

1    **Does surface roughness necessarily increase fouling propensity of**  
2    **polyamide reverse osmosis membranes by humic acid?**

3    Qimao Gan,<sup>†</sup> Chenyue Wu,<sup>†</sup> Li Long,<sup>†</sup> Lu Elfa Peng,<sup>\*,†</sup> Zhe Yang,<sup>†</sup> Hao Guo,<sup>†</sup>  
4    Chuyang Y. Tang<sup>\*,†</sup>

5    <sup>†</sup>Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong  
6    SAR 999077, P. R. China.

7

8

9

10

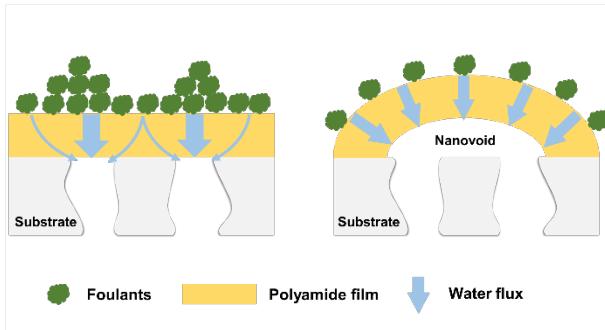
11

12

13

14

15


16

17    \*Corresponding Authors:

18    Lu Elfa Peng, Email: elfapeng@connect.hku.hk, Phone: +852-53964327

19    Chuyang Y. Tang, Email: tangc@hku.hk, Phone: +852-28591976

20 **TABLE OF CONTENT**



22

23 **ABSTRACT**

24 Surface roughness has crucial influence on fouling propensity of thin film composite (TFC)  
25 polyamide reverse osmosis (RO) membranes. A common wisdom is that rougher  
26 membranes tend to experience more severe fouling. In this study, we compared the fouling  
27 behaviors of a smooth polyamide membrane (RO-s) and a nanovoid-containing rough  
28 polyamide membrane (RO-r). In contrary to the traditional belief, we observed more severe  
29 fouling for RO-s, which can be ascribed to its uneven flux distribution caused by the ‘funnel  
30 effect’. Additional tracer filtration tests using gold nanoparticles revealed a more patch-  
31 like particle deposition pattern, confirming the adverse impact of ‘funnel effect’ on  
32 membrane water transport. In contrast, the experimentally observed lower fouling  
33 propensity of the nanovoid-containing rough membrane can be explained by: (1) the  
34 weakened ‘funnel effect’ thanks to the presence of nanovoids, which can regulate the water  
35 transport pathway through the membrane; and (2) the decreased average localized flux over  
36 the membrane surface due to the increased effective filtration area for the nanovoid-  
37 induced roughness features. The current study provides fundamental insights into the  
38 critical role of surface roughness in membrane fouling, which may have important  
39 implications to the future development of high-performance antifouling membranes.

40 **KEYWORDS:** *polyamide reverse osmosis (RO) membranes, surface roughness,*  
41 *membrane fouling, funnel effect, nanovoid-containing roughness structure*

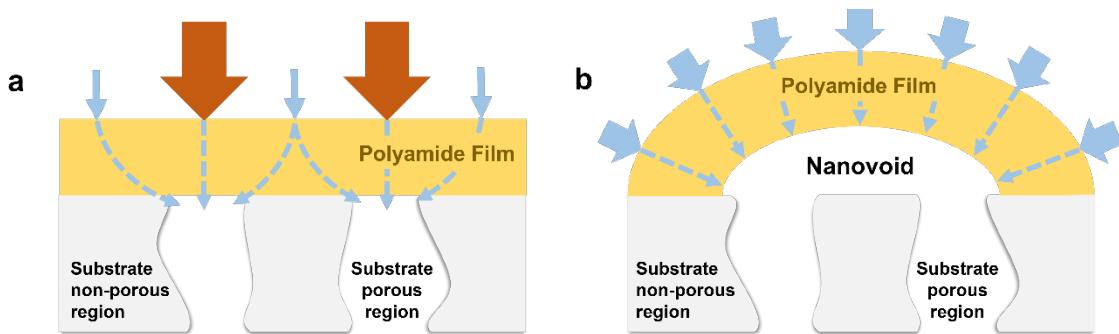
42 **SYNOPSIS:** Nanovoids contained in a rough polyamide RO membrane reduce the fouling  
43 propensity by simultaneously improving the water transport pathway through the  
44 membrane and increasing the effective filtration area.

45 **INTRODUCTION**

46 Water scarcity has become an urgent concern because of population boom, rapid  
47 industrialization, and severe water pollution at a global scale.<sup>1, 2</sup> Alternative water supply  
48 through membrane-based desalination and water reuse using reverse osmosis (RO) has  
49 played a vital role in addressing this concern.<sup>2-6</sup> However, the separation performance of  
50 RO membranes is severely affected by fouling, thereby compromising the process  
51 efficiency and quality of product water.<sup>6-9</sup> To facilitate the development of effective  
52 antifouling strategies, mechanistic understanding of membrane fouling is of great  
53 necessity.<sup>1, 10</sup>

54 Among the various factors influencing membrane fouling,<sup>7, 9, 11-13</sup> membrane surface  
55 roughness is considered as a crucial factor.<sup>7, 10, 11, 14</sup> A common wisdom is that a rougher  
56 membrane surface tends to suffer more severe fouling. For example, Elimelech and  
57 coworkers observed faster fouling rate for fully aromatic polyamide membranes compared  
58 to semi-aromatic polyamide membranes<sup>15, 16</sup> and cellulose acetate membranes<sup>17</sup>, which was  
59 attributed to the ‘ridge-and-valley’ roughness structure of the former. However, these  
60 studies involved different membrane chemistry (e.g., smooth cellulose acetate membrane  
61 vs. rough polyamide membrane<sup>17</sup>), which may affect the membrane-foulant interactions  
62 and thus the fouling tendency.<sup>7, 18</sup> Several other studies reported a similar trend,<sup>13, 19, 20</sup>  
63 citing preferential accumulation of foulants in the ‘valleys’ as a key reason for accelerated  
64 fouling. In contrast, several recent studies<sup>21-23</sup> reported the use of micro-patterned surfaces  
65 (e.g., biomimetic sharklet<sup>21</sup> and line-and-space gratings<sup>22</sup>) for mitigating fouling propensity  
66 by surface pattern-induced hydrodynamic flows (e.g., eddies), despite that such  
67 micropatterns would contribute to greater membrane surface roughness. At a nanometer

68 scale, roughness features in the form of nanostripes,<sup>24</sup> nanocapsules,<sup>25</sup> and belt-crater  
69 morphology<sup>26, 27</sup> were also found to reduce fouling propensity. These contradictory results  
70 in existing literature prompt us to revisit the fundamental role of surface roughness in  
71 membrane fouling.


72 In-depth understanding of water transport through polyamide rejection layers could  
73 potentially provide an alternative angle to interpret membrane fouling behavior. Water  
74 transport through a thin film composite (TFC) polyamide membrane could be severely  
75 constrained by the ‘funnel effect’ due to the limited porosity of the substrate (Figure 1a):<sup>28-</sup>  
76 <sup>31</sup> (1) the part of polyamide directly above substrate pores can efficiently conduct water to  
77 reach the pores, but (2) that away from the pores are far less efficient in water transport  
78 due to the much longer path length to reach the pores.<sup>30-34</sup> Since the first report of the  
79 “funnel effect” by Lonsdale et al.<sup>28</sup> in 1971, several other groups further investigated this  
80 phenomenon.<sup>29-31, 35, 36</sup> Of particular interest, a few modeling studies<sup>34, 37-39</sup> show that the  
81 ‘funnel effect’ could create highly uneven flux distribution with localized hot spots of high  
82 flux above the substrate pores and suggest that this phenomenon could have major  
83 implications for membrane fouling. Since fouling is greatly influenced by the localized  
84 water flux,<sup>34, 38, 39</sup> a severe ‘funnel effect’ is expected to result in greater fouling.<sup>31</sup>

85 Recent literature shows that the ‘ridge-and-valley’ roughness structure in TFC RO  
86 membranes is caused by nanovoids encapsulated in the polyamide layer.<sup>40-43</sup> These  
87 nanovoids were found to be well correlated to membrane water permeance.<sup>39, 44-47</sup>  
88 Presumably, the presence of nanovoids can modify the water transport pathway through  
89 the membrane.<sup>34, 38, 39, 44</sup> Since the nanovoids connect well to the substrate pores,<sup>41, 45, 46</sup>  
90 water can now transport through the polyamide film in the normal direction with the least

91 hydraulic resistance (Figure 1b). Thus, a rougher TFC membrane could potentially weaken  
92 the ‘funnel effect’ and improve the flux distribution, which would mitigate membrane  
93 fouling. Moreover, a rougher membrane surface provides greater effective filtration area  
94 for water transport (Figure 1b),<sup>48-50</sup> which can decrease the average localized flux over the  
95 membrane surface (i.e., total flow normalized by the effective filtration area) under a given  
96 apparent flux (i.e., total flow normalized by the membrane plan area). These potential  
97 beneficial effects of nanovoids prompt us to hypothesize that a nanovoid-containing rough  
98 polyamide membrane could be more fouling resistant compared to a smooth polyamide  
99 membrane.

100 To reveal the effect of surface roughness (and nanovoids) on membrane fouling, we  
101 prepared a rough and a smooth polyamide membrane with an identical recipe for interfacial  
102 polymerization (IP), except that the smooth membrane was prepared at a free interface to  
103 eliminate the formation of nanovoids.<sup>42, 43</sup> We demonstrate a significantly reduced fouling  
104 tendency of the rougher membrane using humic acid (HA), which was further confirmed  
105 by additional tracer filtration tests using gold nanoparticles. In a word, this study provides  
106 an alternative angle and fundamental mechanisms to re-think the critical role of surface  
107 roughness on membrane fouling. Our findings have major implications to the future  
108 development of high-performance antifouling membranes, particularly with respect to the  
109 design of membrane morphology.

110



111

Figure 1. Water transport pathway through (a) smooth polyamide film with uneven water distribution ('funnel effect'), and through (b) rough polyamide film containing nanovoids with modified water transport pathway and larger effective filtration area.

112

113

114

115 **MATERIALS AND METHODS**

116 Chemicals. A commercial polysulfone (PSf) ultrafiltration membrane (molecular weight  
117 cutoff 67 kDa, Vontron Technology) was used as the substrate for both the rough and  
118 smooth polyamide RO membranes. *m*-phenylenediamine (MPD, 99%), trimesoyl chloride  
119 (TMC, 98%), and *n*-hexane obtained from Sigma-Aldrich were used in the IP reaction to  
120 prepare polyamide RO membranes. Sodium chloride (NaCl, Dieckmann) was used for  
121 separation performance tests. Humic acid (HA, Sigma-Aldrich) and calcium chloride  
122 (CaCl<sub>2</sub>, Dieckmann) were used for fouling tests. Hydrochloric acid (HCl, Dieckmann) was  
123 used to adjust the pH of feed solution. Sodium hydroxide (NaOH, Dieckmann) was used  
124 to extract the accumulated HA on fouled membranes. Dimethylformamide (DMF,  
125 Dieckmann) was used to dissolve PSf substrate for observing the backside of polyamide  
126 layer (see the Supporting Information S1).

127 Preparation of rough polyamide RO membranes. The rough polyamide RO membranes  
128 were prepared using a traditional IP process on PSf substrates. Typically, a PSf substrate  
129 was first immersed in a 2 w/w% MPD solution for 2 min. After removing the excess MPD  
130 solution by a rubber roller, the substrate was soaked in a 0.1 w/w% TMC/hexane solution  
131 for 1 min to form the polyamide layer. The resulted polyamide membrane was rinsed with  
132 hexane and further post-treated in 50 °C Milli-Q water for 10 min. The prepared rough  
133 polyamide RO membranes were named as RO-r.

134 Preparation of smooth polyamide RO membranes. The relatively smooth polyamide RO  
135 membranes were prepared under free-interface IP process.<sup>42, 43</sup> Briefly, a 0.1 w/w%  
136 TMC/hexane solution was gently added onto a 2 w/w% MPD solution to react for 1 min.  
137 The resultant polyamide layer was then loaded onto the PSf substrate by vacuum filtration.

138 After removing the excess TMC solution, the membrane was cleaned by hexane. The  
139 prepared polyamide RO membranes were named as RO-s.

140 Membrane characterization. Field-emission scanning electron microscopy (FE-SEM, S-  
141 4800, Hitachi) at an accelerating voltage of 5 kV was used to characterize the surface  
142 structure of membranes. Before SEM characterization, all the membrane samples were first  
143 dried at 40 °C in an oven, and then sputter coated by gold for 40 s. In addition to the top-  
144 side surface, the backside of the polyamide layer was also examined by SEM after  
145 dissolving PSf using DMF (see the Supporting Information S1).<sup>41, 42</sup>

146 The membrane cross-sectional images were characterized using transmission electron  
147 microscopy (TEM, CM100, Philips) at an accelerating voltage of 100 kV. All the  
148 membrane samples were soaked in 10 v/v% glycerol/water for 1 h and dried before TEM  
149 characterization.<sup>42, 43</sup> The membrane surface roughness was measured by atomic force  
150 microscopy (AFM) with a scanning area of 5×5  $\mu\text{m}^2$ . The membrane surface charge  
151 property was characterized by a streaming potential analyzer (SurPASS, Anton Paar,  
152 Austria). The membrane water contact angle was obtained using an automatic contact angle  
153 meter (Attension Theta, Biolin Scientific, Sweden) equipped with a video capture device.  
154 The ionized carboxyl group density of polyamide layer was quantified at different pHs  
155 using silver ion bind-and-elute method (see the Supporting Information S2).<sup>51, 52</sup>

156 Membrane separation performance. The separation performances were tested using a  
157 laboratory-scale crossflow RO filtration system.<sup>53</sup> A membrane sample with a plan area of  
158 12  $\text{cm}^2$  was applied in a stainless-steel cell. After pre-compactated at 17.0 bar for 1.5 h using  
159 2000 ppm NaCl feed solution at a crossflow velocity of 22.4 cm/s under room temperature  
160 ( $\sim 25$  °C), the permeate samples were collected at 15.5 bar and their water flux and salt

161 rejection were measured. The water flux  $J_v$  ( $\text{L m}^{-2} \text{ h}^{-1}$ ) and water permeance  $A$   
162 ( $\text{L m}^{-2} \text{ h}^{-1} \text{ bar}^{-1}$ ) were calculated by:

$$163 \quad J_v = \frac{\Delta m}{\Delta t \times a \times \rho} \quad (1)$$

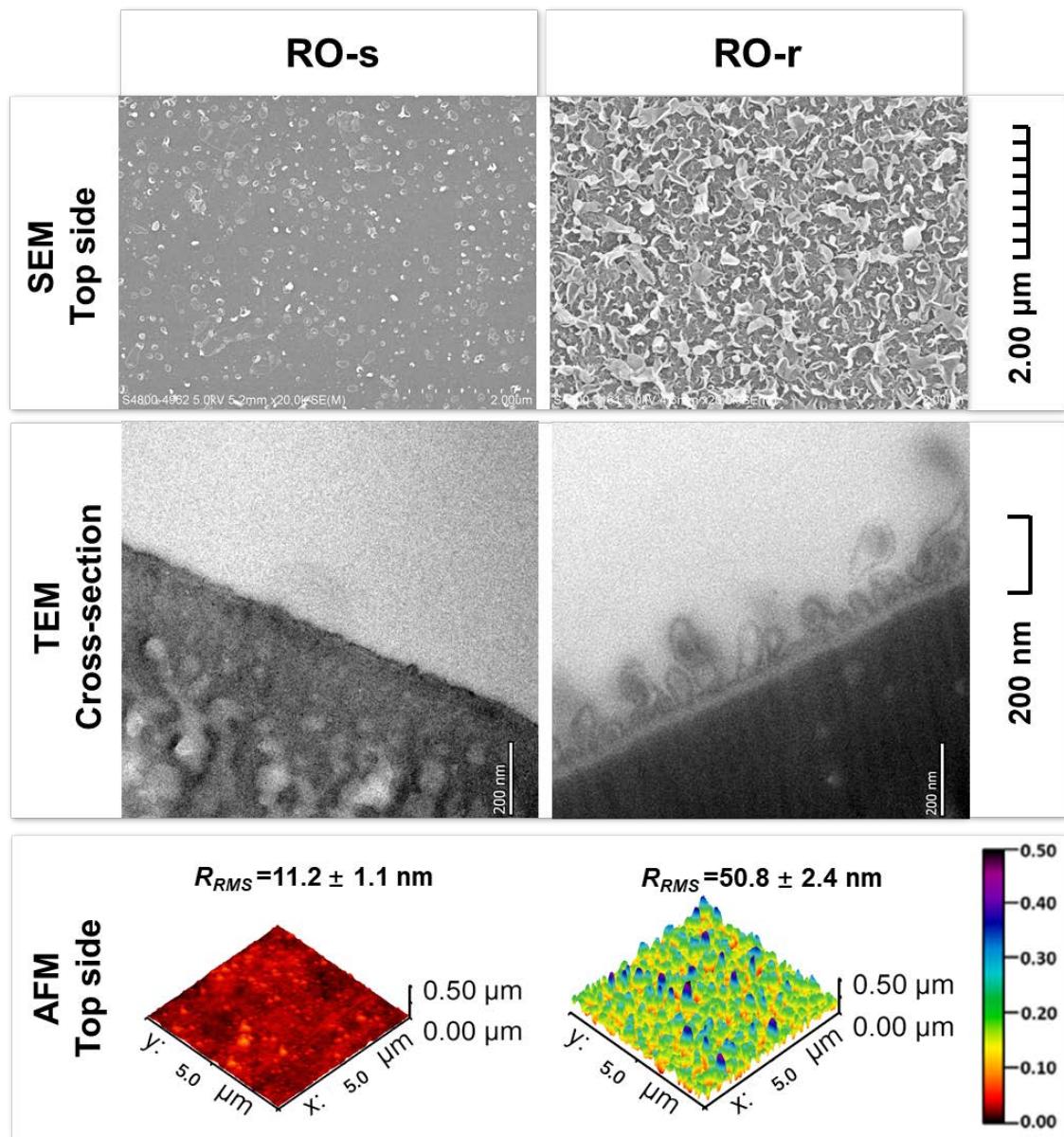
$$164 \quad A = \frac{J_v}{\Delta P - \Delta \pi} \quad (2)$$

165 where  $\Delta m$  (kg) is the mass of permeate over a time interval of  $\Delta t$  (h),  $a$  ( $\text{m}^2$ ) is the  
166 membrane filtration area (plan area),  $\rho$  is the density of water,  $\Delta P$  (bar) is the applied  
167 pressure, and  $\Delta \pi$  (bar) is the transmembrane osmotic pressure.

168 The salt rejection  $R$  was calculated based on the conductivity of the feed solution ( $C_f$ ) and  
169 that of the permeate ( $C_p$ ) measured by a portable conductivity meter (Ultrameter II, Myron  
170 L):

$$171 \quad R = \frac{C_f - C_p}{C_f} \times 100\% \quad (3)$$

172 Membrane fouling tests. A membrane sample with a plan area of  $12 \text{ cm}^2$  was applied in a  
173 stainless-steel cell and was pre-compact with a 2000 ppm NaCl feed solution at 17.0 bar  
174 for 12 h at a crossflow velocity of 11.2 cm/s under room temperature ( $\sim 25^\circ\text{C}$ ). To conduct  
175 the fouling test, the initial flux ( $J_0$ ) was adjusted to  $15$  or  $20 \text{ L m}^{-2} \text{ h}^{-1}$  and maintained stable  
176 for 0.5 h. A 100 ppm HA was then added into the feed solution to start membrane fouling.  
177 Fouling tests were also performed under pH of 4.0 to exclude the effect of ionized carboxyl  
178 groups on fouling propensity. In addition, the effect of calcium was evaluated by  
179 conducting fouling tests with 0 or 0.1 mM  $\text{CaCl}_2$  in the feed solution. Each fouling test was  
180 continued for 48 h, and the permeate flux measured at 48 h was denoted as  $J_1$ .


181 The fouled membranes were cleaned with DI water at a crossflow velocity of 22.4 cm/s for  
182 0.5 h under no applied pressure. After this cleaning step, the same pressure was applied  
183 again to measure the membrane permeate flux using the 2000 ppm NaCl solution ( $J_2$ ). The  
184 irreversible flux reduction ( $R_{ir}$ ),<sup>31</sup> reversible flux reduction ( $R_r$ ),<sup>31</sup> and flux recovery  
185 efficiency ( $E_r$ )<sup>54</sup> were evaluated by:

$$186 \quad R_{ir} = \frac{J_0 - J_2}{J_0} \times 100\% \quad (4)$$

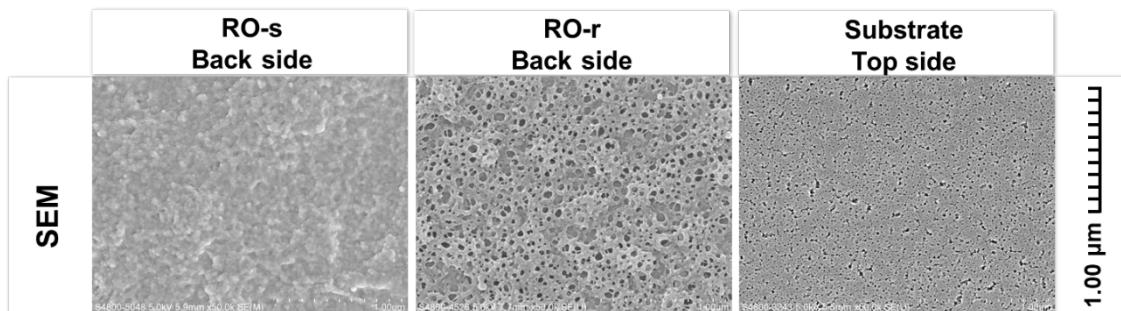
$$187 \quad R_r = \frac{J_2 - J_1}{J_0} \times 100\% \quad (5)$$

$$188 \quad E_r = \frac{J_2 - J_1}{J_0 - J_1} \times 100\% \quad (6)$$

189 Gold nanoparticle filtration tests. The gold nanoparticle filtration tests ( $1.0 \times 10^{12}$   
190 particles/mL) were performed using a dead-end filtration setup under an identical flux of 6  
191 L m<sup>-2</sup> h<sup>-1</sup> for 2 h at the temperature of 25 °C. To obtain the TEM plan view, DMF was used  
192 to dissolve the membrane substrates before the polyamide film was loaded onto a TEM  
193 grid. Then, the samples were dried at 60 °C for 10 min before the characterization.

194 **RESULTS AND DISCUSSION**195 **Membrane surface properties and separation performance of RO-s and RO-r.**

197 Figure 2. Surface properties of RO-s and RO-r membranes including surface roughness micrographs of SEM  
 198 (top sides), TEM (cross-sections), and AFM (top sides).


199

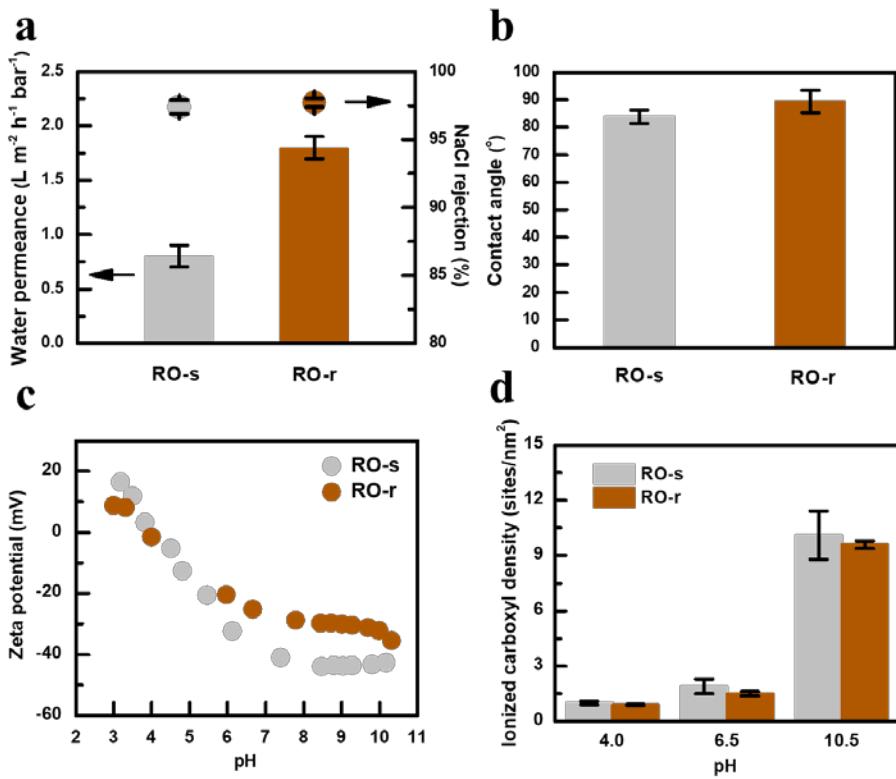
200 As expected, RO-s gave a smooth surface with some small nodules (SEM micrograph, left  
 201 column in Figure 2) and negligible nanovoids (TEM micrograph, left column in Figure 2),

202 accompanied by a low roughness of 11.2 nm (AFM micrograph, left column in Figure 2)  
203 and surface area ratio of 1.16 (Table 1). In contrast, RO-r presented a typical ‘ridge-and-  
204 valley’ surface structure (SEM micrograph, right column in Figure 2) containing numerous  
205 nanovoids (TEM micrograph, right column in Figure 2) with a high roughness of 50.8 nm  
206 (AFM micrograph, right column in Figure 2) and surface area ratio of 2.98 (Table 1). The  
207 different surface morphology of the two membranes can be explained by nanobubble  
208 formation during the IP reaction.<sup>40, 41, 43</sup> Retention of these nanobubbles between the  
209 polyamide layer and the substrate results in nanovoids-containing rough structures (i.e., for  
210 RO-r).<sup>40-42</sup> In the absence of substrate, the nanobubbles could escape from the substrate-  
211 free interface, forming a smooth polyamide film (i.e., for RO-s).<sup>42, 43, 55</sup>

212 Accordingly, the backside polyamide layer of RO-r exhibited a honeycomb-like structure  
213 with numerous openings in contrast to the negligible openings on RO-s (Figure 3).  
214 According to previous studies, these openings connect the nanovoids to the substrate  
215 pores,<sup>41, 45, 46</sup> and they are possibly caused by the escape of gas/vapor from the IP reaction  
216 interface to the porous substrate.<sup>42</sup> Furthermore, RO-r presented higher water permeance  
217 with similar NaCl rejection compared with RO-s ( $97.7 \pm 0.3\%$  for RO-r vs.  $97.4 \pm 0.5\%$   
218 for RO-s, Figure 4a). The high permeance of RO-r can be well correlated with its prominent  
219 nanovoids and openings. As depicted in Figure 1b, these voids not only shorten the water  
220 transport pathway through the polyamide film of membrane<sup>34, 38, 39, 44</sup> but also increase the  
221 effective filtration area.<sup>48-50</sup> Moreover, more openings at the backside polyamide layer of  
222 RO-r can improve the connectivity between the nanovoids and substrate pores, which can  
223 benefit the efficient water collection into the pores.<sup>41, 46, 56</sup> In respect to other surface

224 properties, RO-r has a similar water contact angle to RO-s ( $p = 0.0523$ , Figure 4b) and is  
225 slightly less negatively charged than RO-s (Figure 4c).




226

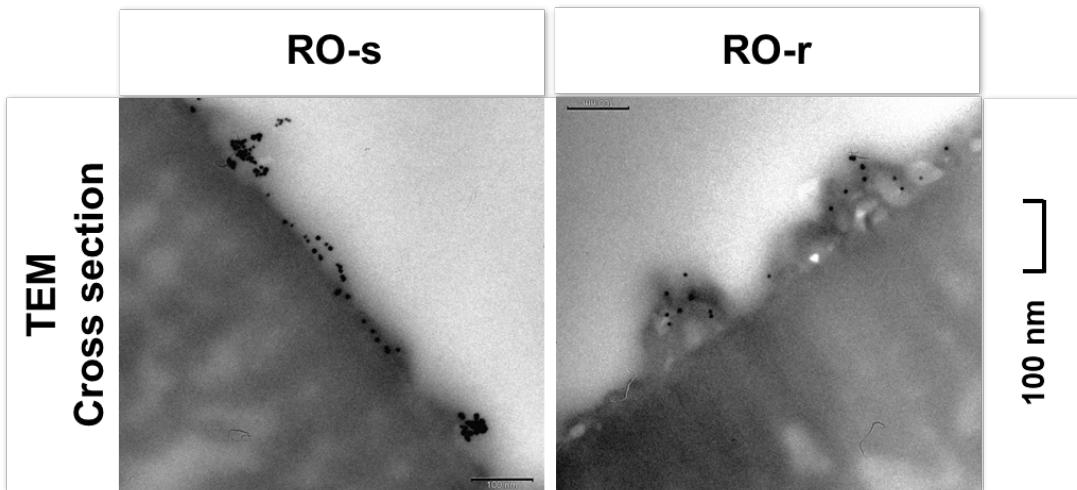
227 Figure 3. SEM micrographs on the backside polyamide layer of RO-s and RO-r and topside of the substrate.

228 Table 1. Properties of polyamide layer and substrate

| Sample                                                 | RO-s            | RO-r            | Substrate      |
|--------------------------------------------------------|-----------------|-----------------|----------------|
| Surface roughness ( $R_{RMS}$ , nm)                    | $11.2 \pm 1.1$  | $50.8 \pm 2.4$  | -              |
| Surface area ratio                                     | $1.16 \pm 0.01$ | $2.98 \pm 0.16$ | -              |
| Opening/pore number density (counts/ $\mu\text{m}^2$ ) | -               | $148 \pm 8$     | $507 \pm 37$   |
| Opening/pore area coverage (%)                         | -               | $32.5 \pm 0.9$  | $16.5 \pm 0.8$ |
| Opening/pore average diameter (nm)                     | -               | $52.9 \pm 11.3$ | $20.3 \pm 3.2$ |

229 The number density, area coverage, and average diameter of polyamide layer backside openings and substrate  
230 pores, and surface area ratio of polyamide layer topside were characterized based on the SEM and TEM  
231 micrographs using the software *Image pro plus*.




232

233 Figure 4. (a) Separation performance, (b) water contact angle, (c) Zeta potential and (d) ionized carboxyl  
234 group density at different pHs of RO-s and RO-r.

235

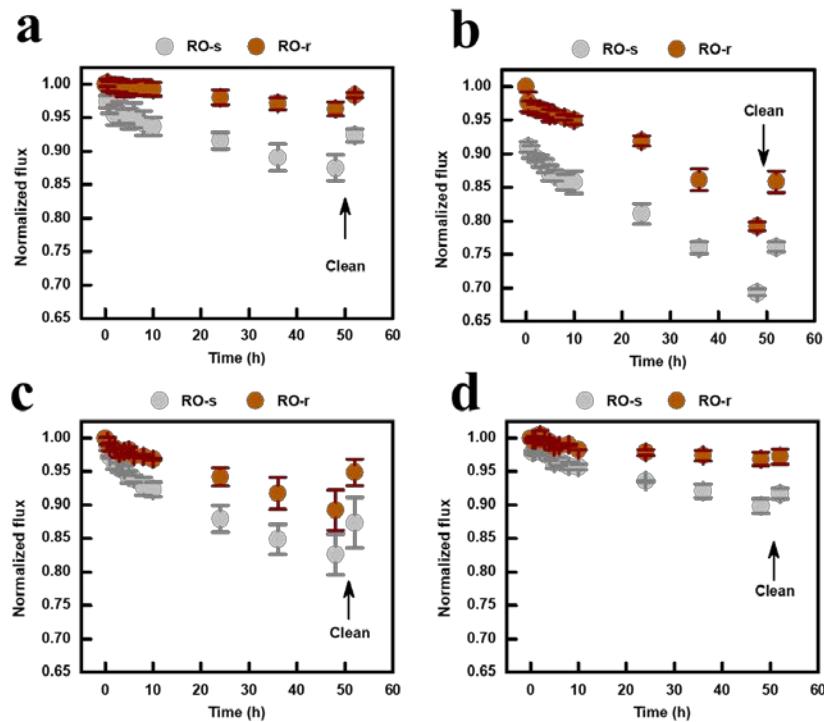
236

237 **Water transport pathway of RO-s and RO-r**



238

239 Figure 5. TEM images (cross-sectional view) of gold nanoparticles deposited on RO-s and RO-r.


240

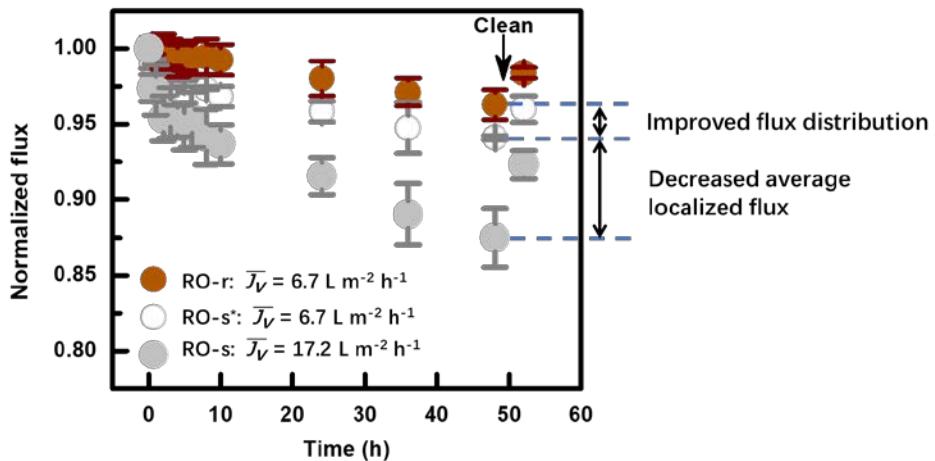
241 To further illustrate the impact of surface roughness structures on water transport pathways,  
242 we conducted tracer filtration tests using gold nanoparticles (AuNPs) of 5 nm in diameter.  
243 Due to the very small size of these AuNPs, they tend to follow the streamlines and  
244 preferentially deposit at sites with high localized water flux.<sup>31, 45, 57, 58</sup> In the current study,  
245 the AuNPs (represented by the darker particles in the images) were deposited like patches  
246 on the relatively smooth surface of RO-s (Figure 5 and Figure S3), which is consistent with  
247 the more uneven flux distribution and presence of localized hot spots of high flux as a result  
248 of the 'funnel effect' in this membrane (Figure 1a). In contrast, less AuNPs were observed  
249 on the RO-r surface, which could possibly be attributed to the decreased localized average  
250 flux over the RO-r surface caused by the increased effective membrane filtration area,  
251 leading to reduced hydrodynamic drag force on AuNPs towards RO-r surface.<sup>8, 9, 59</sup> In the  
252 current study, the AuNPs on the RO-r membrane were mainly distributed on the 'ridges'  
253 of the roughness features (Figure 5 and Figure S3), which could be possibly explained by

254 shortened water transport pathway and thus less hydraulic resistance through the polyamide  
255 film above the nanovoid-containing 'ridges' (Figure 1b).

256

257 **Fouling propensity of RO-s and RO-r.**




258

259 Figure 6. Fouling propensity of RO-s and RO-r using HA as a model foulant in feed solution (100 ppm HA  
260 in 2000 ppm NaCl): (a) at initial flux of  $20 \text{ L m}^{-2} \text{ h}^{-1}$ , pH at  $\sim 6.5$ , without  $\text{Ca}^{2+}$ ; (b) at initial flux of  $20$   
261  $\text{L m}^{-2} \text{ h}^{-1}$ , pH at  $\sim 4.0$ , without  $\text{Ca}^{2+}$ ; (c) at initial flux of  $20 \text{ L m}^{-2} \text{ h}^{-1}$ , pH at  $\sim 6.5$ , with  $0.1 \text{ mM Ca}^{2+}$ ; (d) at  
262 initial flux of  $15 \text{ L m}^{-2} \text{ h}^{-1}$ , pH at  $\sim 6.5$ , with  $0.1 \text{ mM Ca}^{2+}$ . To achieve an identical initial flux of  $20 \text{ L m}^{-2} \text{ h}^{-1}$ ,  
263 the applied pressure for RO-s and RO-r were about  $\sim 25$  and  $\sim 11$  bar, respectively. The pressure values were  
264  $\sim 20$  and  $\sim 8.5$  bar, respectively, for the initial flux of  $15 \text{ L m}^{-2} \text{ h}^{-1}$ . All fouling tests were performed in at least  
265 triplicates.

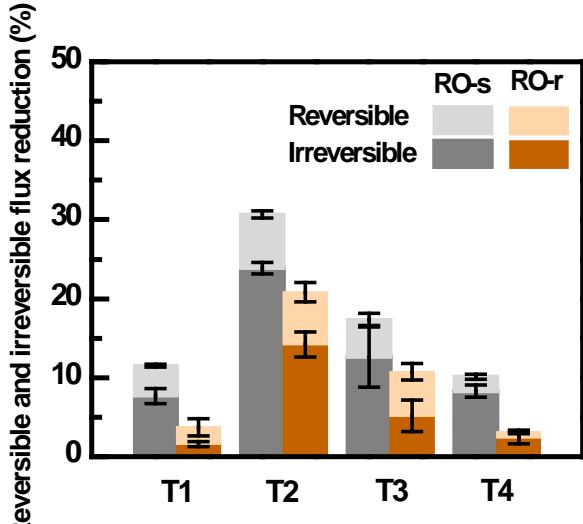
266

267 Figure 6a presents fouling by HA for RO-r and RO-s at an identical initial flux of  $20$   
268  $\text{L m}^{-2} \text{ h}^{-1}$  without the presence of calcium in the feed solution. RO-s experienced faster flux  
269 decline (grey circles in Figure 6a) than that of RO-r (red circles in Figure 6a). This  
270 observation can be explained by the ‘funnel effect’ in RO-s (Figure 1a), leading to more  
271 uneven flux distribution and higher fouling propensity. In contrast, RO-r gave a mitigated  
272 fouling propensity thanks to the modified water transport pathway (Figure 1b), which is  
273 consistent with the AuNPs deposition behavior presented in the section ‘Water transport  
274 pathway of RO-s and RO-r’. Furthermore, the nanovoid-containing membrane RO-r offers

275 greater effective filtration area (Table 1), which is beneficial to reduce the average localized  
276 flux and thus mitigate fouling due to reduced permeate drag force.<sup>9, 34, 38</sup> In addition,  
277 previous studies<sup>34, 38</sup> suggested that a decreased localized flux may mitigate the localized  
278 concentration polarization, which may further reduce the fouling tendency. It is worthwhile  
279 to note that the observed flux in practice is the macroscale apparent flux ( $J_v$ ) given by the  
280 total flow rate ( $Q$ ) normalized by the membrane plan area ( $a$ ), i.e.,  $J_v = Q/a$ . In contrast,  
281 the average localized water flux ( $\bar{J}_v$ ) at the microscale is related to the actual effective  
282 filtration area ( $a_{eff}$ ) such that  $\bar{J}_v = Q/a_{eff}$  (or  $\bar{J}_v = J_v/(a_{eff}/a)$ ). In the current study,  
283 RO-r and RO-s had surface area ratios ( $a_{eff}/a$ ) of 2.98 and 1.16 (Table 1), respectively. For  
284 the observed initial flux of 20 L m<sup>-2</sup> h<sup>-1</sup> in Figure 6a, this translates to very different  $\bar{J}_v$   
285 values: 6.7 L m<sup>-2</sup> h<sup>-1</sup> for RO-r vs. 17.2 L m<sup>-2</sup> h<sup>-1</sup> for RO-s. This drastically reduced average  
286 localized flux, in addition to the mitigation of ‘funnel effect’, explains the improved anti-  
287 fouling performance of the nanovoid-containing membrane RO-r with a rougher surface  
288 (Figure 1). To resolve these two effects, we further tested the smooth membrane at a lower  
289 apparent initial flux of 7.8 L m<sup>-2</sup> h<sup>-1</sup> (marked as RO-s\* in Figure 7). In this case, since both  
290 RO-r and RO-s\* had an identical  $\bar{J}_v$  of 6.7 L m<sup>-2</sup> h<sup>-1</sup>, the more stable flux for RO-r is  
291 attributed to the improved flux distribution due to the mitigation of ‘funnel effect’. At the  
292 same time, the difference between RO-s\* and RO-s reflects the role of average localized  
293 flux. Our results reveal that both the decreased average localized flux and the improved  
294 flux distribution contribute to better antifouling performance of RO-r, although the former  
295 effect appears to be more important.



296


297 Figure 7. Revolving the role of improved flux distribution and decreased average localized flux on HA  
 298 fouling (100 ppm HA in 2000 ppm NaCl, pH at ~6.5). RO-s and RO-r had the same apparent flux of 20  
 299  $\text{L m}^{-2} \text{h}^{-1}$ , corresponding to different average localized fluxes ( $\bar{J}_v = 17.2 \text{ L m}^{-2} \text{h}^{-1}$  for RO-s and  $6.7 \text{ L m}^{-2} \text{h}^{-1}$   
 300 for RO-r). At the same time, RO-s\*, with a lower apparent flux of  $7.8 \text{ L m}^{-2} \text{h}^{-1}$ , had an identical average  
 301 localized flux to that of RO-r ( $\bar{J}_v$  of  $6.7 \text{ L m}^{-2} \text{h}^{-1}$ ). All fouling tests were performed in at least triplicates.

302

303 Additional fouling tests were performed at pH 4.0 to exclude the effect of ionized carboxyl  
 304 groups on fouling propensity. Under this test condition, although both the surfaces of  
 305 RO-s and RO-r were weakly charged (Figure 4c) with comparable ionized carboxyl group  
 306 density (Figure 4d), RO-r still showed better anti-fouling performance than RO-s (Figure  
 307 6b). Furthermore, fouling tests were also conducted with  $0.1 \text{ mM Ca}^{2+}$  included in  
 308 feedwater.<sup>9, 60, 61</sup> With the same initial flux of  $20 \text{ L m}^{-2} \text{h}^{-1}$ , the presence of  $0.1 \text{ mM}$  calcium  
 309 increased the rate of flux decline (Figure 6c), which is attributed to the binding of calcium  
 310 to HA that causes charge neutralization and bridging effects.<sup>9, 60, 61</sup> Nevertheless, RO-s still  
 311 had higher fouling propensity than RO-r, which echoes the critical impact of ‘funnel effect’  
 312 on membrane fouling.<sup>31</sup> In addition, since initial flux is also an important parameter  
 313 affecting membrane fouling,<sup>9, 61, 62</sup> we further performed fouling tests under a lower initial  
 314 flux of  $15 \text{ L m}^{-2} \text{h}^{-1}$ . RO-r gave a much better antifouling performance at this lower flux  
 315 (Figure 6d) than that at  $20 \text{ L m}^{-2} \text{h}^{-1}$  (Figure 6c), which can be explained by the decreased

316 hydrodynamic drag force on foulants towards RO-r surface.<sup>8, 9, 59</sup> In contrast, RO-s  
317 presented less obvious improvement on its fouling propensity at the lower initial flux. This  
318 can be due to the intrinsically non-uniform flux distribution for RO-s, leading to hot spots  
319 of high water flux and thus fast foulant deposition. As a result, the hot spots (i.e., the main  
320 water transport pathways in RO-s) could be easily blocked by the foulants at even a lower  
321 initial flux.

322 In addition, RO-s and RO-r fouled under various test conditions (Figure 8) were cleaned  
323 with DI water to access the fouling reversibility. For all cases (T1-T4), RO-r experienced  
324 less irreversible fouling than RO-s, which can be attributed to its lower average localized  
325 flux with more uniform flux distribution. A lower flux reduces permeation drag, which  
326 tends to form a less compact foulant layer<sup>34, 61, 63-66</sup> that could be easier to clean. Consistent  
327 with this explanation, reducing the apparent initial flux under otherwise identical testing  
328 conditions (Figure 8 T4 vs. T3) also resulted in less irreversible flux loss. For a given  
329 membrane, reducing pH (T2 vs. T1) and increasing calcium concentration (T3 vs. T1)  
330 resulted in more irreversible flux reduction. These conditions promote the formation of  
331 denser foulant layers with stronger foulant-foulant adhesion.<sup>18, 60, 67, 68</sup>



332

333 Figure 8. Reversible and irreversible flux reductions for RO-s and RO-r using HA as a model foulant in a  
 334 feed solution containing 100 ppm HA and 2000 ppm NaCl. Other testing conditions: (T1) initial flux of 20  
 335 L m<sup>-2</sup> h<sup>-1</sup>, pH ~6.5, without Ca<sup>2+</sup>; (T2) initial flux of 20 L m<sup>-2</sup> h<sup>-1</sup>, pH ~4.0, without Ca<sup>2+</sup>; (T3) initial flux of  
 336 20 L m<sup>-2</sup> h<sup>-1</sup>, pH ~6.5, with 0.1 mM Ca<sup>2+</sup>; (T4) initial flux of 15 L m<sup>-2</sup> h<sup>-1</sup>, pH ~6.5, with 0.1 mM Ca<sup>2+</sup>. All  
 337 tests were performed in at least triplicates. The corresponding flux recovery data are presented in Supporting  
 338 Information S5.

339

340 **IMPLICATIONS**

341 The current study compared the fouling propensity of a smooth (RO-s) and a nanovoid-  
342 containing rough (RO-r) polyamide membrane. RO-s suffered more severe fouling by HA  
343 than RO-r. Additional AuNPs tracer tests also revealed a less uniform flux distribution over  
344 RO-s. These results confirm our hypothesis that nanovoids contained in a rougher  
345 membrane can effectively regulate the water transport pathway to result in an improved  
346 anti-fouling performance. Our observations seem to contradict with the commonly  
347 accepted wisdom that rougher membranes have higher fouling propensity.<sup>15, 17, 18</sup> In reality,  
348 membrane fouling can be highly complicated. For example, when a membrane experienced  
349 severe fouling conditions, its surface could be fully covered by the foulants. The dominance  
350 of foulant—deposited-foulant interaction over foulant—membrane interaction under this  
351 scenario may result in a membrane-independent fouling behavior.<sup>62, 68</sup> This mechanism  
352 could potentially help to explain why Jiang et al. observed insignificant differences of  
353 fouling behaviors between smooth and rough membranes.<sup>69</sup> We also noted that  
354 Jiang et al.’s study used different substrates for the smooth and rough membranes,<sup>69</sup> which  
355 may complicate the comparison.<sup>70</sup>

356 Although the current study primarily focused on HA fouling, a similar trend (i.e., RO-r had  
357 less fouling propensity) was also observed for another model foulant—bovine serum  
358 albumin (Figure S7). However, other effects such as the size of foulant relative to the  
359 roughness structure<sup>18</sup> and roughness-enhanced mass transfer<sup>21-24</sup> can also impact  
360 membrane fouling. For colloidal fouling, some colloids are of similar size to those of the  
361 roughness valleys such that they are more likely to be trapped, which may promote more  
362 severe fouling.<sup>18</sup> Several studies have also reported more severe biofouling for rougher

363 membranes.<sup>18, 71-73</sup> Future studies are needed to further investigate the various competing  
364 mechanisms in order to gain a more holistic understanding on the role of roughness on  
365 various types of fouling (organic fouling, colloidal fouling, biofouling, and scaling).

366 At present, membrane surface roughness is typically characterized by AFM in term of  
367 common roughness parameters such as average roughness  $R_A$ , root-mean-square roughness  
368  $R_{RMS}$ , and maximum roughness  $R_{MAX}$ . However, these roughness parameters are  
369 insufficient to completely describe a roughness structure.<sup>26, 74</sup> For example, roughness  
370 structures that have identical roughness values (e.g.,  $R_{MAX}$  is given by half of the peak-to-  
371 valley height) can have different geometrical properties (e.g., aspect ratio), which may lead  
372 to very different mass transfer and fouling behaviors. Therefore, researchers need to be  
373 explicitly aware of such intrinsic limitations of roughness parameters obtained from AFM.  
374 At the same time, more comprehensive characterization of roughness structures and better  
375 understanding of specific effect of roughness structures (including geometries) on mass  
376 transfer and fouling are needed in future studies.

377

## 378 **ASSOCIATED CONTENT**

### 379 **Supporting Information**

380 The Supporting Information is available free of charge at.  
381 S1, Dissolving PSf substrate for observing the backside of polyamide layer; S2,  
382 Characterization of ionized carboxyl group density in polyamide layer; S3,  
383 Characterizations of polyamide membranes; S4, The effects of applied pressure and cross-  
384 flow on fouling propensity; S5, Flux recovery efficiency of RO-s and RO-r; S6, Fouling  
385 propensity of RO-s and RO-r using BSA

386 **AUTHOR INFORMATION**

387 **Corresponding Authors**

388 Lu Elfa Peng – *Department of Civil Engineering, The University of Hong Kong,*  
389 *Pokfulam, Hong Kong SAR 999077, P. R., China*; Phone: +852 53964327; Email:  
390 [elfapeng@connect.hku.hk](mailto:elfapeng@connect.hku.hk)

391 Chuyang Y. Tang – *Department of Civil Engineering, The University of Hong Kong,*  
392 *Pokfulam, Hong Kong SAR 999077, P. R., China*; orcid.org/0000-0002-7932-6462; Phone:  
393 +852 28591976; Email: [tangc@hku.hk](mailto:tangc@hku.hk)

394 **Authors**

395 Qimao Gan – *Department of Civil Engineering, The University of Hong Kong, Pokfulam,*  
396 *Hong Kong SAR 999077, P. R., China*;

397 Chenyue Wu – *Department of Civil Engineering, The University of Hong Kong,*  
398 *Pokfulam, Hong Kong SAR 999077, P. R., China*;

399 Li Long – *Department of Civil Engineering, The University of Hong Kong, Pokfulam,*  
400 *Hong Kong SAR 999077, P. R., China*;

401 Zhe Yang – *Department of Civil Engineering, The University of Hong Kong, Pokfulam,*  
402 *Hong Kong SAR 999077, P. R., China*; orcid.org/0000-0003-0753-3902

403 Hao Guo – *Department of Civil Engineering, The University of Hong Kong, Pokfulam,*  
404 *Hong Kong SAR 999077, P. R., China*;

405 **Notes**

406 The authors declare no competing financial interest.

407 **ACKNOWLEDGMENTS**

408 The work was fully supported by a grant from the Research Grants Council of the Hong  
409 Kong Special Administration Region, China (SRFS2021-7S04). Lu Elfa Peng is supported  
410 by an RGC Postdoctoral Fellowship from the Research Grants Council of the Hong Kong  
411 Special Administration Region, China (PDFS2223-7S02). We appreciate the Electron  
412 Microscopic Unit (EMU) of the University of Hong Kong for SEM and TEM sample  
413 preparation and analysis.

414 **REFERENCES**

415 1. Lu, X.; Elimelech, M., Fabrication of desalination membranes by interfacial polymerization: history,  
416 current efforts, and future directions. *Chem. Soc. Rev.* 2021, 50, (11), 6290-6307.

417 2. Elimelech, M.; Phillip, W. A., The future of seawater desalination: energy, technology, and the  
418 environment. *Science* 2011, 333, (6043), 712-7.

419 3. Tang, C. Y.; Yang, Z.; Guo, H.; Wen, J. J.; Nghiem, L. D.; Cornelissen, E., Potable Water Reuse through  
420 Advanced Membrane Technology. *Environ. Sci. Technol.* 2018, 52, (18), 10215-10223.

421 4. Qasim, M.; Badrelzaman, M.; Darwish, N. N.; Darwish, N. A.; Hilal, N., Reverse osmosis desalination:  
422 A state-of-the-art review. *Desalination* 2019, 459, 59-104.

423 5. Yang, Z.; Guo, H.; Tang, C. Y. Y., The upper bound of thin-film composite (TFC) polyamide  
424 membranes for desalination. *J. Membr. Sci.* 2019, 590, 117297.

425 6. Guo, H.; Dai, R.; Xie, M.; Peng, L. E.; Yao, Z.; Yang, Z.; Nghiem, L. D.; Snyder, S. A.; Wang, Z.; Tang,  
426 C. Y., Tweak in Puzzle: Tailoring Membrane Chemistry and Structure toward Targeted Removal of Organic  
427 Micropollutants for Water Reuse. *Environ. Sci. Technol. Lett.* 2022, 9, (4), 247-257.

428 7. Kang, G. D.; Cao, Y. M., Development of antifouling reverse osmosis membranes for water  
429 treatment: A review. *Water Res.* 2012, 46, (3), 584-600.

430 8. Tang, C. Y.; Fu, Q. S.; Criddle, C. S.; Leckie, J. O., Effect of flux (transmembrane pressure) and  
431 membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating  
432 perfluoroctane sulfonate containing wastewater. *Environ. Sci. Technol.* 2007, 41, (6), 2008-14.

433 9. Tang, C. Y.; Kwon, Y.-N.; Leckie, J. O., Fouling of reverse osmosis and nanofiltration membranes by  
434 humic acid—Effects of solution composition and hydrodynamic conditions. *J. Membr. Sci.* 2007, 290, (1-2),  
435 86-94.

436 10. Freger, V.; Ramon, G. Z., Polyamide desalination membranes: Formation, structure, and properties.  
437 *Prog. Polym. Sci.* 2021, 122, 101451.

438 11. Rana, D.; Matsuura, T., Surface modifications for antifouling membranes. *Chem. Rev.* 2010, 110,  
439 (4), 2448-71.

440 12. Mo, H.; Tay, K. G.; Ng, H. Y., Fouling of reverse osmosis membrane by protein (BSA): Effects of pH,  
441 calcium, magnesium, ionic strength and temperature. *J. Membr. Sci.* 2008, 315, (1-2), 28-35.

442 13. Li, Q.; Xu, Z.; Pinna, I., Fouling of reverse osmosis membranes by biopolymers in wastewater  
443 secondary effluent: Role of membrane surface properties and initial permeate flux. *J. Membr. Sci.* 2007,  
444 290, (1-2), 173-181.

445 14. Guo, H.; Li, X.; Yang, W.; Yao, Z.; Mei, Y.; Peng, L. E.; Yang, Z.; Shao, S.; Tang, C. Y., Nanofiltration  
446 for drinking water treatment: a review. *Front Chem Sci Eng* 2022, 16, (5), 681-698.

447 15. Vrijenhoek, E. M.; Hong, S.; Elimelech, M., Influence of membrane surface properties on initial rate  
448 of colloidal fouling of reverse osmosis and nanofiltration membranes. *J. Membr. Sci.* 2001, 188, (1), 115-  
449 128.

450 16. Hoek, E. M. V.; Bhattacharjee, S.; Elimelech, M., Effect of membrane surface roughness on colloid-  
451 membrane DLVO interactions. *Langmuir* 2003, 19, (11), 4836-4847.

452 17. Elimelech, M.; Zhu, X. H.; Childress, A. E.; Hong, S. K., Role of membrane surface morphology in  
453 colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. *J.*  
454 *Membr. Sci.* 1997, 127, (1), 101-109.

455 18. Shang, C.; Pranantyo, D.; Zhang, S., Understanding the Roughness-Fouling Relationship in Reverse  
456 Osmosis: Mechanism and Implications. *Environ. Sci. Technol.* 2020, 54, (8), 5288-5296.

457 19. Chowdhury, M. R.; Steffes, J.; Huey, B. D.; McCutcheon, J. R., 3D printed polyamide membranes  
458 for desalination. *Science* 2018, 361, (6403), 682-685.

459 20. Yin, Z.; Yang, C.; Long, C.; Li, A., Influence of surface properties of RO membrane on membrane  
460 fouling for treating textile secondary effluent. *Environ Sci Pollut Res Int* 2017, 24, (19), 16253-16262.

461 21. Choi, W.; Lee, C.; Lee, D.; Won, Y. J.; Lee, G. W.; Shin, M. G.; Chun, B.; Kim, T.-S.; Park, H.-D.; Jung,  
462 H. W.; Lee, J. S.; Lee, J.-H., Sharkskin-mimetic desalination membranes with ultralow biofouling. *Journal of  
463 Materials Chemistry A* 2018, 6, (45), 23034-23045.

464 22. Maruf, S. H.; Greenberg, A. R.; Pellegrino, J.; Ding, Y., Fabrication and characterization of a surface-  
465 patterned thin film composite membrane. *J. Membr. Sci.* 2014, 452, 11-19.

466 23. Lee, Y. K.; Won, Y.-J.; Yoo, J. H.; Ahn, K. H.; Lee, C.-H., Flow analysis and fouling on the patterned  
467 membrane surface. *J. Membr. Sci.* 2013, 427, 320-325.

468 24. Shang, W. T.; Sun, F. Y.; Jia, W.; Guo, J. X.; Yin, S. M.; Wong, P. W.; An, A. K., High-performance  
469 nanofiltration membrane structured with enhanced stripe nano-morphology. *J. Membr. Sci.* 2020, 600,  
470 117852.

471 25. Istirokhatun, T.; Lin, Y.; Shen, Q.; Guan, K.; Wang, S.; Matsuyama, H., Ag-based nanocapsule-  
472 regulated interfacial polymerization Enables synchronous nanostructure towards high-performance  
473 nanofiltration membrane for sustainable water remediation. *J. Membr. Sci.* 2022, 645, 120196.

474 26. Ma, X.; Yang, Z.; Yao, Z.; Guo, H.; Xu, Z.; Tang, C. Y., Tuning roughness features of thin film  
475 composite polyamide membranes for simultaneously enhanced permeability, selectivity and anti-fouling  
476 performance. *J. Colloid Interface Sci.* 2019, 540, 382-388.

477 27. Gan, Q.; Peng, L. E.; Guo, H.; Yang, Z.; Tang, C. Y., Cosolvent-Assisted Interfacial Polymerization  
478 toward Regulating the Morphology and Performance of Polyamide Reverse Osmosis Membranes: Increased  
479 m-Phenylenediamine Solubility or Enhanced Interfacial Vaporization? *Environ. Sci. Technol.* 2022, 56, (14),  
480 10308-10316.

481 28. Lonsdale, H. K.; Riley, R. L.; Lyons, C. R., Transport in Composite Reverse Osmosis Membranes -  
482 Inde. *Abstracts of Papers of the American Chemical Society* 1971, 101-122.

483 29. Wijmans, J. G.; Hao, P., Influence of the porous support on diffusion in composite membranes. *J.  
484 Membr. Sci.* 2015, 494, 78-85.

485 30. Peng, L. E.; Yang, Z.; Long, L.; Zhou, S.; Guo, H.; Tang, C. Y., A critical review on porous substrates  
486 of TFC polyamide membranes: Mechanisms, membrane performances, and future perspectives. *J. Membr.  
487 Sci.* 2022, 641, 119871.

488 31. Long, L.; Wu, C.; Yang, Z.; Tang, C. Y., Carbon Nanotube Interlayer Enhances Water Permeance and  
489 Antifouling Performance of Nanofiltration Membranes: Mechanisms and Experimental Evidence. *Environ.  
490 Sci. Technol.* 2022, 56, (4), 2656-2664.

491 32. Yang, Z.; Wang, F.; Guo, H.; Peng, L. E.; Ma, X. H.; Song, X. X.; Wang, Z.; Tang, C. Y., Mechanistic  
492 Insights into the Role of Polydopamine Interlayer toward Improved Separation Performance of Polyamide  
493 Nanofiltration Membranes. *Environ. Sci. Technol.* 2020, 54, (18), 11611-11621.

494 33. Kattula, M.; Ponnuru, K.; Zhu, L.; Jia, W.; Lin, H.; Furlani, E. P., Designing ultrathin film composite  
495 membranes: the impact of a gutter layer. *Sci Rep* 2015, 5, 15016.

496 34. Ramon, G. Z.; Wong, M. C. Y.; Hoek, E. M. V., Transport through composite membrane, part 1: Is  
497 there an optimal support membrane? *J. Membr. Sci.* 2012, 415-416, 298-305.

498 35. Li, X. S.; Li, Q.; Fang, W. X.; Wang, R.; Krantz, W. B., Effects of the support on the characteristics  
499 and permselectivity of thin film composite membranes. *J. Membr. Sci.* 2019, 580, 12-23.

500 36. Shao, S.; Zeng, F.; Long, L.; Zhu, X.; Peng, L. E.; Wang, F.; Yang, Z.; Tang, C. Y., Nanofiltration  
501 Membranes with Crumpled Polyamide Films: A Critical Review on Mechanisms, Performances, and  
502 Environmental Applications. *Environ. Sci. Technol.* 2022, 56, (18), 12811-12827.

503 37. Wang, F.; Yang, Z.; Tang, C. Y., Modeling Water Transport in Interlayered Thin-Film Nanocomposite  
504 Membranes: Gutter Effect vs Funnel Effect. *Acs Es&T Engineering* 2022, 2, (11), 2023-2033.

505 38. Ramon, G. Z.; Hoek, E. M. V., Transport through composite membranes, part 2: Impacts of  
506 roughness on permeability and fouling. *J. Membr. Sci.* 2013, 425-426, 141-148.

507 39. Wong, M. C. Y.; Lin, L.; Coronell, O.; Hoek, E. M. V.; Ramon, G. Z., Impact of liquid-filled voids within  
508 the active layer on transport through thin-film composite membranes. *J. Membr. Sci.* 2016, 500, 124-135.

509 40. Ma, X.-H.; Yao, Z.-K.; Yang, Z.; Guo, H.; Xu, Z.-L.; Tang, C. Y.; Elimelech, M., Nanofoaming of  
510 Polyamide Desalination Membranes To Tune Permeability and Selectivity. *Environ. Sci. Technol. Lett.* 2018,  
511 5, (2), 123-130.

512 41. Song, X.; Gan, B.; Qi, S.; Guo, H.; Tang, C. Y.; Zhou, Y.; Gao, C., Intrinsic Nanoscale Structure of Thin  
513 Film Composite Polyamide Membranes: Connectivity, Defects, and Structure-Property Correlation. *Environ.*  
514 *Sci. Technol.* 2020, 54, (6), 3559-3569.

515 42. Song, X.; Gan, B.; Yang, Z.; Tang, C. Y.; Gao, C., Confined nanobubbles shape the surface roughness  
516 structures of thin film composite polyamide desalination membranes. *J. Membr. Sci.* 2019, 582, 342-349.

517 43. Peng, L. E.; Jiang, Y.; Wen, L.; Guo, H.; Yang, Z.; Tang, C. Y., Does interfacial vaporization of organic  
518 solvent affect the structure and separation properties of polyamide RO membranes? *J. Membr. Sci.* 2021,  
519 625, 119173.

520 44. Lin, L.; Lopez, R.; Ramon, G. Z.; Coronell, O., Investigating the void structure of the polyamide active  
521 layers of thin-film composite membranes. *J. Membr. Sci.* 2016, 497, 365-376.

522 45. Pacheco, F.; Sougrat, R.; Reinhard, M.; Leckie, J. O.; Pinna, I., 3D visualization of the internal  
523 nanostructure of polyamide thin films in RO membranes. *J. Membr. Sci.* 2016, 501, 33-44.

524 46. An, H.; Smith, J. W.; Ji, B.; Cotty, S.; Zhou, S.; Yao, L.; Kalutantirige, F. C.; Chen, W.; Ou, Z.; Su, X.;  
525 Feng, J.; Chen, Q., Mechanism and performance relevance of nanomorphogenesis in polyamide films  
526 revealed by quantitative 3D imaging and machine learning. *Sci Adv* 2022, 8, (8), eabk1888.

527 47. Culp, T. E.; Khara, B.; Brickey, K. P.; Geitner, M.; Zimudzi, T. J.; Wilbur, J. D.; Jons, S. D.; Roy, A.; Paul,  
528 M.; Ganapathysubramanian, B.; Zydny, A. L.; Kumar, M.; Gomez, E. D., Nanoscale control of internal  
529 inhomogeneity enhances water transport in desalination membranes. *Science* 2021, 371, (6524), 72-75.

530 48. Kwak, S. Y.; Jung, S. G.; Kim, S. H., Structure-motion-performance relationship of flux-enhanced  
531 reverse osmosis (RO) membranes composed of aromatic polyamide thin films. *Environ. Sci. Technol.* 2001,  
532 35, (21), 4334-4340.

533 49. Kim, S. H.; Kwak, S. Y.; Suzuki, T., Positron annihilation spectroscopic evidence to demonstrate the  
534 flux-enhancement mechanism in morphology-controlled thin-film-composite (TFC) membrane. *Environ. Sci.*  
535 *Technol.* 2005, 39, (6), 1764-1770.

536 50. Hirose, M.; Ito, H.; Kamiyama, Y., Effect of skin layer surface structures on the flux behaviour of RO  
537 membranes. *J. Membr. Sci.* 1996, 121, (2), 209-215.

538 51. Coronell, O.; Marinas, B. J.; Zhang, X. J.; Cahill, D. G., Quantification of functional groups and  
539 modeling of their ionization behavior in the active layer of FT30 reverse osmosis membrane. *Environ. Sci.*  
540 *Technol.* 2008, 42, (14), 5260-5266.

541 52. Chen, D.; Werber, J. R.; Zhao, X.; Elimelech, M., A facile method to quantify the carboxyl group  
542 areal density in the active layer of polyamide thin-film composite membranes. *J. Membr. Sci.* 2017, 534,  
543 100-108.

544 53. Peng, L. E.; Yao, Z.; Liu, X.; Deng, B.; Guo, H.; Tang, C. Y., Tailoring Polyamide Rejection Layer with  
545 Aqueous Carbonate Chemistry for Enhanced Membrane Separation: Mechanistic Insights, Chemistry-  
546 Structure-Property Relationship, and Environmental Implications. *Environ. Sci. Technol.* 2019, 53, (16),  
547 9764-9770.

548 54. Park, S.-J.; Lee, M.-S.; Choi, W.; Lee, J.-H., Biocidal surfactant-assisted fabrication of thin film  
549 composite membranes with excellent and durable anti-biofouling performance. *Chem. Eng. J.* 2022, 431,  
550 134114.

551 55. Peng, L. E.; Yao, Z.; Yang, Z.; Guo, H.; Tang, C. Y., Dissecting the Role of Substrate on the Morphology  
552 and Separation Properties of Thin Film Composite Polyamide Membranes: Seeing Is Believing. *Environ. Sci.*  
553 *Technol.* 2020, 54, (11), 6978-6986.

554 56. Peng, L. E.; Gan, Q. M.; Yang, Z.; Wang, L.; Sun, P. F.; Guo, H.; Park, H. D.; Tang, C. Y., Deciphering  
555 the Role of Amine Concentration on Polyamide Formation toward Enhanced RO Performance. *Acs ES&T*  
556 *Engineering* 2022, 2, (5), 903-912.

557 57. Li, Y.; Kłosowski, M. M.; McGilverry, C. M.; Porter, A. E.; Livingston, A. G.; Cabral, J. T., Probing flow  
558 activity in polyamide layer of reverse osmosis membrane with nanoparticle tracers. *J. Membr. Sci.* 2017,  
559 534, 9-17.

560 58. Pacheco, F. A.; Pinna, I.; Reinhard, M.; Leckie, J. O., Characterization of isolated polyamide thin  
561 films of RO and NF membranes using novel TEM techniques. *J. Membr. Sci.* 2010, 358, (1-2), 51-59.

562 59. Boo, C.; Elimelech, M.; Hong, S., Fouling control in a forward osmosis process integrating seawater  
563 desalination and wastewater reclamation. *J. Membr. Sci.* 2013, 444, 148-156.

564 60. Listiarini, K.; Sun, D. D.; Leckie, J. O., Organic fouling of nanofiltration membranes: Evaluating the  
565 effects of humic acid, calcium, alum coagulant and their combinations on the specific cake resistance. *J.*  
566 *Membr. Sci.* 2009, 332, (1-2), 56-62.

567 61. Tang, C. Y.; Chong, T. H.; Fane, A. G., Colloidal interactions and fouling of NF and RO membranes:  
568 a review. *Adv. Colloid Interface Sci.* 2011, 164, (1-2), 126-43.

569 62. Tang, C. Y.; Leckie, J. O., Membrane independent limiting flux for RO and NF membranes fouled by  
570 humic acid. *Environ. Sci. Technol.* 2007, 41, (13), 4767-73.

571 63. Wang, S.; Guillen, G.; Hoek, E. M., Direct observation of microbial adhesion to membranes. *Environ.*  
572 *Sci. Technol.* 2005, 39, (17), 6461-9.

573 64. Ramon, G. Z.; Huppert, H. E.; Lister, J. R.; Stone, H. A., On the hydrodynamic interaction between  
574 a particle and a permeable surface. *Phys. Fluids* 2013, 25, (7), 073103.

575 65. Choi, H.; Zhang, K.; Dionysiou, D.; Oerther, D.; Sorial, G., Effect of permeate flux and tangential  
576 flow on membrane fouling for wastewater treatment. *Sep. Purif. Technol.* 2005, 45, (1), 68-78.

577 66. Chen, V.; Fane, A. G.; Madaeni, S.; Wenten, I. G., Particle deposition during membrane filtration of  
578 colloids: Transition between concentration polarization and cake formation. *J. Membr. Sci.* 1997, 125, (1),  
579 109-122.

580 67. Tang, C. Y. Y.; Kwon, Y. N.; Leckie, J. O., Characterization of humic acid fouled reverse osmosis and  
581 nanofiltration membranes by transmission electron microscopy and streaming potential measurements.  
582 *Environ. Sci. Technol.* 2007, 41, (3), 942-949.

583 68. Tang, C. Y.; Kwon, Y.-N.; Leckie, J. O., The role of foulant-foulant electrostatic interaction on  
584 limiting flux for RO and NF membranes during humic acid fouling—Theoretical basis, experimental evidence,  
585 and AFM interaction force measurement. *J. Membr. Sci.* 2009, 326, (2), 526-532.

586 69. Jiang, Z.; Karan, S.; Livingston, A. G., Membrane Fouling: Does Microscale Roughness Matter? *Ind.*  
587 *Eng. Chem. Res.* 2019, 59, (12), 5424-5431.

588 70. Wu, C.; Long, L.; Yang, Z.; Tang, C. Y., Porous substrate affects fouling propensity of thin-film  
589 composite nanofiltration membranes. *Journal of Membrane Science Letters* 2022, 2, (2), 100036.

590 71. Khan, M. M.; Stewart, P. S.; Moll, D. J.; Mickols, W. E.; Nelson, S. E.; Camper, A. K., Characterization  
591 and effect of biofouling on polyamide reverse osmosis and nanofiltration membrane surfaces. *Biofouling*  
592 2011, 27, (2), 173-83.

593 72. Baek, Y.; Yu, J.; Kim, S.-H.; Lee, S.; Yoon, J., Effect of surface properties of reverse osmosis  
594 membranes on biofouling occurrence under filtration conditions. *J. Membr. Sci.* 2011, 382, (1-2), 91-99.

595 73. Pang, C. M.; Hong, P.; Guo, H.; Liu, W. T., Biofilm formation characteristics of bacterial isolates  
596 retrieved from a reverse osmosis membrane. *Environ. Sci. Technol.* 2005, 39, (19), 7541-50.

597 74. Gan, Q.; Peng, E. L.; Yang, Z.; Sun P.; Wang, L.; Guo, H.; Tang, C. Y., Demystifying the role of  
598 surfactant in tailoring polyamide morphology for enhanced RO performance: Mechanistic insights and  
599 environmental implications. DOI: <https://doi.org/10.1021/acs.est.2c08076>.