological images and membrane
168 surface roughness were obtained using an atomic force microscopy (AFM) (MultiMode 8-
169 HR, Bruker). Elemental composition of membrane surface was quantified and analyzed by
170 X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific). Fourier transform
171 infrared spectroscopy conjunct with Attenuated total reflection (ATR-FTIR, Nicolet 6700,
172 Thermo Fisher Scientific) was performed for determining membrane surface functional
173 groups over a wavenumber range of 650-4000 cm⁻¹. An electrokinetic analyzer (SurPASS,
174 Anton Paar GmbH) was employed for measuring membrane surface charge properties (i.e.,
175 ζ potential). An Optical Tensiometer (Attension Theta, Biolin Scientific) was applied to test
176 membrane surface water contact angle and evaluate its hydrophobicity/hydrophilicity.

177

178 2.4. Evaluation of membrane separation performance

179 Membrane separation performance, including water permeance and solutes rejection, was
180 evaluated using a lab-scale cross-flow NF filtration setup. Briefly, a membrane coupon with
181 an effective filtration area of 8 cm² was placed in a tailored stainless-steel filtration cell and
182 was pre-compacted with DI water at an applied pressure of 6 bar for 1 h. The cross-flow

183 velocity was set at 7 cm/s. The pure water flux was then measured by weighing the mass of
184 the permeate water collected over a specified time interval based on Eq. (1):

185
$$J_w = \frac{\Delta m}{\Delta t \times A \times \rho} \quad (1)$$

186 where J_w ($\text{L m}^{-2} \text{h}^{-1}$) represents the water flux, Δt (h) is the filtration time interval, A (m^2) is
187 the effective membrane area, ρ is the water density, and Δm (kg) is the permeate mass.

188 A series of inorganic salts (i.e., NaCl, Na_2SO_4 , MgCl_2 , CaCl_2 , and MgSO_4 , 1000 ppm) were
189 used to prepare feed solutions for salt rejection measurements. The concentrations of the
190 feed (C_f) and the permeate (C_p) solutions were converted from the corresponding
191 conductivity values which were measured using a portable four-electrode conductivity meter
192 (Ultrameter II, Myron L). Salt rejection (R) was calculated based on Eq. (2):

193
$$R = \left(1 - \frac{C_p}{C_f}\right) \times 100\% \quad (2)$$

194 Water permeance (A) and salt permeance (B) were calculated based on Eq. (3) and Eq. (4),
195 respectively:

196
$$A = \frac{J_w}{\Delta P - \Delta \pi} \quad (3)$$

197
$$B = \frac{1 - R}{R} J_w \quad (4)$$

198 Where ΔP (bar) is the applied transmembrane hydraulic pressure, $\Delta \pi$ (bar) is the osmotic
199 pressure difference across the membrane between feed and permeate solution.

200 The separation factor (α) for $\text{CaCl}_2/\text{Na}_2\text{SO}_4$ was determined according to Eq. (5):

201
$$\alpha = \frac{(C_{\text{CaCl}_2}/C_{\text{Na}_2\text{SO}_4})_p}{(C_{\text{CaCl}_2}/C_{\text{Na}_2\text{SO}_4})_f} = \frac{1 - R_{\text{CaCl}_2}}{1 - R_{\text{Na}_2\text{SO}_4}} \quad (5)$$

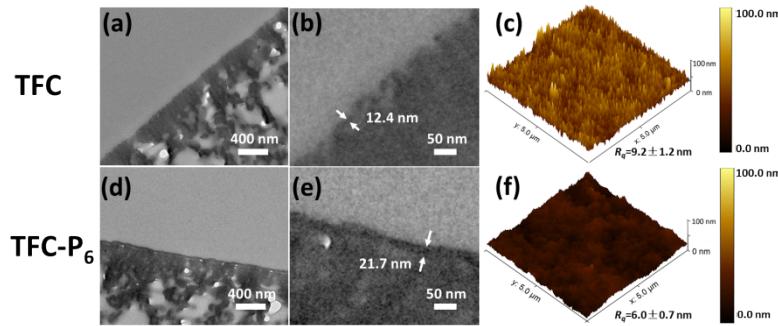
202 Neutral organic solutes filtration experiments were performed to determine the log-normal
203 pore size distribution and average membrane pore radius [33]. The feed solution contained
204 a single type of representative neutral organic (i.e., D-Glucose, D-raffinose, dextran, and

205 dextran, 200 ppm) was prepared. The concentrations of neutral organic molecules were
206 measured using a TOC analyzer (Aurora 1030W, OI Analytical).

207
208 The rejection of PFOS was tested using a feed solution containing 200 ppb of PFOS. Before
209 measurements, membrane coupons were first pre-compacted with testing solution for 12 h
210 to obtain a stable water flux and achieve sorption equilibrium. Then, an liquid
211 chromatography coupled with a mass spectrometer (LC-MS) was applied for analyzing the
212 PFOS concentrations in the feed and permeate samples [14]. The PFOS rejection was
213 calculated by measuring the concentrations of PFOS in the feed (C_f) and permeate (C_p) based
214 on Eq.(2).

215
216 2.5. Fouling experiments
217 Fouling experiments were conducted on the control TFC and TFC-P₆ membranes to evaluate
218 their biofouling propensity. *Pseudomonas aeruginosa* (PA14) was used as the model
219 bacterium to induce biofilm formation. Briefly, a single colony of PA14 was picked and
220 incubated in a tryptone soy broth (10 mL) at 170 rpm overnight at 37 °C. Then, the liquid
221 culture was centrifuged to obtain PA14 suspension which was further washed twice using
222 phosphate buffer solution [34].

223
224 Biofouling experiment was carried out with a bench scale cross-flow NF filtration system.
225 The effective filtration area was 7.84 cm² [35]. Synthetic wastewater was prepared according
226 to the previous study and was used as the feed solution [36]. After rigorous cleaning and
227 sterilization, the feed solution was circulated by a high-pressure pump at a flow rate of 0.5
228 L/min. First, the baseline of membrane water flux was established by performing a filtration
229 experiment using the feed stream without bacteria for 24 h. Afterwards, PA14 suspension


230 was spiked into the feed solution to obtain a bacterial concentration of approximately 10^7
231 CFU/mL and initiate membrane biofouling. The initial water flux was maintained at 60-70
232 $\text{L m}^{-2} \text{h}^{-1}$ by adjusting the applied pressure. After completing biofouling tests, the membrane
233 coupons were carefully removed from the filtration device. The biofilm formed on the
234 membrane surface was stained with DAPI and observed by confocal laser scanning
235 microscopy (CLSM) (LSM700, Carl Zeiss, Jena, Germany) according to our previous
236 studies [37, 38].

237 **3. Results and discussion**

238 **3.1. Membrane characterization**

239 SEM analysis was employed to visualize the surface morphological features of all the
240 fabricated membranes (Supplementary Information, Fig. S1). The results demonstrate that
241 both TFC and TFC-P_n membranes had typical nodular-like structures that are generally
242 observed for TFC NF membranes with PIP/TMC chemistry [39]. It is in good agreement
243 with the ATR-FTIR spectra that the higher peak intensity at 1620 cm⁻¹ corresponds to amide
244 bonds (C=O) (Supplementary Information, Fig. S5(a)). TEM characterization was also
245 performed on the control TFC and TFC-P₆ membranes to comparatively investigate their
246 cross-sectional micrographs (Fig. 3(a-b), Fig. 3(d-e)). The TFC membrane featured a
247 relatively thin polyamide rejection layer with small discrete nodular-like structures (Fig. 3(a,
248 b)), which is consistent with the SEM observation (Supplementary Information, Fig. S1)
249 [39]. While the polyelectrolyte (i.e., 6 wt.% PSSNa) regulated IP reaction leads to the
250 formation of a PA rejection layer with clearly thicker cross-section (e.g., from an averaged
251 thickness of about 12.4 nm to 21.7 nm) and smoother surface (Fig. 3(d, e)). To further
252 validate the changes on the surface roughness of PA layer, AFM test was employed and
253 confirmed a slightly decreased roughness of TFC-P₆ (with a root mean square roughness (R_q)
254 of 6.0 ± 0.7 nm) compared to TFC (with R_q of 9.2 ± 1.2 nm) (Fig. 3(c, f)). To further
255 understand the underlying mechanism governing the polyelectrolyte assisted IP reaction, the
256 PIP monomer storage within the substrate was measured versus time to investigate its
257 diffusion behavior (Supplementary Information, Fig. S2) [40]. The prohibited diffusion of
258 PIP can be ascribed to the increased viscosity of aqueous phase solution after adding
259 polyelectrolyte and the enhanced electrostatic interaction between the positively charged PIP
260 and negatively charged polyelectrolyte.

261

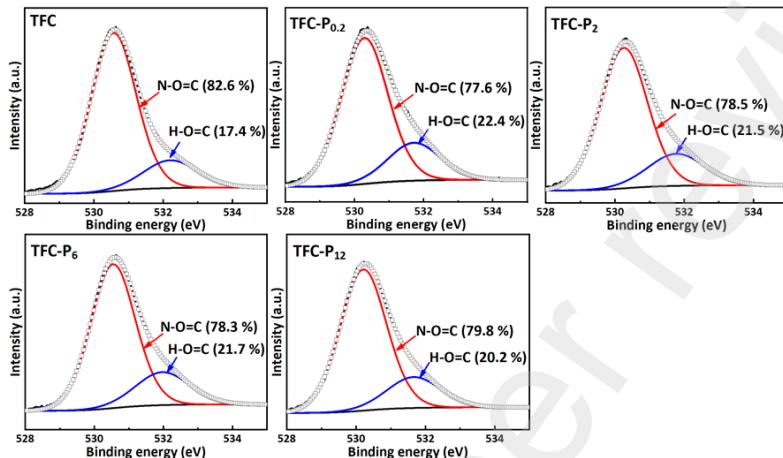


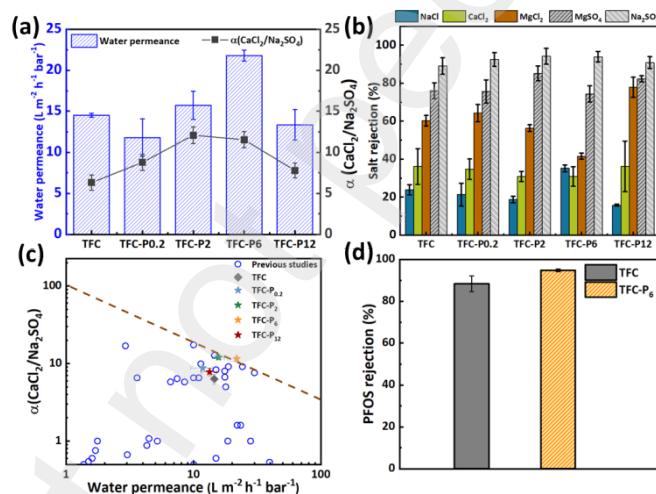
Fig. 3. Membrane characterization of the control TFC and TFC-P₆ membrane fabricated with and without polyelectrolyte additive (i.e., 6 wt.% PSSNa) during interfacial polymerization, respectively. (a) and (d) TEM cross-sectional micrographs; (b) and (e) High magnification images of polyamide layers; (c) and (f) AFM roughness of membrane top surfaces. The scale bar presented in TEM images is 400 nm for (a, d) and 50 nm for (b, e).

XPS analysis was performed on all the fabricated membranes to investigate the effects of polyelectrolyte additive to the membrane surface chemistry (Supplementary Information, Fig. S3). The control TFC membrane showed an O/N ratio of 1.14 which is in good agreement with the previous reported ratio for a typical polyamide selective layer formed by interfacial polymerization reaction of PIP and TMC (Supplementary Information, Table S1). The O/N ratios of all the TFC-P_n membranes were slightly higher (e.g., 1.22, 1.15, and 1.16 for TFC-P_{0.2}, TFC-P₂, and TFC-P₁₂, respectively), except for TFC-P₆ of 1.13, indicating a less crosslinking degree compared to that of TFC [40]. The peak deconvolution results of O 1s XPS spectra further disclosed a moderately decreased percentage of amide N-O=C group in TFC-P_n at a binding energy (BE) of ~530.5 eV (i.e., 77.6-79.8%) compared to that of the control TFC (i.e., 82.6%), while the percentage of carboxylic H-O=C group at a BE of ~532.5 eV increased (i.e., from 17.4% for TFC to 20.2-22.4% for TFC-P_n) (Fig. 4). These changes indicated the formation of additional carboxylic group due to the hydrolysis of -COCl functional group (acyl-chloride unit) of TMC, resulting in decreased crosslinking degree and looser structure of the PA layer of TFC-P_n. These changes on membrane surface chemistry were also supported by its lower isoelectric point (Supplementary Information, Fig. S4) (Supplementary Information, Fig. S4), even though the averaged contact angle of

285 the fabricated membranes maintained a relatively constant value (Supplementary
286 Information, Fig. S5(b)). ATR-FTIR survey exhibited negligible change upon adding
287 polyelectrolyte additive during interfacial polymerization reaction which might be attributed
288 to the relatively low wavenumber resolution.

289

290
291 **Fig. 4. High-resolution O 1s XPS spectra of (a) the TFC and (b-e) TFC-P_n membranes were deconvoluted into two**
292 **components, including amide and carboxyl peak. The peak area percentage of O=C–N (BE of~531.2 eV) and O=C–O**
293 **(BE of ~533.3 eV) groups were presented.**


294

295 3.2. Membrane separation properties

296 Membrane filtration experiments were performed to analyze the effect of polyelectrolyte
297 additive on the separation properties of the resulted PA layer. The separation performance
298 of all the fabricated membranes (TFC and TFC-P_n) was presented in Fig. 5. Specifically, the
299 water permeance of TFC-P_{0.2} was lower than the control TFC membrane which can be well
300 explained by the thicker polyamide layer and thus increased water transport resistance (as
301 discussed in section 3.1). With increasing the concentrations of polyelectrolyte additive, the
302 water permeances of TFC-P_{0.2} and TFC-P₆ further increased and reached $15.7 \pm 1.7 \text{ L m}^{-2}$
303 $\text{h}^{-1} \text{ bar}^{-1}$ and $21.8 \pm 0.7 \text{ L m}^{-2} \text{ h}^{-1} \text{ bar}^{-1}$, respectively. The water permeance was maximized
304 at TFC-P₆ which was about 50% higher than that of the control TFC membrane (14.5 ± 0.2
305 $\text{L m}^{-2} \text{ h}^{-1} \text{ bar}^{-1}$, Fig. 5(a)). The advanced water permeance of both TFC-P_{0.2} and TFC-P₆ can

306 be attributed to the looser structure of polyamide layer which outweigh the negative effects
 307 of their increased thickness. In addition, TFC-P₆ demonstrated an obviously lower rejection
 308 of neutral solutes than the control TFC (Supplementary Information, Fig. S6) which further
 309 supported the reduced size exclusion effects of the PA rejection layer of TFC-P₆ and thereby
 310 larger mean pore size than that of control TFC (i.e., a mean pore radius $r_p \approx 0.6$ nm for TFC-
 311 P₆ and $r_p \approx 0.43$ nm for TFC) (Supplementary Information, Fig. S7). According to these
 312 rejection results, the log-normal pore size distribution of the TFC and TFC-P₆ membranes
 313 were determined. Besides, TFC-P₁₂ demonstrated a substantially lower water permeance of
 314 13.3 ± 1.9 L m⁻² h⁻¹ bar⁻¹ that additional polyelectrolyte in aqueous solution during IP
 315 reaction would adversely increase water transport resistance.

316

317

318 **Fig. 5. Membrane separation performances of TFC and TFC-P_n membranes. (a) Water permeance and CaCl₂/Na₂SO₄
 319 selectivity, (b) Salt rejection of five different kinds of salts (i.e., NaCl, CaCl₂, MgCl₂, MgSO₄, and Na₂SO₄). Other testing
 320 conditions are as following: feed solution contained 1000 ppm of each salt; hydraulic pressure of 6 bar, crossflow velocity
 321 of 7 cm/s. (c) Trade-off relationship between CaCl₂/Na₂SO₄ selectivity and water permeance based on the previous
 322 publications on TFC NF membranes while a dash upper bound line was represented for the separation performance. (d)
 323 Rejection of PFOS in DI water of the control TFC and TFC-P₆ membranes.**

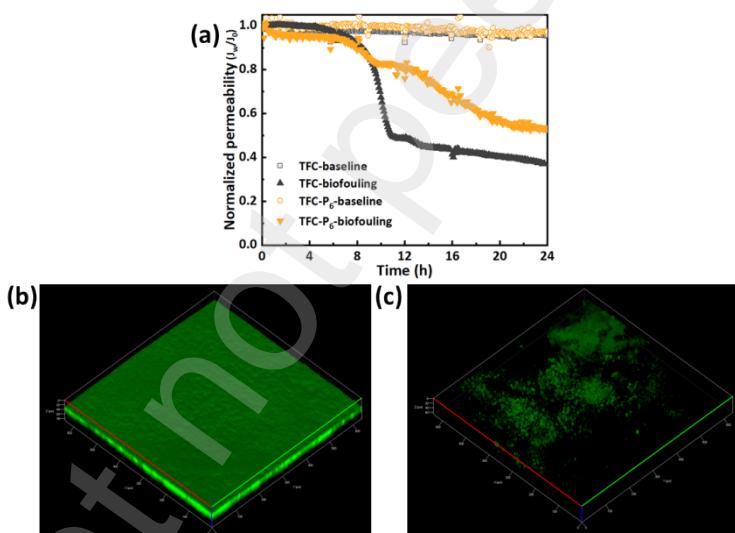
324

325 In spite of the changes on water permeance, TFC-P_n membranes maintained high rejection
 326 of salts containing multivalent anions (e.g., MgSO₄ and Na₂SO₄), due to the Donnan

327 exclusion effect of the negatively charged membrane surface on SO_4^{2-} and its relatively large
328 hydrated ionic radius (i.e., about 3.79 angstrom for SO_4^{2-}) (Fig. 5(b)), resulting in high
329 water/solute (e.g., $\text{A}/\text{B}_{\text{Na}_2\text{SO}_4}$) (Supplementary Information, Fig. S8). In consideration of the
330 enlarged mean pore size of TFC-P_n, its electrostatic exclusion effect dominated over its size
331 exclusion effect. For salts containing multivalent cation, TFC-P₂ and TFC-P₆ demonstrated
332 slightly decreased rejection (e.g., MgCl_2 and CaCl_2 rejection of $41.6 \pm 2\%$ and $30.9 \pm 5\%$
333 for TFC-P₆) compared to the control TFC (e.g., MgCl_2 and CaCl_2 rejection of $60.3 \pm 3\%$ and
334 $31.6 \pm 12\%$). It can be possibly ascribed to the enhanced electrostatic interaction between
335 the additional surface negative charge of TFC-P₆ and multivalent cations, as well as the
336 looser structure of polyamide layer. Consequently, TFC-P_n illustrated enhanced selectivity
337 between calcium and sulfate ions, the effectiveness of which can be well evaluated by the
338 separation factor ($\alpha = \text{B}_{(\text{CaCl}_2)}/\text{B}_{(\text{Na}_2\text{SO}_4)}$) (Fig. 5(a)). This coefficient has been widely applied
339 to quantify the solute-solute selectivity of specific membranes [39]. For example, the
340 selectivity of TFC-P₆ showed the highest α value of 11.5 ± 1.0 compared to 6.3 ± 0.9 for the
341 control TFC. We further investigated the $\text{CaCl}_2/\text{Na}_2\text{SO}_4$ selectivity of polyamide thin film
342 composite NF membranes reported in the previous publications. As illustrated in Fig. 5(c),
343 there is a clear trade-off relationship between the selectivity coefficient α and water
344 permeance for the reported NF membranes based on PA chemistry in the literatures that an
345 upper bound line can be recognized in the Fig. 5(c). Compared to the previous reported NF
346 membranes and the control TFC fabricated in this study, TFC-P₆ outperformed the rest in
347 the separation performance.

348
349 A high α value would be beneficial to practical implementation of NF process, especially in
350 groundwater treatment, for the reduced scaling risks and the enhanced permeate recovery[8].
351 In addition, the well retained essential minerals (e.g., Ca^{2+} , Mg^{2+}) within the treated

352 groundwater of TFC-P_n would be good for human health and made treated groundwater more
353 favorable for drinking water resource. The low permeance of multivalent cations and
354 simultaneously improved water permeance of TFC-P_n can also minimize the osmotic
355 pressure penalty across the membrane, thus reducing hydraulic pump energy consumption.
356 Accordingly, the operation and maintenance cost (e.g., chemical cleaning cost) can be
357 reduced. Furthermore, for groundwater contaminated with emergent contaminants (e.g.,
358 PFOS which has been widely detected in natural water resources), the contaminant rejection
359 of TFC-P₆ membrane (94.8%) was significantly higher than that of the control TFC (88.3%),
360 thanks to its large hydrated radius and its electrostatic interaction with the additional negative
361 charge on membrane surface (Fig. 5(d)).


362

363 3.3. The fouling behavior of TFC-P_n membranes

364 The biofouling behavior of the control TFC and TFC-P_n (using TFC-P₆ as an example) are
365 comparatively studied. The normalized water flux (J_w/J_0) of both TFC and TFC-P_n with and
366 without the presence of biomass in the feed streams were curved versus time during the
367 experiments (Fig. 6(a)). The initial flux of all the tests, including baseline and fouling
368 measurements, was set at about 60-70 L m⁻² h⁻¹ by adjusting operation pressure and was
369 recorded as J_0 . Despite the well-controlled baseline of both TFC and TFC-P₆, their fouling
370 trends were different. At the beginning, TFC and TFC-P₆ demonstrated a similar and steadily
371 declined water flux. Subsequently, the decline rate of permeate flux of TFC-P₆ increased 8
372 hours later, while the control TFC suffered a more dramatic decline in permeate flux. The
373 flux variation of TFC is consistent with previous reported fouling curves that the sudden
374 decline of permeate flux can be attributed to the formation of biofilm cake layer on the
375 membrane surface [41]. The bacteria were initially attached onto the membrane which was
376 facilitated by the surface hydrophobic interaction of TFC and microorganism, and were

377 subsequently anchored by the extracellular organic compounds (e.g., EPS), leading to the
378 microbial colonization and biofilm formation. A layer of biofilm on the control TFC can be
379 recognized in CLSM images (Fig. 6(b)). In the contrary, compared to the control TFC, TFC-
380 P_6 was less prone to biofouling that its water flux can be better maintained. It can be possibly
381 due to the enhanced electrostatic exclusion of negatively charged bacteria by the additional
382 negative charges on the membrane surface of TFC- P_6 , resulting in an anti-fouling
383 performance. Moreover, its smoother surface morphology would restrict the adhesion of
384 biofilm on the membrane surface. Finally, the CLSM micrographs of TFC- P_6 membrane
385 surface exhibited less biofoulant deposition and confirmed its anti-biofouling performance
386 (Fig. 6(c)).

387

388
389 **Fig. 6. Anti-biofouling tests of TFC and TFC- P_6 membrane with a cross-flow nanofiltration system. (a)Normalized water**
390 **flux versus time after 24 h filtration at 6 bar. CLSM images of TFC(b) and TFC- P_6 membrane after 24 h filtration.**

391

392 **4. Conclusions**

393 In this study, we proposed a simple method of using polyelectrolyte as an aqueous phase
394 additive to regulate the interfacial polymerization reaction. A negatively charged PSS was
395 selected as the model additive of PIP aqueous phase solution to tune the formation of PA

396 layer toward better selectivity and anti-biofouling behavior. The results shown that the
397 diffusion of amine monomer into the organic phase solution was confined by its electrostatic
398 interaction with polyelectrolyte, leading to a PA layer with reduced degree of cross-linking
399 and increased density of surface negative charges. Using a moderate concentration of
400 polyelectrolyte additive, TFC-P₆ demonstrated enhanced water permeance and better
401 selectivity for calcium chloride over sodium sulfate, and improved anti-fouling performance
402 compared to the control TFC.

403

404 Both the selectivity of water/solute (e.g., $A/B_{\text{Na}_2\text{SO}_4}$) and that of different solutes (e.g.,
405 $B_{\text{CaCl}_2}/B_{\text{Na}_2\text{SO}_4}$) are critical parameters for NF membranes. A high selectivity for water over
406 salt (i.e., high $A/B_{\text{Na}_2\text{SO}_4}$ ratio) would be beneficial to the quality of purified water product,
407 while a high calcium chloride-sodium sulfate selectivity (i.e., high $B_{\text{CaCl}_2}/B_{\text{Na}_2\text{SO}_4}$ ratio)
408 would be favorable for decreasing membrane scaling potential and reducing pressure energy
409 consumption. In addition, the well retained mineral ions (e.g., Ca^{2+} , Mg^{2+}) within the
410 permeate would make it more suitable for drinking purpose. Furthermore, TFC-P₆ showed a
411 higher rejection of emergent pollutant thanks to the combined size exclusion effect and
412 enhanced electrostatic interaction. Due to the significant health risks of PFOS, the current
413 study provides us a facile approach to tune the formation of PA rejection layer and fabricate
414 NF membranes with simultaneously production of high-quality water in groundwater
415 treatment. The critical roles of polyelectrolyte additive in enhancing membrane separation
416 performance and antifouling properties was investigated. Future studies need to be
417 performed to further explore the impact of the molecular structure and charge density of
418 polyelectrolyte additive on the interfacial polymerization reaction and the formation of PA
419 layer.

420

421 **Acknowledgements**

422 The work was substantially supported by a grant from the Innovation and Technology Fund
423 (ITS/249/20) of the Hong Kong SAR, China. The authors also acknowledge the financial
424 support from Beijing Normal University.

425 **References**

426 [1] C. Wei, Q. Wang, X. Song, X. Chen, R. Fan, D. Ding, Y. Liu, Distribution, source
427 identification and health risk assessment of PFASs and two PFOS alternatives in
428 groundwater from non-industrial areas, *Ecotoxicol Environ Saf*, 152 (2018) 141-150.

429 [2] M. Patel, R. Kumar, K. Kishor, T. Mlsna, C.U. Pittman, D. Mohan, Pharmaceuticals of
430 Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal
431 Methods, *Chem. Rev.*, 119 (2019) 3510-3673.

432 [3] I. Ross, J. McDonough, J. Miles, P. Storch, P. Thelakkat Kochunarayanan, E. Kalve, J.
433 Hurst, S. S. Dasgupta, J. Burdick, A review of emerging technologies for remediation of
434 PFASs, *Remediation Journal*, 28 (2018) 101-126.

435 [4] L. Charuaud, E. Jarde, A. Jaffrezic, M.F. Thomas, B. Le Bot, Veterinary pharmaceutical
436 residues from natural water to tap water: Sales, occurrence and fate, *J Hazard Mater*, 361
437 (2019) 169-186.

438 [5] Y. Luo, W. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai, J. Zhang, S. Liang, X.C. Wang, A
439 review on the occurrence of micropollutants in the aquatic environment and their fate and
440 removal during wastewater treatment, *Sci Total Environ*, 473-474 (2014) 619-641.

441 [6] H. Guo, R. Dai, M. Xie, L.E. Peng, Z. Yao, Z. Yang, L.D. Nghiem, S.A. Snyder, Z.
442 Wang, C.Y. Tang, Tweak in Puzzle: Tailoring Membrane Chemistry and Structure toward
443 Targeted Removal of Organic Micropollutants for Water Reuse, *Environ Sci Technol Lett.*,
444 9 (2022) 247-257.

445 [7] S. Hurley, E. Houtz, D. Goldberg, M. Wang, J.-S. Park, D.O. Nelson, P. Reynolds, L.
446 Bernstein, H. Anton-Culver, P. Horn-Ross, M. Petreas, Preliminary Associations between
447 the Detection of Perfluoroalkyl Acids (PFAAs) in Drinking Water and Serum
448 Concentrations in a Sample of California Women, *Environ Sci Technol Lett.*, 3 (2016) 264-
449 269.

450 [8] C. Boo, Y. Wang, I. Zucker, Y. Choo, C.O. Osuji, M. Elimelech, High Performance
451 Nanofiltration Membrane for Effective Removal of Perfluoroalkyl Substances at High Water
452 Recovery, *Environ. Sci. Technol.*, 52 (2018) 7279-7288.

453 [9] S.P. Lenka, M. Kah, L.P. Padhye, A review of the occurrence, transformation, and
454 removal of poly- and perfluoroalkyl substances (PFAS) in wastewater treatment plants,
455 *Water Res*, 199 (2021) 117187.

456 [10] R. Loos, B.M. Gawlik, G. Locoro, E. Rimaviciute, S. Contini, G. Bidoglio, EU-wide
457 survey of polar organic persistent pollutants in European river waters, *Environ. Pollut.*, 157
458 (2009) 561-568.

459 [11] R. Loos, R. Carvalho, D.C. Antonio, S. Comero, G. Locoro, S. Tavazzi, B. Paracchini,
460 M. Ghiani, T. Lettieri, L. Blaha, B. Jarosova, S. Voorspoels, K. Servaes, P. Haglund, J. Fick,
461 R.H. Lindberg, D. Schwesig, B.M. Gawlik, EU-wide monitoring survey on emerging polar
462 organic contaminants in wastewater treatment plant effluents, *Water Res*, 47 (2013) 6475-
463 6487.

464 [12] C. Kunacheva, S. Fujii, S. Tanaka, S.T. Seneviratne, N.P. Lien, M. Nozoe, K. Kimura,
465 B.R. Shivakoti, H. Harada, Worldwide surveys of perfluorooctane sulfonate (PFOS) and
466 perfluorooctanoic acid (PFOA) in water environment in recent years, *Water Sci Technol*, 66
467 (2012) 2764-2771.

468 [13] J.W. Martin, M.M. Smithwick, B.M. Braune, P.F. Hoekstra, D.C. Muir, S.A. Mabury,
469 Identification of long-chain perfluorinated acids in biota from the Canadian Arctic, *Environ
470 Sci Technol*, 38 (2004) 373-380.

471 [14] H. Guo, J. Zhang, L.E. Peng, X. Li, Y. Chen, Z. Yao, Y. Fan, K. Shih, C.Y. Tang, High-
472 Efficiency Capture and Recovery of Anionic Perfluoroalkyl Substances from Water Using

473 PVA/PDDA Nanofibrous Membranes with Near-Zero Energy Consumption, Environ Sci
474 Technol Lett., 8 (2021) 350-355.

475 [15] X. Dauchy, V. Boiteux, C. Bach, A. Colin, J. Hemard, C. Rosin, J.F. Munoz, Mass
476 flows and fate of per- and polyfluoroalkyl substances (PFASs) in the wastewater treatment
477 plant of a fluorochemical manufacturing facility, Sci Total Environ, 576 (2017) 549-558.

478 [16] Q. Yu, R. Zhang, S. Deng, J. Huang, G. Yu, Sorption of perfluorooctane sulfonate and
479 perfluorooctanoate on activated carbons and resin: Kinetic and isotherm study, Water Res,
480 43 (2009) 1150-1158.

481 [17] D. Lu, S. Sha, J. Luo, Z. Huang, X. Zhang Jackie, Treatment train approaches for the
482 remediation of per- and polyfluoroalkyl substances (PFAS): A critical review, J Hazard
483 Mater, 386 (2020) 121963.

484 [18] H. Guo, X. Li, W. Yang, Z. Yao, Y. Mei, L.E. Peng, Z. Yang, S. Shao, C.Y. Tang,
485 Nanofiltration for drinking water treatment: a review, Front. Chem. Sci. Eng., (2021) 1-18.

486 [19] R. Rattanaoudom, C. Visvanathan, Removal of PFOA by hybrid membrane filtration
487 using PAC and hydrotalcite, Desalination Water Treat., 32 (2011) 262-270.

488 [20] V. Boiteux, X. Dauchy, C. Bach, A. Colin, J. Hemard, V. Sagres, C. Rosin, J.F. Munoz,
489 Concentrations and patterns of perfluoroalkyl and polyfluoroalkyl substances in a river and
490 three drinking water treatment plants near and far from a major production source, Sci Total
491 Environ, 583 (2017) 393-400.

492 [21] A. Soriano, D. Gorri, A. Urtiaga, Efficient treatment of perfluorohexanoic acid by
493 nanofiltration followed by electrochemical degradation of the NF concentrate, Water Res,
494 112 (2017) 147-156.

495 [22] K.U. Goss, The pKa values of PFOA and other highly fluorinated carboxylic acids,
496 Environ Sci Technol, 42 (2008) 456-458.

497 [23] J. Xiong, Y. Hou, J. Wang, Z. Liu, Y. Qu, Z. Li, X. Wang, The rejection of
498 perfluoroalkyl substances by nanofiltration and reverse osmosis: influencing factors and
499 combination processes, Environ. Sci.: Water Res. Technol., 7 (2021) 1928-1943.

500 [24] A.W. Mohammad, Y.H. Teow, W.L. Ang, Y.T. Chung, D.L. Oatley-Radcliffe, N. Hilal,
501 Nanofiltration membranes review: Recent advances and future prospects, Desalination, 356
502 (2015) 226-254.

503 [25] P. Wang, F. Wang, H. Jiang, Y. Zhang, M. Zhao, R. Xiong, J. Ma, Strong improvement
504 of nanofiltration performance on micropollutant removal and reduction of membrane fouling
505 by hydrolyzed-aluminum nanoparticles, Water Res, 175 (2020) 115649.

506 [26] F. Beyer, B.M. Rietman, A. Zwijnenburg, P. van den Brink, J.S. Vrouwenvelder, M.
507 Jarzembowska, J. Laurinonyte, A.J.M. Stams, C.M. Plugge, Long-term performance and
508 fouling analysis of full-scale direct nanofiltration (NF) installations treating anoxic
509 groundwater, J. Membr. Sci., 468 (2014) 339-348.

510 [27] W. Yang, L. Long, H. Guo, C. Wu, S. Zhou, Y. Mei, L.E. Peng, W. Liu, Z. Yang, W.
511 Li, C.Y. Tang, Facile synthesis of nanofiltration membrane with asymmetric selectivity
512 towards enhanced water recovery for groundwater remediation, J. Membr. Sci., 663 (2022).

513 [28] Z. Tan, S. Chen, X. Peng, L. Zhang, C. Gao, Polyamide membranes with nanoscale
514 turing structures for water purification, Science, 360 (2018) 518-521.

515 [29] L.E. Peng, Z. Yao, X. Liu, B. Deng, H. Guo, C.Y. Tang, Tailoring Polyamide Rejection
516 Layer with Aqueous Carbonate Chemistry for Enhanced Membrane Separation: Mechanistic
517 Insights, Chemistry-Structure-Property Relationship, and Environmental Implications,
518 Environ. Sci. Technol., 53 (2019) 9764-9770.

519 [30] Z. Yao, H. Guo, Z. Yang, W. Qing, C.Y. Tang, Preparation of nanocavity-contained
520 thin film composite nanofiltration membranes with enhanced permeability and divalent to
521 monovalent ion selectivity, Desalination, 445 (2018) 115-122.

522 [31] L.E. Peng, Z. Yao, Z. Yang, H. Guo, C.Y. Tang, Dissecting the Role of Substrate on
523 the Morphology and Separation Properties of Thin Film Composite Polyamide Membranes:
524 Seeing Is Believing, *Environ. Sci. Technol.*, 54 (2020) 6978-6986.

525 [32] Z. Yang, H. Guo, Z.-k. Yao, Y. Mei, C.Y. Tang, Hydrophilic Silver Nanoparticles
526 Induce Selective Nanochannels in Thin Film Nanocomposite Polyamide Membranes,
527 *Environ. Sci. Technol.*, 53 (2019) 5301-5308.

528 [33] Z. Yang, F. Wang, H. Guo, L.E. Peng, X.H. Ma, X.X. Song, Z. Wang, C.Y. Tang,
529 Mechanistic Insights into the Role of Polydopamine Interlayer toward Improved Separation
530 Performance of Polyamide Nanofiltration Membranes, *Environ. Sci. Technol.*, 54 (2020)
531 11611-11621.

532 [34] P.-F. Sun, Y. Jang, S.-Y. Ham, H. Ryoo, H.-D. Park, Effects of reverse solute diffusion
533 on membrane biofouling in pressure-retarded osmosis processes, *Desalination*, 512 (2021)
534 115145.

535 [35] L. Wang, D. Rehman, P.-F. Sun, A. Deshmukh, L. Zhang, Q. Han, Z. Yang, Z. Wang,
536 H.-D. Park, J.H. Lienhard, C.Y. Tang, Novel Positively Charged Metal-Coordinated
537 Nanofiltration Membrane for Lithium Recovery, *ACS Appl. Mater. Interfaces*, 13 (2021)
538 16906-16915.

539 [36] P.-F. Sun, T.-S. Kim, H.-S. Kim, S.-Y. Ham, Y. Jang, Y.-G. Park, C.Y. Tang, H.-D.
540 Park, Improved anti-biofouling performance of pressure retarded osmosis (PRO) by dosing
541 with chlorhexidine gluconate, *Desalination*, 481 (2020).

542 [37] K.-H. Park, P.-F. Sun, E.H. Kang, G.D. Han, B.J. Kim, Y. Jang, S.-H. Lee, J.H. Shim,
543 H.-D. Park, Photocatalytic anti-biofouling performance of nanoporous ceramic membranes
544 treated by atomic layer deposited ZnO, *Sep. Purif. Technol.*, 272 (2021) 118935.

545 [38] K.-H. Park, P.-F. Sun, E.H. Kang, G.D. Han, B.J. Kim, Y. Jang, S.-H. Lee, J.H. Shim,
546 H.-D. Park, Photocatalytic anti-biofouling performance of nanoporous ceramic membranes
547 treated by atomic layer deposited ZnO, *Sep. Purif. Technol.*, 272 (2021).

548 [39] Z. Yang, Z.W. Zhou, H. Guo, Z. Yao, X.H. Ma, X. Song, S.P. Feng, C.Y. Tang, Tannic
549 Acid/Fe(3+) Nanoscaffold for Interfacial Polymerization: Toward Enhanced Nanofiltration
550 Performance, *Environ. Sci. Technol.*, 52 (2018) 9341-9349.

551 [40] X. You, K. Xiao, H. Wu, Y. Li, R. Li, J. Yuan, R. Zhang, Z. Zhang, X. Liang, J. Shen,
552 Z. Jiang, Electrostatic-modulated interfacial polymerization toward ultra-permselective
553 nanofiltration membranes, *iScience*, 24 (2021) 102369.

554 [41] Y. Gu, Y.N. Wang, J. Wei, C.Y. Tang, Organic fouling of thin-film composite
555 polyamide and cellulose triacetate forward osmosis membranes by oppositely charged
556 macromolecules, *Water Res.*, 47 (2013) 1867-1874.

Supplementary Information

2 Polyelectrolyte assisted interfacial polymerization for polyamide

3 nanofiltration membrane with enhanced separation and anti-

4 biofouling properties in groundwater treatment

6 **Ying Mei^{a,b} *, Zhe Yang^b, Peng-Fei Sun^{b,c}, Shenghua Zhou^b, Hao Guo^b, Lu Elfa Peng^b,**

7 **Zhikan Yao^{b,d}, Wulin Yang^{b,e}, Chuyang Y. Tang^b**

8
9 ^a*Research and Development Center for Watershed Environmental Eco-Engineering,*
10 *Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, PR*
11 *China*

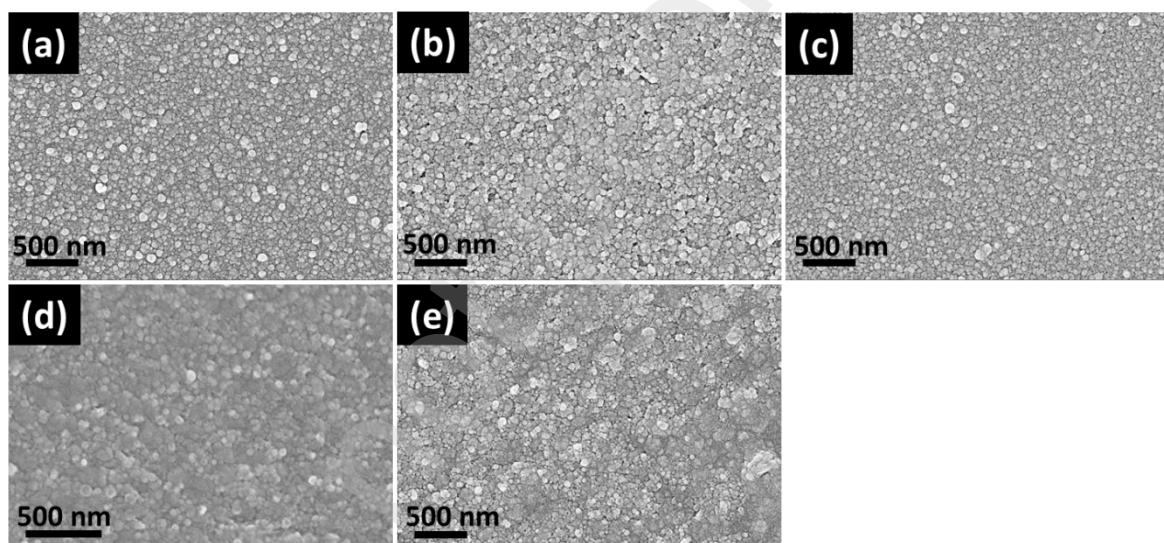
12 ^b*Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR,*
13 *China*

14 *^cSchool of Civil, Environmental and Architectural Engineering, Korea University, Seoul*
15 *02841, South Korea*

¹⁶ *^dMOE Engineering Research Center of Membrane and Water Treatment Technology, College*
¹⁷ *of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China*

18 ^eCollege of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR
19 China

21 * Corresponding author address:


22 B504 Muduo Building, Beijing Normal University, Zhuhai, 18 Jinfeng Road, Zhuhai,
23 Guangdong, China.

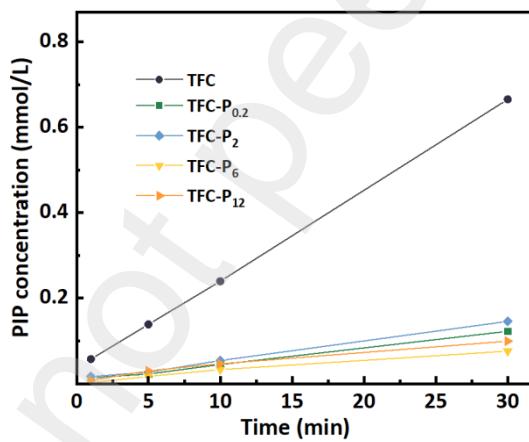
25 Tel: (+86) 15034117623;
26 E-mail address: meiying@bnu.edu.cn (Ying Mei)

27 **S1. Microscopic images of membrane top surfaces**

28 SEM microscopic characterization was performed on the control TFC membrane and TFC-P_n
29 membranes. All the membrane surfaces have representative nodular-like nanostructures of
30 polyamide rejection layer based on PIP/TMC chemistry. In addition, with increasing the mass
31 concentration of polyelectrolyte additive in the aqueous solution (e.g., from TFC-P_{0.2} to TFC-
32 P₆), the corresponding surface morphology remained almost the same except there are
33 emerging fragments in the top view of TFC-P₆. Therefore, adding negatively charged
34 polyelectrolytes in the aqueous phase solution tend to have neglected effect on the surface
35 morphologies of TFC NF membranes.

36

37

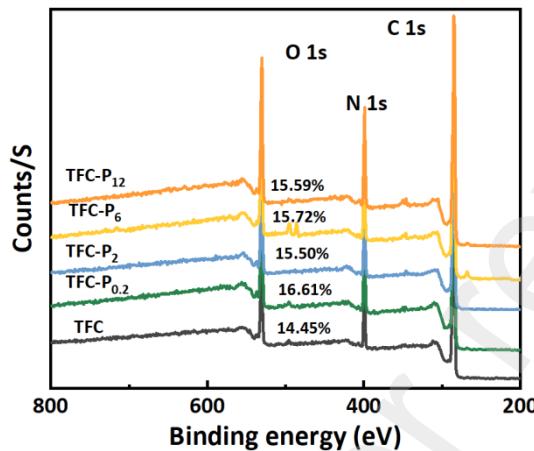

38 **Fig. S1. SEM micrographs (plan views) of (a) the control TFC membrane and (b-e) the TFC-P_n membranes**
39 **fabricated by the PIP aqueous phase solution with various concentrations (0.2, 2, 6, 12 wt.%) of PSSNa additive. The**
40 **scale bar for all the images is 500 nm.**

41

42 **S2. Measurements of PIP diffusion behavior**

43 PIP diffusion experiments were conducted to evaluate the electrostatic interaction between
44 negatively charged polyelectrolyte and positively charged amine aqueous phase monomer
45 during interfacial polymerization (IP) reaction. The experimental procedures were adapted

46 from the IP reaction based on a previous study¹. Specifically, PES substrate was immersed in
47 PIP aqueous phase solution for 3 min and was subsequently immersed in a fixed volume (e.g.,
48 20 mL) of pure hexane after thoroughly removing the excess PIP solution by a rubber roller.
49 Meanwhile, 1.5 mL organic solution was extracted each time to detect the PIP concentration
50 by UV-vis spectroscopy at predetermine time interval (i.e., 0, 5, 10, 30 min). The diffusion
51 rate of PIP was obviously quicker for aqueous solution without any additive compared to that
52 with negatively charged polyelectrolyte, as shown in Fig. B1. With increasing the
53 concentration of PSSNa in aqueous phase solution, the PIP diffusion was further prohibited
54 (e.g., from 0.12 and 0.15 mmol/L for TFC-P_{0.2} and TFC-P₂ to 0.08 and 0.10 mmol/L for TFC-
55 P₆ and TFC-P₁₂ at 30 min) by its electrostatic interaction with PSSNa of large molecular
56 weight (MW ~70,000) and enhanced solution viscosity.


57
58 **Fig. S2. The concentration of PIP diffusion from the aqueous phase to the organic phase versus time.**
59

60 **S3. Characterization of membrane surface chemistry**

61 We explored surface elemental composition of the TFC and TFC-P_n membranes using XPS
62 technique (Fig. S3 and Table S1). The slight increased O/N ratio of the PA rejection layer of
63 TFC-P_n (e.g., TFC-P_{0.2}, TFC-P₂, and TFC-P₁₂) can be explained by its moderately enhanced
64 hydrolysis of acryl chloride group contained in TMC (i.e., decreased cross-linking degree)
65 compared to that of the control TFC. In addition, ζ potential testing was conducted on the

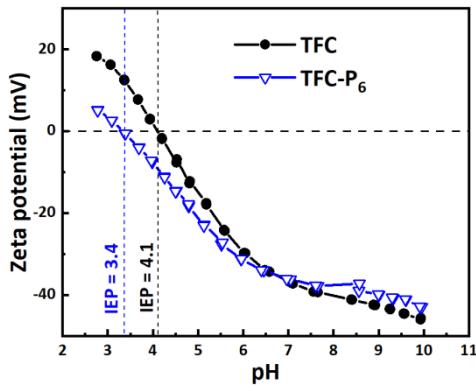
66 TFC and TFC-P₆ membranes for surface charge characterization (Fig. S4). The shift of
67 isoelectric point (IEP) to the lower pH (i.e., from 4.1 for TFC to 3.4 for TFC-P₆) indicated the
68 presence of additional surface negative charges on TFC-P₆ membrane.

69

70

71 **Fig. S3. XPS spectrum of TFC and TFC-P_n membranes.**

72

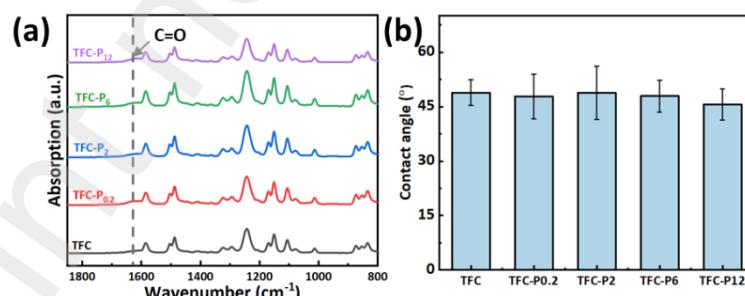

73 Table S1. Relative elemental composition (%) of membrane surface analyzed from the XPS
74 measurements of the TFC and TFC-P_n membranes. The O/N ratio was calculated with the
75 atomic percent of O and N.

Membrane	C (%)	O (%)	N (%)	O/N
TFC	72.88	14.45	12.67	1.14
TFC-P _{0.2}	69.8	16.61	13.59	1.22
TFC-P ₂	71.01	15.5	13.49	1.15
TFC-P ₆	70.38	15.72	13.91	1.13
TFC-P ₁₂	70.94	15.59	13.47	1.16

76

77

78


79

80 **Fig. S4.** Zeta potential of TFC and TFC-P₆ membranes. The IEP of each membrane was presented. The tests were
81 performed in a background solution of 10 mM NaCl.

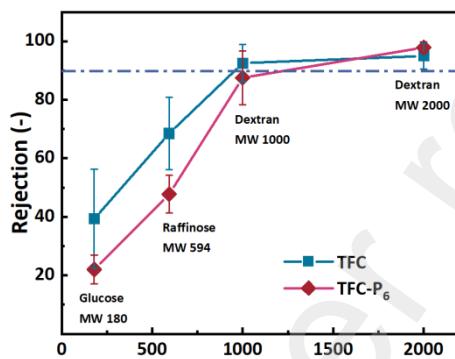
82

83 The ATR-FTIR spectra of the TFC and TFC-P_n membranes showed emerging stretching
84 vibration of C=O bonds at 1620 cm⁻¹, confirming the successful formation of polyamide
85 rejection layer. The intensified peak at 1440 cm⁻¹ can be ascribed to the O-H bonds of
86 carboxylic group formed by hydrolysis of the acryl chloride groups of TMC. Furthermore,
87 contact angle measurements provided useful information related to the membrane surface
88 hydrophilicity. All the TFC-P_n membranes exhibited moderately better hydrophilicity due to
89 the presence of additional carboxylic groups.

90

91

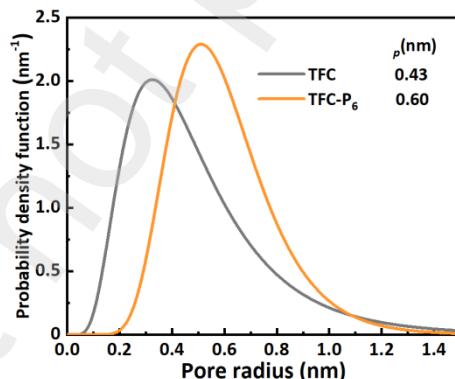
92 **Fig. S5. ATR-FTIR spectra (a) and contact angle (b) of the TFC and TFC-P_n membranes.**


93

94 **S4. Characterization of membrane pore size distribution**

95 Membrane rejection of neutral molecules was explored to evaluate the size exclusion
96 performance of the control TFC and TFC-P₆ (Fig. S6). TFC-P₆ obtained lower rejection of

97 glucose (MW 180), raffinose (MW 594), and dextran with molecular weight of 1000
98 compared to the control TFC. Based on neutral molecules rejection, the surface pore radius of
99 membrane samples was calculated. The mean pore size of TFC-P₆ (R_m = 0.6 nm) was
100 effectively larger than that of TFC (R_m = 0.43 nm) (Fig. S7). The larger mean pore size of
101 TFC-P₆ can be attributed to the less cross-linking degree of the polyamide layer.


102

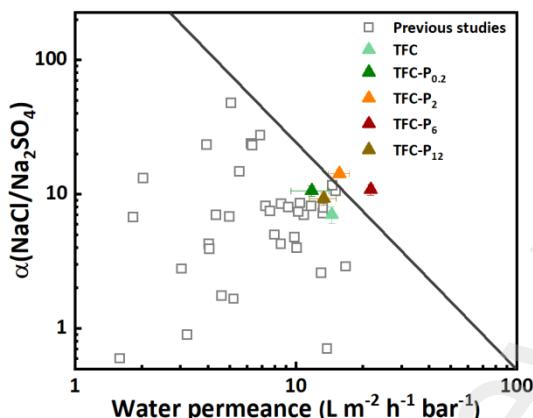
103

104 **Fig. S6. Neutral molecules rejection for the control TFC and TFC-P₆ membrane using feed solution concentration of**
105 **200 ppm.**

106

107

108 **Fig. S7. Pore size distribution and mean pore size of TFC and TFC-P₆ membrane based on rejection results of neutral**
109 **molecules.**


110

111 **S5. Water permeance-salt selectivity investigation**

112 There is a trade-off relationship between water permeance and NaCl/Na₂SO₄ selectivity for
113 conventional polyamide NF membranes with an upper bound of the separation performance
114 being presented (Fig. S8).

115

116

117

118 **Fig. S8.** Trade-off relationship between membrane water permeance and $\text{NaCl}/\text{Na}_2\text{SO}_4$ selectivity based on previous
119 reported studies on polyamide NF membranes. $\text{NaCl}/\text{Na}_2\text{SO}_4$ selectivity was presented as $\text{B}(\text{NaCl})/\text{B}(\text{Na}_2\text{SO}_4)$ ratio.

120

121

122 1. You, X.; Xiao, K.; Wu, H.; Li, Y.; Li, R.; Yuan, J.; Zhang, R.; Zhang, Z.; Liang, X.;
123 Shen, J.; Jiang, Z., Electrostatic-modulated interfacial polymerization toward ultra-
124 permselective nanofiltration membranes. *iScience* **2021**, *24*, (4), 102369.
125