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 ABSTRACT  38 

Nanofiltration (NF) membranes have been widely applied in many important environmental 39 

applications including water softening, surface/ground water purification, wastewater treatment, 40 

and water reuse. In recent years, a new class of piperazine (PIP)-based NF membranes featuring 41 

a crumpled polyamide layer has received considerable attention due to their great potential for 42 

achieving dramatic improvements in membrane separation performance. Since the report of 43 

novel crumpled Turing structures that exhibited an order magnitude enhancement in water 44 

permeance (Science 360(6388), 518-521, 2018), the number of published research papers on this 45 

emerging topic has grown exponentially to approximately 200. In this critical review, we provide 46 

a systematic framework to classify the crumpled NF morphologies. The fundamental 47 

mechanisms and fabrication methods involved in the formation of these crumpled morphologies 48 

are summarized. We then discuss the transport of water and solutes in crumpled NF membranes 49 

and how these transport phenomena could simultaneously improve membrane water permeance, 50 

selectivity, and anti-fouling performance. The environmental applications of these emerging NF 51 

membranes are highlighted, and future research opportunities/needs are identified. The 52 

fundamental insights in this review provide critical guidance on the further development of high-53 

performance NF membranes tailored for a wide range of environmental applications. 54 

 55 

Keywords: Nanofiltration, Polyamide, Crumpled morphology, Water transport pathway, 56 

Selectivity, Membrane fouling 57 

Synopsis: Nanofiltration membranes with well-controlled morphologies have the potential to 58 

simultaneously improve water permeance, selectivity, and anti-fouling ability.  59 

  60 
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 INTRODUCTION 61 

Nanofiltration (NF) is a pressure-driven membrane process that has separation abilities between 62 

ultrafiltration (UF) and reverse osmosis (RO). A typical NF membrane has a molecular weight 63 

cut-off between 150 and 2000 Da and is efficient in rejecting multivalent ions and organic 64 

compounds.1, 2 Therefore, NF technology has been widely adopted in drinking water 65 

purification,3 wastewater reclamation,4, 5 water softening,3, 6 food processing,7 pharmaceutical 66 

industry,8 etc. Unlike seawater, the feed water in these applications generally has relatively low 67 

osmotic pressures; thus, increasing the permeance of NF membranes could significantly improve 68 

water production and reduce energy consumption.9, 10 However, membrane separation 69 

performance is constrained by the permeance -selectivity tradeoff: highly permeable membranes 70 

typically have low rejections to target substances and vice versa.11-14 Consequently, it is a major 71 

challenge to improve the permeance of NF membrane without compromising selectivity.  72 

 73 

Currently, the gold standard for commercially available NF membranes is thin-film composite 74 

(TFC) polyamide membranes, which are composed of a polyamide rejection layer, a UF 75 

substrate, and a non-woven fabric support.15-17 The polyamide rejection layers of NF membranes 76 

are often prepared by interfacial polymerization, with piperazine (PIP) and trimesoyl chloride 77 

(TMC) as the most used monomers.13, 15, 16 It should be noted that the NF membrane in this 78 

review, thus, specifically refers to the TFC polyamide membrane prepared using interfacial 79 

polymerization reaction with PIP and TMC. With numerous in-depth studies on the polyamide 80 

selective layer formed by the interfacial polymerization reaction, the morphology of the 81 

polyamide layer is found to have a significant influence on the permeance of TFC membranes. 82 

For example, in RO membranes formed by m-phenylenediamine (MPD) and TMC (Fig. 1a), the 83 
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“ridge-and-valley” morphology of the formed polyamide layer greatly improves the permeance 84 

of RO membrane by increasing the effective filtration area18-20 and creating voids in the 85 

polyamide layer,18, 20-25 whose self-guttering effect further improves membrane permeance.20, 26-86 

28 Unlike RO membranes, commercially available NF membranes formed by PIP and TMC are 87 

relatively smooth (Fig. 1a). Inspired by the highly efficient water transport in TFC RO 88 

membranes,18, 19 one may wonder if NF membranes with crumpled polyamide layers may 89 

effectively enhance water permeance over their smooth counterparts to overcome the permeance 90 

-selectivity tradeoff. 91 

 92 

In recent years, PIP-based NF membranes with crumpled polyamide layers have received 93 

considerable attention (Fig. 1b). Particularly followed by the seminal work of Turing structure in 94 

Science in 2018,29 the number of publications on crumpled NF membranes is rapidly growing. 95 

Researchers have developed various methods to fabricate NF membranes with different surface 96 

morphologies (Table S1), along with major enhancement of water permeance from ~10 to >20 97 

LMH/bar, pushing the separation performance (e.g., water-Na2SO4 selectivity (A/B) vs. water 98 

permeance (A)) towards the top right corner in the upper bound diagram (Fig. 1c). Despite such 99 

promising progress in crumple NF membranes, a dedicated review on the formation of and 100 

transport of this emerging type of membranes is not yet available. More importantly, the 101 

underlying mechanisms (e.g., how the crumpled morphologies affect the transport of water and 102 

solutes) have yet to be systematically examined. In addition, the related fouling behavior of 103 

crumpled NF membranes has not been fully understood. 104 

 105 
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Therefore, to better facilitate the in-depth understanding of crumped NF membranes, this critical 106 

review summarizes their recent progress, with particular emphasis on 1) a systematic framework 107 

to classify the crumpled NF morphologies, 2) fundamental mechanisms and fabrication methods 108 

involved in the formation of these crumpled morphologies, 3) transport mechanisms of water and 109 

solutes in crumpled NF membranes, and 4) fouling propensities of crumpled NF membranes. 110 

The critical insights and important design criteria gained in this review facilitate the development 111 

of more efficient environmental applications with high energy efficiency and/or better anti-112 

fouling properties. This review also identifies the critical research gaps and research 113 

opportunities pertaining to the further development of crumpled NF membrane. 114 

 115 

 116 

Figure 1. (a) Typical morphologies of polyamide layer of RO membrane (ESPA3, formed by 117 

MPD and TMC) and NF membrane (NF270, formed by PIP and TMC).30 (b) Number of peer-118 

reviewed publications on PIP-based NF membranes with crumpled morphologies (incomplete 119 

data for the Year 2022). (c) Water/Na2SO4 selectivity (A/B) vs. water permeance (A) for PIP-120 

based NF membranes with crumpled morphologies (detailed data are provided in Table S1). 121 
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Open dots indicate conventional NF membranes with smooth polyamide layers, and closed dots 122 

indicate novel NF membranes with crumpled polyamide layers; the data of crumpled NF are 123 

color-mapped based on their published years. The scanning electron microscopy (SEM) images 124 

were modified from the previous study30 with copyright permission.  125 

 126 

 CLASSIFICATION OF CRUMPLED MORPHOLOGIES, THEIR 127 

FORMATION MECHANISMS, AND FABRICATION METHODS 128 

Typical Crumpled Morphology of NF Membranes and Their Separation Performance  129 

 130 

Figure 2. Classification of crumpled morphologies (a) and their corresponding separation 131 

performances (b). Diameter, width, and density (number density for nodular and ring structures, 132 

and specific length for stripe structure) of the morphologies were based on the statistics of the 133 

SEM images of the previous studies (Table S3); Average roughness (Ra) was based on the atomic 134 

force microscope (AFM) results of the previous studies. Separation performances of commercial 135 
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NF are provided in Table S4. The SEM images were modified from the previous studies29, 31 with 136 

copyright permission. 137 

 138 

Table S1 summarizes crumpled polyamide layers for PIP-based NF membranes reported in 139 

previous studies. Specifically, nodular,29, 32 stripe,29, 33, 34 and ring31, 35-37 structures are the three 140 

most common morphologies (Fig. 2). Other structures, such as fishnet-like and octopus sucker-141 

like structures,38, 39 are occasionally represented in some studies (Fig. S1 provides the SEM 142 

images of some examples). Among these morphologies, only the nodular structure is observed in 143 

existing commercial membranes,40 and other morphologies mostly exist in custom-fabricated 144 

membranes in literature papers.  145 

 146 

In terms of the nodular structure (Fig. 2a), its diameter is often in the range of 50 to 300 nm, with 147 

a typical areal number density ranging from 5 to 300 per μm2. Based on a limited number of 148 

TEM studies,29, 32, 41-45 the nodular generally has arc-shaped cross-sections, and the ratio of 149 

height to diameter is mostly lower than 1. Possibly because of this low ratio, the average 150 

roughness (Ra) obtained using atomic force microscopes (AFM) is often in the range of 10 to 50 151 

nm. In terms of stripe structure, the width of the stripes generally ranges from 50 to 400 nm, and 152 

the specific length (length/area) ranges from 500-5000 nm per μm. Like the nodular structure, 153 

the stripe structures also have low heights,29, 46-49 which is also evidenced by the low Ra (5-50 154 

nm). Some ring structures are possibly formed by the collapse of canopy structures or large 155 

nodular structures.50, 51 Therefore, its diameter can reach several μm, while its density is much 156 

lower than a typical nodular structure.  157 

 158 
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NF membranes with crumpled morphologies often exhibit better separation performance in terms 159 

of water permeance and water/solute selectivity than commercially available NF membranes (Fig. 160 

2b). Among the common morphologies, the stripe structure appears to be more promising 161 

compared with nodular and ring structures. The associated transport mechanisms in crumpled NF 162 

membranes will be further discussed under the section “Critical Analysis of Water and Solutes 163 

Transport Mechanisms for Crumpled NF Membranes”.  164 

 165 

 166 
Figure 3 Formation of crumpled morphologies of polyamide layers. Templating approach, 167 

interfacial instability regulating, and post-treatment could be used before, during, and after the 168 

formation of polyamide layers, respectively. The images were modified from the previous 169 

studies with copyright permission (rough substate,52 substrate with intercalated material,53 170 

substrate with sacrificial material,54 liquid-based template,55 reaction-diffusion dynamics,29 171 

convection flow instability,56 nanobubble production,26 physical inhomogeneity,57 nano-172 

patterning58). 173 
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Mechanisms and Fabrication Methods for Crumpled Morphology of Polyamide Layer 174 

The PIP-based polyamide layer on support substrates (e.g., polysulfone membrane) is generally 175 

formed through interfacial polymerization of PIP and TMC monomers.15, 16, 19 During interfacial 176 

polymerization, the substrate is first wetted by a PIP aqueous solution, then immersed in a TMC 177 

organic solution. PIP and TMC can react at the aqueous/organic interface and form a polyamide 178 

film on the substrate. Post-treatments, such as heating and drying, are often applied to stabilize 179 

the polyamide film and further adjust its properties. Based on the protocols of interfacial 180 

polymerization, the following strategies could be used to fabricate a crumpled polyamide layer 181 

(Fig. 3): 1) using templating approaches to create a rough aqueous/organic interface for 182 

interfacial polymerization, so that the formed polyamide film achieves a rough morphology 183 

following the aqueous/organic interface; 2) regulating and intensifying the interfacial instability 184 

during the reaction of interfacial polymerization; 3) post-processing the formed polyamide layer.  185 

 186 

Templating Approaches. A rough templating substrate can directly lead to an uneven 187 

aqueous/organic interface on the surface of the substrate. Considering the typical thickness of 188 

tens of nm for PIP-based polyamide layers,59-61 the feature size of the templating substrate should 189 

be in the range of hundreds of nm to several µm to affect the formation of polyamide rejection 190 

layers. While the typically used polysulfone substrate is relatively smooth,20, 62 a few strategies 191 

are available to prepare a rough templating substrate. One strategy is patterned membranes. 192 

Patterned membranes, often reported for fouling control,63-65 typically involve fabrication 193 

methods such as phase separation micro-molding,66, 67 thermal embossing/nanoimprinting65, 68, 69, 194 

and 3D printing.70, 71 Previous studies have constructed patterns such as grooved lines,64, 72, 73 195 

pillars,74 prism,66 pyramid75 with dimensions ranging from tens of nm to hundreds of μm. These 196 
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patterned membranes, when used as substrates, are expected to create aqueous/organic interfaces 197 

with regular/periodical morphological features. A second strategy involves the use of scaffolds 198 

with rough surfaces, such as non-woven fabrics, stainless steel meshes,76 and microfiltration 199 

membranes with large pores.77, 78 Unlike a patterned substrate, these rough scaffolds usually have 200 

an irregular surface morphology. One critical challenge involved in using rough substrates is the 201 

increased risks of defect formation in the resulting polyamide rejection layers. For example, if 202 

directly conducting interfacial polymerization on rough scaffolds with large pores, the 203 

unsupported polyamide film formed over the macropores of the scaffolds is easily broken.79, 80 204 

This issue could be potentially addressed by plugging the macropores of the scaffolds with 205 

materials of desirable mechanical strength, water permeance, and adhesion force with the 206 

scaffold. Some examples include porous protein assemblies78 and crosslinked polyvinyl alcohol 207 

(PVA).76 To achieve a crumpled polyamide layer over the templating substrate, another key 208 

consideration is the fidelity of the rough morphology after the interfacial polymerization. Some 209 

studies suggested that the fidelity could be improved by decreasing monomer concentrations72 210 

and using a layered interfacial polymerization technique.74, 81  211 

 212 

Even with a smooth substrate, one can deposit nanomaterials on its surface to create a rough 213 

aqueous/organic interface. Previous studies have deposited nanoparticles57, 82-84 and nanofibers,53 214 

etc., on substrate surfaces. Common methods for nanomaterial deposition include vacuum 215 

filtration,45, 54, 85, 86 spraying,87, 88 in-situ growth,47, 89-92 etc. An ideal deposition is a single layer 216 

of nanomaterials with a suitable distance between the individual particles/fibers. The size of 217 

nanomaterials may have a major influence: small sizes may minimize the change in 218 

morphologies, while large sizes may heighten the risk of defects.84 In general, hydrophilic 219 
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nanomaterials are recommended because they may induce the formation of nanochannels at the 220 

interface between the nanomaterial surface and the polyamide matrix.93 For the nanomaterial-221 

based templating approach, the key is to uniformly deposit nanomaterials without aggregation 222 

and stacking.57 In addition, because the nanomaterial is often water impermeable, the intercalated 223 

materials may block the water flow through the resulting NF membrane, causing a compromise 224 

in water permeance. The adoption of porous materials, such as porous silica particles,94 metal-225 

organic frameworks,82, 85, 95 covalent organic frameworks,50, 96, 97 and molecular sieves,87, 98, 99 226 

may partially address this issue. 227 

 228 

To minimize the impact of intercalated nanomaterials on the performance of NF, one can also 229 

use sacrificial materials, such as dissolvable nanoparticles54, 100 and salt crystal101, 102, which are 230 

readily removed after interfacial polymerization (e.g., by dissolving in water or acid). The 231 

removal of these sacrificial materials can create nanovoids in polyamide layers, which can 232 

effectively improve the permeance of NF membranes. For example, etching copper nanoparticles 233 

using 1% HNO3 from a copper embedded NF membrane led to quadrupled water flux.103 234 

 235 

In addition to solid templates, liquid-based templates may also be used under appropriate 236 

interfacial conditions.55, 104 For example, to achieve an aqueous template, one could first leave a 237 

certain amount of water spread on the substrate surface by tuning rolling pressures and drying 238 

conditions. Under specific interfacial tensions, which are adjusted by adding surfactant into 239 

aqueous solution and using hydrophilic substrate (including surface-modified and interlayered 240 

membrane), the remaining water may form an uneven aqueous/organic interface on the 241 

substrate,55, 105, 106 resulting in a crumpled polyamide layer after interfacial polymerization.  242 
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 243 

Interfacial Instability. The interfacial polymerization reaction is inherently associated with 244 

instability, which could be utilized to facilitate the formation of crumpled polyamide films. In 245 

fact, the interfacial instability is the key to the “ridge-and-valley” morphology of MPD-based 246 

polyamide layers.19, 107 Currently, the interfacial instability during interfacial polymerization is 247 

mostly explained by the following three mechanisms: 248 

1) Reaction-diffusion dynamics.29, 108, 109 As one of the most famous models of reaction-249 

diffusion dynamics, the activator-inhibitor model is often used to explain the formation of 250 

patterns.110 In this model, the activator promotes the synthesis of itself and the inhibitor, 251 

while the inhibitor restricts the production of the activator.110 If the diffusion speed of the 252 

inhibitor is faster than that of the activator (“local activation and lateral inhibition” proposal), 253 

periodic patterns such as spots and stripes (i.e., Turing patterns) may be formed. During the 254 

reaction of interfacial polymerization, amine monomers in the aqueous phase firstly diffuse 255 

to the organic phase and then react with acyl chloride monomers to form a polyamide film.19 256 

The amine monomer can be regarded as the activator because its diffusion causes the reaction, 257 

and the formed polyamide layer can be regarded as the inhibitor because of its self-limiting 258 

effect.29 259 

2) Convection flow instability.56, 111 Interfacial polymerization causes the consumption of 260 

monomers and the release of heat, leading to concentration and thermal gradients near the 261 

aqueous/organic interface, consequently density gradients and spatially varied interfacial 262 

tensions. The density gradient may cause Rayleigh–Bénard convection because gravity tries 263 

to pull down the denser liquid.112 The spatially varied interfacial tension may also lead to 264 

Marangoni convection because the liquid tends to flow to the place of lower surface 265 
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tension.112 During interfacial polymerization, these convection flows may result in a 266 

fluctuating interface, which might be responsible for the formation of the crumpled 267 

polyamide.  268 

3) Nanobubble formation. Some recent literature suggested that the crumpled morphology of 269 

polyamide layers could be formed by interfacial degassing.113-116 That is, the interfacial 270 

reaction between amine and acyl chloride monomers could generate both heat and H+, which 271 

favors the conversion of dissolved HCO3- in the aqueous phase (alkaline solution) to release 272 

CO2 nanobubbles. By the confinement of porous substrate, these nanobubbles tend to deliver 273 

amine monomers to the reaction front due to the convention under a pressure gradient. In 274 

addition, these degassed bubbles could be encapsulated by the nanofilm to tune the 275 

polyamide morphology.  276 

 277 

Based on these mechanisms, to enhance the interfacial instability, one could increase the 278 

formation of polyamide (inhibitor), enhance thermal and concentration gradients, and/or 279 

intensify heat and H+ release. Increasing the reaction rate can well-match these goals, e.g., by 280 

adding acid acceptor,114, 117 increasing reaction temperature,31, 118 and adding other co-281 

monomers.119 One can also control the diffusion of PIP (activator) and change the interfacial 282 

tension by adding chemicals such as PVA,29 salts,120, 121 and surfactants34, 122 to the PIP solution, 283 

and coating a hydrophilic gel layer on the substrate.123  284 

 285 

The interfacial instability of interfacial polymerization can be enhanced by the spatial 286 

inhomogeneity of the reaction. Physical inhomogeneity (i.e., inhomogeneity in monomer storage) 287 

of the reaction could be readily achieved using rough substrates (see the section “Templating 288 
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Approaches”). For example, the valleys of a rough surface may have more PIP monomer 289 

storages, and consequently may lead to more violent reactions.26, 79, 124 Chemical inhomogeneity 290 

could be achieved using a substrate with reactive spots,125-128 and the inhomogeneity may be 291 

increased because of the reaction of TMC with these reactive spots. Many studies45, 46, 84, 106, 129, 292 

130 reported that the addition of nanomaterial in PIP solution could lead to a crumpled polyamide 293 

layer. A possible explanation for this phenomenon is that these nanomaterials intensify the 294 

inhomogeneity of the interfacial polymerization, both physically and chemically.96, 131, 132  295 

 296 

Post-treatment. Post-treatment is an important step in improving the stability and performance of 297 

the NF membrane. Because the polyamide layer may have different thermal expansion and 298 

contraction coefficients compared with the substrate, a heating post-treatment may lead to 299 

delamination and buckling of the polyamide layer at the micro-/nano-scale,108 resulting in a 300 

rough morphology.133, 134 Additionally, surface coating and grafting sometimes cause a rough 301 

morphology by adding an additional layer or changing the properties of polyamide layers.135-139 302 

Patterning methods can also be used in the post-treatment of the polyamide layer. Because of the 303 

thin thickness of the polyamide layer,59-61 the dimension of the pattern is generally tens of nm, 304 

and previous studies generally used nanoimprinting method.58, 68, 140, 141 After the nanoimprinting 305 

of commercial NF membranes, their anti-fouling performances are significantly improved (see 306 

the section “Critical Analysis of Fouling Propensities of Crumpled NF Membranes”).  307 

 308 

Among the various strategies for the fabrication of crumpled NF membranes, templating 309 

approaches can achieve the morphology of a polyamide layer similar to that of the templating 310 

substrate, except that the aqueous and nanomaterials-based templating may lead to a stripe 311 
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morphology after the collapse of the polyamide layer.55, 84, 142 By regulating the interfacial 312 

instability, the polyamide layer is most likely to form periodic nodular and stripes. With post-313 

processing, especially the patterning method, the polyamide morphology can be further 314 

regularized and customized. Although most of the strategies are in the laboratory stage, some of 315 

them show the potential for scale-up, with small changes to the existing processing line for 316 

interfacial polymerization. For example, by adding a rinsing process to create a PVA interlayer 317 

on the substrate, a pilot-scale production line for NF with periodic stripes was successfully 318 

established.105 Additionally, templating approach, interfacial instability regulating, and post-319 

processing are at different steps of the production line, and thus the three methods can be 320 

combined to further improve the performance of NF.  321 

 322 

 CRITICAL ANALYSIS OF WATER AND SOLUTES TRANSPORT 323 

MECHANISMS FOR CRUMPLED NF MEMBRANES 324 

Compared to their conventional (smooth) counterparts, TFC NF membranes with crumpled 325 

morphologies could have many advantages, including enhanced water permeance and possibly 326 

enhanced water/solute and solute/solute selectivity (Fig. 1). Therefore, this section critically 327 

analyzes the underlying mechanisms responsible for the improved separation performance with 328 

the assistance of conceptual models and literature surveys.  329 

Mechanisms Responsible for Enhanced Water Permeance with Crumpled Morphologies  330 

Several mechanisms can be applied to explain the enhanced water permeance of crumpled NF 331 

membranes,29, 55, 113 such as an increased effective surface area for filtration, decreased thickness 332 

of the polyamide layer, and optimized water transport pathways (Fig. 4). 333 
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 334 

 335 

Figure 4. Conceptual models (a) for elucidating the mechanisms of enhanced water permeance 336 

of crumpled TFC membranes, where leff is defined as the actual (effective) water transport 337 

pathways, and l is the intrinsic thickness of the polyamide rejection layer (i.e., the ideal water 338 

transport pathway). (b) Analysis of literature data of crumpled NF membranes in Table S1 with 339 

respect to the effect of surface area ratio (S/S0), thickness reduction ratio (l0/l), and their coupled 340 

effects [(S/S0)× (l0/l)] on water permeance enhancement. The line of function y = x was 341 

superimposed in each sub-figure. The conceptual model (c) further highlights the benefits of 1) 342 

altered transport path (Aideal) with the increased substrate porosity; 2) increased surface area 343 

(Arough, the superimposed red line); and 3) together with the reduced thickness of the crumpled 344 

polyamide layer (Arough & thin, the superimposed yellow line). Figures a and c were modified from 345 

the previous study26 with copyright permission.  346 

 347 

Increased Surface Area of Polyamide Layers. An intuitive understanding of a crumpled 348 

membrane is that the surface area for water transportation could be significantly enhanced. For 349 

c

Substrate porosity
10

Pe
rm

ea
nc

e,
 A

Areal

Aideal

Arough & thin

Arough

b1

Substrate
Solid
Area

Porous
Area

Substrate
Solid
Area

Porous
Area

a2

a1
Thin Film

Thin Film

b2

b3

0 1 2 3 4 5 6 7
0
2
4
6
8

0 1 2 3 4 5 6 7
0
2
4
6
8

0 1 2 3 4 5 6 7
0
2
4
6
8

Increase in surface area, S/S0 

y = x

y = x

In
cr

ea
se

 in
 p

er
m

ea
nc

e,
 A

/A
0

Decrease in thickness, l0/l

y = x

Coupled effects, (S/S0) × (l0/l)Coupled effects, (S/S0) × (l0/l)

Increase in surface area, S/S0

Decrease in thickness, l0/l
In

cr
ea

se
 in

 p
er

m
ea

nc
e,

 A
/A

0



19 
 

example, the striped membrane morphologies (assuming the half-cylinder shape), regardless of 350 

the thickness of the polyamide rejection layer, could have the theoretical water permeance 351 

enhancement factor of 1.57 (Fig. S2a). For a hemispherical shape of nodular morphology, the 352 

theoretical membrane surface area enhancement factor could be two compared to a smooth 353 

counterpart (Fig. S2b), potentially translating into doubled water permeance. Although the 354 

current literature reports that the characteristic heights of crumpled morphologies are generally 355 

low (Fig. 2), crumpled morphologies with higher characteristic heights could result in much 356 

higher increases in surface area. However, crumpled morphologies with higher characteristic 357 

heights may face the collapse of polyamide film.20, 55 Future studies need to explore such 358 

phenomena to achieve a compromise between an enhanced surface area of polyamide and its 359 

mechanical stability.  360 

 361 

We further performed a comparison between membrane water permeance enhancement and 362 

membrane surface area enhancement (characterized by AFM) based on a literature survey (Fig. 363 

4b1). These results further corroborate the importance of the increased surface area of crumpled 364 

polyamide layers in improving membrane water permeance. It is interesting to note that the 365 

increase in membrane surface area alone is not enough to explain the significant flux 366 

enhancement observed in the literature. In our analysis, most of the experimental data points are 367 

above the theoretical line based on enhanced surface area (i.e., y = x), which implies that 368 

additional mechanisms may also play important roles.29, 55, 113  369 

 370 

Decreased Thickness of Polyamide Layers. In addition to increased membrane surface area, the 371 

formation of crumpled morphology is often accompanied by the reduced intrinsic thickness of 372 
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polyamide layers (Fig. 4b2),122, 143-149 which is possibly ascribed to the changes in interfacial 373 

polymerization reaction (see the section “Interfacial Instability”) such as inhibited amine 374 

monomer diffusion and facilitated polyamide film formation. This reduced thickness of the 375 

rejection layer, in some cases up to ~ 6 times, also favors improved water permeance of 376 

crumpled NF membranes (Fig. 4b2). Interestingly, the decreased polyamide thickness, often 377 

accompanied by the enhanced surface area ratio, could have a synergistic effect on membrane 378 

water permeance enhancement, which might explain the close to one order of magnitude 379 

enhancement of water permeance for crumpled NF membranes (Fig. 4b3). 380 

 381 

Optimized Water Transport Pathways. Compared to the mechanisms of enhanced surface area 382 

and reduced thickness of polyamide layers, the mechanism of optimized water transport 383 

pathways for crumpled NF membranes has been far less discussed in the literature. Indeed, for 384 

the conventional TFC membranes, its separation performance can be severely constrained by the 385 

funnel effect,26, 150-152 which is often ascribed to the low porosity of the substrate (typically below 386 

10%).153 As illustrated in Fig. 4a1, the water transport distance away from the substrate pore (leff) 387 

of conventional smooth TFC membrane is significantly greater than the thickness of its 388 

polyamide rejection layer (l), resulting in significantly higher hydraulic resistance and hence 389 

lower water permeance compared to a free-standing polyamide film (an ideal case). To overcome 390 

the funnel effect, the crumpled polyamide layer of NF membranes, containing voids that span 391 

over multiple substrate pores (Fig. 4a2), could potentially shorten the water transport distance in 392 

the rejection layer (in a fashion similar to the inclusion of a high-permeance gutter layer151, 154, 393 

155). This effect, coined as the self-gutter effect by Tang and coworkers,9 can greatly reduce the 394 
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hydraulic resistance by effectively shortening the water transport pathways (close to the intrinsic 395 

thickness of the rejection layer, Fig. 4a2). 396 

 397 

To deepen the understanding of this mechanism, Fig. 4c presents the conceptual model of 398 

optimized water transport pathways for improving water permeance. The dark blue line 399 

represents the actual membrane water permeance (Areal), whereas the light blue line represents 400 

the ideal water permeance (free-standing polyamide film, Aideal), with the varying substrates 401 

porosities. Due to the funnel effect, the actual water transport distance (leff) of a conventional 402 

TFC NF membrane is significantly longer than the ideal transport distance (l) of a free-standing 403 

polyamide film. With the lower substrate porosity, the funnel effect is more severe, resulting in 404 

significantly lower water permeance. The crumpled polyamide morphologies, equivalent to the 405 

effect of the increasing substrate porosity of a flat polyamide rejection layer, could significantly 406 

improve membrane water permeance thanks to the greatly shortened water transport pathways, 407 

which approach the ideal water permeance (light blue line). Alternatively, the effect of the 408 

nanovoids within the crumpled polyamide rejection layer could be interpreted through their self-409 

gutter effect on shortening the transport path to approach the ideal water permeance.9, 28 It is also 410 

interesting to note that, as an added advantage, the altered water transport pathways tend to result 411 

in more uniform flux distribution, which is beneficial to reducing fouling tendency by decreasing 412 

the accumulation of foulants in the localized hot spot zone151, 156 (see the section “Crumpled 413 

Polyamide Film and Local Flux”).  414 

 415 

We further benchmark the theoretical water permeance of the rough NF membrane with an ideal 416 

rejection layer (without the effect of substrate, superimposed in red color in Fig. 4c), which could 417 
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even successfully exceed the ideal water permeance of the smooth NF membrane due to the 418 

additional benefit of increased filtration area. In reality, a crumpled NF membrane could 419 

simultaneously achieve a reduced thickness of the polyamide layer in addition to optimized 420 

water transport pathways and increased surface areas (line in yellow color, Fig. 4c), resulting in 421 

the greatest water permeance thanks to these synergistic effects. Overall, our theoretical analysis 422 

is in good agreement with the literature results, where crumpled NF membranes showed up to an 423 

order of magnitude higher water permeance compared to the control.96, 131, 157-160 424 

Mechanisms Responsible for Enhanced Water/solute and/or Solute/solute Separation of 425 

Crumpled Morphologies 426 

 427 
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Figure 5. Water/Na2SO4, water/MgSO4, NaCl/Na2SO4, and NaCl/ MgSO4 selectivity of the PIP-428 

based NF membranes with different crumpled morphologies. Detailed data of the box plots are 429 

shown in Table S2.  430 

 431 

In addition to the water permeance enhancement, Fig. 5 shows that some crumpled NF 432 

membranes may offer enhanced water/solute and/or solute/solute selectivity (e.g., Water/Na2SO4, 433 

Water/MgSO4, NaCl/Na2SO4, and NaCl/MgSO4) thanks to the fine-tuned physicochemical 434 

properties of the crumpled polyamide layers. As discussed in the section “Interfacial Instability”, 435 

the interfacial polymerization reaction rate could be greatly altered, which may further result in 436 

changes in membrane crosslinking degree and sometimes the optimized membrane pore size 437 

uniformity.37, 96, 117, 136, 137, 161, 162 For instance, Liang et al.34 applied sodium dodecyl sulfate (SDS) 438 

to manipulate the interfacial polymerization reaction between PIP and TMC, resulting in not only 439 

crumpled polyamide morphologies with enhanced water permeance but also more uniform pore 440 

size distribution. The resulting NF membrane showed enhanced selectivity towards a wide range 441 

of solutes, including mono/di-valent ions and neutral solutes. Interestingly, due to its relatively 442 

large pore size in the range of 1 – 2 nm,163 the variation of pore size distribution is more effective 443 

in enhancing the rejection of divalent ions (e.g., SO42-, Ba2+, and Ca2+) or other larger solutes 444 

(e.g., glucose and sucrose), and less pronounced in enhancing the rejection of monovalent ions 445 

(e.g., Li+, Na+, and K+),34, 125, 133, 164-168 and therefore improving its mono-/di-valent ions 446 

selectivity (e.g., NaCl/Na2SO4 and NaCl/MgSO4 selectivity in Fig. 5).  447 

 448 

It is also interesting to note that crumpled NF membranes could also generate localized 449 

turbulence to mitigate the localized concentration polarization effect,169-171 which could 450 
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potentially enhance the water/solute and solute/solute selectivity. Indeed, compared to the 451 

smooth counterparts, the crumpled/patterned polyamide films could enhance the localized mass 452 

transfer to improve the back diffusion of solute to the bulk,169 thereby alleviating the 453 

concentration polarization and improving both membrane water flux and salt rejection.170 For 454 

example, by comparing the fouling and rejection capability of the crumpled NF membrane with 455 

grooves-pattern in both parallel and perpendicular flow orientations, the reduced concentration 456 

polarization was revealed.171 Nevertheless, a recent study conducted by Zhou et al.172 suggested 457 

that crumpled morphology may increase the effect of concentration polarization effect, but this 458 

increase was compensated by the reduced local flux due to the increase in filtration area. These 459 

disparate observations might be partly attributed to the different roughness patterns involved, 460 

which calls for more future studies. Although few studies focus on the solute/solute selectivity 461 

induced by the mitigated concentration polarization effect of the crumpled membranes, different 462 

diffusion coefficients of various ions (e.g., the diffusion coefficient of Na+ is approximately 463 

twice that of Ca2+) could lead to different concentration polarization mitigation degrees (different 464 

solutes rejection enhancement), which might result in the enhanced solute/solute selectivity.  465 

 466 

It should also be noted that some fabrication procedures of crumpled polyamide layer may 467 

increase the risks of defect formation (e.g., templating approaches).98, 173, 174 Additionally, the 468 

less-supported ridge of the crumpled layer may be vulnerable to external damage (e.g., high 469 

pressure).55, 80 When defects are presented in a polyamide layer, although these defect spots can 470 

increase water permeance, it is often very risky to result in reduced water/solute and solute/solute 471 

selectivity. Future studies should make efforts to minimize defects in the polyamide layer during 472 

the fabrication of crumpled NF membranes.  473 
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 474 

 CRITICAL ANALYSIS OF FOULING PROPENSITIES OF 475 

CRUMPLED NF MEMBRANES 476 

Membrane fouling is a major obstacle to NF applications. Fouling can cause severe flux losses 477 

that need to be restored by physical/chemical cleaning. Fouling of NF membranes is often 478 

associated with the deposition of organic substances and the formation of biofilm on membrane 479 

surfaces,175-177 which can be greatly influenced by foulant-membrane interactions and 480 

hydrodynamic conditions near the membrane surface.178, 179 A crumpled membrane surface can 481 

affect both foulant-membrane interactions and hydrodynamic conditions, thus showing 482 

significant impacts on membrane fouling.  483 

 484 

Surface Roughness and Foulant-membrane Interaction 485 

A crumpled surface increases the roughness of a membrane. In the context of RO, since modern 486 

polyamide TFC RO membranes typically show a “ridge-and-valley” rough surface,20, 60 487 

researchers have long been focusing on the relationship between roughness and fouling from the 488 

perspective of foulant-membrane interaction. Elimelech and co-workers180, 181 found that a 489 

polyamide membrane with high roughness had a more severe colloidal fouling (silica particles 490 

with 0.1 μm in diameter), because the colloids were preferentially deposited in the valleys of the 491 

membrane. In a follow-up paper, by analyzing the interaction between colloidal particles and 492 

membrane surface using Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, these authors 493 

attributed the preferential colloidal deposition to the lower repulsive energy barrier at the valleys 494 

of the membrane surface.182 Similar conclusion was also obtained by Bowen et al.,183 who found 495 
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much higher adhesion forces at the valleys of RO membranes using an AFM equipped with silica 496 

colloidal probes (4.2 μm). These pioneering studies imply that surface roughness increases the 497 

foulant-membrane interaction, especially in the valley region of a membrane, thereby increasing 498 

membrane fouling. 499 

 500 

However, some recent studies suggest that enhanced foulant-membrane interactions only occur 501 

when the size/shape of the foulant and the valley are comparable (Fig. 6a). For example, 502 

Chuning et al.179 found that the attachment of S. epidermidis cells (grape-like shape, ~1 μm in 503 

diameter) increased when the polyamide membrane surface became rougher, while that of E. coli 504 

cells (rod shape, ~3 μm in length) decreased. The authors attributed this result to the slightly 505 

smaller size of S. epidermidis than the size of valleys (0.5-3 μm), which enabled S. epidermidis 506 

to be trapped in these valleys. When the size of foulants is much smaller than that of the valley, 507 

the rough membrane “appears smooth” to such small-size foulant (Fig. 6b), and thus, the foulant-508 

membrane interaction may be hardly affected by the roughness.184, 185 Consistent with this, a 509 

recent study demonstrated that surface roughness had limited influence on the bovine serum 510 

albumin (BSA, ~7 nm) fouling for TFC membranes with well-controlled roughness.186 When the 511 

size of foulants is larger than that of the valley, some studies suggested that the foulants-512 

membrane interaction may be reduced by the decreased contact area.74, 187, 188 513 
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 514 

Figure 6. Crumpled morphologies of NF and membrane fouling. (a and b) Matched sizes 515 

between crumpled morphology and foulant may lead to more severe fouling. (c and d) Well-516 

designed crumpled morphology can increase local shear stress. (e and f) Crumpled morphology 517 

can lead to a lower and more uniform local flux.  518 

 519 

Surface Pattern and Local Shear Stress 520 

A crumpled surface can disturb water flows and generate vortices (a similar fashion to fixed 521 

turbulence promoters), thereby enhancing local shear stress and reducing the deposition of 522 

foulants.189, 190 For this reason, an important strategy to control membrane fouling is to introduce 523 

micro- or nano-patterns on membrane surfaces.64 For example, a crumpled NF with well-defined 524 

patterned surfaces can be fabricated by using patterned substrates or post-nanoimprinting of the 525 

polyamide layer (see the sections “Templating Approaches” and “Post-treatment” for more 526 

details). Previous studies have constructed patterns such as grooved lines,64, 72, 73 pillars,74 527 

prism,66 pyramid75 with dimensions ranging from tens of nm to hundreds of μm and revealed that 528 
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these patterns could effectively reduce colloidal fouling,75, 191 organic fouling,68, 192, 193 and 529 

biofouling.66 74 Through particle tracking techniques and computational fluid dynamics (CFD) 530 

modeling, several studies show that the ridges of the pattern have a higher shear stress75, 194 and 531 

the valleys of the patterns can form vortexes.194-196 As a result, a properly designed pattern can 532 

create favorable hydrodynamic environments to effectively mitigate foulant deposition.  533 

 534 

Several points should be noted for more effectively increasing local shear stress with the surface 535 

patterns. First, hydraulic stagnant spots should be minimized. Surface patterns, while promoting 536 

localized turbulences, may also introduce some stagnant spots, especially at the shaded corners 537 

and deep valleys of crumpled surfaces (Fig. 6c). An important reason for the high fouling 538 

tendency of rough polyamide TFC RO membrane is the existence of some stagnant regions in 539 

their “ridge-and-valley” morphology.179, 181 Second, well-designed topographies and dimension 540 

can achieve better anti-fouling properties.67, 197, 198 For example, it was experimentally 541 

demonstrated that 45°-rotated pyramid patterns were more effective than pyramid and reverse-542 

pyramid patterns in reducing particle deposition.75 The sharkskin-mimetic pattern has an 543 

optimized space of 2 μm to mitigate biofouling185, 199 with the prevention of biofilm by the 544 

enhancement of primary and secondary flow.81, 200 Third, flow characteristics have important 545 

influences on the anti-fouling performance of patterns. In general, under a high crossflow 546 

velocity, large patterns are more effective than small ones for controlling particle deposition.196 547 

Additionally, fouling rates are lower when the flow direction is perpendicular to the lines of 548 

grooved patterns, while physical washes are more effective when the flow direction is parallel to 549 

the pattern lines.191, 201 In addition to the well-defined patterns using the templating or post-550 

nanoimprinting method, other fabrication methods may lead to random surface morphologies, as 551 
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shown in Fig. 2, and the effect of these morphologies on the local shear stress needs to be further 552 

investigated. 553 

 554 

Crumpled Polyamide Film and Local Flux 555 

It is well accepted that membrane fouling is promoted at a higher flux because of 1) higher 556 

foulant loadings, 2) greater hydraulic drag on foulants, and 3) more severe concentration 557 

polarization.178, 202 Membrane fouling rate is nearly zero when the flux is lower than a threshold 558 

value (i.e., critical flux),203 and may exponentially increase with flux when it is higher than the 559 

threshold value.204 In most scientific studies and practical applications, the generally mentioned 560 

“flux” is the macroscopically observed average flux of membrane coupons or membrane 561 

modules. However, the microscopic local flux, which is more closely related to fouling, could 562 

vary at the different locations of membranes.151 For a membrane with non-uniform local flux, 563 

although the low-local-flux region has lower fouling, the high-local-flux region has much higher 564 

fouling due to the non-linear relationship between fouling rate and flux, and consequently the 565 

higher overall fouling.205  566 

 567 

In a smooth polyamide layer, the hydraulic resistance is higher in the regions above substrate 568 

walls (because of the longer water transport pathway, Fig. 4a1), and that is lower in the region 569 

above the substrate pores.206 Consequently, typically smooth NF membranes tend to have high 570 

non-uniformity of local flux, featuring much higher local flux over pore areas (Fig. 6e).151, 156 571 

Such non-uniform flux distribution could become even worse for substrates of lower porosities. 572 

When the polyamide layer becomes crumpled, the total filtration area increases (Fig. 4b). More 573 

importantly, the self-gutter effect leads to a more uniform local flux distribution (Fig. 6f), as 574 
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experimentally confirmed through tracer filtration tests (e.g., using golden nanoparticles).29, 151 575 

With the lower and more uniform local flux, membrane fouling can be greatly reduced. This 576 

reason is regarded as the main driver for fouling reduction with crumpled membranes in some 577 

studies,73 because of the huge impact of flux on membrane fouling.  578 

 579 

In short, although a smooth polyamide film generally has a low fouling propensity, a crumpled 580 

polyamide film with well-designed morphologies could potentially out-perform its smooth 581 

counterpart as a result of the associated antifouling mechanisms such as the enhancement of local 582 

shear and the reduction of local flux. In addition to membrane fouling, inorganic scaling could 583 

also be influenced by surface morphologies.207, 208 A rough surface often has a higher scaling 584 

potential, possibly because of the favorable formation/deposition of scaling nuclei at the 585 

valleys209, 210 and the enhanced concentration polarization at the hydraulic stagnant spots.172, 179 586 

However, similar to membrane fouling, membrane scaling may also be mitigated by a well-587 

designed crumpled morphology. For example, with a crumpled polyamide, the enhancement of 588 

local shear and the reduction of local flux may promote the detachment of scaling nuclei and 589 

crystals,207, 211 thereby inhibiting the development of scaling.  590 

 591 

 ENVIRONMENTAL IMPLICATIONS AND RESEARCH OUTLOOK 592 

As we have discussed the formation, transport mechanisms, and fouling behavior of crumpled 593 

NF membranes, we further propose that the ideal crumpled morphology of polyamide film 594 

should possess 1) large surface areas (e.g., high aspect ratios of the surface roughness features) 595 

and thin thickness for improving the theoretical water permeance, 2) high interconnectivity for 596 

internal voids in the crumpled NF membranes (e.g., more optimized water transport pathways for 597 



31 
 

approaching the ideal water permeance and enhanced membrane anti-fouling properties), 3) 598 

patterned or rough surface to create localized turbulence, and 4) excellent mechanical strength. 599 

To achieve this ideal/controllable morphology, a better understanding of the mechanisms of the 600 

formation of crumpled morphology is needed. Although some existing formation models shed 601 

light on the mechanisms in generating crumpled polyamide layers, it is still a long way to 602 

achieve a quantitative prediction to guide the fine-tuning of the detailed morphological features. 603 

Furthermore, since the state-of-the-art separation performance of crumpled NF membranes 604 

(mostly at bench scales) has been dramatically improved compared with the commercial 605 

counterparts (Fig. 2), subsequent efforts should focus on their long-term stability and scale-up.  606 

 607 

To scale up the crumpled NF, defect-free membranes with large areas should be first fabricated, 608 

which need simple and controllable fabrication protocols.212 More importantly, with these highly 609 

permeable NF membranes, researchers also need to focus on the better translation of high-610 

performance membranes to more efficient processes. For example, a recent study213 highlighted 611 

the high permeance NF membrane may not automatically guarantee low energy consumption, 612 

nor does a highly selective membrane guarantee better permeate water quality. Therefore, one 613 

needs to optimize the membrane module, system, and process to fully unleash the potential of 614 

crumpled NF for simultaneously achieving low energy consumption, high product water quality, 615 

and a better system flux distribution to avoid fouling issues (Fig. 7). For example, newly 616 

designed spacers and flow channels to match crumpled morphologies, multi-stage inter-pumping 617 

design or closed-circuit system,214 and submerged NF membrane process.215 In addition to water 618 

permeance, membrane selectivity is also very important for target pollutant removal. Even 619 

though crumpled NF membranes may exhibit enhanced selectivity for water/solute and 620 
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solute/solute, further studies are still needed to improve/tailor the selectivity for specific 621 

applications.  622 

 623 

 624 

Figure 7. Schematic diagrams of outlooks and future perspectives of crumpled NF membranes. 625 

NF membranes with ideal/controllable morphologies are pursued with the better understanding 626 

of morphology formation and the development of simple and controllable fabrication protocols. 627 

Beyond membrane fabrication, researchers also need to optimize membrane modules, systems, 628 

and processes to fully unleash the potential of crumpled NF for achieving low energy 629 

consumption, low membrane fouling, and high selectivity.  630 
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