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B ABSTRACT

Nanofiltration (NF) membranes have been widely applied in many important environmental
applications including water softening, surface/ground water purification, wastewater treatment,
and water reuse. In recent years, a new class of piperazine (PIP)-based NF membranes featuring
a crumpled polyamide layer has received considerable attention due to their great potential for
achieving dramatic improvements in membrane separation performance. Since the report of
novel crumpled Turing structures that exhibited an order magnitude enhancement in water
permeance (Science 360(6388), 518-521, 2018), the number of published research papers on this
emerging topic has grown exponentially to approximately 200. In this critical review, we provide
a systematic framework to classify the crumpled NF morphologies. The fundamental
mechanisms and fabrication methods involved in the formation of these crumpled morphologies
are summarized. We then discuss the transport of water and solutes in crumpled NF membranes
and how these transport phenomena could simultaneously improve membrane water permeance,
selectivity, and anti-fouling performance. The environmental applications of these emerging NF
membranes are highlighted, and future research opportunities/needs are identified. The
fundamental insights in this review provide critical guidance on the further development of high-

performance NF membranes tailored for a wide range of environmental applications.

Keywords: Nanofiltration, Polyamide, Crumpled morphology, Water transport pathway,
Selectivity, Membrane fouling
Synopsis: Nanofiltration membranes with well-controlled morphologies have the potential to

simultaneously improve water permeance, selectivity, and anti-fouling ability.
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B INTRODUCTION

Nanofiltration (NF) is a pressure-driven membrane process that has separation abilities between
ultrafiltration (UF) and reverse osmosis (RO). A typical NF membrane has a molecular weight
cut-off between 150 and 2000 Da and is efficient in rejecting multivalent ions and organic
compounds.’ ? Therefore, NF technology has been widely adopted in drinking water
purification,® wastewater reclamation,* > water softening,® ® food processing,” pharmaceutical
industry,® etc. Unlike seawater, the feed water in these applications generally has relatively low
osmotic pressures; thus, increasing the permeance of NF membranes could significantly improve
water production and reduce energy consumption.® ° However, membrane separation
performance is constrained by the permeance -selectivity tradeoff: highly permeable membranes
typically have low rejections to target substances and vice versa.'*** Consequently, it is a major

challenge to improve the permeance of NF membrane without compromising selectivity.

Currently, the gold standard for commercially available NF membranes is thin-film composite
(TFC) polyamide membranes, which are composed of a polyamide rejection layer, a UF
substrate, and a non-woven fabric support.*>*” The polyamide rejection layers of NF membranes
are often prepared by interfacial polymerization, with piperazine (PIP) and trimesoyl chloride
(TMC) as the most used monomers.™® > ¢ It should be noted that the NF membrane in this
review, thus, specifically refers to the TFC polyamide membrane prepared using interfacial
polymerization reaction with PIP and TMC. With numerous in-depth studies on the polyamide
selective layer formed by the interfacial polymerization reaction, the morphology of the
polyamide layer is found to have a significant influence on the permeance of TFC membranes.

For example, in RO membranes formed by m-phenylenediamine (MPD) and TMC (Fig. 1a), the
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“ridge-and-valley” morphology of the formed polyamide layer greatly improves the permeance
of RO membrane by increasing the effective filtration area'®?° and creating voids in the
polyamide layer,'® 2°-2> whose self-guttering effect further improves membrane permeance.?® 2%
28 Unlike RO membranes, commercially available NF membranes formed by PIP and TMC are
relatively smooth (Fig. 1a). Inspired by the highly efficient water transport in TFC RO
membranes,’® ° one may wonder if NF membranes with crumpled polyamide layers may
effectively enhance water permeance over their smooth counterparts to overcome the permeance

-selectivity tradeoff.

In recent years, PIP-based NF membranes with crumpled polyamide layers have received
considerable attention (Fig. 1b). Particularly followed by the seminal work of Turing structure in
Science in 2018,%° the number of publications on crumpled NF membranes is rapidly growing.
Researchers have developed various methods to fabricate NF membranes with different surface
morphologies (Table S1), along with major enhancement of water permeance from ~10 to >20
LMH/bar, pushing the separation performance (e.g., water-Na2SOa4 selectivity (A/B) vs. water
permeance (A)) towards the top right corner in the upper bound diagram (Fig. 1c). Despite such
promising progress in crumple NF membranes, a dedicated review on the formation of and
transport of this emerging type of membranes is not yet available. More importantly, the
underlying mechanisms (e.g., how the crumpled morphologies affect the transport of water and
solutes) have yet to be systematically examined. In addition, the related fouling behavior of

crumpled NF membranes has not been fully understood.
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Therefore, to better facilitate the in-depth understanding of crumped NF membranes, this critical
review summarizes their recent progress, with particular emphasis on 1) a systematic framework
to classify the crumpled NF morphologies, 2) fundamental mechanisms and fabrication methods
involved in the formation of these crumpled morphologies, 3) transport mechanisms of water and
solutes in crumpled NF membranes, and 4) fouling propensities of crumpled NF membranes.
The critical insights and important design criteria gained in this review facilitate the development
of more efficient environmental applications with high energy efficiency and/or better anti-
fouling properties. This review also identifies the critical research gaps and research

opportunities pertaining to the further development of crumpled NF membrane.
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Figure 1. (a) Typical morphologies of polyamide layer of RO membrane (ESPA3, formed by
MPD and TMC) and NF membrane (NF270, formed by PIP and TMC).*° (b) Number of peer-
reviewed publications on PIP-based NF membranes with crumpled morphologies (incomplete
data for the Year 2022). (c) Water/Na2SOs selectivity (A/B) vs. water permeance (A) for PIP-

based NF membranes with crumpled morphologies (detailed data are provided in Table S1).
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Open dots indicate conventional NF membranes with smooth polyamide layers, and closed dots

indicate novel NF membranes with crumpled polyamide layers; the data of crumpled NF are

color-mapped based on their published years. The scanning electron microscopy (SEM) images

were modified from the previous study®® with copyright permission.

B CLASSIFICATION OF CRUMPLED MORPHOLOGIES, THEIR

FORMATION MECHANISMS, AND FABRICATION METHODS

Typical Crumpled Morphology of NF Membranes and Their Separation Performance
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Figure 2. Classification of crumpled morphologies (a) and their corresponding separation

performances (b). Diameter, width, and density (number density for nodular and ring structures,

and specific length for stripe structure) of the morphologies were based on the statistics of the

SEM images of the previous studies (Table S3); Average roughness (Ra) was based on the atomic

force microscope (AFM) results of the previous studies. Separation performances of commercial
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NF are provided in Table S4. The SEM images were modified from the previous studies ** with

copyright permission.

Table S1 summarizes crumpled polyamide layers for PIP-based NF membranes reported in
previous studies. Specifically, nodular,?® * stripe,?® 34 and ring®" *>*7 structures are the three
most common morphologies (Fig. 2). Other structures, such as fishnet-like and octopus sucker-
like structures,®® *° are occasionally represented in some studies (Fig. S1 provides the SEM
images of some examples). Among these morphologies, only the nodular structure is observed in
existing commercial membranes,*® and other morphologies mostly exist in custom-fabricated

membranes in literature papers.

In terms of the nodular structure (Fig. 2a), its diameter is often in the range of 50 to 300 nm, with
a typical areal number density ranging from 5 to 300 per um? Based on a limited number of
TEM studies,? 3> 4% the nodular generally has arc-shaped cross-sections, and the ratio of
height to diameter is mostly lower than 1. Possibly because of this low ratio, the average
roughness (Ra) obtained using atomic force microscopes (AFM) is often in the range of 10 to 50
nm. In terms of stripe structure, the width of the stripes generally ranges from 50 to 400 nm, and
the specific length (length/area) ranges from 500-5000 nm per um. Like the nodular structure,
the stripe structures also have low heights,? “6%° which is also evidenced by the low Ra (5-50
nm). Some ring structures are possibly formed by the collapse of canopy structures or large
nodular structures.®® °! Therefore, its diameter can reach several um, while its density is much

lower than a typical nodular structure.



159

160

161

162

163

164

165

166
167

168

169

170

171

172

173

NF membranes with crumpled morphologies often exhibit better separation performance in terms
of water permeance and water/solute selectivity than commercially available NF membranes (Fig.
2b). Among the common morphologies, the stripe structure appears to be more promising
compared with nodular and ring structures. The associated transport mechanisms in crumpled NF
membranes will be further discussed under the section “Critical Analysis of Water and Solutes

Transport Mechanisms for Crumpled NF Membranes”.
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Figure 3 Formation of crumpled morphologies of polyamide layers. Templating approach,
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formation of polyamide layers, respectively. The images were modified from the previous
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Mechanisms and Fabrication Methods for Crumpled Morphology of Polyamide Layer

The PIP-based polyamide layer on support substrates (e.g., polysulfone membrane) is generally
formed through interfacial polymerization of PIP and TMC monomers.* ' ° During interfacial
polymerization, the substrate is first wetted by a PIP aqueous solution, then immersed in a TMC
organic solution. PIP and TMC can react at the aqueous/organic interface and form a polyamide
film on the substrate. Post-treatments, such as heating and drying, are often applied to stabilize
the polyamide film and further adjust its properties. Based on the protocols of interfacial
polymerization, the following strategies could be used to fabricate a crumpled polyamide layer
(Fig. 3): 1) using templating approaches to create a rough aqueous/organic interface for
interfacial polymerization, so that the formed polyamide film achieves a rough morphology
following the aqueous/organic interface; 2) regulating and intensifying the interfacial instability

during the reaction of interfacial polymerization; 3) post-processing the formed polyamide layer.

Templating Approaches. A rough templating substrate can directly lead to an uneven
aqueous/organic interface on the surface of the substrate. Considering the typical thickness of
tens of nm for PIP-based polyamide layers,>*** the feature size of the templating substrate should
be in the range of hundreds of nm to several um to affect the formation of polyamide rejection
layers. While the typically used polysulfone substrate is relatively smooth,?* %% a few strategies
are available to prepare a rough templating substrate. One strategy is patterned membranes.
Patterned membranes, often reported for fouling control,%*% typically involve fabrication
methods such as phase separation micro-molding,®® ¢’ thermal embossing/nanoimprinting®: 8 °,
and 3D printing.”> "* Previous studies have constructed patterns such as grooved lines,% 2 73

pillars,”* prism,® pyramid’ with dimensions ranging from tens of nm to hundreds of pm. These

11



197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

patterned membranes, when used as substrates, are expected to create aqueous/organic interfaces
with regular/periodical morphological features. A second strategy involves the use of scaffolds
with rough surfaces, such as non-woven fabrics, stainless steel meshes,”® and microfiltration
membranes with large pores.”” ® Unlike a patterned substrate, these rough scaffolds usually have
an irregular surface morphology. One critical challenge involved in using rough substrates is the
increased risks of defect formation in the resulting polyamide rejection layers. For example, if
directly conducting interfacial polymerization on rough scaffolds with large pores, the
unsupported polyamide film formed over the macropores of the scaffolds is easily broken.” &
This issue could be potentially addressed by plugging the macropores of the scaffolds with
materials of desirable mechanical strength, water permeance, and adhesion force with the
scaffold. Some examples include porous protein assemblies’® and crosslinked polyvinyl alcohol
(PVA).”® To achieve a crumpled polyamide layer over the templating substrate, another key
consideration is the fidelity of the rough morphology after the interfacial polymerization. Some
studies suggested that the fidelity could be improved by decreasing monomer concentrations’

and using a layered interfacial polymerization technique.’* 8

Even with a smooth substrate, one can deposit nanomaterials on its surface to create a rough
aqueous/organic interface. Previous studies have deposited nanoparticles®” #2%* and nanofibers,>
etc., on substrate surfaces. Common methods for nanomaterial deposition include vacuum
filtration,* >* 8 8¢ spraying,®” 8 in-situ growth,*” 892 etc. An ideal deposition is a single layer
of nanomaterials with a suitable distance between the individual particles/fibers. The size of
nanomaterials may have a major influence: small sizes may minimize the change in

morphologies, while large sizes may heighten the risk of defects.®* In general, hydrophilic

12
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nanomaterials are recommended because they may induce the formation of nanochannels at the
interface between the nanomaterial surface and the polyamide matrix.”* For the nanomaterial-
based templating approach, the key is to uniformly deposit nanomaterials without aggregation
and stacking.®’ In addition, because the nanomaterial is often water impermeable, the intercalated
materials may block the water flow through the resulting NF membrane, causing a compromise
in water permeance. The adoption of porous materials, such as porous silica particles,* metal-
organic frameworks,®> % covalent organic frameworks,* °® °" and molecular sieves,®’ % %

may partially address this issue.

To minimize the impact of intercalated nanomaterials on the performance of NF, one can also
use sacrificial materials, such as dissolvable nanoparticles® *® and salt crystal'* 1°2, which are
readily removed after interfacial polymerization (e.g., by dissolving in water or acid). The
removal of these sacrificial materials can create nanovoids in polyamide layers, which can
effectively improve the permeance of NF membranes. For example, etching copper nanoparticles

using 1% HNO3z from a copper embedded NF membrane led to quadrupled water flux.*%®

In addition to solid templates, liquid-based templates may also be used under appropriate
interfacial conditions.> % For example, to achieve an aqueous template, one could first leave a
certain amount of water spread on the substrate surface by tuning rolling pressures and drying
conditions. Under specific interfacial tensions, which are adjusted by adding surfactant into
aqueous solution and using hydrophilic substrate (including surface-modified and interlayered
membrane), the remaining water may form an uneven aqueous/organic interface on the

substrate, %1% resulting in a crumpled polyamide layer after interfacial polymerization.

13
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Interfacial Instability. The interfacial polymerization reaction is inherently associated with

instability, which could be utilized to facilitate the formation of crumpled polyamide films. In

fact, the interfacial instability is the key to the “ridge-and-valley” morphology of MPD-based

polyamide layers.*® 1" Currently, the interfacial instability during interfacial polymerization is

mostly explained by the following three mechanisms:

1)

2)

Reaction-diffusion dynamics.?® % 19 As one of the most famous models of reaction-
diffusion dynamics, the activator-inhibitor model is often used to explain the formation of
patterns.**? In this model, the activator promotes the synthesis of itself and the inhibitor,
while the inhibitor restricts the production of the activator.''® If the diffusion speed of the
inhibitor is faster than that of the activator (“local activation and lateral inhibition” proposal),
periodic patterns such as spots and stripes (i.e., Turing patterns) may be formed. During the
reaction of interfacial polymerization, amine monomers in the aqueous phase firstly diffuse
to the organic phase and then react with acyl chloride monomers to form a polyamide film.*°
The amine monomer can be regarded as the activator because its diffusion causes the reaction,
and the formed polyamide layer can be regarded as the inhibitor because of its self-limiting
effect.?

Convection flow instability.”® ' Interfacial polymerization causes the consumption of
monomers and the release of heat, leading to concentration and thermal gradients near the
aqueous/organic interface, consequently density gradients and spatially varied interfacial
tensions. The density gradient may cause Rayleigh—Bénard convection because gravity tries
to pull down the denser liquid.**? The spatially varied interfacial tension may also lead to

Marangoni convection because the liquid tends to flow to the place of lower surface

14
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3)

tension.!'? During interfacial polymerization, these convection flows may result in a
fluctuating interface, which might be responsible for the formation of the crumpled
polyamide.

Nanobubble formation. Some recent literature suggested that the crumpled morphology of
polyamide layers could be formed by interfacial degassing.!**'® That is, the interfacial
reaction between amine and acyl chloride monomers could generate both heat and H*, which
favors the conversion of dissolved HCOzs™ in the aqueous phase (alkaline solution) to release
CO2 nanobubbles. By the confinement of porous substrate, these nanobubbles tend to deliver
amine monomers to the reaction front due to the convention under a pressure gradient. In
addition, these degassed bubbles could be encapsulated by the nanofilm to tune the

polyamide morphology.

Based on these mechanisms, to enhance the interfacial instability, one could increase the

formation of polyamide (inhibitor), enhance thermal and concentration gradients, and/or

intensify heat and H* release. Increasing the reaction rate can well-match these goals, e.g., by

adding acid acceptor,*** 7 increasing reaction temperature,® *® and adding other co-

monomers.'® One can also control the diffusion of PIP (activator) and change the interfacial

tension by adding chemicals such as PVA,? salts,*? 12! and surfactants®* *?? to the PIP solution,

and coating a hydrophilic gel layer on the substrate.'??

The interfacial instability of interfacial polymerization can be enhanced by the spatial

inhomogeneity of the reaction. Physical inhomogeneity (i.e., inhomogeneity in monomer storage)

of the reaction could be readily achieved using rough substrates (see the section “Templating
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Approaches”). For example, the valleys of a rough surface may have more PIP monomer
storages, and consequently may lead to more violent reactions.?® ° 24 Chemical inhomogeneity
could be achieved using a substrate with reactive spots,'?>*?® and the inhomogeneity may be
increased because of the reaction of TMC with these reactive spots. Many studies*® 46 84 106, 129,
130 reported that the addition of nanomaterial in PIP solution could lead to a crumpled polyamide
layer. A possible explanation for this phenomenon is that these nanomaterials intensify the

inhomogeneity of the interfacial polymerization, both physically and chemically. 3% 132

Post-treatment. Post-treatment is an important step in improving the stability and performance of
the NF membrane. Because the polyamide layer may have different thermal expansion and
contraction coefficients compared with the substrate, a heating post-treatment may lead to
delamination and buckling of the polyamide layer at the micro-/nano-scale,*®® resulting in a
rough morphology.*** 3 Additionally, surface coating and grafting sometimes cause a rough
morphology by adding an additional layer or changing the properties of polyamide layers.**>1%
Patterning methods can also be used in the post-treatment of the polyamide layer. Because of the
thin thickness of the polyamide layer,>*°* the dimension of the pattern is generally tens of nm,
and previous studies generally used nanoimprinting method.>® ¢ 14% 141 After the nanoimprinting
of commercial NF membranes, their anti-fouling performances are significantly improved (see

the section “Critical Analysis of Fouling Propensities of Crumpled NF Membranes”).

Among the various strategies for the fabrication of crumpled NF membranes, templating
approaches can achieve the morphology of a polyamide layer similar to that of the templating

substrate, except that the aqueous and nanomaterials-based templating may lead to a stripe
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morphology after the collapse of the polyamide layer.>> 84 42 By regulating the interfacial
instability, the polyamide layer is most likely to form periodic nodular and stripes. With post-
processing, especially the patterning method, the polyamide morphology can be further
regularized and customized. Although most of the strategies are in the laboratory stage, some of
them show the potential for scale-up, with small changes to the existing processing line for
interfacial polymerization. For example, by adding a rinsing process to create a PVA interlayer
on the substrate, a pilot-scale production line for NF with periodic stripes was successfully
established.'® Additionally, templating approach, interfacial instability regulating, and post-
processing are at different steps of the production line, and thus the three methods can be

combined to further improve the performance of NF.

B CRITICAL ANALYSIS OF WATER AND SOLUTES TRANSPORT

MECHANISMS FOR CRUMPLED NF MEMBRANES

Compared to their conventional (smooth) counterparts, TFC NF membranes with crumpled
morphologies could have many advantages, including enhanced water permeance and possibly
enhanced water/solute and solute/solute selectivity (Fig. 1). Therefore, this section critically
analyzes the underlying mechanisms responsible for the improved separation performance with

the assistance of conceptual models and literature surveys.

Mechanisms Responsible for Enhanced Water Permeance with Crumpled Morphologies

Several mechanisms can be applied to explain the enhanced water permeance of crumpled NF
membranes,?® %> 112 such as an increased effective surface area for filtration, decreased thickness

of the polyamide layer, and optimized water transport pathways (Fig. 4).
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Figure 4. Conceptual models (a) for elucidating the mechanisms of enhanced water permeance
of crumpled TFC membranes, where lett is defined as the actual (effective) water transport
pathways, and | is the intrinsic thickness of the polyamide rejection layer (i.e., the ideal water
transport pathway). (b) Analysis of literature data of crumpled NF membranes in Table S1 with
respect to the effect of surface area ratio (S/So), thickness reduction ratio (lo/l), and their coupled

effects [(S/So) X (lo/l)] on water permeance enhancement. The line of function y = x was

superimposed in each sub-figure. The conceptual model (c) further highlights the benefits of 1)
altered transport path (Aidea) With the increased substrate porosity; 2) increased surface area
(Arough, the superimposed red line); and 3) together with the reduced thickness of the crumpled
polyamide layer (Arough & thin, the superimposed yellow line). Figures a and ¢ were modified from

the previous study®® with copyright permission.

Increased Surface Area of Polyamide Layers. An intuitive understanding of a crumpled

membrane is that the surface area for water transportation could be significantly enhanced. For
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example, the striped membrane morphologies (assuming the half-cylinder shape), regardless of
the thickness of the polyamide rejection layer, could have the theoretical water permeance
enhancement factor of 1.57 (Fig. S2a). For a hemispherical shape of nodular morphology, the
theoretical membrane surface area enhancement factor could be two compared to a smooth
counterpart (Fig. S2b), potentially translating into doubled water permeance. Although the
current literature reports that the characteristic heights of crumpled morphologies are generally
low (Fig. 2), crumpled morphologies with higher characteristic heights could result in much
higher increases in surface area. However, crumpled morphologies with higher characteristic
heights may face the collapse of polyamide film.?® > Future studies need to explore such
phenomena to achieve a compromise between an enhanced surface area of polyamide and its

mechanical stability.

We further performed a comparison between membrane water permeance enhancement and
membrane surface area enhancement (characterized by AFM) based on a literature survey (Fig.
4b1). These results further corroborate the importance of the increased surface area of crumpled
polyamide layers in improving membrane water permeance. It is interesting to note that the
increase in membrane surface area alone is not enough to explain the significant flux
enhancement observed in the literature. In our analysis, most of the experimental data points are
above the theoretical line based on enhanced surface area (i.e., y = X), which implies that

additional mechanisms may also play important roles.?® 5 113

Decreased Thickness of Polyamide Layers. In addition to increased membrane surface area, the

formation of crumpled morphology is often accompanied by the reduced intrinsic thickness of

19



373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

polyamide layers (Fig. 4b2),'?% 143149 which is possibly ascribed to the changes in interfacial
polymerization reaction (see the section “Interfacial Instability”) such as inhibited amine
monomer diffusion and facilitated polyamide film formation. This reduced thickness of the
rejection layer, in some cases up to ~ 6 times, also favors improved water permeance of
crumpled NF membranes (Fig. 4b2). Interestingly, the decreased polyamide thickness, often
accompanied by the enhanced surface area ratio, could have a synergistic effect on membrane
water permeance enhancement, which might explain the close to one order of magnitude

enhancement of water permeance for crumpled NF membranes (Fig. 4b3).

Optimized Water Transport Pathways. Compared to the mechanisms of enhanced surface area
and reduced thickness of polyamide layers, the mechanism of optimized water transport
pathways for crumpled NF membranes has been far less discussed in the literature. Indeed, for
the conventional TFC membranes, its separation performance can be severely constrained by the
funnel effect,?® 159152 which is often ascribed to the low porosity of the substrate (typically below
10%).%°2 As illustrated in Fig. 4al, the water transport distance away from the substrate pore (lef)
of conventional smooth TFC membrane is significantly greater than the thickness of its
polyamide rejection layer (1), resulting in significantly higher hydraulic resistance and hence
lower water permeance compared to a free-standing polyamide film (an ideal case). To overcome
the funnel effect, the crumpled polyamide layer of NF membranes, containing voids that span
over multiple substrate pores (Fig. 4a2), could potentially shorten the water transport distance in
the rejection layer (in a fashion similar to the inclusion of a high-permeance gutter layer*> 5%

19). This effect, coined as the self-gutter effect by Tang and coworkers,” can greatly reduce the
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hydraulic resistance by effectively shortening the water transport pathways (close to the intrinsic

thickness of the rejection layer, Fig. 4a2).

To deepen the understanding of this mechanism, Fig. 4c presents the conceptual model of
optimized water transport pathways for improving water permeance. The dark blue line
represents the actual membrane water permeance (Arear), whereas the light blue line represents
the ideal water permeance (free-standing polyamide film, Aideal), With the varying substrates
porosities. Due to the funnel effect, the actual water transport distance (leff) of a conventional
TFC NF membrane is significantly longer than the ideal transport distance (I) of a free-standing
polyamide film. With the lower substrate porosity, the funnel effect is more severe, resulting in
significantly lower water permeance. The crumpled polyamide morphologies, equivalent to the
effect of the increasing substrate porosity of a flat polyamide rejection layer, could significantly
improve membrane water permeance thanks to the greatly shortened water transport pathways,
which approach the ideal water permeance (light blue line). Alternatively, the effect of the
nanovoids within the crumpled polyamide rejection layer could be interpreted through their self-
gutter effect on shortening the transport path to approach the ideal water permeance.® % It is also
interesting to note that, as an added advantage, the altered water transport pathways tend to result
in more uniform flux distribution, which is beneficial to reducing fouling tendency by decreasing
the accumulation of foulants in the localized hot spot zone®™' **° (see the section “Crumpled

Polyamide Film and Local Flux”).

We further benchmark the theoretical water permeance of the rough NF membrane with an ideal

rejection layer (without the effect of substrate, superimposed in red color in Fig. 4c), which could
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even successfully exceed the ideal water permeance of the smooth NF membrane due to the
additional benefit of increased filtration area. In reality, a crumpled NF membrane could
simultaneously achieve a reduced thickness of the polyamide layer in addition to optimized
water transport pathways and increased surface areas (line in yellow color, Fig. 4c), resulting in
the greatest water permeance thanks to these synergistic effects. Overall, our theoretical analysis
is in good agreement with the literature results, where crumpled NF membranes showed up to an

order of magnitude higher water permeance compared to the control,% 131 157-160

Mechanisms Responsible for Enhanced Water/solute and/or Solute/solute Separation of

Crumpled Morphologies
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Figure 5. Water/Na2SOa, water/MgSO4, NaCl/Na2SOa4, and NaCl/ MgSOs selectivity of the PIP-
based NF membranes with different crumpled morphologies. Detailed data of the box plots are

shown in Table S2.

In addition to the water permeance enhancement, Fig. 5 shows that some crumpled NF
membranes may offer enhanced water/solute and/or solute/solute selectivity (e.g., Water/Na2SOa,
Water/MgSOs, NaCl/Na2SOs, and NaCl/MgSOas) thanks to the fine-tuned physicochemical
properties of the crumpled polyamide layers. As discussed in the section “Interfacial Instability”,
the interfacial polymerization reaction rate could be greatly altered, which may further result in
changes in membrane crosslinking degree and sometimes the optimized membrane pore size
uniformity. 3’ %6 117,136,137, 161,162 For jnstance, Liang et al.** applied sodium dodecyl sulfate (SDS)
to manipulate the interfacial polymerization reaction between PIP and TMC, resulting in not only
crumpled polyamide morphologies with enhanced water permeance but also more uniform pore
size distribution. The resulting NF membrane showed enhanced selectivity towards a wide range
of solutes, including mono/di-valent ions and neutral solutes. Interestingly, due to its relatively
large pore size in the range of 1 — 2 nm,*% the variation of pore size distribution is more effective
in enhancing the rejection of divalent ions (e.g., SO4%, Ba?*, and Ca?") or other larger solutes
(e.g., glucose and sucrose), and less pronounced in enhancing the rejection of monovalent ions
(e.g., Li*, Na*, and K*)3* 125 133 164168 and therefore improving its mono-/di-valent ions

selectivity (e.g., NaCl/Na2SO4 and NaCl/MgSQs selectivity in Fig. 5).

It is also interesting to note that crumpled NF membranes could also generate localized

turbulence to mitigate the localized concentration polarization effect,’*>** which could

23



451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

potentially enhance the water/solute and solute/solute selectivity. Indeed, compared to the
smooth counterparts, the crumpled/patterned polyamide films could enhance the localized mass
transfer to improve the back diffusion of solute to the bulk,’®® thereby alleviating the
concentration polarization and improving both membrane water flux and salt rejection.'’® For
example, by comparing the fouling and rejection capability of the crumpled NF membrane with
grooves-pattern in both parallel and perpendicular flow orientations, the reduced concentration
polarization was revealed.!’* Nevertheless, a recent study conducted by Zhou et al.*’? suggested
that crumpled morphology may increase the effect of concentration polarization effect, but this
increase was compensated by the reduced local flux due to the increase in filtration area. These
disparate observations might be partly attributed to the different roughness patterns involved,
which calls for more future studies. Although few studies focus on the solute/solute selectivity
induced by the mitigated concentration polarization effect of the crumpled membranes, different
diffusion coefficients of various ions (e.g., the diffusion coefficient of Na* is approximately
twice that of Ca?*) could lead to different concentration polarization mitigation degrees (different

solutes rejection enhancement), which might result in the enhanced solute/solute selectivity.

It should also be noted that some fabrication procedures of crumpled polyamide layer may
increase the risks of defect formation (e.g., templating approaches).®® 173 14 Additionally, the
less-supported ridge of the crumpled layer may be vulnerable to external damage (e.g., high
pressure).”™ & When defects are presented in a polyamide layer, although these defect spots can
increase water permeance, it is often very risky to result in reduced water/solute and solute/solute
selectivity. Future studies should make efforts to minimize defects in the polyamide layer during

the fabrication of crumpled NF membranes.
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B CRITICAL ANALYSIS OF FOULING PROPENSITIES OF

CRUMPLED NF MEMBRANES

Membrane fouling is a major obstacle to NF applications. Fouling can cause severe flux losses
that need to be restored by physical/chemical cleaning. Fouling of NF membranes is often
associated with the deposition of organic substances and the formation of biofilm on membrane
surfaces,'”>*"" which can be greatly influenced by foulant-membrane interactions and
hydrodynamic conditions near the membrane surface.'’® *’® A crumpled membrane surface can
affect both foulant-membrane interactions and hydrodynamic conditions, thus showing

significant impacts on membrane fouling.

Surface Roughness and Foulant-membrane Interaction

A crumpled surface increases the roughness of a membrane. In the context of RO, since modern
polyamide TFC RO membranes typically show a “ridge-and-valley” rough surface,?® ©
researchers have long been focusing on the relationship between roughness and fouling from the
perspective of foulant-membrane interaction. Elimelech and co-workers®® ‘8! found that a
polyamide membrane with high roughness had a more severe colloidal fouling (silica particles
with 0.1 um in diameter), because the colloids were preferentially deposited in the valleys of the
membrane. In a follow-up paper, by analyzing the interaction between colloidal particles and
membrane surface using Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, these authors
attributed the preferential colloidal deposition to the lower repulsive energy barrier at the valleys

of the membrane surface.*®? Similar conclusion was also obtained by Bowen et al.,*®* who found
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much higher adhesion forces at the valleys of RO membranes using an AFM equipped with silica
colloidal probes (4.2 um). These pioneering studies imply that surface roughness increases the
foulant-membrane interaction, especially in the valley region of a membrane, thereby increasing

membrane fouling.

However, some recent studies suggest that enhanced foulant-membrane interactions only occur
when the size/shape of the foulant and the valley are comparable (Fig. 6a). For example,
Chuning et al.}” found that the attachment of S. epidermidis cells (grape-like shape, ~1 um in
diameter) increased when the polyamide membrane surface became rougher, while that of E. coli
cells (rod shape, ~3 um in length) decreased. The authors attributed this result to the slightly
smaller size of S. epidermidis than the size of valleys (0.5-3 um), which enabled S. epidermidis
to be trapped in these valleys. When the size of foulants is much smaller than that of the valley,
the rough membrane “appears smooth” to such small-size foulant (Fig. 6b), and thus, the foulant-
membrane interaction may be hardly affected by the roughness.'®* ‘% Consistent with this, a
recent study demonstrated that surface roughness had limited influence on the bovine serum
albumin (BSA, ~7 nm) fouling for TFC membranes with well-controlled roughness.*®® When the
size of foulants is larger than that of the valley, some studies suggested that the foulants-

membrane interaction may be reduced by the decreased contact area.’* 87 188
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Figure 6. Crumpled morphologies of NF and membrane fouling. (a and b) Matched sizes
between crumpled morphology and foulant may lead to more severe fouling. (c and d) Well-
designed crumpled morphology can increase local shear stress. (e and f) Crumpled morphology

can lead to a lower and more uniform local flux.

Surface Pattern and Local Shear Stress

A crumpled surface can disturb water flows and generate vortices (a similar fashion to fixed
turbulence promoters), thereby enhancing local shear stress and reducing the deposition of
foulants.®® %0 For this reason, an important strategy to control membrane fouling is to introduce
micro- or nano-patterns on membrane surfaces.®* For example, a crumpled NF with well-defined
patterned surfaces can be fabricated by using patterned substrates or post-nanoimprinting of the
polyamide layer (see the sections “Templating Approaches” and “Post-treatment” for more
details). Previous studies have constructed patterns such as grooved lines,®* "> 73 pillars,”

prism,® pyramid” with dimensions ranging from tens of nm to hundreds of um and revealed that
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these patterns could effectively reduce colloidal fouling,” *** organic fouling,®® %% %% and
biofouling.®® " Through particle tracking techniques and computational fluid dynamics (CFD)
modeling, several studies show that the ridges of the pattern have a higher shear stress’™ *** and
the valleys of the patterns can form vortexes.**'% As a result, a properly designed pattern can

create favorable hydrodynamic environments to effectively mitigate foulant deposition.

Several points should be noted for more effectively increasing local shear stress with the surface
patterns. First, hydraulic stagnant spots should be minimized. Surface patterns, while promoting
localized turbulences, may also introduce some stagnant spots, especially at the shaded corners
and deep valleys of crumpled surfaces (Fig. 6¢). An important reason for the high fouling
tendency of rough polyamide TFC RO membrane is the existence of some stagnant regions in
their “ridge-and-valley” morphology.'” 8! Second, well-designed topographies and dimension
can achieve better anti-fouling properties.®” " 1% For example, it was experimentally
demonstrated that 45°-rotated pyramid patterns were more effective than pyramid and reverse-
pyramid patterns in reducing particle deposition.”” The sharkskin-mimetic pattern has an
optimized space of 2 um to mitigate biofouling*®® **° with the prevention of biofilm by the
enhancement of primary and secondary flow.?> ?®° Third, flow characteristics have important
influences on the anti-fouling performance of patterns. In general, under a high crossflow
velocity, large patterns are more effective than small ones for controlling particle deposition.**®
Additionally, fouling rates are lower when the flow direction is perpendicular to the lines of
grooved patterns, while physical washes are more effective when the flow direction is parallel to
the pattern lines.’® 2! In addition to the well-defined patterns using the templating or post-

nanoimprinting method, other fabrication methods may lead to random surface morphologies, as
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shown in Fig. 2, and the effect of these morphologies on the local shear stress needs to be further

investigated.

Crumpled Polyamide Film and Local Flux

It is well accepted that membrane fouling is promoted at a higher flux because of 1) higher
foulant loadings, 2) greater hydraulic drag on foulants, and 3) more severe concentration
polarization.!’® 22 Membrane fouling rate is nearly zero when the flux is lower than a threshold
value (i.e., critical flux),?® and may exponentially increase with flux when it is higher than the
threshold value.?* In most scientific studies and practical applications, the generally mentioned
“flux” is the macroscopically observed average flux of membrane coupons or membrane
modules. However, the microscopic local flux, which is more closely related to fouling, could
vary at the different locations of membranes.®! For a membrane with non-uniform local flux,
although the low-local-flux region has lower fouling, the high-local-flux region has much higher
fouling due to the non-linear relationship between fouling rate and flux, and consequently the

higher overall fouling.?%®

In a smooth polyamide layer, the hydraulic resistance is higher in the regions above substrate
walls (because of the longer water transport pathway, Fig. 4al), and that is lower in the region
above the substrate pores.?® Consequently, typically smooth NF membranes tend to have high
non-uniformity of local flux, featuring much higher local flux over pore areas (Fig. 6e).'% *°
Such non-uniform flux distribution could become even worse for substrates of lower porosities.
When the polyamide layer becomes crumpled, the total filtration area increases (Fig. 4b). More

importantly, the self-gutter effect leads to a more uniform local flux distribution (Fig. 6f), as
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experimentally confirmed through tracer filtration tests (e.g., using golden nanoparticles).?® *°
With the lower and more uniform local flux, membrane fouling can be greatly reduced. This
reason is regarded as the main driver for fouling reduction with crumpled membranes in some

studies,” because of the huge impact of flux on membrane fouling.

In short, although a smooth polyamide film generally has a low fouling propensity, a crumpled
polyamide film with well-designed morphologies could potentially out-perform its smooth
counterpart as a result of the associated antifouling mechanisms such as the enhancement of local
shear and the reduction of local flux. In addition to membrane fouling, inorganic scaling could
also be influenced by surface morphologies.?’” 2% A rough surface often has a higher scaling
potential, possibly because of the favorable formation/deposition of scaling nuclei at the
valleys?®® 1% and the enhanced concentration polarization at the hydraulic stagnant spots.*’% *7°
However, similar to membrane fouling, membrane scaling may also be mitigated by a well-
designed crumpled morphology. For example, with a crumpled polyamide, the enhancement of
local shear and the reduction of local flux may promote the detachment of scaling nuclei and

crystals,?” 2! thereby inhibiting the development of scaling.

B ENVIRONMENTAL IMPLICATIONS AND RESEARCH OUTLOOK

As we have discussed the formation, transport mechanisms, and fouling behavior of crumpled
NF membranes, we further propose that the ideal crumpled morphology of polyamide film
should possess 1) large surface areas (e.g., high aspect ratios of the surface roughness features)
and thin thickness for improving the theoretical water permeance, 2) high interconnectivity for

internal voids in the crumpled NF membranes (e.g., more optimized water transport pathways for
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approaching the ideal water permeance and enhanced membrane anti-fouling properties), 3)
patterned or rough surface to create localized turbulence, and 4) excellent mechanical strength.
To achieve this ideal/controllable morphology, a better understanding of the mechanisms of the
formation of crumpled morphology is needed. Although some existing formation models shed
light on the mechanisms in generating crumpled polyamide layers, it is still a long way to
achieve a quantitative prediction to guide the fine-tuning of the detailed morphological features.
Furthermore, since the state-of-the-art separation performance of crumpled NF membranes
(mostly at bench scales) has been dramatically improved compared with the commercial

counterparts (Fig. 2), subsequent efforts should focus on their long-term stability and scale-up.

To scale up the crumpled NF, defect-free membranes with large areas should be first fabricated,
which need simple and controllable fabrication protocols.?*?> More importantly, with these highly
permeable NF membranes, researchers also need to focus on the better translation of high-
performance membranes to more efficient processes. For example, a recent study®** highlighted
the high permeance NF membrane may not automatically guarantee low energy consumption,
nor does a highly selective membrane guarantee better permeate water quality. Therefore, one
needs to optimize the membrane module, system, and process to fully unleash the potential of
crumpled NF for simultaneously achieving low energy consumption, high product water quality,
and a better system flux distribution to avoid fouling issues (Fig. 7). For example, newly
designed spacers and flow channels to match crumpled morphologies, multi-stage inter-pumping
design or closed-circuit system,?** and submerged NF membrane process.?'® In addition to water
permeance, membrane selectivity is also very important for target pollutant removal. Even

though crumpled NF membranes may exhibit enhanced selectivity for water/solute and
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solute/solute, further studies are still needed to improve/tailor the selectivity for specific

applications.

NF membrane NF module NF system NF process
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Figure 7. Schematic diagrams of outlooks and future perspectives of crumpled NF membranes.
NF membranes with ideal/controllable morphologies are pursued with the better understanding
of morphology formation and the development of simple and controllable fabrication protocols.
Beyond membrane fabrication, researchers also need to optimize membrane modules, systems,
and processes to fully unleash the potential of crumpled NF for achieving low energy

consumption, low membrane fouling, and high selectivity.
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