

1 Nanofiltration Membranes with Crumpled Polyamide Films: A Critical
2 Review on Mechanisms, Performances, and Environmental Applications

3

4 Senlin Shao^a, Fanxi Zeng^a, Li Long^c, Xuewu Zhu^b, Lu Elfa Peng^c, Fei Wang^c, Zhe Yang^{c*}, and
5 Chuyang Y. Tang^{c*}

6

7 ^aSchool of Civil Engineering, Wuhan University, 430072, PR China

8 ^b School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan,
9 250101, PR China

10 ^cDepartment of Civil Engineering, the University of Hong Kong, Pokfulam, Hong Kong, SAR,
11 China

12

13 **CORRESPONDING AUTHORS**

14 **Zhe Yang** - Department of Civil Engineering, The University of Hong Kong, Hong Kong
15 999077, P. R. China; <https://orcid.org/0000-0003-0753-3902>; Tel: +852-2857 8470; E-mail
16 address: zheyang@connect.hku.hk

17 **Chuyang Tang** - Department of Civil Engineering, The University of Hong Kong, Hong Kong
18 999077, P. R. China; <https://orcid.org/0000-0002-7932-6462>; Tel: +852 28591976; E-mail:
19 tangc@hku.hk

20

21 **AUTHORS**

22 **Senlin Shao** - School of Civil Engineering, Wuhan University, 430072, PR China;
23 <https://orcid.org/0000-0003-0953-5151>.

24 **Fanxi Zeng** - School of Civil Engineering, Wuhan University, 430072, PR China.

25 **Li Long** - Department of Civil Engineering, The University of Hong Kong, Hong Kong 999077,

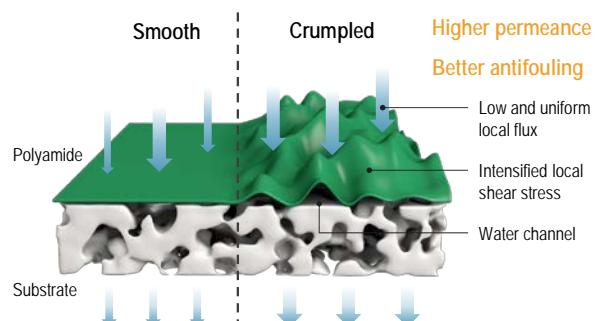
26 P. R. China; <https://orcid.org/0000-0002-7951-3276>.

27 **Xuewu Zhu** - School of Municipal and Environmental Engineering, Shandong Jianzhu

28 University, Jinan, 250101, PR China

29 **Lu Elfa Peng** - Department of Civil Engineering, The University of Hong Kong, Hong Kong

30 999077, P. R. China; <https://orcid.org/0000-0002-3223-4608>.


31 **Fei Wang** - Department of Civil Engineering, The University of Hong Kong, Hong Kong

32 999077, P. R. China.

33

34 **NOTES**

35 The authors declare no competing financial interest.

38 ■ ABSTRACT

39 Nanofiltration (NF) membranes have been widely applied in many important environmental
40 applications including water softening, surface/ground water purification, wastewater treatment,
41 and water reuse. In recent years, a new class of piperazine (PIP)-based NF membranes featuring
42 a crumpled polyamide layer has received considerable attention due to their great potential for
43 achieving dramatic improvements in membrane separation performance. Since the report of
44 novel crumpled Turing structures that exhibited an order magnitude enhancement in water
45 permeance (*Science* 360(6388), 518-521, 2018), the number of published research papers on this
46 emerging topic has grown exponentially to approximately 200. In this critical review, we provide
47 a systematic framework to classify the crumpled NF morphologies. The fundamental
48 mechanisms and fabrication methods involved in the formation of these crumpled morphologies
49 are summarized. We then discuss the transport of water and solutes in crumpled NF membranes
50 and how these transport phenomena could simultaneously improve membrane water permeance,
51 selectivity, and anti-fouling performance. The environmental applications of these emerging NF
52 membranes are highlighted, and future research opportunities/needs are identified. The
53 fundamental insights in this review provide critical guidance on the further development of high-
54 performance NF membranes tailored for a wide range of environmental applications.

55

56 **Keywords:** Nanofiltration, Polyamide, Crumpled morphology, Water transport pathway,
57 Selectivity, Membrane fouling

58 **Synopsis:** Nanofiltration membranes with well-controlled morphologies have the potential to
59 simultaneously improve water permeance, selectivity, and anti-fouling ability.

60

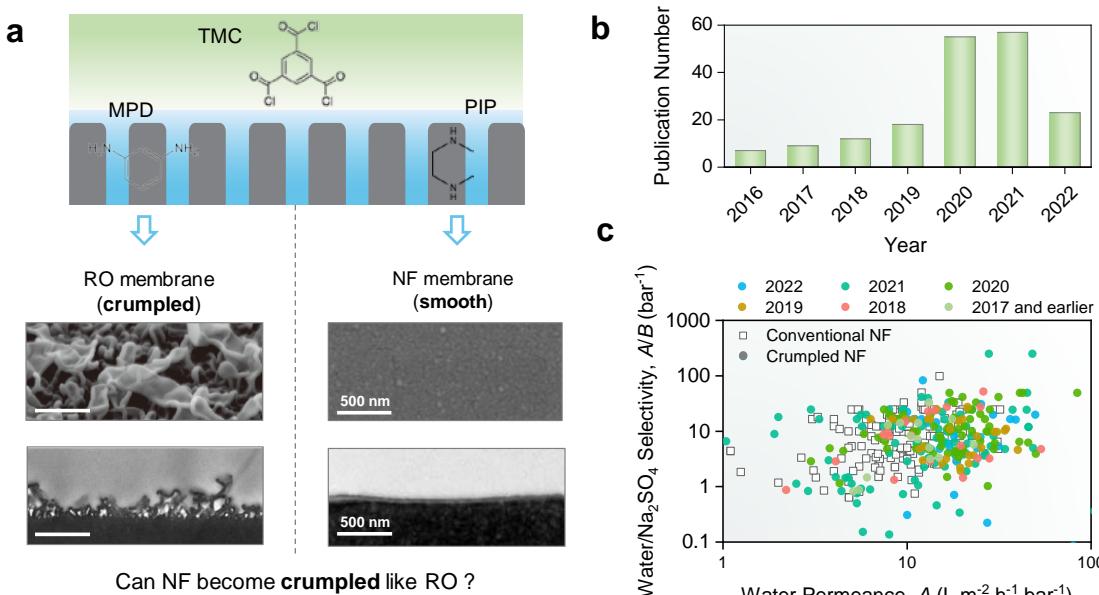
61 ■ INTRODUCTION

62 Nanofiltration (NF) is a pressure-driven membrane process that has separation abilities between
63 ultrafiltration (UF) and reverse osmosis (RO). A typical NF membrane has a molecular weight
64 cut-off between 150 and 2000 Da and is efficient in rejecting multivalent ions and organic
65 compounds.^{1, 2} Therefore, NF technology has been widely adopted in drinking water
66 purification,³ wastewater reclamation,^{4, 5} water softening,^{3, 6} food processing,⁷ pharmaceutical
67 industry,⁸ etc. Unlike seawater, the feed water in these applications generally has relatively low
68 osmotic pressures; thus, increasing the permeance of NF membranes could significantly improve
69 water production and reduce energy consumption.^{9, 10} However, membrane separation
70 performance is constrained by the permeance -selectivity tradeoff: highly permeable membranes
71 typically have low rejections to target substances and vice versa.¹¹⁻¹⁴ Consequently, it is a major
72 challenge to improve the permeance of NF membrane without compromising selectivity.

73

74 Currently, the gold standard for commercially available NF membranes is thin-film composite
75 (TFC) polyamide membranes, which are composed of a polyamide rejection layer, a UF
76 substrate, and a non-woven fabric support.¹⁵⁻¹⁷ The polyamide rejection layers of NF membranes
77 are often prepared by interfacial polymerization, with piperazine (PIP) and trimesoyl chloride
78 (TMC) as the most used monomers.^{13, 15, 16} It should be noted that the NF membrane in this
79 review, thus, specifically refers to the TFC polyamide membrane prepared using interfacial
80 polymerization reaction with PIP and TMC. With numerous in-depth studies on the polyamide
81 selective layer formed by the interfacial polymerization reaction, the morphology of the
82 polyamide layer is found to have a significant influence on the permeance of TFC membranes.
83 For example, in RO membranes formed by *m*-phenylenediamine (MPD) and TMC (Fig. 1a), the

84 “ridge-and-valley” morphology of the formed polyamide layer greatly improves the permeance
85 of RO membrane by increasing the effective filtration area¹⁸⁻²⁰ and creating voids in the
86 polyamide layer,^{18, 20-25} whose self-guttering effect further improves membrane permeance.^{20, 26-}
87 ²⁸ Unlike RO membranes, commercially available NF membranes formed by PIP and TMC are
88 relatively smooth (Fig. 1a). Inspired by the highly efficient water transport in TFC RO
89 membranes,^{18, 19} one may wonder if NF membranes with crumpled polyamide layers may
90 effectively enhance water permeance over their smooth counterparts to overcome the permeance
91 -selectivity tradeoff.


92

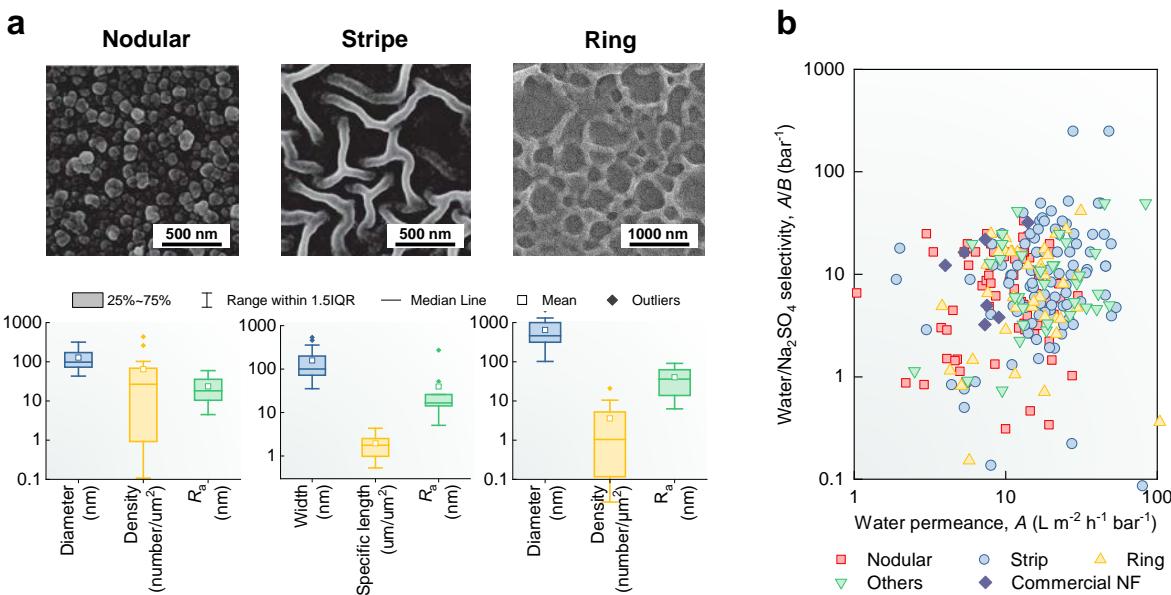
93 In recent years, PIP-based NF membranes with crumpled polyamide layers have received
94 considerable attention (Fig. 1b). Particularly followed by the seminal work of Turing structure in
95 *Science* in 2018,²⁹ the number of publications on crumpled NF membranes is rapidly growing.
96 Researchers have developed various methods to fabricate NF membranes with different surface
97 morphologies (Table S1), along with major enhancement of water permeance from ~10 to >20
98 LMH/bar, pushing the separation performance (e.g., water-Na₂SO₄ selectivity (A/B) vs. water
99 permeance (A)) towards the top right corner in the upper bound diagram (Fig. 1c). Despite such
100 promising progress in crumple NF membranes, a dedicated review on the formation of and
101 transport of this emerging type of membranes is not yet available. More importantly, the
102 underlying mechanisms (e.g., how the crumpled morphologies affect the transport of water and
103 solutes) have yet to be systematically examined. In addition, the related fouling behavior of
104 crumpled NF membranes has not been fully understood.

105

106 Therefore, to better facilitate the in-depth understanding of crumpled NF membranes, this critical
 107 review summarizes their recent progress, with particular emphasis on 1) a systematic framework
 108 to classify the crumpled NF morphologies, 2) fundamental mechanisms and fabrication methods
 109 involved in the formation of these crumpled morphologies, 3) transport mechanisms of water and
 110 solutes in crumpled NF membranes, and 4) fouling propensities of crumpled NF membranes.
 111 The critical insights and important design criteria gained in this review facilitate the development
 112 of more efficient environmental applications with high energy efficiency and/or better anti-
 113 fouling properties. This review also identifies the critical research gaps and research
 114 opportunities pertaining to the further development of crumpled NF membrane.

115

116


117 **Figure 1.** (a) Typical morphologies of polyamide layer of RO membrane (ESPA3, formed by
 118 MPD and TMC) and NF membrane (NF270, formed by PIP and TMC).³⁰ (b) Number of peer-
 119 reviewed publications on PIP-based NF membranes with crumpled morphologies (incomplete
 120 data for the Year 2022). (c) Water/Na₂SO₄ selectivity (A/B) vs. water permeance (A) for PIP-
 121 based NF membranes with crumpled morphologies (detailed data are provided in [Table S1](#)).

122 Open dots indicate conventional NF membranes with smooth polyamide layers, and closed dots
123 indicate novel NF membranes with crumpled polyamide layers; the data of crumpled NF are
124 color-mapped based on their published years. The scanning electron microscopy (SEM) images
125 were modified from the previous study³⁰ with copyright permission.

126

127 ■ CLASSIFICATION OF CRUMPLED MORPHOLOGIES, THEIR
128 FORMATION MECHANISMS, AND FABRICATION METHODS

129 Typical Crumpled Morphology of NF Membranes and Their Separation Performance

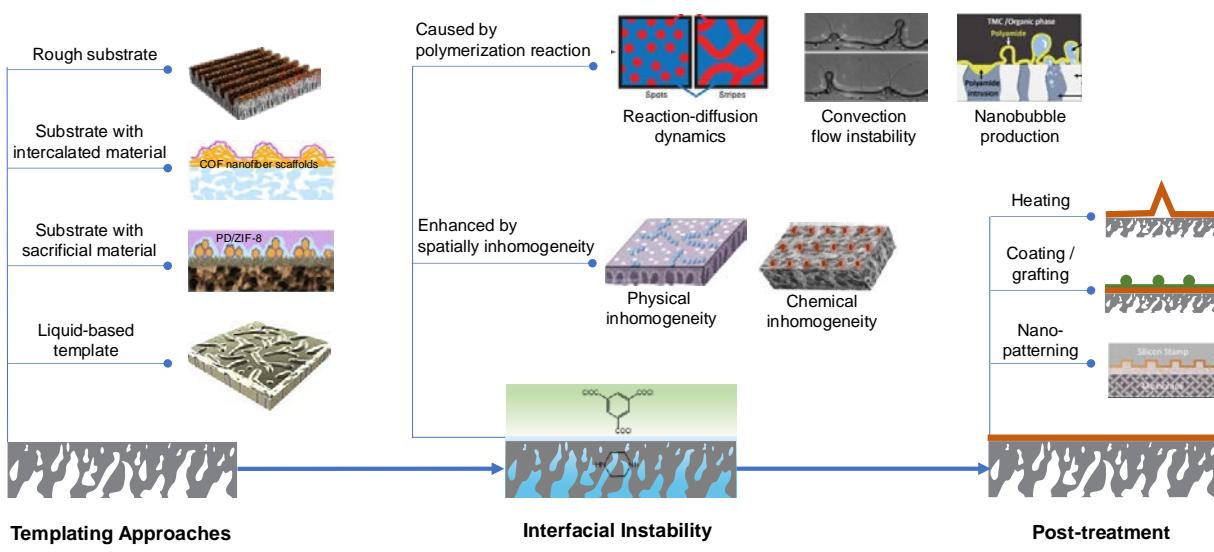
130

131 **Figure 2.** Classification of crumpled morphologies (a) and their corresponding separation
132 performances (b). Diameter, width, and density (number density for nodular and ring structures,
133 and specific length for stripe structure) of the morphologies were based on the statistics of the
134 SEM images of the previous studies (Table S3); Average roughness (R_a) was based on the atomic
135 force microscope (AFM) results of the previous studies. Separation performances of commercial

136 NF are provided in **Table S4**. The SEM images were modified from the previous studies^{29,31} with
137 copyright permission.

138

139 **Table S1** summarizes crumpled polyamide layers for PIP-based NF membranes reported in
140 previous studies. Specifically, nodular,^{29, 32} stripe,^{29, 33, 34} and ring^{31, 35-37} structures are the three
141 most common morphologies (**Fig. 2**). Other structures, such as fishnet-like and octopus sucker-
142 like structures,^{38, 39} are occasionally represented in some studies (**Fig. S1** provides the SEM
143 images of some examples). Among these morphologies, only the nodular structure is observed in
144 existing commercial membranes,⁴⁰ and other morphologies mostly exist in custom-fabricated
145 membranes in literature papers.


146

147 In terms of the nodular structure (**Fig. 2a**), its diameter is often in the range of 50 to 300 nm, with
148 a typical areal number density ranging from 5 to 300 per μm^2 . Based on a limited number of
149 TEM studies,^{29, 32, 41-45} the nodular generally has arc-shaped cross-sections, and the ratio of
150 height to diameter is mostly lower than 1. Possibly because of this low ratio, the average
151 roughness (R_a) obtained using atomic force microscopes (AFM) is often in the range of 10 to 50
152 nm. In terms of stripe structure, the width of the stripes generally ranges from 50 to 400 nm, and
153 the specific length (length/area) ranges from 500-5000 nm per μm . Like the nodular structure,
154 the stripe structures also have low heights,^{29, 46-49} which is also evidenced by the low R_a (5-50
155 nm). Some ring structures are possibly formed by the collapse of canopy structures or large
156 nodular structures.^{50, 51} Therefore, its diameter can reach several μm , while its density is much
157 lower than a typical nodular structure.

158

159 NF membranes with crumpled morphologies often exhibit better separation performance in terms
160 of water permeance and water/solute selectivity than commercially available NF membranes (Fig.
161 2b). Among the common morphologies, the stripe structure appears to be more promising
162 compared with nodular and ring structures. The associated transport mechanisms in crumpled NF
163 membranes will be further discussed under the section “Critical Analysis of Water and Solutes
164 Transport Mechanisms for Crumpled NF Membranes”.

165

166 **Figure 3** Formation of crumpled morphologies of polyamide layers. Templating approach,
167 interfacial instability regulating, and post-treatment could be used before, during, and after the
168 formation of polyamide layers, respectively. The images were modified from the previous
169 studies with copyright permission (rough substrate,⁵² substrate with intercalated material,⁵³
170 substrate with sacrificial material,⁵⁴ liquid-based template,⁵⁵ reaction-diffusion dynamics,²⁹
171 convection flow instability,⁵⁶ nanobubble production,²⁶ physical inhomogeneity,⁵⁷ nano-
172 patterning⁵⁸).

174 **Mechanisms and Fabrication Methods for Crumpled Morphology of Polyamide Layer**

175 The PIP-based polyamide layer on support substrates (e.g., polysulfone membrane) is generally
176 formed through interfacial polymerization of PIP and TMC monomers.^{15, 16, 19} During interfacial
177 polymerization, the substrate is first wetted by a PIP aqueous solution, then immersed in a TMC
178 organic solution. PIP and TMC can react at the aqueous/organic interface and form a polyamide
179 film on the substrate. Post-treatments, such as heating and drying, are often applied to stabilize
180 the polyamide film and further adjust its properties. Based on the protocols of interfacial
181 polymerization, the following strategies could be used to fabricate a crumpled polyamide layer
182 (Fig. 3): 1) using templating approaches to create a rough aqueous/organic interface for
183 interfacial polymerization, so that the formed polyamide film achieves a rough morphology
184 following the aqueous/organic interface; 2) regulating and intensifying the interfacial instability
185 during the reaction of interfacial polymerization; 3) post-processing the formed polyamide layer.

186

187 ***Templating Approaches.*** A rough templating substrate can directly lead to an uneven
188 aqueous/organic interface on the surface of the substrate. Considering the typical thickness of
189 tens of nm for PIP-based polyamide layers,⁵⁹⁻⁶¹ the feature size of the templating substrate should
190 be in the range of hundreds of nm to several μm to affect the formation of polyamide rejection
191 layers. While the typically used polysulfone substrate is relatively smooth,^{20, 62} a few strategies
192 are available to prepare a rough templating substrate. One strategy is patterned membranes.
193 Patterned membranes, often reported for fouling control,⁶³⁻⁶⁵ typically involve fabrication
194 methods such as phase separation micro-molding,^{66, 67} thermal embossing/nanoimprinting^{65, 68, 69},
195 and 3D printing.^{70, 71} Previous studies have constructed patterns such as grooved lines,^{64, 72, 73}
196 pillars,⁷⁴ prism,⁶⁶ pyramid⁷⁵ with dimensions ranging from tens of nm to hundreds of μm . These

197 patterned membranes, when used as substrates, are expected to create aqueous/organic interfaces
198 with regular/periodical morphological features. A second strategy involves the use of scaffolds
199 with rough surfaces, such as non-woven fabrics, stainless steel meshes,⁷⁶ and microfiltration
200 membranes with large pores.^{77, 78} Unlike a patterned substrate, these rough scaffolds usually have
201 an irregular surface morphology. One critical challenge involved in using rough substrates is the
202 increased risks of defect formation in the resulting polyamide rejection layers. For example, if
203 directly conducting interfacial polymerization on rough scaffolds with large pores, the
204 unsupported polyamide film formed over the macropores of the scaffolds is easily broken.^{79, 80}
205 This issue could be potentially addressed by plugging the macropores of the scaffolds with
206 materials of desirable mechanical strength, water permeance, and adhesion force with the
207 scaffold. Some examples include porous protein assemblies⁷⁸ and crosslinked polyvinyl alcohol
208 (PVA).⁷⁶ To achieve a crumpled polyamide layer over the templating substrate, another key
209 consideration is the fidelity of the rough morphology after the interfacial polymerization. Some
210 studies suggested that the fidelity could be improved by decreasing monomer concentrations⁷²
211 and using a layered interfacial polymerization technique.^{74, 81}

212
213 Even with a smooth substrate, one can deposit nanomaterials on its surface to create a rough
214 aqueous/organic interface. Previous studies have deposited nanoparticles^{57, 82-84} and nanofibers,⁵³
215 etc., on substrate surfaces. Common methods for nanomaterial deposition include vacuum
216 filtration,^{45, 54, 85, 86} spraying,^{87, 88} in-situ growth,^{47, 89-92} etc. An ideal deposition is a single layer
217 of nanomaterials with a suitable distance between the individual particles/fibers. The size of
218 nanomaterials may have a major influence: small sizes may minimize the change in
219 morphologies, while large sizes may heighten the risk of defects.⁸⁴ In general, hydrophilic

220 nanomaterials are recommended because they may induce the formation of nanochannels at the
221 interface between the nanomaterial surface and the polyamide matrix.⁹³ For the nanomaterial-
222 based templating approach, the key is to uniformly deposit nanomaterials without aggregation
223 and stacking.⁵⁷ In addition, because the nanomaterial is often water impermeable, the intercalated
224 materials may block the water flow through the resulting NF membrane, causing a compromise
225 in water permeance. The adoption of porous materials, such as porous silica particles,⁹⁴ metal-
226 organic frameworks,^{82, 85, 95} covalent organic frameworks,^{50, 96, 97} and molecular sieves,^{87, 98, 99}
227 may partially address this issue.

228

229 To minimize the impact of intercalated nanomaterials on the performance of NF, one can also
230 use sacrificial materials, such as dissolvable nanoparticles^{54, 100} and salt crystal^{101, 102}, which are
231 readily removed after interfacial polymerization (e.g., by dissolving in water or acid). The
232 removal of these sacrificial materials can create nanovoids in polyamide layers, which can
233 effectively improve the permeance of NF membranes. For example, etching copper nanoparticles
234 using 1% HNO₃ from a copper embedded NF membrane led to quadrupled water flux.¹⁰³

235

236 In addition to solid templates, liquid-based templates may also be used under appropriate
237 interfacial conditions.^{55, 104} For example, to achieve an aqueous template, one could first leave a
238 certain amount of water spread on the substrate surface by tuning rolling pressures and drying
239 conditions. Under specific interfacial tensions, which are adjusted by adding surfactant into
240 aqueous solution and using hydrophilic substrate (including surface-modified and interlayered
241 membrane), the remaining water may form an uneven aqueous/organic interface on the
242 substrate,^{55, 105, 106} resulting in a crumpled polyamide layer after interfacial polymerization.

243

244 **Interfacial Instability.** The interfacial polymerization reaction is inherently associated with
245 instability, which could be utilized to facilitate the formation of crumpled polyamide films. In
246 fact, the interfacial instability is the key to the “ridge-and-valley” morphology of MPD-based
247 polyamide layers.^{19, 107} Currently, the interfacial instability during interfacial polymerization is
248 mostly explained by the following three mechanisms:

249 1) Reaction-diffusion dynamics.^{29, 108, 109} As one of the most famous models of reaction-
250 diffusion dynamics, the activator-inhibitor model is often used to explain the formation of
251 patterns.¹¹⁰ In this model, the activator promotes the synthesis of itself and the inhibitor,
252 while the inhibitor restricts the production of the activator.¹¹⁰ If the diffusion speed of the
253 inhibitor is faster than that of the activator (“local activation and lateral inhibition” proposal),
254 periodic patterns such as spots and stripes (i.e., Turing patterns) may be formed. During the
255 reaction of interfacial polymerization, amine monomers in the aqueous phase firstly diffuse
256 to the organic phase and then react with acyl chloride monomers to form a polyamide film.¹⁹
257 The amine monomer can be regarded as the activator because its diffusion causes the reaction,
258 and the formed polyamide layer can be regarded as the inhibitor because of its self-limiting
259 effect.²⁹

260 2) Convection flow instability.^{56, 111} Interfacial polymerization causes the consumption of
261 monomers and the release of heat, leading to concentration and thermal gradients near the
262 aqueous/organic interface, consequently density gradients and spatially varied interfacial
263 tensions. The density gradient may cause Rayleigh–Bénard convection because gravity tries
264 to pull down the denser liquid.¹¹² The spatially varied interfacial tension may also lead to
265 Marangoni convection because the liquid tends to flow to the place of lower surface

266 tension.¹¹² During interfacial polymerization, these convection flows may result in a
267 fluctuating interface, which might be responsible for the formation of the crumpled
268 polyamide.

269 3) Nanobubble formation. Some recent literature suggested that the crumpled morphology of
270 polyamide layers could be formed by interfacial degassing.¹¹³⁻¹¹⁶ That is, the interfacial
271 reaction between amine and acyl chloride monomers could generate both heat and H⁺, which
272 favors the conversion of dissolved HCO₃⁻ in the aqueous phase (alkaline solution) to release
273 CO₂ nanobubbles. By the confinement of porous substrate, these nanobubbles tend to deliver
274 amine monomers to the reaction front due to the convection under a pressure gradient. In
275 addition, these degassed bubbles could be encapsulated by the nanofilm to tune the
276 polyamide morphology.

277

278 Based on these mechanisms, to enhance the interfacial instability, one could increase the
279 formation of polyamide (inhibitor), enhance thermal and concentration gradients, and/or
280 intensify heat and H⁺ release. Increasing the reaction rate can well-match these goals, e.g., by
281 adding acid acceptor,^{114, 117} increasing reaction temperature,^{31, 118} and adding other co-
282 monomers.¹¹⁹ One can also control the diffusion of PIP (activator) and change the interfacial
283 tension by adding chemicals such as PVA,²⁹ salts,^{120, 121} and surfactants^{34, 122} to the PIP solution,
284 and coating a hydrophilic gel layer on the substrate.¹²³

285

286 The interfacial instability of interfacial polymerization can be enhanced by the spatial
287 inhomogeneity of the reaction. Physical inhomogeneity (i.e., inhomogeneity in monomer storage)
288 of the reaction could be readily achieved using rough substrates (see the section “Templating

289 Approaches”). For example, the valleys of a rough surface may have more PIP monomer
290 storages, and consequently may lead to more violent reactions.^{26, 79, 124} Chemical inhomogeneity
291 could be achieved using a substrate with reactive spots,¹²⁵⁻¹²⁸ and the inhomogeneity may be
292 increased because of the reaction of TMC with these reactive spots. Many studies^{45, 46, 84, 106, 129,}
293 ¹³⁰ reported that the addition of nanomaterial in PIP solution could lead to a crumpled polyamide
294 layer. A possible explanation for this phenomenon is that these nanomaterials intensify the
295 inhomogeneity of the interfacial polymerization, both physically and chemically.^{96, 131, 132}

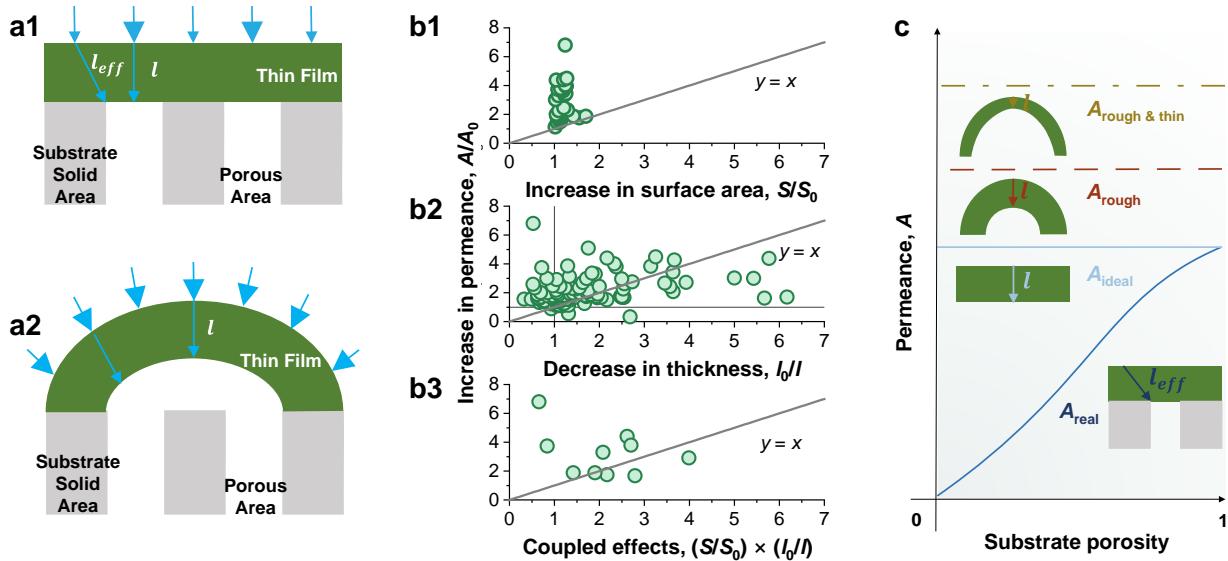
296

297 **Post-treatment.** Post-treatment is an important step in improving the stability and performance of
298 the NF membrane. Because the polyamide layer may have different thermal expansion and
299 contraction coefficients compared with the substrate, a heating post-treatment may lead to
300 delamination and buckling of the polyamide layer at the micro-/nano-scale,¹⁰⁸ resulting in a
301 rough morphology.^{133, 134} Additionally, surface coating and grafting sometimes cause a rough
302 morphology by adding an additional layer or changing the properties of polyamide layers.¹³⁵⁻¹³⁹
303 Patterning methods can also be used in the post-treatment of the polyamide layer. Because of the
304 thin thickness of the polyamide layer,⁵⁹⁻⁶¹ the dimension of the pattern is generally tens of nm,
305 and previous studies generally used nanoimprinting method.^{58, 68, 140, 141} After the nanoimprinting
306 of commercial NF membranes, their anti-fouling performances are significantly improved (see
307 the section “Critical Analysis of Fouling Propensities of Crumpled NF Membranes”).

308

309 Among the various strategies for the fabrication of crumpled NF membranes, templating
310 approaches can achieve the morphology of a polyamide layer similar to that of the templating
311 substrate, except that the aqueous and nanomaterials-based templating may lead to a stripe

312 morphology after the collapse of the polyamide layer.^{55, 84, 142} By regulating the interfacial
313 instability, the polyamide layer is most likely to form periodic nodular and stripes. With post-
314 processing, especially the patterning method, the polyamide morphology can be further
315 regularized and customized. Although most of the strategies are in the laboratory stage, some of
316 them show the potential for scale-up, with small changes to the existing processing line for
317 interfacial polymerization. For example, by adding a rinsing process to create a PVA interlayer
318 on the substrate, a pilot-scale production line for NF with periodic stripes was successfully
319 established.¹⁰⁵ Additionally, templating approach, interfacial instability regulating, and post-
320 processing are at different steps of the production line, and thus the three methods can be
321 combined to further improve the performance of NF.


322

323 ■ CRITICAL ANALYSIS OF WATER AND SOLUTES TRANSPORT 324 MECHANISMS FOR CRUMPLED NF MEMBRANES

325 Compared to their conventional (smooth) counterparts, TFC NF membranes with crumpled
326 morphologies could have many advantages, including enhanced water permeance and possibly
327 enhanced water/solute and solute/solute selectivity (Fig. 1). Therefore, this section critically
328 analyzes the underlying mechanisms responsible for the improved separation performance with
329 the assistance of conceptual models and literature surveys.

330 **Mechanisms Responsible for Enhanced Water Permeance with Crumpled Morphologies**

331 Several mechanisms can be applied to explain the enhanced water permeance of crumpled NF
332 membranes,^{29, 55, 113} such as an increased effective surface area for filtration, decreased thickness
333 of the polyamide layer, and optimized water transport pathways (Fig. 4).

336 **Figure 4.** Conceptual models (a) for elucidating the mechanisms of enhanced water permeance
 337 of crumpled TFC membranes, where l_{eff} is defined as the actual (effective) water transport
 338 pathways, and l is the intrinsic thickness of the polyamide rejection layer (i.e., the ideal water
 339 transport pathway). (b) Analysis of literature data of crumpled NF membranes in Table S1 with
 340 respect to the effect of surface area ratio (S/S_0), thickness reduction ratio (l_0/l), and their coupled
 341 effects [$(S/S_0) \times (l_0/l)$] on water permeance enhancement. The line of function $y = x$ was
 342 superimposed in each sub-figure. The conceptual model (c) further highlights the benefits of 1)
 343 altered transport path (A_{ideal}) with the increased substrate porosity; 2) increased surface area
 344 (A_{rough} , the superimposed red line); and 3) together with the reduced thickness of the crumpled
 345 polyamide layer ($A_{rough \& thin}$, the superimposed yellow line). Figures a and c were modified from
 346 the previous study²⁶ with copyright permission.

348 **Increased Surface Area of Polyamide Layers.** An intuitive understanding of a crumpled
 349 membrane is that the surface area for water transportation could be significantly enhanced. For

350 example, the striped membrane morphologies (assuming the half-cylinder shape), regardless of
351 the thickness of the polyamide rejection layer, could have the theoretical water permeance
352 enhancement factor of 1.57 (Fig. S2a). For a hemispherical shape of nodular morphology, the
353 theoretical membrane surface area enhancement factor could be two compared to a smooth
354 counterpart (Fig. S2b), potentially translating into doubled water permeance. Although the
355 current literature reports that the characteristic heights of crumpled morphologies are generally
356 low (Fig. 2), crumpled morphologies with higher characteristic heights could result in much
357 higher increases in surface area. However, crumpled morphologies with higher characteristic
358 heights may face the collapse of polyamide film.^{20, 55} Future studies need to explore such
359 phenomena to achieve a compromise between an enhanced surface area of polyamide and its
360 mechanical stability.

361

362 We further performed a comparison between membrane water permeance enhancement and
363 membrane surface area enhancement (characterized by AFM) based on a literature survey (Fig.
364 4b1). These results further corroborate the importance of the increased surface area of crumpled
365 polyamide layers in improving membrane water permeance. It is interesting to note that the
366 increase in membrane surface area alone is not enough to explain the significant flux
367 enhancement observed in the literature. In our analysis, most of the experimental data points are
368 above the theoretical line based on enhanced surface area (i.e., $y = x$), which implies that
369 additional mechanisms may also play important roles.^{29, 55, 113}

370

371 **Decreased Thickness of Polyamide Layers.** In addition to increased membrane surface area, the
372 formation of crumpled morphology is often accompanied by the reduced intrinsic thickness of

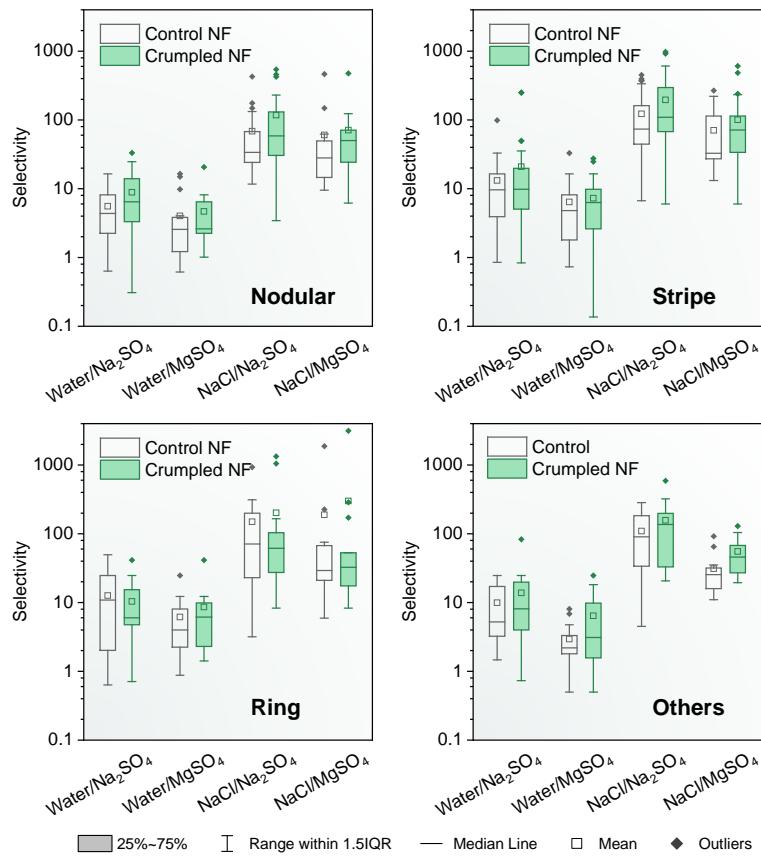
373 polyamide layers (Fig. 4b2),^{122, 143-149} which is possibly ascribed to the changes in interfacial
374 polymerization reaction (see the section “Interfacial Instability”) such as inhibited amine
375 monomer diffusion and facilitated polyamide film formation. This reduced thickness of the
376 rejection layer, in some cases up to ~ 6 times, also favors improved water permeance of
377 crumpled NF membranes (Fig. 4b2). Interestingly, the decreased polyamide thickness, often
378 accompanied by the enhanced surface area ratio, could have a synergistic effect on membrane
379 water permeance enhancement, which might explain the close to one order of magnitude
380 enhancement of water permeance for crumpled NF membranes (Fig. 4b3).

381

382 **Optimized Water Transport Pathways.** Compared to the mechanisms of enhanced surface area
383 and reduced thickness of polyamide layers, the mechanism of optimized water transport
384 pathways for crumpled NF membranes has been far less discussed in the literature. Indeed, for
385 the conventional TFC membranes, its separation performance can be severely constrained by the
386 funnel effect,^{26, 150-152} which is often ascribed to the low porosity of the substrate (typically below
387 10%).¹⁵³ As illustrated in Fig. 4a1, the water transport distance away from the substrate pore (l_{eff})
388 of conventional smooth TFC membrane is significantly greater than the thickness of its
389 polyamide rejection layer (l), resulting in significantly higher hydraulic resistance and hence
390 lower water permeance compared to a free-standing polyamide film (an ideal case). To overcome
391 the funnel effect, the crumpled polyamide layer of NF membranes, containing voids that span
392 over multiple substrate pores (Fig. 4a2), could potentially shorten the water transport distance in
393 the rejection layer (in a fashion similar to the inclusion of a high-permeance gutter layer^{151, 154,}
394 ¹⁵⁵). This effect, coined as the self-gutter effect by Tang and coworkers,⁹ can greatly reduce the

395 hydraulic resistance by effectively shortening the water transport pathways (close to the intrinsic
396 thickness of the rejection layer, [Fig. 4a2](#)).

397


398 To deepen the understanding of this mechanism, [Fig. 4c](#) presents the conceptual model of
399 optimized water transport pathways for improving water permeance. The dark blue line
400 represents the actual membrane water permeance (A_{real}), whereas the light blue line represents
401 the ideal water permeance (free-standing polyamide film, A_{ideal}), with the varying substrates
402 porosities. Due to the funnel effect, the actual water transport distance (l_{eff}) of a conventional
403 TFC NF membrane is significantly longer than the ideal transport distance (l) of a free-standing
404 polyamide film. With the lower substrate porosity, the funnel effect is more severe, resulting in
405 significantly lower water permeance. The crumpled polyamide morphologies, equivalent to the
406 effect of the increasing substrate porosity of a flat polyamide rejection layer, could significantly
407 improve membrane water permeance thanks to the greatly shortened water transport pathways,
408 which approach the ideal water permeance (light blue line). Alternatively, the effect of the
409 nanovoids within the crumpled polyamide rejection layer could be interpreted through their self-
410 gutter effect on shortening the transport path to approach the ideal water permeance.^{9,28} It is also
411 interesting to note that, as an added advantage, the altered water transport pathways tend to result
412 in more uniform flux distribution, which is beneficial to reducing fouling tendency by decreasing
413 the accumulation of foulants in the localized hot spot zone^{151, 156} (see the section “Crumpled
414 Polyamide Film and Local Flux”).

415

416 We further benchmark the theoretical water permeance of the rough NF membrane with an ideal
417 rejection layer (without the effect of substrate, superimposed in red color in [Fig. 4c](#)), which could

418 even successfully exceed the ideal water permeance of the smooth NF membrane due to the
 419 additional benefit of increased filtration area. In reality, a crumpled NF membrane could
 420 simultaneously achieve a reduced thickness of the polyamide layer in addition to optimized
 421 water transport pathways and increased surface areas (line in yellow color, [Fig. 4c](#)), resulting in
 422 the greatest water permeance thanks to these synergistic effects. Overall, our theoretical analysis
 423 is in good agreement with the literature results, where crumpled NF membranes showed up to an
 424 order of magnitude higher water permeance compared to the control. [96, 131, 157-160](#)

425 **Mechanisms Responsible for Enhanced Water/solute and/or Solute/solute Separation of**
 426 **Crumpled Morphologies**

427

428 **Figure 5.** Water/Na₂SO₄, water/MgSO₄, NaCl/Na₂SO₄, and NaCl/ MgSO₄ selectivity of the PIP-
429 based NF membranes with different crumpled morphologies. Detailed data of the box plots are
430 shown in [Table S2](#).

431

432 In addition to the water permeance enhancement, [Fig. 5](#) shows that some crumpled NF
433 membranes may offer enhanced water/solute and/or solute/solute selectivity (e.g., Water/Na₂SO₄,
434 Water/MgSO₄, NaCl/Na₂SO₄, and NaCl/MgSO₄) thanks to the fine-tuned physicochemical
435 properties of the crumpled polyamide layers. As discussed in the section “Interfacial Instability”,
436 the interfacial polymerization reaction rate could be greatly altered, which may further result in
437 changes in membrane crosslinking degree and sometimes the optimized membrane pore size
438 uniformity.^{37, 96, 117, 136, 137, 161, 162} For instance, Liang et al.³⁴ applied sodium dodecyl sulfate (SDS)
439 to manipulate the interfacial polymerization reaction between PIP and TMC, resulting in not only
440 crumpled polyamide morphologies with enhanced water permeance but also more uniform pore
441 size distribution. The resulting NF membrane showed enhanced selectivity towards a wide range
442 of solutes, including mono/di-valent ions and neutral solutes. Interestingly, due to its relatively
443 large pore size in the range of 1 – 2 nm,¹⁶³ the variation of pore size distribution is more effective
444 in enhancing the rejection of divalent ions (e.g., SO₄²⁻, Ba²⁺, and Ca²⁺) or other larger solutes
445 (e.g., glucose and sucrose), and less pronounced in enhancing the rejection of monovalent ions
446 (e.g., Li⁺, Na⁺, and K⁺),^{34, 125, 133, 164-168} and therefore improving its mono-/di-valent ions
447 selectivity (e.g., NaCl/Na₂SO₄ and NaCl/MgSO₄ selectivity in [Fig. 5](#)).

448

449 It is also interesting to note that crumpled NF membranes could also generate localized
450 turbulence to mitigate the localized concentration polarization effect,¹⁶⁹⁻¹⁷¹ which could

451 potentially enhance the water/solute and solute/solute selectivity. Indeed, compared to the
452 smooth counterparts, the crumpled/patterned polyamide films could enhance the localized mass
453 transfer to improve the back diffusion of solute to the bulk,¹⁶⁹ thereby alleviating the
454 concentration polarization and improving both membrane water flux and salt rejection.¹⁷⁰ For
455 example, by comparing the fouling and rejection capability of the crumpled NF membrane with
456 grooves-pattern in both parallel and perpendicular flow orientations, the reduced concentration
457 polarization was revealed.¹⁷¹ Nevertheless, a recent study conducted by Zhou et al.¹⁷² suggested
458 that crumpled morphology may increase the effect of concentration polarization effect, but this
459 increase was compensated by the reduced local flux due to the increase in filtration area. These
460 disparate observations might be partly attributed to the different roughness patterns involved,
461 which calls for more future studies. Although few studies focus on the solute/solute selectivity
462 induced by the mitigated concentration polarization effect of the crumpled membranes, different
463 diffusion coefficients of various ions (e.g., the diffusion coefficient of Na^+ is approximately
464 twice that of Ca^{2+}) could lead to different concentration polarization mitigation degrees (different
465 solutes rejection enhancement), which might result in the enhanced solute/solute selectivity.

466

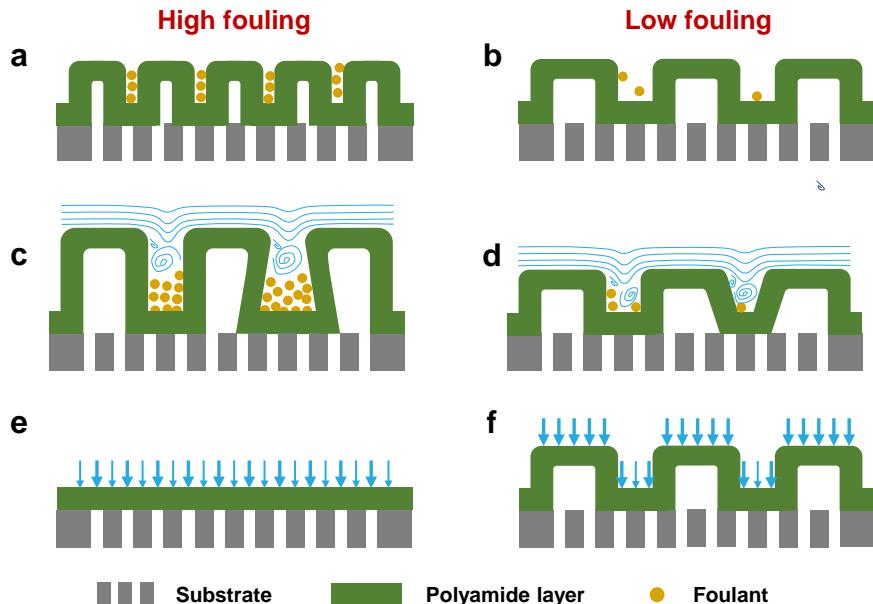
467 It should also be noted that some fabrication procedures of crumpled polyamide layer may
468 increase the risks of defect formation (e.g., templating approaches).^{98, 173, 174} Additionally, the
469 less-supported ridge of the crumpled layer may be vulnerable to external damage (e.g., high
470 pressure).^{55, 80} When defects are presented in a polyamide layer, although these defect spots can
471 increase water permeance, it is often very risky to result in reduced water/solute and solute/solute
472 selectivity. Future studies should make efforts to minimize defects in the polyamide layer during
473 the fabrication of crumpled NF membranes.

474

475 ■ CRITICAL ANALYSIS OF FOULING PROPENSITIES OF 476 CRUMPLED NF MEMBRANES

477 Membrane fouling is a major obstacle to NF applications. Fouling can cause severe flux losses
478 that need to be restored by physical/chemical cleaning. Fouling of NF membranes is often
479 associated with the deposition of organic substances and the formation of biofilm on membrane
480 surfaces,¹⁷⁵⁻¹⁷⁷ which can be greatly influenced by foulant-membrane interactions and
481 hydrodynamic conditions near the membrane surface.^{178, 179} A crumpled membrane surface can
482 affect both foulant-membrane interactions and hydrodynamic conditions, thus showing
483 significant impacts on membrane fouling.

484


485 **Surface Roughness and Foulant-membrane Interaction**

486 A crumpled surface increases the roughness of a membrane. In the context of RO, since modern
487 polyamide TFC RO membranes typically show a “ridge-and-valley” rough surface,^{20, 60} researchers have long been focusing on the relationship between roughness and fouling from the
488 perspective of foulant-membrane interaction. Elimelech and co-workers^{180, 181} found that a
489 polyamide membrane with high roughness had a more severe colloidal fouling (silica particles
490 with 0.1 μm in diameter), because the colloids were preferentially deposited in the valleys of the
491 membrane. In a follow-up paper, by analyzing the interaction between colloidal particles and
492 membrane surface using Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, these authors
493 attributed the preferential colloidal deposition to the lower repulsive energy barrier at the valleys
494 of the membrane surface.¹⁸² Similar conclusion was also obtained by Bowen et al.,¹⁸³ who found

496 much higher adhesion forces at the valleys of RO membranes using an AFM equipped with silica
497 colloidal probes (4.2 μm). These pioneering studies imply that surface roughness increases the
498 foulant-membrane interaction, especially in the valley region of a membrane, thereby increasing
499 membrane fouling.

500

501 However, some recent studies suggest that enhanced foulant-membrane interactions only occur
502 when the size/shape of the foulant and the valley are comparable (Fig. 6a). For example,
503 Chuning et al.¹⁷⁹ found that the attachment of *S. epidermidis* cells (grape-like shape, $\sim 1 \mu\text{m}$ in
504 diameter) increased when the polyamide membrane surface became rougher, while that of *E. coli*
505 cells (rod shape, $\sim 3 \mu\text{m}$ in length) decreased. The authors attributed this result to the slightly
506 smaller size of *S. epidermidis* than the size of valleys (0.5-3 μm), which enabled *S. epidermidis*
507 to be trapped in these valleys. When the size of foulants is much smaller than that of the valley,
508 the rough membrane “appears smooth” to such small-size foulant (Fig. 6b), and thus, the foulant-
509 membrane interaction may be hardly affected by the roughness.^{184, 185} Consistent with this, a
510 recent study demonstrated that surface roughness had limited influence on the bovine serum
511 albumin (BSA, $\sim 7 \text{ nm}$) fouling for TFC membranes with well-controlled roughness.¹⁸⁶ When the
512 size of foulants is larger than that of the valley, some studies suggested that the foulants-
513 membrane interaction may be reduced by the decreased contact area.^{74, 187, 188}

529 these patterns could effectively reduce colloidal fouling,^{75, 191} organic fouling,^{68, 192, 193} and
530 biofouling.^{66 74} Through particle tracking techniques and computational fluid dynamics (CFD)
531 modeling, several studies show that the ridges of the pattern have a higher shear stress^{75, 194} and
532 the valleys of the patterns can form vortices.¹⁹⁴⁻¹⁹⁶ As a result, a properly designed pattern can
533 create favorable hydrodynamic environments to effectively mitigate foulant deposition.

534

535 Several points should be noted for more effectively increasing local shear stress with the surface
536 patterns. First, hydraulic stagnant spots should be minimized. Surface patterns, while promoting
537 localized turbulences, may also introduce some stagnant spots, especially at the shaded corners
538 and deep valleys of crumpled surfaces (Fig. 6c). An important reason for the high fouling
539 tendency of rough polyamide TFC RO membrane is the existence of some stagnant regions in
540 their “ridge-and-valley” morphology.^{179, 181} Second, well-designed topographies and dimension
541 can achieve better anti-fouling properties.^{67, 197, 198} For example, it was experimentally
542 demonstrated that 45°-rotated pyramid patterns were more effective than pyramid and reverse-
543 pyramid patterns in reducing particle deposition.⁷⁵ The sharkskin-mimetic pattern has an
544 optimized space of 2 μm to mitigate biofouling^{185, 199} with the prevention of biofilm by the
545 enhancement of primary and secondary flow.^{81, 200} Third, flow characteristics have important
546 influences on the anti-fouling performance of patterns. In general, under a high crossflow
547 velocity, large patterns are more effective than small ones for controlling particle deposition.¹⁹⁶
548 Additionally, fouling rates are lower when the flow direction is perpendicular to the lines of
549 grooved patterns, while physical washes are more effective when the flow direction is parallel to
550 the pattern lines.^{191, 201} In addition to the well-defined patterns using the templating or post-
551 nanoimprinting method, other fabrication methods may lead to random surface morphologies, as

552 shown in Fig. 2, and the effect of these morphologies on the local shear stress needs to be further
553 investigated.

554

555 **Crumpled Polyamide Film and Local Flux**

556 It is well accepted that membrane fouling is promoted at a higher flux because of 1) higher
557 foulant loadings, 2) greater hydraulic drag on foulants, and 3) more severe concentration
558 polarization.^{178, 202} Membrane fouling rate is nearly zero when the flux is lower than a threshold
559 value (i.e., critical flux),²⁰³ and may exponentially increase with flux when it is higher than the
560 threshold value.²⁰⁴ In most scientific studies and practical applications, the generally mentioned
561 “flux” is the macroscopically observed average flux of membrane coupons or membrane
562 modules. However, the microscopic local flux, which is more closely related to fouling, could
563 vary at the different locations of membranes.¹⁵¹ For a membrane with non-uniform local flux,
564 although the low-local-flux region has lower fouling, the high-local-flux region has much higher
565 fouling due to the non-linear relationship between fouling rate and flux, and consequently the
566 higher overall fouling.²⁰⁵

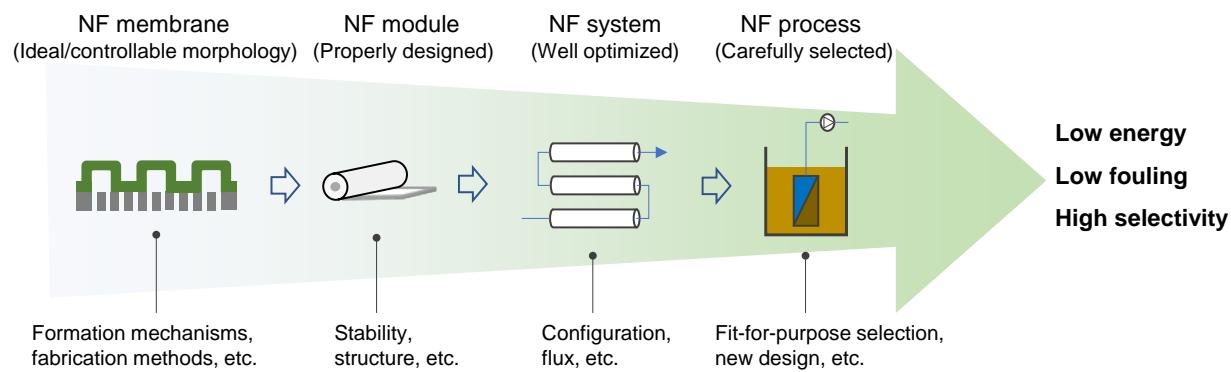
567

568 In a smooth polyamide layer, the hydraulic resistance is higher in the regions above substrate
569 walls (because of the longer water transport pathway, Fig. 4a1), and that is lower in the region
570 above the substrate pores.²⁰⁶ Consequently, typically smooth NF membranes tend to have high
571 non-uniformity of local flux, featuring much higher local flux over pore areas (Fig. 6e).^{151, 156}
572 Such non-uniform flux distribution could become even worse for substrates of lower porosities.
573 When the polyamide layer becomes crumpled, the total filtration area increases (Fig. 4b). More
574 importantly, the self-gutter effect leads to a more uniform local flux distribution (Fig. 6f), as

575 experimentally confirmed through tracer filtration tests (e.g., using golden nanoparticles).^{29, 151}
576 With the lower and more uniform local flux, membrane fouling can be greatly reduced. This
577 reason is regarded as the main driver for fouling reduction with crumpled membranes in some
578 studies,⁷³ because of the huge impact of flux on membrane fouling.

579
580 In short, although a smooth polyamide film generally has a low fouling propensity, a crumpled
581 polyamide film with well-designed morphologies could potentially out-perform its smooth
582 counterpart as a result of the associated antifouling mechanisms such as the enhancement of local
583 shear and the reduction of local flux. In addition to membrane fouling, inorganic scaling could
584 also be influenced by surface morphologies.^{207, 208} A rough surface often has a higher scaling
585 potential, possibly because of the favorable formation/deposition of scaling nuclei at the
586 valleys^{209, 210} and the enhanced concentration polarization at the hydraulic stagnant spots.^{172, 179}
587 However, similar to membrane fouling, membrane scaling may also be mitigated by a well-
588 designed crumpled morphology. For example, with a crumpled polyamide, the enhancement of
589 local shear and the reduction of local flux may promote the detachment of scaling nuclei and
590 crystals,^{207, 211} thereby inhibiting the development of scaling.

591
592 **■ ENVIRONMENTAL IMPLICATIONS AND RESEARCH OUTLOOK**


593 As we have discussed the formation, transport mechanisms, and fouling behavior of crumpled
594 NF membranes, we further propose that the ideal crumpled morphology of polyamide film
595 should possess 1) large surface areas (e.g., high aspect ratios of the surface roughness features)
596 and thin thickness for improving the theoretical water permeance, 2) high interconnectivity for
597 internal voids in the crumpled NF membranes (e.g., more optimized water transport pathways for

598 approaching the ideal water permeance and enhanced membrane anti-fouling properties), 3)
599 patterned or rough surface to create localized turbulence, and 4) excellent mechanical strength.
600 To achieve this ideal/controllable morphology, a better understanding of the mechanisms of the
601 formation of crumpled morphology is needed. Although some existing formation models shed
602 light on the mechanisms in generating crumpled polyamide layers, it is still a long way to
603 achieve a quantitative prediction to guide the fine-tuning of the detailed morphological features.
604 Furthermore, since the state-of-the-art separation performance of crumpled NF membranes
605 (mostly at bench scales) has been dramatically improved compared with the commercial
606 counterparts (Fig. 2), subsequent efforts should focus on their long-term stability and scale-up.

607
608 To scale up the crumpled NF, defect-free membranes with large areas should be first fabricated,
609 which need simple and controllable fabrication protocols.²¹² More importantly, with these highly
610 permeable NF membranes, researchers also need to focus on the better translation of high-
611 performance membranes to more efficient processes. For example, a recent study²¹³ highlighted
612 the high permeance NF membrane may not automatically guarantee low energy consumption,
613 nor does a highly selective membrane guarantee better permeate water quality. Therefore, one
614 needs to optimize the membrane module, system, and process to fully unleash the potential of
615 crumpled NF for simultaneously achieving low energy consumption, high product water quality,
616 and a better system flux distribution to avoid fouling issues (Fig. 7). For example, newly
617 designed spacers and flow channels to match crumpled morphologies, multi-stage inter-pumping
618 design or closed-circuit system,²¹⁴ and submerged NF membrane process.²¹⁵ In addition to water
619 permeance, membrane selectivity is also very important for target pollutant removal. Even
620 though crumpled NF membranes may exhibit enhanced selectivity for water/solute and

621 solute/solute, further studies are still needed to improve/tailor the selectivity for specific
622 applications.

623

624

625 **Figure 7.** Schematic diagrams of outlooks and future perspectives of crumpled NF membranes.

626 NF membranes with ideal/controllable morphologies are pursued with the better understanding
627 of morphology formation and the development of simple and controllable fabrication protocols.
628 Beyond membrane fabrication, researchers also need to optimize membrane modules, systems,
629 and processes to fully unleash the potential of crumpled NF for achieving low energy
630 consumption, low membrane fouling, and high selectivity.

631

632 **ACKNOWLEDGMENT**

633 This work was jointly supported by a grant from the Natural Science Foundation of China
634 (52070147) and a grant from the Research Grants Council of the Hong Kong Special
635 Administration Region, China (SRFS2021-7S04). Lu Elfa Peng is supported an RGC
636 Postdoctoral Fellowship from the Research Grants Council of the Hong Kong Special
637 Administration Region, China (PDFS2223-7S02).

638

639 **ASSOCIATED CONTENT**

640 **Support information**

641 Support information of this manuscript can be found online. The support information provides 1)
642 Examples of the polyamide layers with other morphologies; 2) increases in the surface area of
643 polyamide layers with simplified stripe and nodular morphologies; 3) classifications, fabrication
644 methods, and separation performances of the PIP-based NF membranes with crumpled
645 morphologies; 4) selectivity of the PIP-based NF membranes with crumpled morphologies; 5)
646 topographical features of the morphologies; and 6) separation performances of several
647 commercial PIP-based NF membranes.

648

649 **■ REFERENCES**

- 650 1. Boussu, K.; Van der Bruggen, B.; Volodin, A.; Van Haesendonck, C.; Delcour, J. A.; Van der
651 Meeren, P.; Vandecasteele, C., Characterization of commercial nanofiltration membranes and comparison
652 with self-made polyethersulfone membranes. *Desalination* **2006**, *191* (1), 245-253.
- 653 2. Mohammad, A. W.; Teow, Y. H.; Ang, W. L.; Chung, Y. T.; Oatley-Radcliffe, D. L.; Hilal, N.,
654 Nanofiltration membranes review: Recent advances and future prospects. *Desalination* **2015**, *356*, 226-
655 254.
- 656 3. Hao Guo, X. L., Wulin Yang, Zhikan Yao, Ying Mei, Lu Elfa Peng, Zhe Yang, Senlin Shao,
657 Chuyang Y. Tang, Nanofiltration for drinking water treatment: a review. *Front. Chem. Sci. Eng.* **2022**, *16*
658 (5), 1-18.
- 659 4. Tang, C. Y.; Yang, Z.; Guo, H.; Wen, J. J.; Nghiem, L. D.; Cornelissen, E., Potable Water Reuse
660 through Advanced Membrane Technology. *Environ. Sci. Technol.* **2018**, *52* (18), 10215-10223.
- 661 5. Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mayes, A. M.,
662 Science and technology for water purification in the coming decades. *Nature* **2008**, *452* (7185), 301-310.
- 663 6. Elimelech, M.; Phillip, W. A., The future of seawater desalination: energy, technology, and the
664 environment. *Science* **2011**, *333* (6043), 712-717.
- 665 7. Salehi, F., Current and future applications for nanofiltration technology in the food processing.
666 *Food and Bioproducts Processing* **2014**, *92* (2), 161-177.
- 667 8. Marchetti, P.; Jimenez Solomon, M. F.; Szekely, G.; Livingston, A. G., Molecular Separation
668 with Organic Solvent Nanofiltration: A Critical Review. *Chemical Reviews* **2014**, *114* (21), 10735-10806.
- 669 9. Yang, Z.; Sun, P.-F.; Li, X.; Gan, B.; Wang, L.; Song, X.; Park, H.-D.; Tang, C. Y., A Critical
670 Review on Thin-Film Nanocomposite Membranes with Interlayered Structure: Mechanisms, Recent
671 Developments, and Environmental Applications. *Environ. Sci. Technol.* **2020**, *54* (24), 15563-15583.

672 10. Werber, J. R.; Deshmukh, A.; Elimelech, M., The critical need for increased selectivity, not
673 increased water permeability, for desalination membranes. *Environ. Sci. Technol. Lett.* **2016**, *3* (4), 112-
674 120.

675 11. Park, H. B.; Kamcev, J.; Robeson, L. M.; Elimelech, M.; Freeman, B. D., Maximizing the right
676 stuff: The trade-off between membrane permeability and selectivity. *Science* **2017**, *356* (6343).

677 12. Ritt, C. L.; Stassin, T.; Davenport, D. M.; DuChanois, R. M.; Nulens, I.; Yang, Z.; Ben-Zvi,
678 A.; Segev-Mark, N.; Elimelech, M.; Tang, C. Y.; Ramon, G. Z.; Vankelecom, I. F. J.; Verbeke, R., The
679 open membrane database: Synthesis-structure-performance relationships of reverse osmosis membranes.
680 *J. Membr. Sci.* **2022**, *641*, 119927.

681 13. Yang, Z.; Guo, H.; Tang, C. Y., The upper bound of thin-film composite (TFC) polyamide
682 membranes for desalination. *J. Membr. Sci.* **2019**, *590*, 117297.

683 14. Yang, Z.; Long, L.; Wu, C.; Tang, C. Y., High Permeance or High Selectivity? Optimization of
684 System-Scale Nanofiltration Performance Constrained by the Upper Bound. *ACS ES&T Engineering*
685 **2022**, *2* (3), 377-390.

686 15. Lu, X.; Elimelech, M., Fabrication of desalination membranes by interfacial polymerization:
687 History, current efforts, and future directions. *Chemical Society Reviews* **2021**, *50* (11), 6290-6307.

688 16. Werber, J. R.; Osuji, C. O.; Elimelech, M., Materials for next-generation desalination and water
689 purification membranes. *Nature Reviews Materials* **2016**, *1*, 16018.

690 17. Petersen, R. J., Composite reverse osmosis and nanofiltration membranes. *J. Membr. Sci.* **1993**,
691 *83* (1), 81-150.

692 18. Culp, T. E.; Khara, B.; Brickey, K. P.; Geitner, M.; Zimudzi, T. J.; Wilbur, J. D.; Jons, S. D.;
693 Roy, A.; Paul, M.; Ganapathysubramanian, B.; Zydny, A. L.; Kumar, M.; Gomez, E. D., Nanoscale
694 control of internal inhomogeneity enhances water transport in desalination membranes. *Science* **2021**, *371*
695 (6524), 72-75.

696 19. Freger, V.; Ramon, G. Z., Polyamide desalination membranes: Formation, structure, and
697 properties. *Prog. Polym. Sci.* **2021**, *122*, 101451.

698 20. Song, X.; Gan, B.; Qi, S.; Guo, H.; Tang, C. Y.; Zhou, Y.; Gao, C., Intrinsic Nanoscale
699 Structure of Thin Film Composite Polyamide Membranes: Connectivity, Defects, and Structure-Property
700 Correlation. *Environ. Sci. Technol.* **2020**, *54* (6), 3559-3569.

701 21. Lin, L.; Lopez, R.; Ramon, G. Z.; Coronell, O., Investigating the void structure of the polyamide
702 active layers of thin-film composite membranes. *J. Membr. Sci.* **2016**, *497*, 365-376.

703 22. Pacheco, F.; Sougrat, R.; Reinhard, M.; Leckie, J. O.; Pinnau, I., 3D visualization of the internal
704 nanostructure of polyamide thin films in RO membranes. *J. Membr. Sci.* **2016**, *501*, 33-44.

705 23. Bason, S.; Oren, Y.; Freger, V., Characterization of ion transport in thin films using
706 electrochemical impedance spectroscopy: II: Examination of the polyamide layer of RO membranes. *J.*
707 *Membr. Sci.* **2007**, *302* (1), 10-19.

708 24. Song, X.; Smith, J. W.; Kim, J.; Zaluzec, N. J.; Chen, W.; An, H.; Dennison, J. M.; Cahill, D.
709 G.; Kulzick, M. A.; Chen, Q., Unraveling the Morphology-Function Relationships of Polyamide
710 Membranes Using Quantitative Electron Tomography. *ACS Applied Materials & Interfaces* **2019**, *11* (8),
711 8517-8526.

712 25. Mi, B.; Coronell, O.; Mariñas, B. J.; Watanabe, F.; Cahill, D. G.; Petrov, I., Physico-chemical
713 characterization of NF/RO membrane active layers by Rutherford backscattering spectrometry. *J. Membr.*
714 *Sci.* **2006**, *282* (1), 71-81.

715 26. Peng, L. E.; Yang, Z.; Long, L.; Zhou, S.; Guo, H.; Tang, C. Y., A critical review on porous
716 substrates of TFC polyamide membranes: Mechanisms, membrane performances, and future perspectives.
717 *J. Membr. Sci.* **2022**, *641*, 119871.

718 27. Mondal, S.; Griffiths, I. M.; Ramon, G. Z., Frontiers in structure-performance models of

719 separation membranes. *J. Membr. Sci.* **2019**, 588, 117166.

720 28. Peng, L. E.; Gan, Q.; Yang, Z.; Wang, L.; Sun, P.-F.; Guo, H.; Park, H.-D.; Tang, C. Y.,
721 Deciphering the Role of Amine Concentration on Polyamide Formation toward Enhanced RO
722 Performance. *ACS ES&T Engineering* **2022**, 2 (5), 903-912.

723 29. Tan, Z.; Chen, S.; Peng, X.; Zhang, L.; Gao, C., Polyamide membranes with nanoscale turing
724 structures for water purification. *Science* **2018**, 360 (6388), 518-521.

725 30. Pacheco, F. A.; Pinna, I.; Reinhard, M.; Leckie, J. O., Characterization of isolated polyamide
726 thin films of RO and NF membranes using novel TEM techniques. *J. Membr. Sci.* **2010**, 358 (1-2), 51-59.

727 31. Cheng, X.; Lai, C.; Li, J.; Zhou, W.; Zhu, X.; Wang, Z.; Ding, J.; Zhang, X.; Wu, D.; Liang,
728 H.; Zhao, C., Toward Enhancing Desalination and Heavy Metal Removal of TFC Nanofiltration
729 Membranes: A Cost-Effective Interface Temperature-Regulated Interfacial Polymerization. *ACS Applied
730 Materials & Interfaces* **2021**, 13 (48), 57998-58010.

731 32. Sun, Z.; Wu, Q.; Ye, C.; Wang, W.; Zheng, L.; Dong, F.; Yi, Z.; Xue, L.; Gao, C., Nanovoid
732 membranes embedded with hollow zwitterionic nanocapsules for a superior desalination performance.
733 *Nano Lett.* **2019**, 19 (5), 2953-2959.

734 33. Yuan, B.; Zhao, S.; Hu, P.; Cui, J.; Niu, Q. J., Asymmetric polyamide nanofilms with highly
735 ordered nanovoids for water purification. *Nat. Commun.* **2020**, 11 (1), 6102.

736 34. Liang, Y.; Zhu, Y.; Liu, C.; Lee, K.-R.; Hung, W.-S.; Wang, Z.; Li, Y.; Elimelech, M.; Jin, J.;
737 Lin, S., Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å
738 precision separation. *Nat. Commun.* **2020**, 11 (1), 2015.

739 35. Wang, F.; Zheng, T.; Wang, P.; Chen, M.; Wang, Z.; Jiang, H.; Ma, J., Enhanced Water
740 Permeability and Antifouling Property of Coffee-Ring-Textured Polyamide Membranes by In Situ
741 Incorporation of a Zwitterionic Metal-Organic Framework. *Environ. Sci. Technol.* **2021**, 55 (8), 5324-
742 5334.

743 36. Mansourpanah, Y.; Ghanbari, A.; Yazdani, H.; Mohammadi, A. G.; Rahimpour, A., Silver-
744 polyamidoamine/graphene oxide thin film nanofiltration membrane with improved antifouling and
745 antibacterial properties for water purification and desalination. *Desalination* **2021**, 511.

746 37. Ren, Y.; Zhu, J.; Cong, S.; Wang, J.; Van der Bruggen, B.; Liu, J.; Zhang, Y., High flux thin
747 film nanocomposite membranes based on porous organic polymers for nanofiltration. *J. Membr. Sci.*
748 **2019**, 585, 19-28.

749 38. Wang, Z.; Zhu, X.; Cheng, X.; Bai, L.; Luo, X.; Xu, D.; Ding, J.; Wang, J.; Li, G.; Shao, P.;
750 Liang, H., Nanofiltration Membranes with Octopus Arm-Sucker Surface Morphology: Filtration
751 Performance and Mechanism Investigation. *Environ. Sci. Technol.* **2021**.

752 39. Wang, Z.; Zhu, X.; Cheng, X.; Bai, L.; Luo, X.; Xu, D.; Ding, J.; Wang, J.; Li, G.; Shao, P.;
753 Liang, H., Nanofiltration Membranes with Octopus Arm-Sucker Surface Morphology: Filtration
754 Performance and Mechanism Investigation. *Environ. Sci. Technol.* **2021**, 55 (24), 16676-16686.

755 40. Gao, L.; Wang, H.; Zhang, Y.; Wang, M., Nanofiltration membrane characterization and
756 application: extracting lithium in lepidolite leaching solution. *Membranes* **2020**, 10 (8), 178.

757 41. Zheng, J.; Li, M.; Yu, K.; Hu, J.; Zhang, X.; Wang, L., Sulfonated multiwall carbon nanotubes
758 assisted thin-film nanocomposite membrane with enhanced water flux and anti-fouling property. *J.
759 Membr. Sci.* **2017**, 524, 344-353.

760 42. Tang, Y.; Zhang, L.; Shan, C.; Xu, L.; Yu, L.; Gao, H., Enhancing the permeance and
761 antifouling properties of thin-film composite nanofiltration membranes modified with hydrophilic
762 capsaicin-mimic moieties. *J. Membr. Sci.* **2020**, 610.

763 43. Hao, Y.; Li, Q.; He, B.; Liao, B.; Li, X.; Hu, M.; Ji, Y.; Cui, Z.; Younas, M.; Li, J., An
764 ultrahighly permeable-selective nanofiltration membrane mediated by an in situ formed interlayer. *J.
765 Mater. Chem. A* **2020**, 8 (10), 5275-5283.

766 44. Zhang, N.; Song, X.; Chen, Y.; Jiang, B.; Zhang, L.; Jiang, H., A facile and economic route
767 assisted by trace tannic acid to construct a high-performance thin film composite NF membrane for
768 desalination. *Environmental Science: Water Research & Technology* **2021**, 7 (5), 956-968.

769 45. Lai, G. S.; Lau, W. J.; Goh, P. S.; Ismail, A. F.; Tan, Y. H.; Chong, C. Y.; Krause-Rehberg, R.;
770 Awad, S., Tailor-made thin film nanocomposite membrane incorporated with graphene oxide using novel
771 interfacial polymerization technique for enhanced water separation. *Chemical Engineering Journal* **2018**,
772 344, 524-534.

773 46. Hu, R.; He, Y.; Zhang, C.; Zhang, R.; Li, J.; Zhu, H., Graphene oxide-embedded polyamide
774 nanofiltration membranes for selective ion separation. *J. Mater. Chem. A* **2017**, 5 (48), 25632-25640.

775 47. Song, Q.; Lin, Y.; Ueda, T.; Istriokhatun, T.; Shen, Q.; Guan, K.; Yoshioka, T.; Matsuyama,
776 H., Mechanism insights into the role of the support mineralization layer toward ultrathin polyamide
777 nanofilms for ultrafast molecular separation. *J. Mater. Chem. A* **2021**, 9 (46), 26159-26171.

778 48. Zhu, X.; Yang, Z.; Gan, Z.; Cheng, X.; Tang, X.; Luo, X.; Xu, D.; Li, G.; Liang, H., Toward
779 tailoring nanofiltration performance of thin-film composite membranes: Novel insights into the role of
780 poly(vinyl alcohol) coating positions. *J. Membr. Sci.* **2020**, 614.

781 49. Teng, X.; Fang, W.; Liang, Y.; Lin, S.; Lin, H.; Liu, S.; Wang, Z.; Zhu, Y.; Jin, J., High-
782 performance polyamide nanofiltration membrane with arch-bridge structure on a highly hydrated
783 cellulose nanofiber support. *Science China Materials* **2020**.

784 50. Han, S.; Mai, Z.; Wang, Z.; Zhang, X.; Zhu, J.; Shen, J.; Wang, J.; Wang, Y.; Zhang, Y., Covalent Organic Framework-Mediated Thin-Film Composite Polyamide Membranes toward Precise Ion
785 Sieving. *ACS Applied Materials & Interfaces* **2022**, 14 (2), 3427-3436.

786 51. Safarpour, M.; Vatanpour, V.; Khataee, A.; Esmaeili, M., Development of a novel high flux and
787 fouling-resistant thin film composite nanofiltration membrane by embedding reduced graphene
788 oxide/TiO₂. *Sep. Purif. Technol.* **2015**, 154, 96-107.

789 52. Asad, A.; Aktij, S. A.; Karami, P.; Sameoto, D.; Sadrzadeh, M., Micropatterned Thin-Film
790 Composite Poly(piperazine-amide) Nanofiltration Membranes for Wastewater Treatment. *ACS Applied
791 Polymer Materials* **2021**, 3 (12), 6653-6665.

792 53. Zhang, Z.; Shi, X.; Wang, R.; Xiao, A.; Wang, Y., Ultra-permeable polyamide membranes
793 harvested by covalent organic framework nanofiber scaffolds: a two-in-one strategy. *Chem. Sci.* **2019**, 10
794 (39), 9077-9083.

795 54. Wang, Z.; Wang, Z.; Lin, S.; Jin, H.; Gao, S.; Zhu, Y.; Jin, J., Nanoparticle-templated
796 nanofiltration membranes for ultrahigh performance desalination. *Nat. Commun.* **2018**, 9 (1), 2004.

797 55. Jiang, C.; Tian, L.; Zhai, Z.; Shen, Y.; Dong, W.; He, M.; Hou, Y.; Niu, Q. J., Thin-film
798 composite membranes with aqueous template-induced surface nanostructures for enhanced nanofiltration.
800 *J. Membr. Sci.* **2019**, 589, 117244.

801 56. Eckert, K.; Acker, M.; Tadmouri, R.; Pimienta, V., Chemo-Marangoni convection driven by an
802 interfacial reaction: Pattern formation and kinetics. *Chaos: An Interdisciplinary Journal of Nonlinear
803 Science* **2012**, 22 (3), 037112.

804 57. Qin, D.; Huang, G.; Terada, D.; Jiang, H.; Ito, M. M.; H. Gibbons, A.; Igarashi, R.;
805 Yamaguchi, D.; Shirakawa, M.; Sivaniah, E.; Ghalei, B., Nanodiamond mediated interfacial
806 polymerization for high performance nanofiltration membrane. *J. Membr. Sci.* **2020**, 603.

807 58. Weinman, S. T.; Fierce, E. M.; Husson, S. M., Nanopatterning commercial nanofiltration and
808 reverse osmosis membranes. *Sep. Purif. Technol.* **2019**, 209, 646-657.

809 59. Lin, L.; Feng, C.; Lopez, R.; Coronell, O., Identifying facile and accurate methods to measure
810 the thickness of the active layers of thin-film composite membranes – A comparison of seven
811 characterization techniques. *J. Membr. Sci.* **2016**, 498, 167-179.

812 60. Freger, V., Swelling and Morphology of the Skin Layer of Polyamide Composite Membranes: An

813 Atomic Force Microscopy Study. *Environ. Sci. Technol.* **2004**, *38* (11), 3168-3175.

814 61. Zhu, C.-Y.; Liu, C.; Yang, J.; Guo, B.-B.; Li, H.-N.; Xu, Z.-K., Polyamide nanofilms with
815 linearly-tunable thickness for high performance nanofiltration. *J. Membr. Sci.* **2021**, *627*.

816 62. Misdan, N.; Lau, W. J.; Ismail, A. F.; Matsuura, T., Formation of thin film composite
817 nanofiltration membrane: Effect of polysulfone substrate characteristics. *Desalination* **2013**, *329*, 9-18.

818 63. Barambu, N. U.; Bilad, M. R.; Wibisono, Y.; Jaafar, J.; Mahlia, T. M. I.; Khan, A. L.,
819 Membrane surface patterning as a fouling mitigation strategy in liquid filtration: A review. *Polymers*
820 **2019**, *11* (10), 1687.

821 64. Heinz, O.; Aghajani, M.; Greenberg, A. R.; Ding, Y., Surface-patterning of polymeric
822 membranes: fabrication and performance. *Current Opinion in Chemical Engineering* **2018**, *20*, 1-12.

823 65. Ding, Y.; Maruf, S.; Aghajani, M.; Greenberg, A. R., Surface patterning of polymeric
824 membranes and its effect on antifouling characteristics. *Separation Science and Technology* **2017**, *52* (2),
825 240-257.

826 66. Won, Y.-J.; Lee, J.; Choi, D.-C.; Chae, H. R.; Kim, I.; Lee, C.-H.; Kim, I.-C., Preparation and
827 Application of Patterned Membranes for Wastewater Treatment. *Environ. Sci. Technol.* **2012**, *46* (20),
828 11021-11027.

829 67. Ilyas, A.; Yihdego Gebreyohannes, A.; Qian, J.; Reynaerts, D.; Kuhn, S.; Vankelecom, I. F. J.,
830 Micro-patterned membranes prepared via modified phase inversion: Effect of modified interface on water
831 fluxes and organic fouling. *J. Colloid Interface Sci.* **2021**, *585*, 490-504.

832 68. Weinman, S. T.; Husson, S. M., Influence of chemical coating combined with nanopatterning on
833 alginic fouling during nanofiltration. *J. Membr. Sci.* **2016**, *513*, 146-154.

834 69. Malakian, A.; Zhou, Z.; Messick, L.; Spitzer, T. N.; Ladner, D. A.; Husson, S. M.,
835 Understanding the Role of Pattern Geometry on Nanofiltration Threshold Flux. *Membranes* **2020**, *10*
836 (12), 445.

837 70. Mazinani, S.; Al-Shimmery, A.; Chew, Y. M. J.; Mattia, D., 3D Printed Fouling-Resistant
838 Composite Membranes. *ACS Applied Materials & Interfaces* **2019**, *11* (29), 26373-26383.

839 71. Lyu, Z.; Ng, T. C. A.; Tran-Duc, T.; Lim, G. J. H.; Gu, Q.; Zhang, L.; Zhang, Z.; Ding, J.;
840 Phan-Thien, N.; Wang, J.; Ng, H. Y., 3D-printed surface-patterned ceramic membrane with enhanced
841 performance in crossflow filtration. *J. Membr. Sci.* **2020**, *606*, 118138.

842 72. Maruf, S. H.; Greenberg, A. R.; Ding, Y., Influence of substrate processing and interfacial
843 polymerization conditions on the surface topography and permselective properties of surface-patterned
844 thin-film composite membranes. *J. Membr. Sci.* **2016**, *512*, 50-60.

845 73. Gençal, Y.; Durmaz, E. N.; Çulfaz-Emecen, P. Z., Preparation of patterned microfiltration
846 membranes and their performance in crossflow yeast filtration. *J. Membr. Sci.* **2015**, *476*, 224-233.

847 74. Choi, W.; Chan, E. P.; Park, J.-H.; Ahn, W.-G.; Jung, H. W.; Hong, S.; Lee, J. S.; Han, J.-Y.;
848 Park, S.; Ko, D.-H.; Lee, J.-H., Nanoscale Pillar-Enhanced Tribological Surfaces as Antifouling
849 Membranes. *ACS Applied Materials & Interfaces* **2016**, *8* (45), 31433-31441.

850 75. Choi, D.-C.; Jung, S.-Y.; Won, Y.-J.; Jang, J. H.; Lee, J.-W.; Chae, H.-R.; Lim, J.; Ahn, K. H.;
851 Lee, S.; Kim, J.-H.; Park, P.-K.; Lee, C.-H., Effect of Pattern Shape on the Initial Deposition of Particles
852 in the Aqueous Phase on Patterned Membranes during Crossflow Filtration. *Environ. Sci. Technol. Lett.*
853 **2017**, *4* (2), 66-70.

854 76. Zhu, X.; Tang, X.; Luo, X.; Yang, Z.; Cheng, X.; Gan, Z.; Xu, D.; Li, G.; Liang, H., Stainless
855 steel mesh supported thin-film composite nanofiltration membranes for enhanced permeability and
856 regeneration potential. *J. Membr. Sci.* **2021**, *618*.

857 77. Liu, K.; Liu, N.; Ma, S.; Cheng, P.; Hu, W.; Jia, X.; Cheng, Q.; Xu, J.; Guo, Q.; Wang, D.,
858 Highly Permeable Polyamide Nanofiltration Membrane Mediated by an Upscalable Wet-Laid EVOH
859 Nanofibrous Scaffold. *ACS Applied Materials & Interfaces* **2021**, *13* (19), 23142-23152.

860 78. Gui, L.; Dong, J.; Fang, W.; Zhang, S.; Zhou, K.; Zhu, Y.; Zhang, Y.; Jin, J., Ultrafast Ion
861 Sieving from Honeycomb-like Polyamide Membranes Formed Using Porous Protein Assemblies. *Nano*
862 **Lett.** **2020**.

863 79. Peng, L. E.; Yao, Z.; Yang, Z.; Guo, H.; Tang, C. Y., Dissecting the Role of Substrate on the
864 Morphology and Separation Properties of Thin Film Composite Polyamide Membranes: Seeing Is
865 Believing. *Environ. Sci. Technol.* **2020**, *54* (11), 6978-6986.

866 80. Wu, M.-B.; Lv, Y.; Yang, H.-C.; Liu, L.-F.; Zhang, X.; Xu, Z.-K., Thin film composite
867 membranes combining carbon nanotube intermediate layer and microfiltration support for high
868 nanofiltration performances. *J. Membr. Sci.* **2016**, *515*, 238-244.

869 81. Choi, W.; Lee, C.; Yoo, C. H.; Shin, M. G.; Lee, G. W.; Kim, T.-S.; Jung, H. W.; Lee, J. S.;
870 Lee, J.-H., Structural tailoring of sharkskin-mimetic patterned reverse osmosis membranes for optimizing
871 biofouling resistance. *J. Membr. Sci.* **2020**, *595*, 117602.

872 82. Dai, R.; Wang, X.; Tang, C. Y.; Wang, Z., Dually Charged MOF-Based Thin-Film
873 Nanocomposite Nanofiltration Membrane for Enhanced Removal of Charged Pharmaceutically Active
874 Compounds. *Environ. Sci. Technol.* **2020**, *54* (12), 7619-7628.

875 83. Xu, D.; Zhu, X.; Luo, X.; Guo, Y.; Liu, Y.; Yang, L.; Tang, X.; Li, G.; Liang, H., MXene
876 Nanosheet Templated Nanofiltration Membranes toward Ultrahigh Water Transport. *Environ. Sci.*
877 *Technol.* **2021**, *55* (2), 1270-1278.

878 84. Gao, X.; Li, P.; Gu, Z.; Xiao, Q.; Yu, S.; Hou, L. a., Preparation of poly(piperazine-amide)
879 nanofilms with micro-wrinkled surface via nanoparticle-templated interfacial polymerization:
880 Performance and mechanism. *J. Membr. Sci.* **2021**, *638*.

881 85. Zhu, J.; Hou, J.; Yuan, S.; Zhao, Y.; Li, Y.; Zhang, R.; Tian, M.; Li, J.; Wang, J.; Van der
882 Bruggen, B., MOF-positioned polyamide membranes with a fishnet-like structure for elevated
883 nanofiltration performance. *J. Mater. Chem. A* **2019**, *7* (27), 16313-16322.

884 86. Wu, M.; Ma, T.; Su, Y.; Wu, H.; You, X.; Jiang, Z.; Kasher, R., Fabrication of composite
885 nanofiltration membrane by incorporating attapulgite nanorods during interfacial polymerization for high
886 water flux and antifouling property. *J. Membr. Sci.* **2017**, *544*, 79-87.

887 87. Kong, G.; Fan, L.; Zhao, L.; Feng, Y.; Cui, X.; Pang, J.; Guo, H.; Sun, H.; Kang, Z.; Sun,
888 D.; Mintova, S., Spray-dispersion of ultra-small EMT zeolite crystals in thin-film composite membrane
889 for high-permeability nanofiltration process. *J. Membr. Sci.* **2021**, *622*, 119045.

890 88. Lee, T. H.; Park, I.; Oh, J. Y.; Jang, J. K.; Park, H. B., Facile Preparation of Polyamide Thin-
891 Film Nanocomposite Membranes Using Spray-Assisted Nanofiller Predeposition. *Ind. Eng. Chem. Res*
892 **2019**, *58* (10), 4248-4256.

893 89. Yang, Z.; Wu, Y.; Wang, J.; Cao, B.; Tang, C. Y., In Situ Reduction of Silver by Polydopamine:
894 A Novel Antimicrobial Modification of a Thin-Film Composite Polyamide Membrane. *Environ. Sci.*
895 *Technol.* **2016**, *50* (17), 9543-50.

896 90. Zhang, Q.; Fan, L.; Yang, Z.; Zhang, R.; Liu, Y.-n.; He, M.; Su, Y.; Jiang, Z., Loose
897 nanofiltration membrane for dye/salt separation through interfacial polymerization with in-situ generated
898 TiO₂ nanoparticles. *Applied Surface Science* **2017**, *410*, 494-504.

899 91. Wu, X.; Yang, L.; Meng, F.; Shao, W.; Liu, X.; Li, M., ZIF-8-incorporated thin-film
900 nanocomposite (TFN) nanofiltration membranes: Importance of particle deposition methods on structure
901 and performance. *J. Membr. Sci.* **2021**, *632*.

902 92. Istirokhatun, T.; Lin, Y.; Wang, S.; Shen, Q.; Segawa, J.; Guan, K.; Matsuyama, H., Novel
903 thin-film composite membrane with ultrathin surface mineralization layer engineered by electrostatic
904 attraction induced In-situ assembling process for high-performance nanofiltration. *Chemical Engineering*
905 *Journal* **2021**, *417*.

906 93. Yang, Z.; Guo, H.; Yao, Z.-k.; Mei, Y.; Tang, C. Y., Hydrophilic Silver Nanoparticles Induce

907 Selective Nanochannels in Thin Film Nanocomposite Polyamide Membranes. *Environ. Sci. Technol.*
908 **2019**, *53* (9), 5301-5308.

909 94. Yin, J.; Yang, Z.; Tang, C. Y.; Deng, B., Probing the Contributions of Interior and Exterior
910 Channels of Nanofillers toward the Enhanced Separation Performance of a Thin-Film Nanocomposite
911 Reverse Osmosis Membrane. *Environ. Sci. Technol. Lett.* **2020**, *7* (10), 766-772.

912 95. Li, J.; Liu, R.; Zhu, J.; Li, X.; Yuan, S.; Tian, M.; Wang, J.; Luis, P.; der Bruggen, B. V.; Lin,
913 J., Electrophoretic nuclei assembly of MOFs in polyamide membranes for enhanced nanofiltration.
914 *Desalination* **2021**, *512*.

915 96. Khan, N. A.; Yuan, J.; Wu, H.; Huang, T.; You, X.; Rahman, A. U.; Azad, C. S.; Olson, M. A.;
916 Jiang, Z., Covalent Organic Framework Nanosheets as Reactive Fillers To Fabricate Free-Standing
917 Polyamide Membranes for Efficient Desalination. *ACS Applied Materials & Interfaces* **2020**, *12* (24),
918 27777-27785.

919 97. Xu, H.; Feng, W.; Sheng, M.; Yuan, Y.; Wang, B.; Wang, J.; Wang, Z., Covalent organic
920 frameworks-incorporated thin film composite membranes prepared by interfacial polymerization for
921 efficient CO₂ separation. *Chinese Journal of Chemical Engineering* **2022**, *43*, 152-160.

922 98. Dong, L.-x.; Huang, X.-c.; Wang, Z.; Yang, Z.; Wang, X.-m.; Tang, C. Y., A thin-film
923 nanocomposite nanofiltration membrane prepared on a support with in situ embedded zeolite
924 nanoparticles. *Sep. Purif. Technol.* **2016**, *166*, 230-239.

925 99. Borjigin, B.; Liu, I.; Yu, L.; Xu, L.; Zhao, C.; Wang, J., Influence of incorporating beta zeolite
926 nanoparticles on water permeability and ion selectivity of polyamide nanofiltration membranes. *Journal*
927 *of Environmental Sciences* **2020**, *98*, 77-84.

928 100. Han, S.; Wang, Z.; Cong, S.; Zhu, J.; Zhang, X.; Zhang, Y., Root-like polyamide membranes
929 with fast water transport for high-performance nanofiltration. *J. Mater. Chem. A* **2020**, *8* (47), 25028-
930 25034.

931 101. Lu, Y.; Wang, R.; Zhu, Y.; Wang, Z.; Fang, W.; Lin, S.; Jin, J., Two-dimensional fractal
932 nanocrystals templating for substantial performance enhancement of polyamide nanofiltration membrane.
933 *Proc. Natl. Acad. Sci.* **2021**, *118* (37).

934 102. Liu, Z.; Wang, T.; Wang, D.; Mi, Z., Regulating the morphology of nanofiltration membrane by
935 thermally induced inorganic salt crystals for efficient water purification. *J. Membr. Sci.* **2021**, *617*.

936 103. Yang, Z.; Huang, X.; Ma, X.-h.; Zhou, Z.-w.; Guo, H.; Yao, Z.; Feng, S.-P.; Tang, C. Y.,
937 Fabrication of a novel and green thin-film composite membrane containing nanovoids for water
938 purification. *J. Membr. Sci.* **2019**, *570-571*, 314-321.

939 104. Liang, Y.; Teng, X.; Chen, R.; Zhu, Y.; Jin, J.; Lin, S., Polyamide Nanofiltration Membranes
940 from Emulsion-Mediated Interfacial Polymerization. *ACS ES&T Engineering* **2021**, *1* (3), 533-542.

941 105. Zhu, X.; Cheng, X.; Luo, X.; Liu, Y.; Xu, D.; Tang, X.; Gan, Z.; Yang, L.; Li, G.; Liang, H.,
942 Ultrathin thin-film composite polyamide membranes constructed on hydrophilic poly(vinyl alcohol)
943 decorated support toward enhanced nanofiltration performance. *Environ. Sci. Technol.* **2020**, *54* (10),
944 6365-6374.

945 106. Bai, L.; Liu, Y.; Bossa, N.; Ding, A.; Ren, N.; Li, G.; Liang, H.; Wiesner, M. R., Incorporation
946 of cellulose nanocrystals (CNCs) into the polyamide layer of thin-film composite (TFC) nanofiltration
947 membranes for enhanced separation performance and antifouling properties. *Environ. Sci. Technol.* **2018**,
948 *52* (19), 11178-11187.

949 107. Wang, Z.; Liang, S.; Kang, Y.; Zhao, W.; Xia, Y.; Yang, J.; Wang, H.; Zhang, X., Manipulating
950 interfacial polymerization for polymeric nanofilms of composite separation membranes. *Prog. Polym. Sci.*
951 **2021**, *122*, 101450.

952 108. Rodriguez-Hernandez, J., Wrinkled interfaces: Taking advantage of surface instabilities to pattern
953 polymer surfaces. *Prog. Polym. Sci.* **2015**, *42*, 1-41.

954 109. Kondo, S.; Miura, T., Reaction-Diffusion Model as a Framework for Understanding Biological
955 Pattern Formation. *Science* **2010**, 329 (5999), 1616-1620.

956 110. Landge, A. N.; Jordan, B. M.; Diego, X.; Müller, P., Pattern formation mechanisms of self-
957 organizing reaction-diffusion systems. *Developmental Biology* **2020**, 460 (1), 2-11.

958 111. Li, B.; Japip, S.; Chung, T.-S., Molecularly tunable thin-film nanocomposite membranes with
959 enhanced molecular sieving for organic solvent forward osmosis. *Nat. Commun.* **2020**, 11 (1), 1198.

960 112. Oertel, H., *Prandtl's essentials of fluid mechanics*. Springer: 2004.

961 113. Ma, X.-H.; Yao, Z.-K.; Yang, Z.; Guo, H.; Xu, Z.-L.; Tang, C. Y.; Elimelech, M., Nanofoaming
962 of Polyamide Desalination Membranes To Tune Permeability and Selectivity. *Environ. Sci. Technol. Lett.*
963 **2018**, 5 (2), 123-130.

964 114. Peng, L. E.; Yao, Z.; Liu, X.; Deng, B.; Guo, H.; Tang, C. Y., Tailoring Polyamide Rejection
965 Layer with Aqueous Carbonate Chemistry for Enhanced Membrane Separation: Mechanistic Insights,
966 Chemistry-Structure-Property Relationship, and Environmental Implications. *Environ. Sci. Technol.* **2019**,
967 53 (16), 9764-9770.

968 115. Song, X.; Gan, B.; Yang, Z.; Tang, C. Y.; Gao, C., Confined nanobubbles shape the surface
969 roughness structures of thin film composite polyamide desalination membranes. *J. Membr. Sci.* **2019**, 582,
970 342-349.

971 116. Gan, Q.; Peng, L. E.; Guo, H.; Yang, Z.; Tang, C. Y., Cosolvent-Assisted Interfacial
972 Polymerization toward Regulating the Morphology and Performance of Polyamide Reverse Osmosis
973 Membranes: Increased m-Phenylenediamine Solubility or Enhanced Interfacial Vaporization? *Environ.*
974 *Sci. Technol.* **2022**, 56 (14), 10308-10316.

975 117. Zhu, X.; Tang, X.; Luo, X.; Cheng, X.; Xu, D.; Gan, Z.; Wang, W.; Bai, L.; Li, G.; Liang, H.,
976 Toward enhancing the separation and antifouling performance of thin-film composite nanofiltration
977 membranes: A novel carbonate-based preoccupation strategy. *J. Colloid Interface Sci.* **2020**, 571, 155-
978 165.

979 118. Liu, S.; Wu, C.; Hung, W.-S.; Lu, X.; Lee, K.-R., One-step constructed ultrathin Janus
980 polyamide nanofilms with opposite charges for highly efficient nanofiltration. *J. Mater. Chem. A* **2017**, 5
981 (44), 22988-22996.

982 119. He, Y.; Liu, J.; Han, G.; Chung, T.-S., Novel thin-film composite nanofiltration membranes
983 consisting of a zwitterionic co-polymer for selenium and arsenic removal. *J. Membr. Sci.* **2018**, 555, 299-
984 306.

985 120. Shen, L.; Cheng, R.; Yi, M.; Hung, W.-S.; Japip, S.; Tian, L.; Zhang, X.; Jiang, S.; Li, S.;
986 Wang, Y., Polyamide-based membranes with structural homogeneity for ultrafast molecular sieving. *Nat.*
987 *Commun.* **2022**, 13 (1), 500.

988 121. Zhang, X.; Yang, W.; Wang, Q.; Huang, F.; Gao, C.; Xue, L., Tuning the nano-porosity and
989 nano-morphology of nano-filtration (NF) membranes: Divalent metal nitrates modulated inter-facial
990 polymerization. *J. Membr. Sci.* **2021**, 640.

991 122. Wu, B.; Wang, N.; Lei, J.-H.; Shen, Y.; An, Q.-F., Intensification of mass transfer for
992 zwitterionic amine monomers in interfacial polymerization to fabricate monovalent salt/antibiotics
993 separation membrane. *J. Membr. Sci.* **2022**, 643, 120050.

994 123. Wang, M.; Stafford, C. M.; Cox, L. M.; Blevins, A. K.; Aghajani, M.; Killgore, J. P.; Ding, Y.,
995 Controlled Growth of Polyamide Films atop Homogenous and Heterogeneous Hydrogels using Gel-
996 Liquid Interfacial Polymerization. *Macromol Chem Phys* **2019**, 220.

997 124. Ghosh, A. K.; Hoek, E. M., Impacts of support membrane structure and chemistry on polyamide-
998 polysulfone interfacial composite membranes. *J. Membr. Sci.* **2009**, 336 (1-2), 140-148.

999 125. Yao, Z.; Guo, H.; Yang, Z.; Qing, W.; Tang, C. Y., Preparation of nanocavity-contained thin film
1000 composite nanofiltration membranes with enhanced permeability and divalent to monovalent ion

1001 selectivity. *Desalination* **2018**, *445*, 115-122.

1002 126. Ji, X.; Li, G.; Chen, G.; Qian, Y.; Jin, H.; Yao, Z.; Zhang, L., Aminated substrate based thin
1003 film composite nanofiltration membrane with high separation performance by chemically inhibiting the
1004 intrusion of polyamide. *Desalination* **2022**, *532*, 115724.

1005 127. Pan, K.; Gu, H.; Cao, B., Interfacially polymerized thin-film composite membrane on UV-
1006 induced surface hydrophilic-modified polypropylene support for nanofiltration. *Polymer Bulletin* **2014**, *71*
1007 (2), 415-431.

1008 128. Yao, Z.; Guo, H.; Yang, Z.; Lin, C.; Zhu, B.; Dong, Y.; Tang, C. Y., Reactable substrate
1009 participating interfacial polymerization for thin film composite membranes with enhanced salt rejection
1010 performance. *Desalination* **2018**, *436*, 1-7.

1011 129. Zhu, J.; Qin, L.; Uliana, A.; Hou, J.; Wang, J.; Zhang, Y.; Li, X.; Yuan, S.; Li, J.; Tian, M.;
1012 Lin, J.; Van der Bruggen, B., Elevated performance of thin film nanocomposite membranes enabled by
1013 modified hydrophilic MOFs for nanofiltration. *ACS Applied Materials & Interfaces* **2017**, *9* (2), 1975-
1014 1986.

1015 130. Chen, X.; Wang, W.; Zhu, L.; Liu, C.; Cui, F.; Li, N.; Zhang, B., Graphene Oxide/Polyamide-
1016 Based Nanofiltration Membranes for Water Purification. *ACS Applied Nano Materials* **2020**, *4* (1), 673-
1017 682.

1018 131. Xu, S.; Li, S.; Guo, X.; Huang, H.; Qiao, Z.; Zhong, C., Co-assembly of soluble metal-organic
1019 polyhedrons for high-flux thin-film nanocomposite membranes. *J. Colloid Interface Sci.* **2022**, *615*, 10-
1020 18.

1021 132. Sun, F.; Zeng, H.; Tao, S.; Huang, Y.; Dong, W.; Xing, D. Y., Nanofiltration membrane
1022 fabrication by the introduction of polyhedral oligomeric silsesquioxane nanoparticles: Feasibility
1023 evaluation and the mechanisms for breaking “trade-off” effect. *Desalination* **2022**, *527*, 115515.

1024 133. Zhan, Z.-M.; Xu, Z.-L.; Zhu, K.-K.; Xue, S.-M.; Ji, C.-H.; Huang, B.-Q.; Tang, C. Y.; Tang,
1025 Y.-J., Superior nanofiltration membranes with gradient cross-linked selective layer fabricated via
1026 controlled hydrolysis. *J. Membr. Sci.* **2020**, *604*.

1027 134. Zhan, Z.-M.; Xu, Z.-L.; Zhu, K.-K.; Tang, Y.-J., How to understand the effects of heat curing
1028 conditions on the morphology and performance of polypiperazine-amide NF membrane. *J. Membr. Sci.*
1029 **2020**, *597*, 117640.

1030 135. Zhan, Z.-M.; Zhang, X.; Fang, Y.-X.; Tang, Y.-J.; Zhu, K.-K.; Ma, X.-H.; Xu, Z.-L., Polyamide
1031 Nanofiltration Membranes with Enhanced Desalination and Antifouling Performance Enabled by Surface
1032 Grafting Polyquaternium-7. *Ind. Eng. Chem. Res* **2021**, *60* (39), 14297-14306.

1033 136. Huang, B.-Q.; Tang, Y.-J.; Gao, A.-R.; Zeng, Z.-X.; Xue, S.-M.; Ji, C.-H.; Tang, C. Y.; Xu, Z.-
1034 L., Dually charged polyamide nanofiltration membranes fabricated by microwave-assisted grafting for
1035 heavy metals removal. *J. Membr. Sci.* **2021**, *640*.

1036 137. Huang, B. Q.; Tang, Y. J.; Zeng, Z. X.; Xue, S. M.; Ji, C. H.; Xu, Z. L., High-Performance
1037 Zwitterionic Nanofiltration Membranes Fabricated via Microwave-Assisted Grafting of Betaine. *ACS*
1038 *Applied Materials & Interfaces* **2020**, *12* (31), 35523-35531.

1039 138. Zhu, X.; Xu, D.; Gan, Z.; Luo, X.; Tang, X.; Cheng, X.; Bai, L.; Li, G.; Liang, H., Improving
1040 chlorine resistance and separation performance of thin-film composite nanofiltration membranes with in-
1041 situ grafted melamine. *Desalination* **2020**, *489*.

1042 139. Chiao, Y. H.; Patra, T.; Ang, M.; Chen, S. T.; Almodovar, J.; Qian, X.; Wickramasinghe, R.;
1043 Hung, W. S.; Huang, S. H.; Chang, Y.; Lai, J. Y., Zwitterion Co-Polymer PEI-SBMA Nanofiltration
1044 Membrane Modified by Fast Second Interfacial Polymerization. *Polymers (Basel)* **2020**, *12* (2).

1045 140. Shang, C.; Wang, L.; Xia, J.; Zhang, S., Macropatterning of Microcrumpled Nanofiltration
1046 Membranes by Spacer Imprinting for Low-Scaling Desalination. *Environ. Sci. Technol.* **2020**, *54* (23),
1047 15527-15533.

1048 141. Malakian, A.; Husson, S. M., Understanding the roles of patterning and foulant chemistry on
1049 nanofiltration threshold flux. *J. Membr. Sci.* **2020**, 597, 117746.

1050 142. Jiang, C.; Zhang, L.; Li, P.; Sun, H.; Hou, Y.; Niu, Q. J., Ultrathin Film Composite Membranes
1051 Fabricated by Novel In Situ Free Interfacial Polymerization for Desalination. *ACS Applied Materials &*
1052 *Interfaces* **2020**, 12 (22), 25304-25315.

1053 143. Wu, Q.; Zhang, S.; Zuo, X.; Liu, L.; Xiong, J.; He, J.; Zhou, Y.; Ma, C.; Chen, Z.; Yu, S.,
1054 Preparation and characterization of CeO₂@high silica ZSM-5 inorganic-organic hybrid polyamide
1055 nanofiltration membrane. *J. Membr. Sci.* **2022**, 641.

1056 144. Wang, Y.; Wang, T.; Li, S.; Zhao, Z.; Zheng, X.; Zhang, L.; Zhao, Z., Novel
1057 Poly(piperazinamide)/poly(m-phenylene isophthalamide) composite nanofiltration membrane with
1058 polydopamine coated silica as an interlayer for the splendid performance. *Sep. Purif. Technol.* **2022**, 285,
1059 120390.

1060 145. Lan, H.; Zhai, Y.; Chen, K.; Zhai, Z.; Jiang, C.; Li, P.; Hou, Y.; Jason Niu, Q., Fabrication of
1061 high performance nanofiltration membrane by construction of Noria based nanoparticles interlayer. *Sep.*
1062 *Purif. Technol.* **2022**, 290, 120781.

1063 146. Zhu, X.; Zhang, X.; Li, J.; Luo, X.; Xu, D.; Wu, D.; Wang, W.; Cheng, X.; Li, G.; Liang, H.,
1064 Crumple-textured polyamide membranes via MXene nanosheet-regulated interfacial polymerization for
1065 enhanced nanofiltration performance. *J. Membr. Sci.* **2021**, 635.

1066 147. Zhao, S.; Li, L.; Wang, M.; Tao, L.; Hou, Y.; Niu, Q. J., Rapid in-situ covalent crosslinking to
1067 construct a novel azo-based interlayer for high-performance nanofiltration membrane. *Sep. Purif. Technol.*
1068 **2021**, 258.

1069 148. You, X.; Xiao, K.; Wu, H.; Li, Y.; Li, R.; Yuan, J.; Zhang, R.; Zhang, Z.; Liang, X.; Shen, J.;
1070 Jiang, Z., Electrostatic-modulated interfacial polymerization toward ultra-permselective nanofiltration
1071 membranes. *iScience* **2021**, 24 (4), 102369.

1072 149. Yang, Z.; Li, L.; Jiang, C.; Zhao, N.; Zhang, S.; Guo, Y.; Chen, Y.; Xue, S.; Ji, C.; Zhao, S.;
1073 Gonzales, R. R.; Matsuyama, H.; Xia, J.; Niu, Q. J., Tailored thin film nanocomposite membrane
1074 incorporated with Noria for simultaneously overcoming the permeability-selectivity trade-off and the
1075 membrane fouling in nanofiltration process. *J. Membr. Sci.* **2021**, 640.

1076 150. Lonsdale, H.; Riley, R.; Lyons, C.; Carosella, D., Transport in composite reverse osmosis
1077 membranes. In *Membrane Processes in Industry and Biomedicine*, Springer: 1971; pp 101-122.

1078 151. Long, L.; Wu, C.; Yang, Z.; Tang, C. Y., Carbon Nanotube Interlayer Enhances Water Permeance
1079 and Antifouling Performance of Nanofiltration Membranes: Mechanisms and Experimental Evidence.
1080 *Environ. Sci. Technol.* **2022**, 56 (4), 2656-2664.

1081 152. Wang, F.; Yang, Z.; Tang, C. Y., Modelling water transport in interlayered thin-film
1082 nanocomposite membranes: gutter effect vs. funnel effect. *ACS ES&T Engineering* **2022**, in press.

1083 153. Ramon, G. Z.; Wong, M. C.; Hoek, E. M., Transport through composite membrane, part 1: Is
1084 there an optimal support membrane? *J. Membr. Sci.* **2012**, 415, 298-305.

1085 154. Wijmans, J.; Hao, P., Influence of the porous support on diffusion in composite membranes. *J.*
1086 *Membr. Sci.* **2015**, 494, 78-85.

1087 155. Kattula, M.; Ponnuru, K.; Zhu, L.; Jia, W.; Lin, H.; Furlani, E. P., Designing ultrathin film
1088 composite membranes: The impact of a gutter layer. *Scientific reports* **2015**, 5 (1), 1-9.

1089 156. Ramon, G. Z.; Hoek, E. M. V., Transport through composite membranes, part 2: Impacts of
1090 roughness on permeability and fouling. *J. Membr. Sci.* **2013**, 425-426, 141-148.

1091 157. Zhai, Z.; Jiang, C.; Zhao, N.; Dong, W.; Lan, H.; Wang, M.; Niu, Q. J., Fabrication of
1092 advanced nanofiltration membranes with nanostrand hybrid morphology mediated by ultrafast Noria-
1093 polyethyleneimine codeposition. *J. Mater. Chem. A* **2018**, 6 (42), 21207-21215.

1094 158. Hu, R.; Zhang, R.; He, Y.; Zhao, G.; Zhu, H., Graphene oxide-in-polymer nanofiltration

1095 membranes with enhanced permeability by interfacial polymerization. *J. Membr. Sci.* **2018**, *564*, 813-819.

1096 159. Casanova, S.; Liu, T.-Y.; Chew, Y.-M. J.; Livingston, A.; Mattia, D., High flux thin-film
1097 nanocomposites with embedded boron nitride nanotubes for nanofiltration. *J. Membr. Sci.* **2020**, *597*.

1098 160. Ormanci-Acar, T.; Tas, C. E.; Keskin, B.; Ozbulut, E. B. S.; Turken, T.; Imer, D.; Tufekci, N.;
1099 Menceloglu, Y. Z.; Unal, S.; Koyuncu, I., Thin-film composite nanofiltration membranes with high flux
1100 and dye rejection fabricated from disulfonated diamine monomer. *J. Membr. Sci.* **2020**, *608*.

1101 161. Zhang, R.; Zhu, Y.; Zhang, L.; Lu, Y.; Yang, Z.; Zhang, Y.; Jin, J., Polyamide Nanofiltration
1102 Membranes from Surfactant - Assembly Regulated Interfacial Polymerization: The Effect of Alkyl Chain.
1103 *Macromolecular Chemistry and Physics* **2021**, *222* (20).

1104 162. Yang, S.; Jiang, Q.; Zhang, K., Few-layers 2D O-MoS₂ TFN nanofiltration membranes for
1105 future desalination. *J. Membr. Sci.* **2020**, *604*, 118052.

1106 163. Yang, Z.; Wu, Y.; Guo, H.; Ma, X.-H.; Lin, C.-E.; Zhou, Y.; Cao, B.; Zhu, B.-K.; Shih, K.;
1107 Tang, C. Y., A novel thin-film nano-templated composite membrane with in situ silver nanoparticles
1108 loading: Separation performance enhancement and implications. *J. Membr. Sci.* **2017**, *544*, 351-358.

1109 164. Xu, S.; Lin, H.; Li, G.; Wang, J.; Han, Q.; Liu, F., Anionic covalent organic framework as an
1110 interlayer to fabricate negatively charged polyamide composite nanofiltration membrane featuring ions
1111 sieving. *Chemical Engineering Journal* **2022**, *427*.

1112 165. Xia, D.; Zhang, M.; Tong, C.; Wang, Z.; Liu, H.; Zhu, L., In-situ incorporating zwitterionic
1113 nanocellulose into polyamide nanofiltration membrane towards excellent perm-selectivity and antifouling
1114 performances. *Desalination* **2022**, *521*.

1115 166. Wang, Y.; Xu, H.; Ding, M.; Zhang, L.; Chen, G.; Fu, J.; Wang, A.; Chen, J.; Liu, B.; Yang,
1116 W., MXene-regulation polyamide membrane featuring with bubble-like nodule for efficient dye/salt
1117 separation and antifouling performance. *RSC Advances* **2022**, *12* (17), 10267-10279.

1118 167. Ji, C.; Lin, C.-W.; Zhang, S.; Guo, Y.; Yang, Z.; Hu, W.; Xue, S.; Niu, Q. J.; Kaner, R. B.,
1119 Ultrapermeable nanofiltration membranes with tunable selectivity fabricated with polyaniline nanofibers.
1120 *J. Mater. Chem. A* **2022**, *10* (8), 4392-4401.

1121 168. Lin, B.; Tan, H.; Liu, W.; Gao, C.; Pan, Q., Preparation of a novel zwitterionic striped surface
1122 thin-film composite nanofiltration membrane with excellent salt separation performance and antifouling
1123 property. *RSC Advances* **2020**, *10* (27), 16168-16178.

1124 169. Shang, W.; Sun, F.; Jia, W.; Guo, J.; Yin, S.; Wong, P. W.; An, A. K., High-performance
1125 nanofiltration membrane structured with enhanced stripe nano-morphology. *J. Membr. Sci.* **2020**, *600*,
1126 117852.

1127 170. Maruf, S. H.; Greenberg, A. R.; Pellegrino, J.; Ding, Y., Fabrication and characterization of a
1128 surface-patterned thin film composite membrane. *J. Membr. Sci.* **2014**, *452*, 11-19.

1129 171. ElSherbiny, I. M. A.; Khalil, A. S. G.; Ulbricht, M., Surface micro-patterning as a promising
1130 platform towards novel polyamide thin-film composite membranes of superior performance. *J. Membr.
1131 Sci.* **2017**, *529*, 11-22.

1132 172. Zhou, Z.; Ling, B.; Battiato, I.; Husson, S. M.; Ladner, D. A., Concentration polarization over
1133 reverse osmosis membranes with engineered surface features. *J. Membr. Sci.* **2021**, *617*, 118199.

1134 173. Li, H.; Shi, W.; Zhang, Y.; Du, Q.; Qin, X.; Su, Y., Improved performance of poly(piperazine
1135 amide) composite nanofiltration membranes by adding aluminum hydroxide nanospheres. *Sep. Purif.
1136 Technol.* **2016**, *166*, 240-251.

1137 174. Yang, W.; Zhu, Y.; Sun, Z.; Gao, C.; Xue, L., Self - Sealed Polyamide (PA)/Zinc Imidazole
1138 Framework (ZIF) Thin Film Nanocomposite (TFN) Nanofiltration Membranes with Nanoscale Turing
1139 Type Structures. *Advanced Materials Interfaces* **2019**, *6* (22).

1140 175. Al-Amoudi, A.; Lovitt, R. W., Fouling strategies and the cleaning system of NF membranes and

1141 factors affecting cleaning efficiency. *J. Membr. Sci.* **2007**, *303* (1), 4-28.

1142 176. Shao, S.; Fu, W.; Li, X.; Shi, D.; Jiang, Y.; Li, J.; Gong, T.; Li, X., Membrane fouling by the
1143 aggregations formed from oppositely charged organic foulants. *Water Res.* **2019**, *159*, 95-101.

1144 177. Shao, S.; Li, Y.; Jin, T.; Liu, W.; Shi, D.; Wang, J.; Wang, Y.; Jiang, Y.; Li, J.; Li, H.,
1145 Biofouling layer maintains low hydraulic resistances and high ammonia removal in the UF process
1146 operated at low flux. *J. Membr. Sci.* **2020**, *596*, 117612.

1147 178. Tang, C. Y.; Chong, T. H.; Fane, A. G., Colloidal interactions and fouling of NF and RO
1148 membranes: A review. *Advances in Colloid and Interface Science* **2011**, *164* (1-2), 126-143.

1149 179. Shang, C.; Pranantyo, D.; Zhang, S., Understanding the Roughness-Fouling Relationship in
1150 Reverse Osmosis: Mechanism and Implications. *Environ. Sci. Technol.* **2020**, *54* (8), 5288-5296.

1151 180. Vrijenhoek, E. M.; Hong, S.; Elimelech, M., Influence of membrane surface properties on initial
1152 rate of colloidal fouling of reverse osmosis and nanofiltration membranes. *J. Membr. Sci.* **2001**, *188* (1),
1153 115-128.

1154 181. Zhu, X.; Elimelech, M., Colloidal Fouling of Reverse Osmosis Membranes: Measurements and
1155 Fouling Mechanisms. *Environ. Sci. Technol.* **1997**, *31* (12), 3654-3662.

1156 182. Hoek, E. M.; Bhattacharjee, S.; Elimelech, M., Effect of membrane surface roughness on
1157 colloid-membrane DLVO interactions. *Langmuir* **2003**, *19* (11), 4836-4847.

1158 183. Richard Bowen, W.; Doneva, T. A., Atomic Force Microscopy Studies of Membranes: Effect of
1159 Surface Roughness on Double-Layer Interactions and Particle Adhesion. *J. Colloid Interface Sci.* **2000**,
1160 *229* (2), 544-549.

1161 184. Jang, J. H.; Lee, J.; Jung, S.-Y.; Choi, D.-C.; Won, Y.-J.; Ahn, K. H.; Park, P.-K.; Lee, C.-H.,
1162 Correlation between particle deposition and the size ratio of particles to patterns in nano- and micro-
1163 patterned membrane filtration systems. *Sep. Purif. Technol.* **2015**, *156*, 608-616.

1164 185. Whitehead, K. A.; Verran, J., The Effect of Surface Topography on the Retention of
1165 Microorganisms. *Food and Bioproducts Processing* **2006**, *84* (4), 253-259.

1166 186. Jiang, Z.; Karan, S.; Livingston, A. G., Membrane Fouling: Does Microscale Roughness Matter?
1167 *Ind. Eng. Chem. Res* **2020**, *59* (12), 5424-5431.

1168 187. An, R.; Dong, Y.; Zhu, J.; Rao, C., Adhesion and friction forces in biofouling attachments to
1169 nanotube- and PEG- patterned TiO₂ surfaces. *Colloids and Surfaces B: Biointerfaces* **2017**, *159*, 108-117.

1170 188. Kim, T.; Kwon, S.; Lee, J.; Lee, J. S.; Kang, S., A metallic anti-biofouling surface with a
1171 hierarchical topography containing nanostructures on curved micro-riblets. *Microsystems &*
1172 *Nanoengineering* **2022**, *8* (1), 6.

1173 189. Lin, W.; Zhang, Y.; Li, D.; Wang, X.-m.; Huang, X., Roles and performance enhancement of
1174 feed spacer in spiral wound membrane modules for water treatment: A 20-year review on research
1175 evolvement. *Water Res.* **2021**, *198*, 117146.

1176 190. Du, X.; Wang, Y.; Leslie, G.; Li, G.; Liang, H., Shear stress in a pressure-driven membrane
1177 system and its impact on membrane fouling from a hydrodynamic condition perspective: a review.
1178 *Journal of Chemical Technology & Biotechnology* **2017**, *92* (3), 463-478.

1179 191. Maruf, S. H.; Wang, L.; Greenberg, A. R.; Pellegrino, J.; Ding, Y., Use of nanoimprinted surface
1180 patterns to mitigate colloidal deposition on ultrafiltration membranes. *J. Membr. Sci.* **2013**, *428*, 598-607.

1181 192. Kim, I.; Choi, D.-C.; Lee, J.; Chae, H.-R.; Hee Jang, J.; Lee, C.-H.; Park, P.-K.; Won, Y.-J.,
1182 Preparation and application of patterned hollow-fiber membranes to membrane bioreactor for wastewater
1183 treatment. *J. Membr. Sci.* **2015**, *490*, 190-196.

1184 193. Maruf, S. H.; Rickman, M.; Wang, L.; Mersch Iv, J.; Greenberg, A. R.; Pellegrino, J.; Ding, Y.,
1185 Influence of sub-micron surface patterns on the deposition of model proteins during active filtration. *J.*
1186 *Membr. Sci.* **2013**, *444*, 420-428.

1187 194. Lee, Y. K.; Won, Y.-J.; Yoo, J. H.; Ahn, K. H.; Lee, C.-H., Flow analysis and fouling on the
1188 patterned membrane surface. *J. Membr. Sci.* **2013**, 427, 320-325.

1189 195. Choi, D.-C.; Jung, S.-Y.; Won, Y.-J.; Jang, J. H.; Lee, J.; Chae, H.-R.; Ahn, K. H.; Lee, S.;
1190 Park, P.-K.; Lee, C.-H., Three-dimensional hydraulic modeling of particle deposition on the patterned
1191 isopore membrane in crossflow microfiltration. *J. Membr. Sci.* **2015**, 492, 156-163.

1192 196. Won, Y.-J.; Jung, S.-Y.; Jang, J.-H.; Lee, J.-W.; Chae, H.-R.; Choi, D.-C.; Hyun Ahn, K.; Lee,
1193 C.-H.; Park, P.-K., Correlation of membrane fouling with topography of patterned membranes for water
1194 treatment. *J. Membr. Sci.* **2016**, 498, 14-19.

1195 197. Ng, T. C. A.; Lyu, Z.; Wang, C.; Guo, S.; Poh, W.; Gu, Q.; Zhang, L.; Wang, J.; Ng, H. Y.,
1196 Effect of surface-patterned topographies of ceramic membranes on the filtration of activated sludge and
1197 their interaction with different particle sizes. *J. Membr. Sci.* **2022**, 645, 120125.

1198 198. Zhao, Z.; Muylaert, K.; Szymczyk, A.; Vankelecom, I. F. J., Harvesting microalgal biomass
1199 using negatively charged polysulfone patterned membranes: Influence of pattern shapes and mechanism
1200 of fouling mitigation. *Water Res.* **2021**, 188, 116530.

1201 199. Chen, C. S.; Mrksich, M.; Huang, S.; Whitesides, G. M.; Ingber, D. E., Geometric Control of
1202 Cell Life and Death. *Science* **1997**, 276 (5317), 1425-1428.

1203 200. Choi, W.; Lee, C.; Lee, D.; Won, Y. J.; Lee, G. W.; Shin, M. G.; Chun, B.; Kim, T.-S.; Park,
1204 H.-D.; Jung, H. W.; Lee, J. S.; Lee, J.-H., Sharkskin-mimetic desalination membranes with ultralow
1205 biofouling. *J. Mater. Chem. A* **2018**, 6 (45), 23034-23045.

1206 201. Jamshidi Gohari, R.; Lau, W. J.; Matsuura, T.; Ismail, A. F., Effect of surface pattern formation
1207 on membrane fouling and its control in phase inversion process. *J. Membr. Sci.* **2013**, 446, 326-331.

1208 202. Liu, J.; Wang, Z.; Tang, C. Y.; Leckie, J. O., Modeling Dynamics of Colloidal Fouling of RO/NF
1209 Membranes with A Novel Collision-Attachment Approach. *Environ. Sci. Technol.* **2018**, 52 (3), 1471-
1210 1478.

1211 203. Bacchin, P.; Aimar, P.; Field, R. W., Critical and sustainable fluxes: Theory, experiments and
1212 applications. *J. Membr. Sci.* **2006**, 281 (1-2), 42-69.

1213 204. Le Clech, P.; Jefferson, B.; Chang, I. S.; Judd, S. J., Critical flux determination by the flux-step
1214 method in a submerged membrane bioreactor. *J. Membr. Sci.* **2003**, 227 (1), 81-93.

1215 205. Cho, B. D.; Fane, A. G., Fouling transients in nominally sub-critical flux operation of a
1216 membrane bioreactor. *J. Membr. Sci.* **2002**, 209 (2), 391-403.

1217 206. Yang, Z.; Wang, F.; Guo, H.; Peng, L. E.; Ma, X.-h.; Song, X.-x.; Wang, Z.; Tang, C. Y.,
1218 Mechanistic Insights into the Role of Polydopamine Interlayer toward Improved Separation Performance
1219 of Polyamide Nanofiltration Membranes. *Environ. Sci. Technol.* **2020**, 54 (18), 11611-11621.

1220 207. Rolf, J.; Cao, T.; Huang, X.; Boo, C.; Li, Q.; Elimelech, M., Inorganic Scaling in Membrane
1221 Desalination: Models, Mechanisms, and Characterization Methods. *Environ. Sci. Technol.* **2022**, 56 (12),
1222 7484-7511.

1223 208. Lin, N. H.; Cohen, Y., QCM study of mineral surface crystallization on aromatic polyamide
1224 membrane surfaces. *J. Membr. Sci.* **2011**, 379 (1), 426-433.

1225 209. Mi, B.; Elimelech, M., Silica scaling and scaling reversibility in forward osmosis. *Desalination*
1226 **2013**, 312, 75-81.

1227 210. Qian, M.; Ma, J., The characteristics of heterogeneous nucleation on concave surfaces and
1228 implications for directed nucleation or surface activity by surface nanopatterning. *Journal of Crystal
1229 Growth* **2012**, 355 (1), 73-77.

1230 211. Matin, A.; Rahman, F.; Shafi, H. Z.; Zubair, S. M., Scaling of reverse osmosis membranes used
1231 in water desalination: Phenomena, impact, and control; future directions. *Desalination* **2019**, 455, 135-
1232 157.

1233 212. Beuscher, U.; Kappert, E. J.; Wijmans, J. G., Membrane research beyond materials science. *J.*
1234 *Membr. Sci.* **2022**, *643*, 119902.

1235 213. Yang, Z.; Long, L.; Wu, C.; Tang, C. Y., High Permeance or High Selectivity? Optimization of
1236 System-Scale Nanofiltration Performance Constrained by the Upper Bound. *ACS ES&T Engineering*
1237 **2021**.

1238 214. Lin, S.; Elimelech, M., Staged reverse osmosis operation: Configurations, energy efficiency, and
1239 application potential. *Desalination* **2015**, *366*, 9-14.

1240 215. Fujioka, T.; Ngo, M. T. T.; Makabe, R.; Ueyama, T.; Takeuchi, H.; Nga, T. T. V.; Bui, X.-T.;
1241 Tanaka, H., Submerged nanofiltration without pre-treatment for direct advanced drinking water treatment.
1242 *Chemosphere* **2021**, *265*, 129056.

1243