

Empirical Mode Decomposition of the Atmospheric Flows and Pollutant Transport over Real Urban Morphology

Yixun Liu¹, Chun-Ho Liu^{1,*}, Guy P. Brasseur^{2,3,4} and Christopher Y.H. Chao^{5,6}

¹Department of Mechanical Engineering, The University of Hong Kong, Hong Kong

²Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

³National Center for Atmospheric Research, Boulder, CO, USA

⁴Max Planck Institute for Meteorology, Hamburg, Germany

⁵Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

⁶Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Revised Manuscript No. ENVPOL-D-23-01839R1

submitted to

Environmental Pollution

on

May 15, 2023

*Corresponding author address:

Chun-Ho LIU

Department of Mechanical Engineering

7/F, Haking Wong Building

The University of Hong Kong

Pokfulam Road, Hong Kong, CHINA

Tel: +852 3917 7901 / +852 9788 7951

Fax: +852 2858 5415

Email: liuchunho@graduate.hku.hk

<https://aplhk.tech>

ORCID: 0000-0002-4609-524X

1 Abstract

2 The momentum transport and pollutant dispersion in the atmospheric surface layer
3 (ASL) are governed by a broad spectrum of turbulence structures. Whereas, their contributions
4 have not been explicitly investigated in the context of real urban morphology. This paper aims
5 to elucidate the contributions from different types of eddies in the ASL over a dense city to
6 provide the reference of urban planning, realizing more favorable ventilation and pollutant
7 dispersion. The building-resolved large-eddy simulation dataset of winds and pollutants over
8 the Kowloon downtown, Hong Kong, is decomposed into a few intrinsic mode functions (IMFs)
9 via empirical mode decomposition (EMD). EMD is a data-driven algorithm that has been
10 successfully implemented in many research fields. The results show that four IMFs are
11 generally enough to capture most of the turbulence structures in real urban ASL. In particular,
12 the first two IMFs, which are initiated by individual buildings, capture the small-scale vortex
13 packets that populate within the irregular building clusters. On the other hand, the third and
14 fourth IMFs capture the large-scale motions (LSMs) detached to the ground surface that are
15 highly efficient in transport. They collectively contribute to nearly 40% of vertical momentum
16 transport even with relatively low vertical turbulence kinetic energy (TKE). LSMs are long,
17 streaky structures that mainly consist of streamwise TKE components. It is found that the open
18 areas and regular streets promote the portion of streamwise TKE in LSMs, improving the
19 vertical momentum transport and pollutant dispersion. In addition, these streaky LSMs are
20 found to play a crucial role in pollutant dilution in the near field after the pollutant source,
21 while the small-scale vortex packets are more efficient in transport in the mid-field and far-
22 field.

(Word count: 276)

23

24 **Keywords:** Attached Eddies, Empirical Mode Decomposition, Large-Eddy Simulation, Large-
25 Scale Motions, Pollutant Dispersion, and Turbulence Structures.

26

1. Introduction

27 The urban environment has been recognized as a serious, worldwide health concern
28 because of the continuous increases in buildings and population. In particular, the air quality
29 in cities has raised more public attention recently. It is estimated that air pollution is responsible
30 for millions of premature deaths annually (Forouzanfar et al. 2016, Shrivastava et al. 2016). As
31 such, it is of considerable importance to advance our understanding of ventilation and pollutant
32 dispersion in the atmospheric surface layer (ASL) over urban areas (Lateb et al. 2016).

33

34 The turbulence structures in the atmospheric surface layer (ASL) govern the transport
35 of momentum, gaseous pollutants, heat, particulate matter, and aerosol (Li et al. 2006,
36 Gousseau et al. 2012, Tominaga et al. 2013, Zhong et al. 2015, Hang et al. 2017). However,
37 the massive construction in urban areas slows down the winds that complicate the turbulence
38 structures. For example, the inertial sublayer (ISL) away from the buildings is rather
39 homogenous **and therefore** can be modeled empirically. However, the roughness sublayer (RSL)
40 is affected tightly by the underlying buildings (Mo et al. 2021). It is inhomogeneous hence calls
41 for a building-resolved description of the dynamics.

42

43 Recent progress in computation science and measurement techniques has enabled a
44 detailed description of ASL over real urban morphology, in which a multitude of coexisting
45 turbulence structures renders the velocity energy spectrum from viscosity scales to integral
46 length scales (Fesquet et al. 2009, Inagaki et al. 2017, Zhang et al. 2019, Auvinen et al. 2020,
47 Li et al. 2021, Liu et al. 2023a). In particular, a range of experiments (Michioka et al. 2011,
48 Perret et al. 2013, Wang et al. 2014, Tang et al. 2019, Kim et al. 2020), field measurements
49 (Wang et al. 2016, Liu et al. 2019), and numerical models (Mathis et al. 2009, Fang et al. 2015,
50 Salesky et al. 2018, Jacobi et al. 2021) have consistently confirmed the existence of the large-

51 scale (LSM) and very large-scale (VLSM) motions, whose streamwise wavelength λ_x could be
 52 as large as 20 times of the turbulent boundary layer (TBL) thickness δ . Meanwhile, the
 53 turbulence structure can be classified by its shape. Based on the attached eddy hypothesis
 54 (Townsend 1976), Hwang (2015) and Cheng et al. (2019) have concluded that one single
 55 attached eddy in the equilibrium TBL should consist of two distinct components. The first one
 56 is a long streaky structure whose streamwise λ_x and spanwise λ_y wavelengths follow

$$\lambda_x \approx 10\lambda_y. \quad (1)$$

57 This geometrical property is nearly identical to that proposed by Jiménez (2018) ($\lambda_x \sim 8\lambda_y$). The
 58 second component is a specific kind of vortex packet that carries all three components of
 59 fluctuating velocity. It is also known as “attached clusters” (del ÁLamo et al. 2006) or “short
 60 and tall vortex packet” (Hwang 2015). Its wavelength in the streamwise and spanwise direction
 61 is described as

$$2\lambda_y \leq \lambda_x \leq 5\lambda_y \quad (2)$$

62 that has been verified by several smooth-wall simulations (Lee et al. 2014, Cheng et al. 2019,
 63 Deshpande et al. 2019, Hu et al. 2020).

64

65 In this study, we critically examine the ASL turbulence structures over urban areas
 66 together with their contribution to momentum transport and pollutant dispersion via
 67 decomposing the dynamics into a range of turbulence structures by empirical mode
 68 decomposition (EMD). An area source with constant pollutant concentration is placed
 69 upstream of downtown Kowloon peninsula, Hong Kong in the large-eddy simulation (LES).
 70 The LES calculates the velocity and pollutant concentrations in the street canyons with
 71 buildings resolved. The fluctuations of velocity and pollutant concentration are decomposed
 72 into a series of intrinsic mode functions (IMFs) simultaneously based on the multivariable
 73 EMD technique (Wang et al. 2017, Thirumalaisamy et al. 2018, Wang et al. 2019). The motion

74 scales, energy contents, momentum transport, and pollutant dispersion driven by the full
 75 spectrum of eddies are critically examined.

76

77 **2. Methodology**

78 **2.1 Governing Equation**

79 LES of isothermal, incompressible flows is adopted in our study. Its principal idea is to
 80 reduce the computational cost by modeling the small turbulence scales, which are isotropic but
 81 most computationally demanding to be resolved, via filtering the Navier–Stokes equations
 82 spatially. As such, the resolved-scale continuity is

$$\frac{\partial \tilde{u}_i}{\partial x_i} = 0 \quad (3)$$

83 and the resolved-scale momentum conservation is

$$\frac{\partial \tilde{u}_i}{\partial t} + \frac{\partial}{\partial x_j} \tilde{u}_i \tilde{u}_j = -\frac{\partial \tilde{p}}{\partial x_i} - \frac{\partial \tau_{ii}}{\partial x_i} - \frac{\partial \tau_{ij}}{\partial x_j}. \quad (4)$$

84 The tilde $\tilde{\psi}$ denotes the spatial filter arriving the LES resolvable scales. Here, $\tilde{u}_i = (\tilde{u}, \tilde{v}, \tilde{w})$
 85 refers to the resolved-scale velocity components in the streamwise x , spanwise y , and vertical
 86 z direction of the Cartesian coordinates x_i , respectively, t the time, and p the kinematic pressure.
 87 The summation convention on repeated indices ($i, j = 1, 2$ and 3) applies. The unresolvable
 88 subgrid-scale (SGS) momentum flux

$$\tau_{ij} = \widetilde{u_i u_j} - \tilde{u}_i \tilde{u}_j = -\nu_{SGS} \left(\frac{\partial \tilde{u}_i}{\partial x_j} + \frac{\partial \tilde{u}_j}{\partial x_i} \right) + \frac{2}{3} k_{SGS} \delta_{ij} \quad (5)$$

89 are modeled by the Smagorinsky model (Smagorinsky 1963). Here,

$$\nu_{SGS} = C_k k_{SGS}^{1/2} \Delta \quad (6)$$

90 is the SGS kinematic viscosity, C_k ($= 0.07$) the Smagorinsky constant, Δ ($= \Delta \Omega^{1/3}$) the LES
 91 filter width, and $\Delta \Omega$ the volume of computation cell (Deardorff 1970). The one-equation SGS

92 TKE model (Yoshizawa et al. 1985)

$$\frac{\partial k_{SGS}}{\partial t} + \frac{\partial}{\partial x_i} k_{SGS} \tilde{u}_i = -\frac{1}{2} \tau_{ij} \frac{\partial \tilde{u}_i}{\partial x_j} + \frac{\partial}{\partial x_i} \left(\nu_{SGS} \frac{\partial k_{SGS}}{\partial x_i} \right) - C_\varepsilon \frac{k_{SGS}^{3/2}}{\Delta} \quad (7)$$

93 is adopted to handle the SGS TKE conservation where C_ε ($= 1.05$) is the modeling constant for
 94 the dissipation term. Inert pollutants, for instance, carbon monoxide (CO) or aerosol with
 95 neglectable buoyancy, are considered. As such, their transport is governed by

$$\frac{\partial \tilde{c}}{\partial t} + \frac{\partial}{\partial x_i} \tilde{c} \tilde{u}_i = -\frac{\nu_{SGS}}{Sc} \frac{\partial \tilde{c}}{\partial x_i}, \quad (8)$$

96 where \tilde{c} is the resolvable pollutant concentration and Sc ($= 0.72$) the Schmidt number.

97

98 2.2 Numerical Method

99 The governing equations are solved by the open-source finite volume code
 100 OpenFOAM-V1806 (OpenFOAM 2022). The implicit, first-order-accurate backward
 101 differencing is used in the time integration. The gradient term is handled by the second-order-
 102 accurate Gaussian finite volume method (FVM) integration of cell-limited gradient scheme and
 103 the divergence term is solved by the limited linear divergence scheme. The pressure-velocity
 104 coupling is solved by the combination of pressure implicit with the splitting of operator (PISO)
 105 and semi-implicit method for pressure-linked (SIMPLE) algorithm. After the geometric
 106 algebraic multigrid (GAMG) preconditioner, the symmetric equation systems are solved by the
 107 conjugate gradient (CG) method. Likewise, the asymmetric equation systems are
 108 preconditioned by the simplified diagonal-based incomplete, lower and upper triangular
 109 matrices (DILU) then are solved by the bi-conjugate gradient (BiCG) method.

110

111 The mathematical model is integrated for 6,000 seconds to initialize the flows and
 112 pollutant dispersion. After reaching the quasi-steady state, another 10,800 seconds ($180H_{ave}/u_\tau$)

113 of digital output data are recorded for analyses that are sufficiently long for statistical
 114 convergence (Bernardini et al. 2014, Vinuesa et al. 2016). Here, H_{ave} (= 36 m) is the mean
 115 building height and u_τ (= 0.59 m sec⁻¹) is the spatially averaged friction velocity of the entire
 116 computation **domain**. It is noteworthy that the local friction velocity is in the range of 0.5 m
 117 sec⁻¹ $\leq u_\tau \leq 0.6$ m sec⁻¹, depending on the surface roughness (Yao et al. 2022).

118

119 2.3 Boundary Conditions and Computation Domain

120 The downtown Kowloon Peninsula, Hong Kong (Figure 1a), where is a dense urban
 121 region, is discretized by almost 10 million finite volume cells (FVCs). The computation domain
 122 (Figure 1b), whose streamwise x , spanwise y , and vertical z direction, has respective spatial
 123 extents of 5,440 m (L_x), 1,230 m (L_y), and 2,000 m (L_z). The near-ground region with dense
 124 buildings is refined by a grid stretching from 1:2 to 1:4 to improve the spatial resolution. The
 125 characteristic FVC size Δ ($= \Delta\Omega^{1/3}$) ranges from 0.65 m to 60 m. In the near-ground regions (z
 126 ≤ 100 m; Figure 1c), the characteristic size Δ is around meters whose 5%, 50%, and 95%
 127 percentiles are 3.08 m, 3.81 m, and 4.22 m, respectively. This resolution also fulfills the
 128 practical guidelines (Tominaga et al. 2008) in which 1/10 of the characteristic building size is
 129 suggested (equal to mean building height $H_{ave} = 36$ m in this study). The criterion of the Courant
 130 Friedrichs-Lowy (CFL) number is ensured by setting the time step $\Delta t = 0.02$ sec. The wall
 131 function follows Spalding (1962) which is applicable throughout laminar and turbulent flow
 132 regimes.

133

134 The wind speeds at the inlet boundary are prescribed by

$$\tilde{u} = U_s \times \left(\frac{z}{z_s} \right)^{1/5} \quad \text{and} \quad \tilde{v} = \tilde{w} = 0, \quad (9)$$

135 where U_s is the average wind speed at the reference height z_s (= 300 m). The outlet boundary

136 condition (BC) is non-reflective for flow and pollutant so they do not bounce back. The domain
 137 top and the lateral boundaries are symmetry BCs for flow and zero-gradient for pollutant. Both
 138 the building facades and the natural terrains are set to no-slip solid walls for flow and zero-
 139 gradient for pollutant. The freestream wind speed at the domain top is $U_\infty = 10 \text{ m sec}^{-1}$ and the
 140 maximum building height H_{max} is 180 m. Hence, the Reynolds number $Re (= U_\infty H_{max}/\nu)$ exceeds
 141 10^8 , satisfying the Reynolds number independence.

142

143 The TBL height $\delta (= 330 \text{ m})$, RSL top ($z_{RSL} = 95 \text{ m}$), and ISL top ($z_{ISL} = 228 \text{ m}$) are all
 144 determined based on our previous work (Yao et al. 2022, Liu et al. 2023c). The area source of
 145 inert pollutants is placed in the upstream region of the computation domain. Constant pollutant
 146 concentration $C_0 (= 1,000 \text{ ppm})$ is set at the source to simulate the accidental gas leakage. The
 147 mesh independence was tested in our previous research (Cheng et al. 2021). No significant
 148 difference in the turbulence statistics was observed among different spatial resolutions.
 149 Moreover, the current LES results (Yao et al. 2022) are in line with those of **wind tunnel**
 150 **observations** (Mo et al. 2021). The flow near the inlet might not be fully developed due to the
 151 inlet BC. Therefore, the first 1,000 m is used for flow development. We perform the analysis
 152 downstream at least 1,000 m ($27H_{ave}$) after the inlet. According to similar studies of real urban
 153 morphology (Tominaga et al. 2008, Antoniou et al. 2017, Duan et al. 2021), this distance from
 154 the inlet is long enough to allow for full flow development. The intermittent LSMs/VLSMs
 155 over real urban morphology is frequently examined by wavelet (Lotfy et al. 2019, Auvinen et
 156 al. 2020, Horiguchi et al. 2022) whose instantaneous feature is suitable for capturing the
 157 intermittent LSMs/VLSMs. **Liu et al. (2023a) investigated the energy spectrum of streamwise**
 158 **velocity and the detection of LSMs/VLSMs based on the LES dataset used in this study**
 159 **Moreover, wavelet was adopted to illustrate the influence of individual buildings on the**
 160 **intermittency of LSMs/VLSMs.**

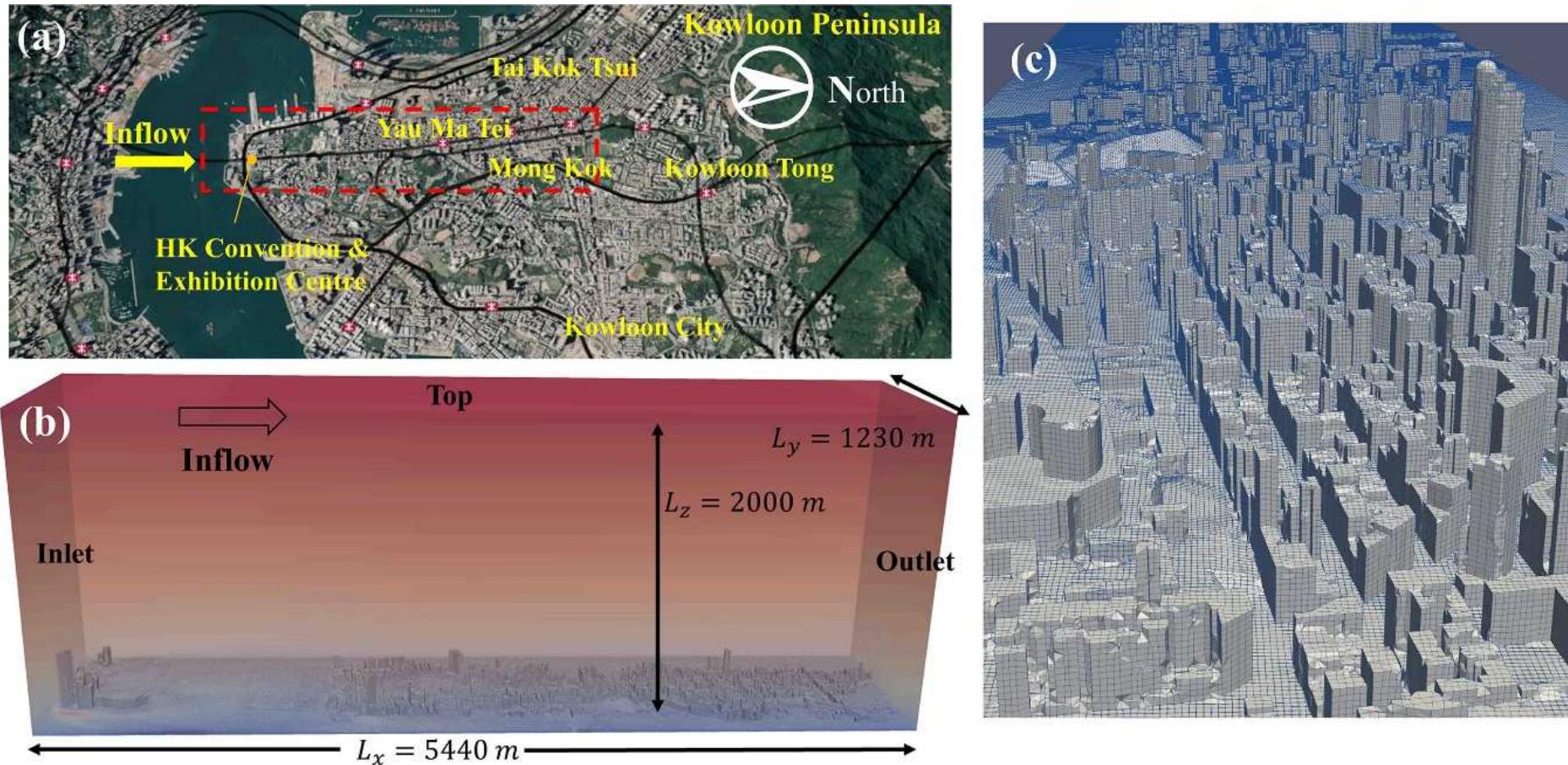


Figure 1. (a) Satellite image of downtown Kowloon Peninsula, Hong Kong from Google Maps. (b) LES Computation domain (Tsim Sha Tsui to Sham Shui Po). (c) Surface and building meshes in the near-ground region.

162 **3. Theoretical Background**

163 Effort has been sought to differentiate the contributions from motion scales to the
164 turbulence kinetic energy (TKE), momentum flux, and pollutant transport (Held 2013, Lee et
165 al. 2014, Wang et al. 2016, Auvinen et al. 2020, Encinar et al. 2020). For example, wavelet
166 analysis was applied to detect the LSMs and VLSMs in field measurements (Fesquet et al.
167 2009, Horiguchi et al. 2012, Lotfy et al. 2019) in favor of providing the instantaneous energy
168 spectra. When the LSMs or VLSMs pass by, (temporal) conditional sampling can be conducted
169 to contrast the flow properties between LSMs and other small-scale eddies. Other methods,
170 such as signal processing (low-pass filter), needs a pre-determined cutoff wavelength
171 (frequency) to separate different motion scales. For example, the scale interaction between
172 outer-layer VLSMs and inner-layer small-scale eddies is commonly investigated via a low-
173 pass filter. Evidently, the small-scale eddies are amplitude modulated by VLSMs (Mathis et al.
174 2009, Talluru et al. 2014, Anderson 2016).

175

176 More recently, data-driven algorithms, such as proper orthogonal decomposition (POD),
177 enable researchers to decompose the velocity field into a range of eddies ranked by their TKE
178 contents (Jadidi et al. 2017, Tang et al. 2020, Masoumi-Verki et al. 2021, Liu et al. 2023b). In
179 this connection, the contributions and properties of various eddies (represented by different
180 modes) can be examined in detail. However, the (temporal) conditional sampling unavoidably
181 mixed up the dominant LSMs with some unignorable small-scale components (Horiguchi et al.
182 2012, Auvinen et al. 2020). Tools for scale separation, such as wavelet, Fourier transform, or
183 POD, need for a priori knowledge of cutoff standards to partition the eddies into different scales.
184 However, the cutoff frequency (signal processing) or mode (POD) is determined mainly based
185 on experience rather than the intrinsic data scale. In addition, the filter and POD hardly
186 decompose the velocity or scalar fields (e.g., pollutant concentration or temperature)

187 simultaneously. They are thus inadequate to investigate the coupling between flows and other
188 variables.

189

190 EMD is another data-driven technique to decompose signals into IMFs. It has drawn
191 keen attention lately in the areas of the economy, remote sensing, defect detection, oceanic
192 boundary layer, and ASL (Oladosu 2009, Hawinkel et al. 2015, Meng et al. 2015, Gao et al.
193 2016, Martins et al. 2017). Compared with wavelet analysis, Fourier transform, or POD, EMD
194 has several advantages. First, it is purely data-driven, so no pre-determined basis function (e.g.,
195 sinusoidal wave) is required to partition the motion scales. In fact, EMD solely bases on the
196 characteristic space or time scales inherent in the data. Thus, the IMFs are adaptively biased
197 toward locally dominant frequencies that enable the extraction of physically relevant processes
198 in a finite bandwidth in a transient manner (Mätelting et al. 2020). Besides, EMD is able to
199 decompose multiple fields (multivariate EMD; Rilling et al. 2007, Rehman et al. 2010, Lv et
200 al. 2016, Wang et al. 2017, Thirumalaisamy et al. 2018, Wang et al. 2019) while preserving
201 their intrinsic relationship/coupling. Therefore, the pollutant concentration can be decomposed
202 along with the velocity field that enables a detailed investigation of the contribution from
203 different turbulence structures to momentum transport and pollutant dispersion.

204

205 With recent progress in computer science and measurement technology, a detailed
206 description of ASL flows over real urban morphology and the turbulence motion scales has
207 been available (Antoniou et al. 2017, Aristodemou et al. 2018, Hertwig et al. 2019, Fu et al.
208 2020, Cheng et al. 2021, Yao et al. 2022, Zheng et al. 2021, Liu et al. 2023a). Those datasets
209 enable the data-driven algorithm, such as EMD, to investigate the dynamics and their
210 contributions to the transport processes. To the best knowledge of the authors, however, most
211 EMD applications were based on smooth walls (Wang et al. 2017, Cheng et al. 2019) or

212 idealized urban surfaces (Agostini et al. 2018). Its applications for real urban morphology are
 213 rather limited. EMD has been only utilized by a handful of researchers to investigate the
 214 contribution from different motion scales based on field measurement (Martins et al. 2016,
 215 Cheng et al. 2017), which, however, is limited to pointwise samples. Besides, the pollutant
 216 transport, which directly affects the air quality in street canyons, has not been examined in
 217 detail yet.

218

219 EMD was first introduced by Huang et al. (1998). It is a data-driven algorithm to
 220 decompose the input signal into the linear combination of a range of IMFs. In contrast to
 221 Fourier and wavelet analyses, EMD does not require any pre-determined basis functions.
 222 Instead, it directly extracts the IMFs based on the instantaneous features of the input signal.
 223 Therefore, it is a data-driven, *a posteriori* method for data analysis that minimizes the artificial
 224 numerical enforcement or truncation (Cheng et al. 2019).

225

226 We start with decomposing the time trace of streamwise fluctuating velocity $u'(t)$ to
 227 introduce the methodology of EMD. The steps involved in the IMF computation are as follows:

228

- 229 1. Find all the local maxima of $u'(t)$ then link them up with a smooth curve (e.g., cubic
 230 spline interpolating function) to form the upper envelope of the signal $u'_{up}(t)$.
 231 Correspondingly, the lower envelope $u'_{low}(t)$ is identified via the local minima.
- 232 2. Subtract the average envelope $u'_{ave}(t) = (u'_{up}(t) + u'_{low}(t))/2$ from the original signal $u'(t)$
 233 to obtain the new data series $h(t) = u'(t) - u'_{ave}(t)$.
- 234 3. Replace $u'(t)$ by $h(t)$ in Step 1 and repeat the above steps until convergent at the k -th
 235 iteration according to the criterion (Huang et al. 1998, Cheng et al. 2019)

$$SD = \frac{\sum_{t=0}^T |u'_{,k}(t) - u'_{,k-1}(t)|^2}{\sum_{t=0}^T |u'_{,k}(t)|^2} \leq 0.1. \quad (10)$$

236 Here, T is the total number of samples in the time trace. Once the convergence criterion
 237 is satisfied, the first IMF is defined as $IMF_1(t) = u'_{,k}(t)$.

238 4. Afterward, IMF_1 is subtracted from the original signal $u'(t)$ to update the signal input
 239 $u'_{new}(t) (= u'(t) - IMF_1(t))$. Steps 1 to 4 are then repeated until all the IMFs are derived.

240

241 After the converged iteration, the original time-trace signal $u'(t)$ is decomposed into a
 242 series of IMFs plus a residual $R(t)$, as follows

$$u'(t) = \sum_{i=1}^m IMF_i(t) + R(t). \quad (11)$$

243

244 An example of EMD is recorded in Appendix A. As the IMF (mode) number increases,
 245 the IMFs gradually shift from the local-scale information to the global one. Multivariate EMD,
 246 which was proposed by Rehman et al. (2010), is adopted in this study to decompose the
 247 fluctuating velocities u_i' ($= (u', v', w')$) and the fluctuating pollutant concentration c'
 248 simultaneously to elucidate the coupling (see Wang et al. 2017 and Thirumalaisamy et al. 2018
 249 for details), examining the contribution to the fluxes of momentum $u'w'$ and pollutant $w'c'$
 250 from different scales (IMFs).

251

252 4. Result and Discussion

253 4.1 Flow Field

254 Figure 2 presents the shaded contours of premultiplied energy spectrum $k_i \times \phi_{uiui}$ as
 255 functions of wavelength λ_i and elevation z . Here, the index i denotes the x , y , and z directions

256 and k_i ($= 2\pi/\lambda_i$) the wavenumber in the i direction. The shaded contours (white to black) and
257 the solid lines (0.3:0.6:0.9 of IMFs) depict the premultiplied spectrum of the original signal (u' ,
258 v' , w') and individual IMFs, respectively. In line with Agostini et al. (2018), Debert et al. (2010),
259 and Fan et al. (2022), a few IMFs are sufficient to represent the original signal that carry most
260 of the energy. In this case, only 4 modes can be universally detected in most locations while
261 up to 6 modes can be found in some locations down in the RSL close to the buildings. For the
262 sake of consistency, only the first four IMFs are shown in this paper. In particular, IMF_4
263 includes the contribution from and above the 4-th mode ($IMF_4 + IMF_5 + IMF_6$, if any) that
264 signifies the global characteristic of the original signal (Cheng et al. 2019). The IMFs capture
265 well the original fluctuations in different ranges of wavenumber because the contour lines of
266 individual IMFs collectively cover the full spectrum of the original signals (Figure 2).

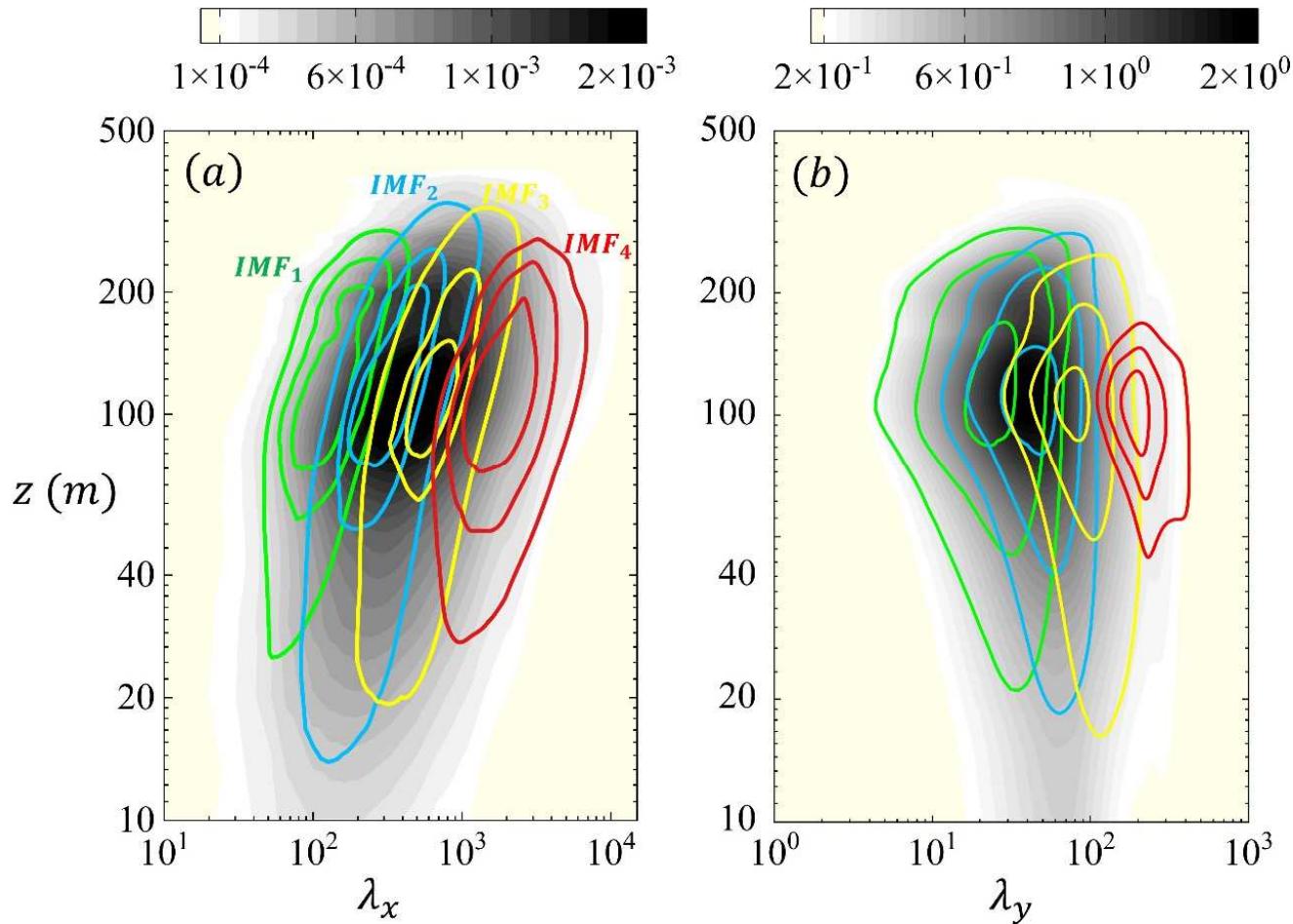


Figure 2. Shaded contours of premultiplied energy spectra $k_x \times \phi_{uu}$ and $k_y \times \phi_{vv}$ of (a) streamwise (u') and (b) spanwise (v') IMFs. The shaded contours (white-black) are premultiplied spectrum of original signal, and the solid lines represent the 0.3, 0.6, 0.9 maximum of individual IMF spectra.

268 The turbulence structures represented by IMFs illustrate a wide range of motion scales.
269 Their dominant wavelength can be derived from the peaks of IMF energy spectra (Figure 2).
270 The streamwise wavelengths λ_x of IMF_1 to IMF_4 dominate at 90 m, 250 m, 600 m, and 1,500
271 m, respectively. Analogously, the spanwise wavelengths λ_y of IMF_1 to IMF_4 dominate at 30 m,
272 50 m, 60 m, and 180 m, respectively. According to the streamwise wavelength λ_x , IMF_1 and
273 IMF_2 can be classified as small-scale eddies ($\lambda_x < \delta$; where $\delta = 330$ m), while IMF_3 and IMF_4
274 LSMs ($\lambda_x > \delta$). In addition, based on the Townsend attached-wall hypothesis (Townsend 1976),
275 IMF_1 and IMF_2 are vortex packets that carry the velocity fluctuations in all the three directions
276 (Cheng et al. 2019, Hu et al. 2020) as their streamwise and spanwise wavelengths follow $2\lambda_y \leq$
277 $\lambda_x \leq 5\lambda_y$ (Equation 2). In contrast, IMF_3 and IMF_4 are long streaky structures ($\lambda_x \approx 10\lambda_y$;
278 Equation 1) that mainly carry streamwise velocity fluctuations. These two standards suggest a
279 consistent classification. They in turn echo the simulation and measurement results in the
280 literature that the long streaky structures ($\lambda_x \approx 10\lambda_y$) are mainly LSMs or even VLSMs (Lee et
281 al. 2014, Hwang 2015, Cheng et al. 2019).

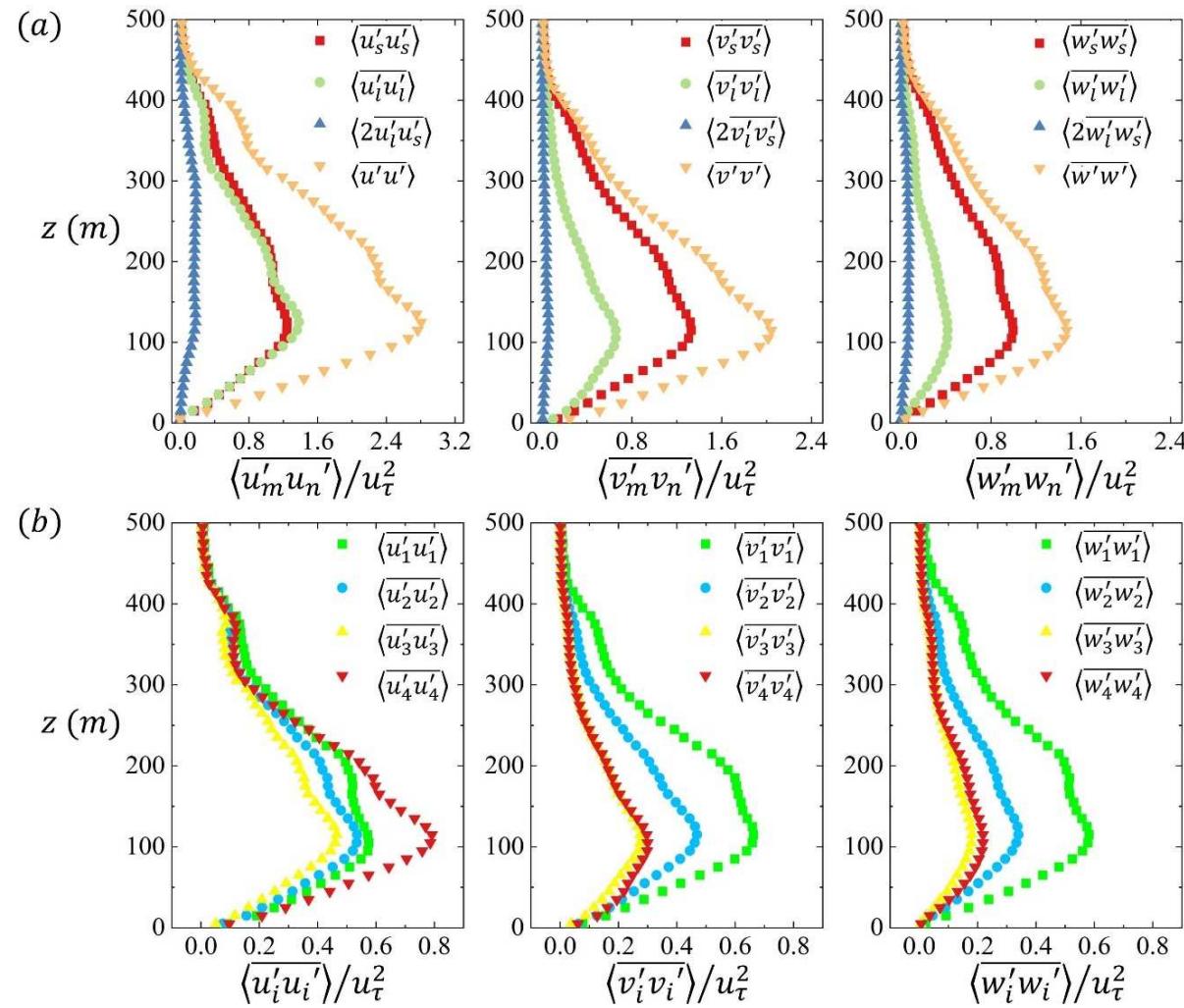


Figure 3. Ensemble average of dimensionless profiles of streamwise u' , spanwise v' , and vertical w' fluctuating velocities. (a) Contributions from small scales, large scales, and cross-scale interactions; together with (b) detailed contributions from different IMFs.

283 Figure 3 presents the ensemble average of the TKE contribution from different IMFs in
 284 the streamwise, spanwise, and vertical directions as functions of elevation z . The spatial
 285 average on the horizontal x - y plane is denoted by the angle brackets $\langle \psi \rangle$. The interaction
 286 between different scales illustrates a relatively small contribution because the correlation
 287 among different modes is generally weak due to different motion scales (Figure 3a). By contrast,
 288 the direct contribution from individual IMFs plays a dominant role in TKE (Figure 3b).

289

290 It is noteworthy that IMF_4 contributes far more in the streamwise direction than it does
 291 in the spanwise or vertical directions (Figure 3b). This echoes the conclusion from Hwang
 292 (2015) and Cheng et al. (2019). It is because the long-streaky (detached) structures in the IMF_4
 293 mainly carry the streamwise velocity fluctuations. In contrast, IMF_1 and IMF_2 contribute more
 294 in the spanwise and vertical directions because they are the vortex packets containing all three
 295 components of velocity fluctuation. Besides, the LSMs contribute nearly 50% to the
 296 streamwise TKE component that is in line with the LSM contribution in open-channel flows
 297 (Duan et al. 2020).

298

299 Multivariable EMD separates the motion scales while keeps the inherent coupling
 300 among the variables. It enables the comparison of small-scale (u_s' and w_s') and large-scale (u_l'
 301 and w_l') contributions from fluctuating streamwise u' and vertical w' velocities to momentum
 302 transport. Figure 4a contrasts the vertical momentum flux contribution from small scale (IMF_1
 303 and IMF_2 ; $\langle \overline{u_s' w_s'} \rangle$), large scale (IMF_3 and IMF_4 ; $\langle \overline{u_l' w_l'} \rangle$), together with their scale
 304 interaction ($\langle \overline{u_s' w_l'} \rangle$ and $\langle \overline{u_l' w_s'} \rangle$). In addition, Figure 4b details the contribution to
 305 momentum flux from different IMFs. It is noteworthy that the LSMs (IMF_3 , $\lambda_x \geq 2\delta$) and
 306 VLSMs (IMF_4 , $\lambda_x \geq 5\delta$) are responsible for nearly 40% of momentum transport $u'w'$. This

307 finding echoes that the VLSMs are responsible for more than 40% momentum flux in open-
 308 channel-flow experiments (Duan et al. 2021). Moreover, Agostini et al. (2018) reported that
 309 the large-scale fluctuations are responsible, directly on their own, for roughly 30% to the skin
 310 friction. The current mathematical modeling result further supports the analogy of real urban
 311 morphology above the urban canopy layer (UCL) to their smooth-wall counterparts because of
 312 their similar turbulence structures and TKE contribution.

313

314 Figure 4c contrasts the correlation coefficient

$$r_{uw,IMF_i} = \frac{\langle \overline{u'w'} \rangle_{IMF_i}}{\langle \overline{u'u'} \rangle_{IMF_i}^{1/2} \langle \overline{w'w'} \rangle_{IMF_i}^{1/2}} \quad (12)$$

315 of different IMFs. In the RSL ($95 \text{ m} < z$), $r_{uw,i}$ of all IMFs increases with increasing elevation
 316 because of eddy development. Apparently, IMF_3 (LSMs) and IMF_4 (VLSMs) show stronger
 317 (negative) correlations between the streamwise u and vertical w velocities. Given the
 318 comparable TKE contents in the streamwise $\langle \overline{u'u'} \rangle$ and vertical $\langle \overline{w'w'} \rangle$ direction, it is implied
 319 that large-scale eddies contribute more to the RSL momentum transport $\langle \overline{u'w'} \rangle$ than do their
 320 small-scale counterparts close to the buildings. That is also why the momentum flux of LSMs
 321 is found comparable to small-scale motions even the vertical TKE components are much less.

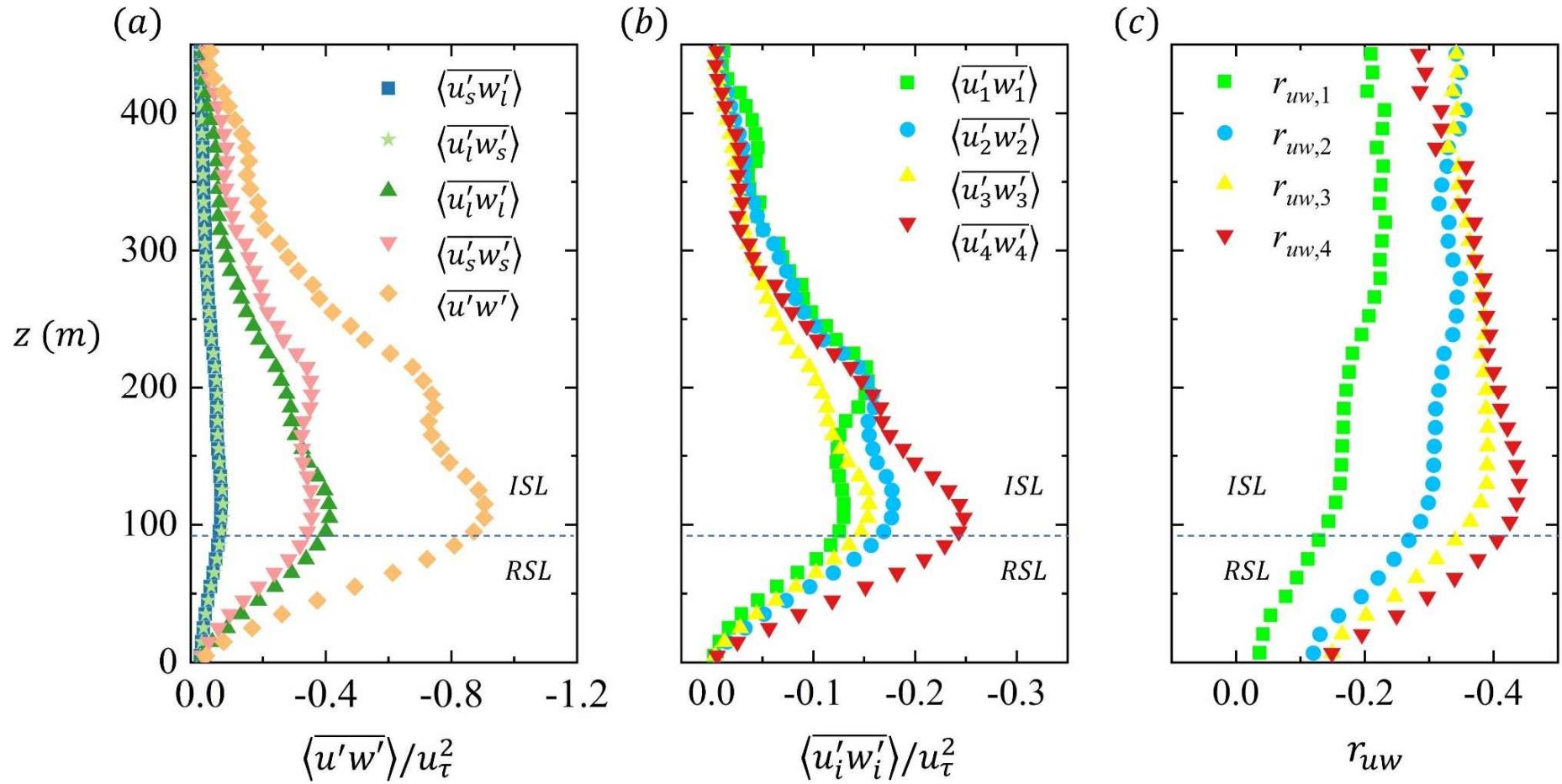


Figure 4. Momentum flux $u'w'$ contribution from different IMFs. (a) Total contribution from different scales, (b) detailed contribution from different IMFs, and (c) the correlation coefficient r_{uw} of different IMFs.

323 Evidently, the large-scale momentum flux $\langle \overline{u_l' w_l'} \rangle$ outweighs the small-scale one
 324 $\langle \overline{u_s' w_s'} \rangle$ in the RSL ($z < 95$ m; Figure 4a). On the other hand, it is less than the small-scale
 325 transport in and above the ISL ($z \geq 95$ m). This is one of key differences between the dynamics
 326 over smooth walls (Cheng et al. 2019) and real urban morphology with explicitly resolved
 327 buildings. In the smooth-wall configuration, small-scale and large-scale eddies populate in the
 328 near-wall and logarithmic (ISL) regions, respectively, dominating the transport. In real urban
 329 morphology, on the contrary, small-scale eddies are not only initiated by the ground surfaces
 330 (flow shear) but also by the heterogeneous buildings (flow impingements). These small-scale
 331 eddies would populate instantaneously above the RSL if they are initiated by high-rise
 332 buildings (building wakes). On the other hand, the channeling within street canyons (below
 333 UCL) enables the existence and development of LSMs in the near-ground region between two
 334 rows of buildings. The buildings and ground surface constitute open channels where the LSMs
 335 develop within, promoting the streamwise, long-streaky structures in UCLs.

336

337 Figure 5 further illustrates the existence of LSMs within the street canyons (channels)
 338 by contrasting the momentum flux contribution $S_{u'w'}$ from small-scale ($= \overline{u_s' w_s'}/\overline{u'w'}$; IMF_1
 339 and IMF_2) and large-scale ($= \overline{u_l' w_l'}/\overline{u'w'}$; IMF_3 and IMF_4) motions at $z = 50$ m (in the RSL).
 340 As shown in Figure 5a, most contributions from small scales concentrate in the building near
 341 wakes, especially in some upstream regions, where the flows and turbulence are disturbed by
 342 staggering building clusters. In contrast, the contributions from large-scale eddies populate in
 343 the downstream street canyon, where the building layout is more uniform and regular. This
 344 finding once again illustrates the significance of LSMs in transport processes and the
 345 importance of proper urban planning in pedestrian-level ventilation to promote sustainability.
 346 Although substantial small-scale eddies could be initialized by staggered buildings, their

347 transport efficiency is rather limited that could barely help the transport processes. On the other
 348 hand, the regular street canyons are spacious for eddy development. The dynamics are
 349 prominent especially for those long-streaky structures aligned in the streamwise direction that
 350 are beneficial for LSMs with remarkable transport efficiency.

351

352 **4.2 Tracer Field**

353 Figure 6a presents the distribution of time-averaged pollutant concentration \bar{c} in the
 354 computation domain. The area source is located in $-1,800 \text{ m} \leq x \leq -1,000 \text{ m}$ at the ground level
 355 with a constant pollutant concentration $c_0 = 1,000 \text{ ppm}$. The pollutant is prescribed as the inert
 356 tracer without buoyancy or chemical reaction. The region $-500 \text{ m} \leq x \leq 500 \text{ m}$ is prescribed as
 357 the near field, $500 \text{ m} \leq x \leq 1,500 \text{ m}$ the mid field, and $1,500 \text{ m} \leq x \leq 2,500 \text{ m}$ the far field,
 358 according to their distance after the pollutant area source. Figure 6b depicts the ensemble-
 359 averaged concentration $\langle \bar{c} \rangle / \langle \bar{c} \rangle_g$ normalized by the ground-level concentration $\langle \bar{c} \rangle_g$ as a
 360 function of elevation z . In the near field, most of the pollutant resides at the pedestrian level (z
 361 $\leq 50 \text{ m}$) and the concentration drops significantly with increasing elevation thereafter. In the
 362 mid field and far field, on the contrary, more pollutant resides at higher elevation due to the
 363 turbulent dispersion in the vertical direction (Jiang et al. 2018, Wu et al. 2018).

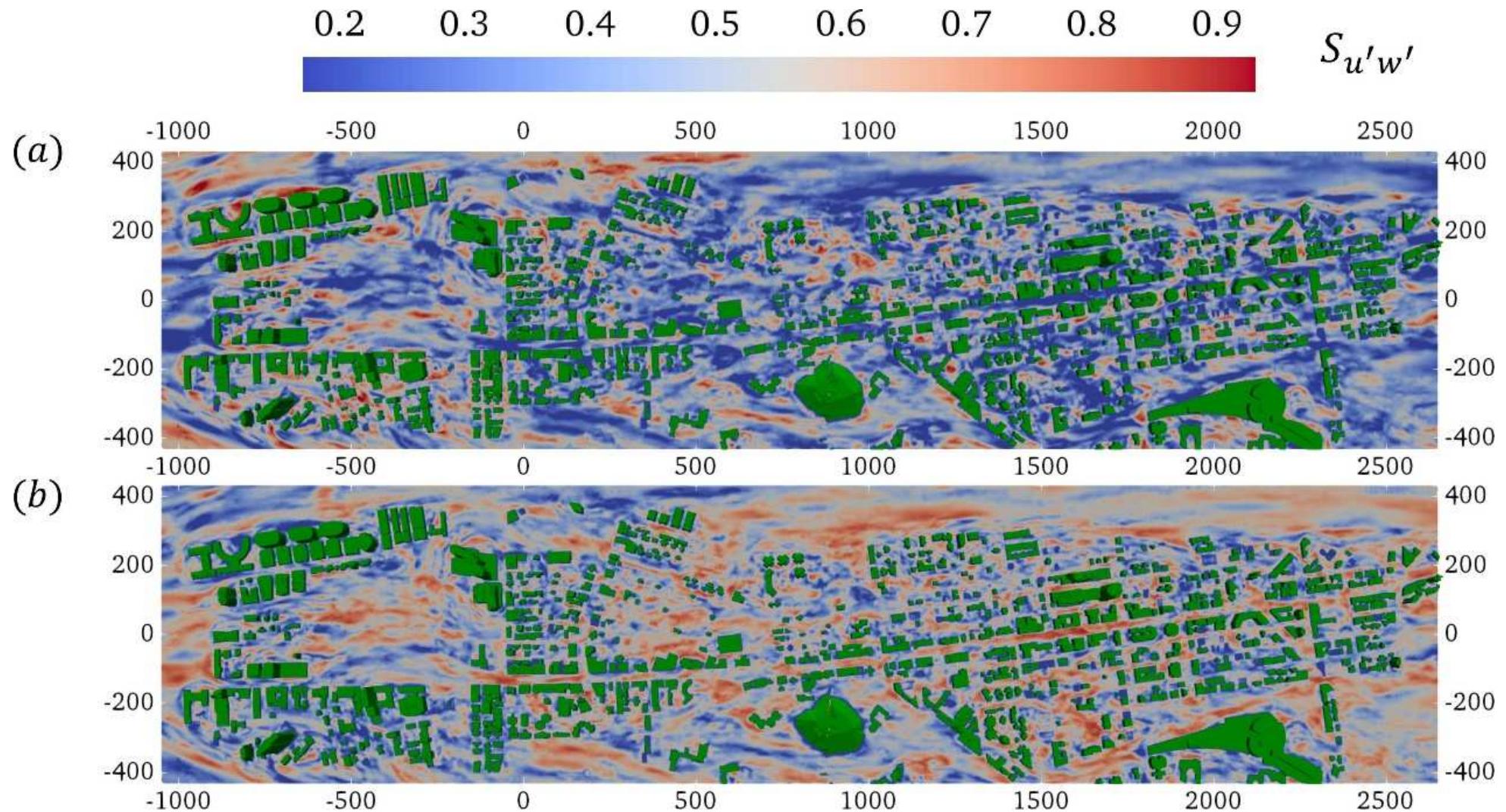


Figure 5. Horizontal view of the contribution $S_{u'w'}$ from (a) small $\overline{u_s'w_s'}/\overline{u'w'}$ and (b) large $\overline{u_l'w_l'}/\overline{u'w'}$ scales to momentum flux at $z = 50$ m (RSL).

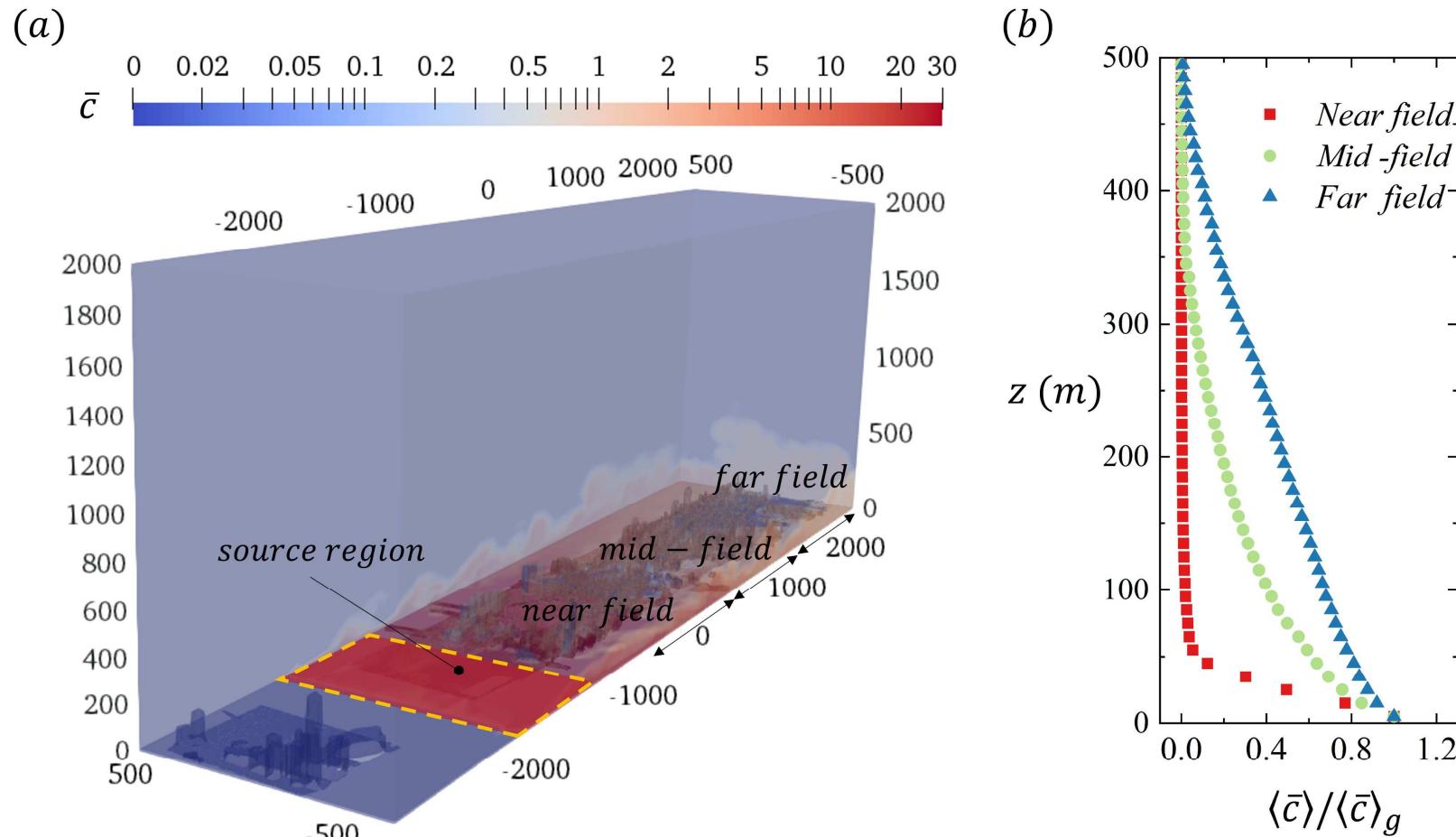


Figure 6. Pollutant concentration illustrated as the (a) spatial distribution of time average \bar{c} and (b) ensemble averaged vertical profile $\langle \bar{c} \rangle / \langle \bar{c} \rangle_g$

normalized by the ground-level pollutant concentration $\langle \bar{c} \rangle_g$.

366 Figure 7a contrasts the pollutant flux contribution $\langle \bar{w'c'} \rangle$ between small and large
 367 scales, together with their interactions. It is shown that LSMs ($IMF_3 + IMF_4$) dominate the
 368 transport, especially in the near-field regions. Figure 7b further contrasts the pollutant flux
 369 contribution directly from individual IMFs. The peaked value of the original pollutant flux
 370 $\langle \bar{w'c'} \rangle_{max}$ is adapted for normalization. Obviously, the VLSMs (IMF_4) dominates the near-
 371 field pollutant transport. Other IMFs, however, have little contributions because they are
 372 substantially smaller than the plume coverage. In the far field, as the plume is continuously
 373 disrupted by the buildings and terrains, the pollutant concentration becomes inhomogeneous
 374 and the pollutant puff splits into small pieces. Therefore, all the four IMFs contribute
 375 comparably to the pollutant removal. IMF_3 and IMF_4 (LSMs) contribute more than 40% to total
 376 pollutant flux in the far field which is consistent with that in the momentum-flux contribution.

377

378 Compared with plume coverage, LSMs drive pollutant meandering/fluctuations
 379 (Gifford 1959, Csanady 1973, Franzese et al. 2007, Cassiani et al. 2009, Ardestiri et al. 2020),
 380 i.e., large-scale ejection Q_2 and sweep Q_4 , leading to the pollutant-plume undulation as a whole
 381 with respect to the source location. By contrast, eddies of size comparable to, but smaller than,
 382 the plume coverage result in relative dispersion, giving rise to the plume spread with respect to
 383 the instantaneous center of mass (Richardson 1926, Batchelor 1952, Monin et al. 1975,
 384 Sawford 2001, Franzese et al. 2007). Eddies, whose size is far smaller than the plume coverage,
 385 barely affect relative dispersion (Mikkelsen et al. 1987).

386

387 In the near field, the pollutant is rather horizontally homogenous in the near-ground
 388 regions (at high concentrations). As such, the small-scale eddies (IMF_1 and IMF_2) only spread
 389 the plume with respect to the instantaneous center of mass, which, however, contributes
 390 limitedly to fluctuating pollutant concentration. In the streamwise direction, three-dimensional

391 (3D) obstacles exist that significantly disturb the flows, enhancing plume dispersion (Li et al.
392 2019). Therefore, in the downstream, the large-scale pollutant plume segments into smaller,
393 puffy air masses whose distribution is more inhomogeneous. These dynamics further facilitate
394 small-scale eddies to pollutant mixing, augmenting fluctuating pollutant concentrations.

395

396 Figure 8 contrasts the premultiplied pollutant flux cospectrum $k_x \times \phi_{wc}$ (Nordbo et al.
397 2012, Vincent et al. 2013, Cheng et al. 2020) as a function of streamwise wavelength λ_x and
398 elevation z that exhibits the streamwise scale of pollutant plume transport resulted from the
399 turbulent transport (O'Gorman et al. 2005).

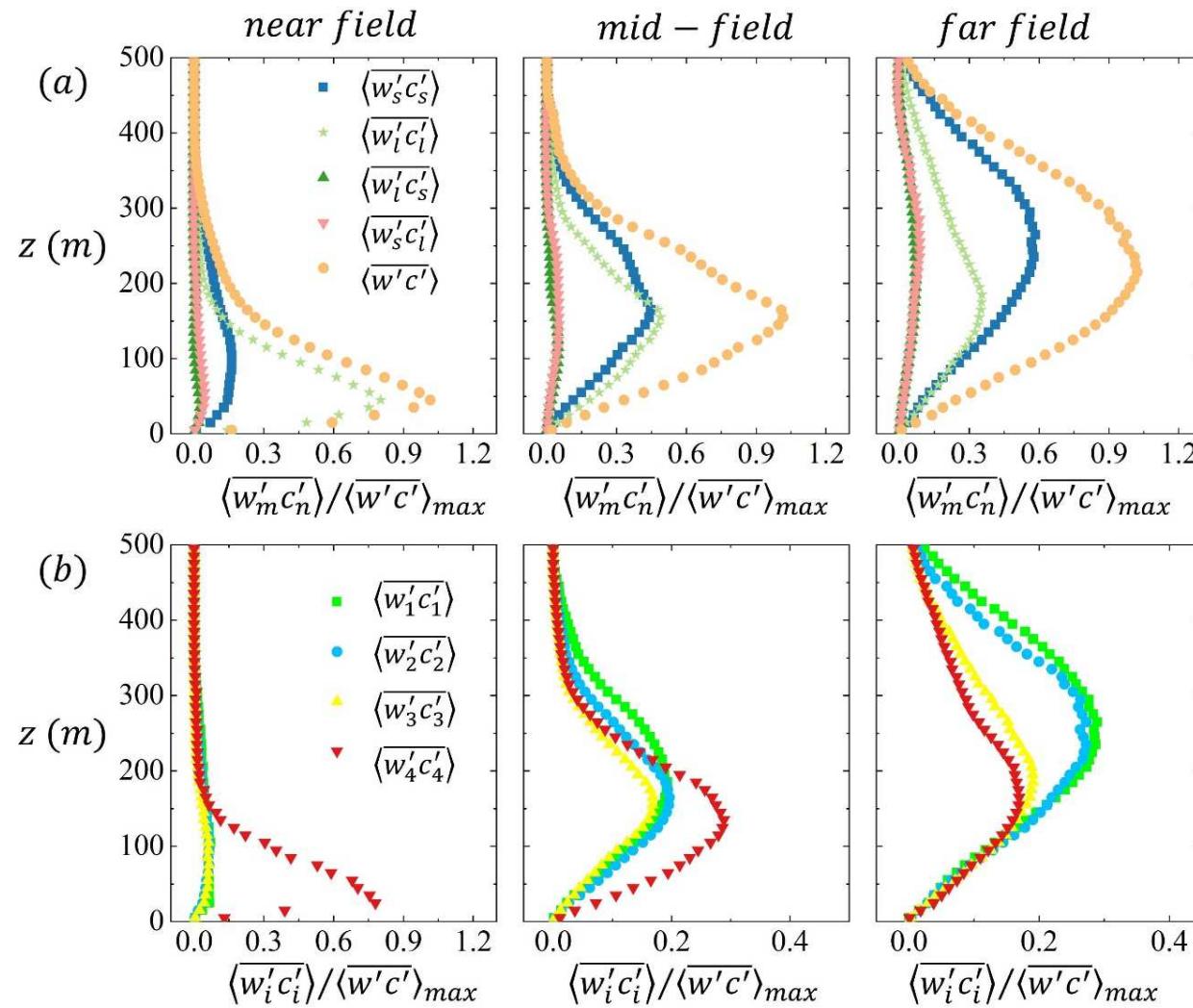


Figure 7. Contribution from (a) small or large scales and (b) different IMFs to pollutant flux $\langle \overline{w'c'} \rangle$ in the near field, mid field, and far field.

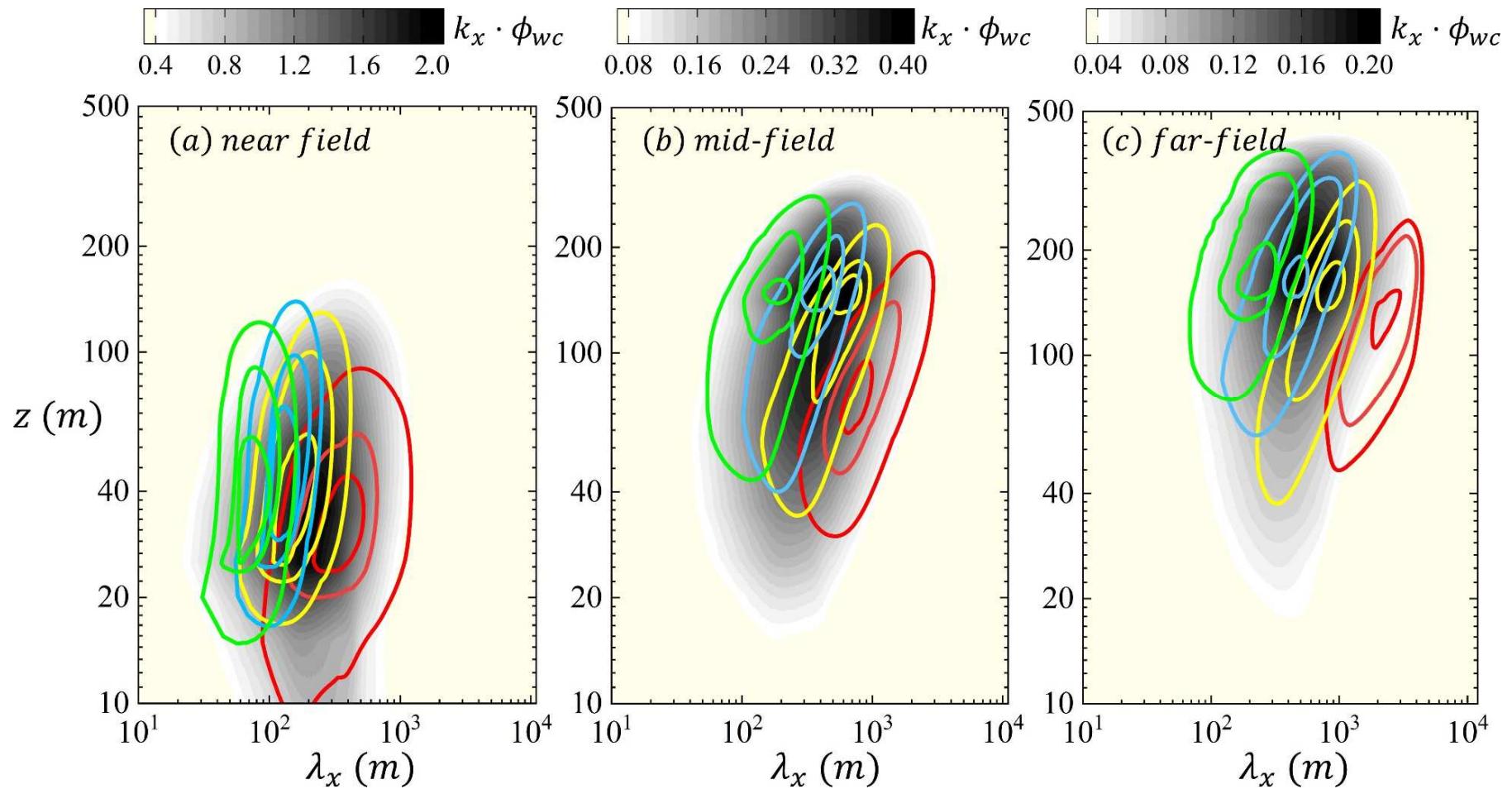


Figure 8. Premultiplied cospectrum of pollutant flux $k_x \times \phi_{wc}$ as functions of streamwise extents λ_x and elevation z in the (a) near, (b) mid, and (c) far fields. The solid lines represent levels 0.3:0.3:0.9 of different IMF cospectra, and the underlaying shaded contours (white to black) represent the cospectrum of the original signal.

402 The dispersion scale ranges from around 100 m to 1,000 m that echoes the cospectrum
403 scale in the field measurements (Sørensen et al. 2010, Held 2014, Oliveira et al. 2018), in which
404 the frequency is peaked in the range of $10^{-1} \text{ Hz} \leq f \leq 10^{-3} \text{ Hz}$, depending on the elevation and
405 weather conditions. In addition, the multiscale feature of scalar transport is reported
406 (Ramamurthy et al. 2015, Oliveira et al. 2018), where disparate dominant scales can be
407 observed in the scalar flux cospectra. Through the EMD method, this work provides insight
408 into different kinds of eddies to further address the multiscale features of scale transport. As
409 shown in Figure 8, the streamwise extent of vertical pollutant flux increases with enlarging
410 eddy size (from IMF_1 to IMF_4) and elevated location z . In the near field, most pollutants reside
411 in the near-ground regions ($z < 60 \text{ m}$; RSL), where the turbulence is mostly initiated and limited
412 by the building blocks. The pollutant transport is determined by the near-canopy turbulence
413 structures. Therefore, the transport scale ranges from 60 m (IMF_1) to 300 m (IMF_4) that is
414 comparable to the separation between two high-rise buildings in the streamwise direction.

415

416 In the mid- and far-field, the pollutant concentrations fluctuate more vigorously around
417 $z = 150 \text{ m}$ and 200 m , respectively. Far above the street canopy, the transport scale increases
418 significantly that ranges from 200 m (IMF_1) to 1,500 m (IMF_4). It is noteworthy that the
419 pollutants are transported by a wide spectrum of eddies (IMFs for flows), whose size does not
420 change much in the streamwise (x) direction. In this connection, given the same elevation (z),
421 the dominant motion scales of pollutant dispersion are consistent in the near, mid and far fields,
422 though the locations of the spectral peaks are elevated downstream.

423

424 Compared with the turbulence motion scales (Figure 2), the dispersion scales are
425 smaller or at most comparable at the same elevation z . This once again echoes that the eddies,
426 whose size is far smaller than the plume coverage, barely affect pollutant dispersion (Mikkelsen

427 et al. 1987). Simultaneously, the large eddies drive the plume meandering, leading to pollutant
 428 concentration fluctuations (Ardeshiri et al. 2020).

429

430 Figure 9 illustrates the horizontal view of the contribution to the vertical pollutant flux
 431 from the small (IMF_1 and IMF_2) and large (IMF_3 and IMF_4) scales at $z = 50$ m. The absolute
 432 value of total vertical pollutant flux $|\overline{w'c'}|$ is used to normalize the contribution that helps
 433 differentiate the positive (pollutant removal) and negative (pollutant re-entrainment or counter-
 434 gradient transport) contributions. In the upstream region, the large-scale pollutant flux $\overline{w_l'c_l'}$,
 435 which is dominated by IMF_4 , plays an important role in pollutant removal, though the re-
 436 entrainment is found occasionally in some areas. This finding concurs the near-field pollutant
 437 dispersion within building clusters, where counter-gradient transport would be observed
 438 occasionally (Gousseau et al. 2015). The small-scale pollutant flux $\overline{w_s'c_s'}$ exhibits mildly in
 439 the pollutant removal and re-entrainment. However, the areas with negative $\overline{w_l'c_l'}$ expand in
 440 the downstream region, implying more frequent pollutant re-entrainment. The LSMs are larger
 441 than 100 m in the vertical that could reside/cover in the street canyons and the outer layer
 442 simultaneously. Such large eddies could help pollutant dilution (effectively) given heavy
 443 pedestrian-level pollution (Figure 9b, upstream). Whereas, there would be a drawback. They
 444 could drive the pollutants from the roof-level re-entraining down to the street canyons in case
 445 aged air accumulates in the far-field, outer layer, which trims down the roles of LSMs (Liu et
 446 al. 2005).

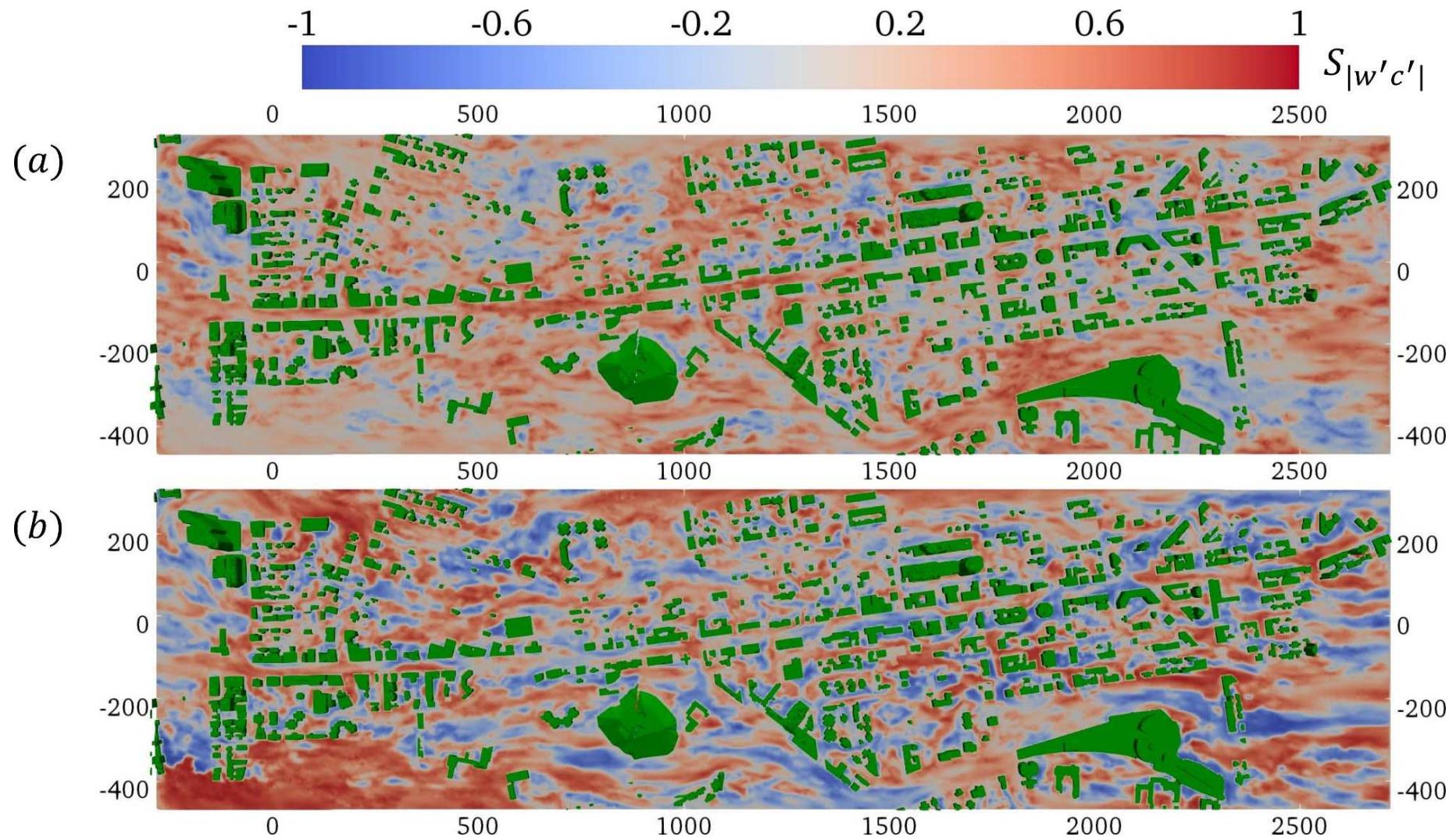


Figure 9. Horizontal view of the contribution $S_{|w'c'|}$ from (a) small scale $\overline{w_s'c_s'}/|\overline{w'c'}|$ and (b) large scale $\overline{w_l'c_l'}/|\overline{w'c'}|$ of pollutant flux at $z = 50$ m.

448 In the downstream region, the negative contribution from small-scale pollutant flux
 449 $\overline{w_s' c_s'}$ remains almost unchanged. It is mainly initiated by the buildings and the terrain
 450 (explicitly resolved roughness elements) that barely interacts with the high-concentration
 451 pollutant plume in the outer layer. However, the positive contribution from $\overline{w_s' c_s'}$ increases
 452 (Figure 9a, red color darkens). The pollutants are thus continuously disturbed by the buildings
 453 in the streamwise direction that subsequently split into small puffs. In this connection, even
 454 small-scale eddies could contribute more by carrying the inhomogeneous pollutants away from
 455 their plume centerline.

456

457 **5. Practical implication**

458 The need for effectuating pollutant-control strategy in ASLs, especially in UCLs and
 459 RSLs, arouses the concern of how to distinguish the contributions to momentum transport and
 460 pollutant dispersion from the full spectrum of turbulent motion scales. More specifically,
 461 along with the attached, small-scale eddies initiated by individual buildings and terrain, large-
 462 scale, detached motions exist that are mainly modulated by the aerodynamic resistance of the
 463 entire urban surface. Based on a building-resolved LES dataset, EMD is utilized to examine
 464 the multiscale nature of ASL turbulence over real urban morphology. The first (IMF_1) and
 465 second (IMF_2) EMD modes are able to capture the detached, small-scale eddies ($\lambda_x < \delta$) that
 466 carry the TKE components in all three directions simultaneously. Meanwhile, the third (IMF_3)
 467 and fourth (IMF_4) EMD modes collectively capture the long-streaky, detached, large-scale
 468 eddies (λ_x up to 5δ) that mainly carry the streamwise TKE.

469

470 Separating the attached and detached eddies could help evaluate their (dissimilar) roles
 471 in momentum transfer and pollutant dispersion. Compared with the small-scale ones, the
 472 large-scale eddies are found to be more efficient in transport processes especially in the

473 settings of aligned street canyons. By contrast, the small-scale eddies show more contributions
474 in staggered-building layout but less efficient. This finding suggests the (importance) potential
475 of aligned-building layout to improve street-canyon wind speeds and pollutant removal. It is
476 noteworthy that, the increased ventilation speed in the aligned street does not necessarily
477 improve the momentum transport and pollutant removal in the vertical direction because the
478 inflow air upstream might be polluted already, especially in large urban areas. Therefore, a
479 compromise could be achieved between enhanced (vertical) transport and favorable pedestrian
480 comfort. For example, the streets could be widened to avoid channeling (extremely high wind
481 speed that degrades the wind comfort and safety) as well as promote large-scale, energetic
482 entrainment simultaneously.

483

484 The LSMs also dominate the near-field pollutant dispersion, while other small-scale
485 eddies have rather limited contributions. This finding could be implemented in hazard
486 assessment of the danger in those areas being affected by accidental poison gas leakage based
487 on different building layouts and terrain configurations, as well as the evaluation of vehicular
488 pollutant dispersion in dense cities. In addition, in a district with aligned streets, there will
489 usually be bystreets crossing the aligned streets at about 90° angle. This configuration often
490 degrades the vertical transport. To avoid such unfavorable wind direction, urban planners
491 could align streets (avenue) along the prevailing winds. Therefore, in the perspective of long-
492 term pollutant removal performance, it is always useful to enhance the vertical transport even
493 along aligned streets, especially when they are in the direction of the yearly prevailing wind.

494

495 **6. Conclusion**

496 With a building-resolved LES dataset over real urban morphology, we critically
497 examine the ASL turbulence structures and their contribution to momentum transport and

498 pollutant dispersion especially in the RSLs. The flows and pollutant concentrations are
499 decomposed into a range of turbulence structures according to their motion scales by EMD.
500 The small-scale eddies ($\lambda_x \leq \delta$) follow $2\lambda_y \leq \lambda_x \leq 5\lambda_y$ that could be classified as attached eddies
501 initiated by individual buildings and terrains. These eddies carry the TKE components of all
502 three directions that are captured by the first two EMD modes (IMF_1 and IMF_2). In contrast,
503 the third (IMF_3) and fourth (IMF_4) EMD modes extract the large-scale eddies ($\lambda_x > \delta$) that
504 could be classified by the detached eddies ($\lambda_x \approx 10\lambda_y$). These eddies are long, streaky structures
505 that carry the majority streamwise TKE components $u'u'$ (up to 40%). In addition, these LSMs
506 transport around 40% momentum flux mainly due to the rather high transport efficiency
507 compared with the small-scale eddies.

508

509 Building configurations are found to influence the turbulence structure significantly.
510 The aligned building configuration could promote the LSMs because the long street canyons
511 provide the room for eddy development. Moreover, the abrupt velocity gradient resulting from
512 the mechanical shear between buildings and mean flows produces sufficient TKE for those
513 turbulence structures. Small-scale eddies, on the contrary, are mainly initiated by the
514 staggering building clusters.

515

516 Finally, the large-scale structures dominate the pollutant dispersion in the near-field
517 region, where the small-scale eddies help merely the pollutant dispersion. Because the
518 pollutants are transported downstream, the small-scale eddies subsequently play more
519 important roles in the pollutant dispersion. Nonetheless, the large-scale structures are
520 responsible for nearly 40% of pollutant transport. The separation of different eddies initiated
521 by individual buildings or city-scale street network helps improving our understanding and
522 management of the air quality in urban areas, contributing to sustainable cities.

523 **Acknowledgement**

524 This research is conducted in part using the research computing facilities and/or
525 advisory services offered by Information Technology Services (ITS), The University of Hong
526 Kong (HKU). Technical support from Ms. Lilian Y.L. Chan, Mr. W.K. Kwan, Mr. Bill H.T.
527 Yau and Mr. Juilian Yeung is appreciated. **This study is partly supported by the Hong Kong**
528 **(HK) Research Grants Council (RGC) Theme-based Research Scheme (TRS) T24-504/17-N,**
529 **the HK RGC Collaborative Research Fund (CRF) C7064 18G and C5108 20G, as well as the**
530 **HK RGC General Research Fund (GRF) 17209819 and 17211322.**

531

532 **Appendix A. Supplementary data**

533

534 Figure A1 illustrates a pointwise example of the IMFs of input signal of streamwise
535 fluctuating velocity $u'(t)$. The first IMF IMF_1 contains the minimum (local) scale properties of
536 the original signal. As the IMF (mode) number increases, the IMFs gradually shift from the
537 local-scale information to the global one.

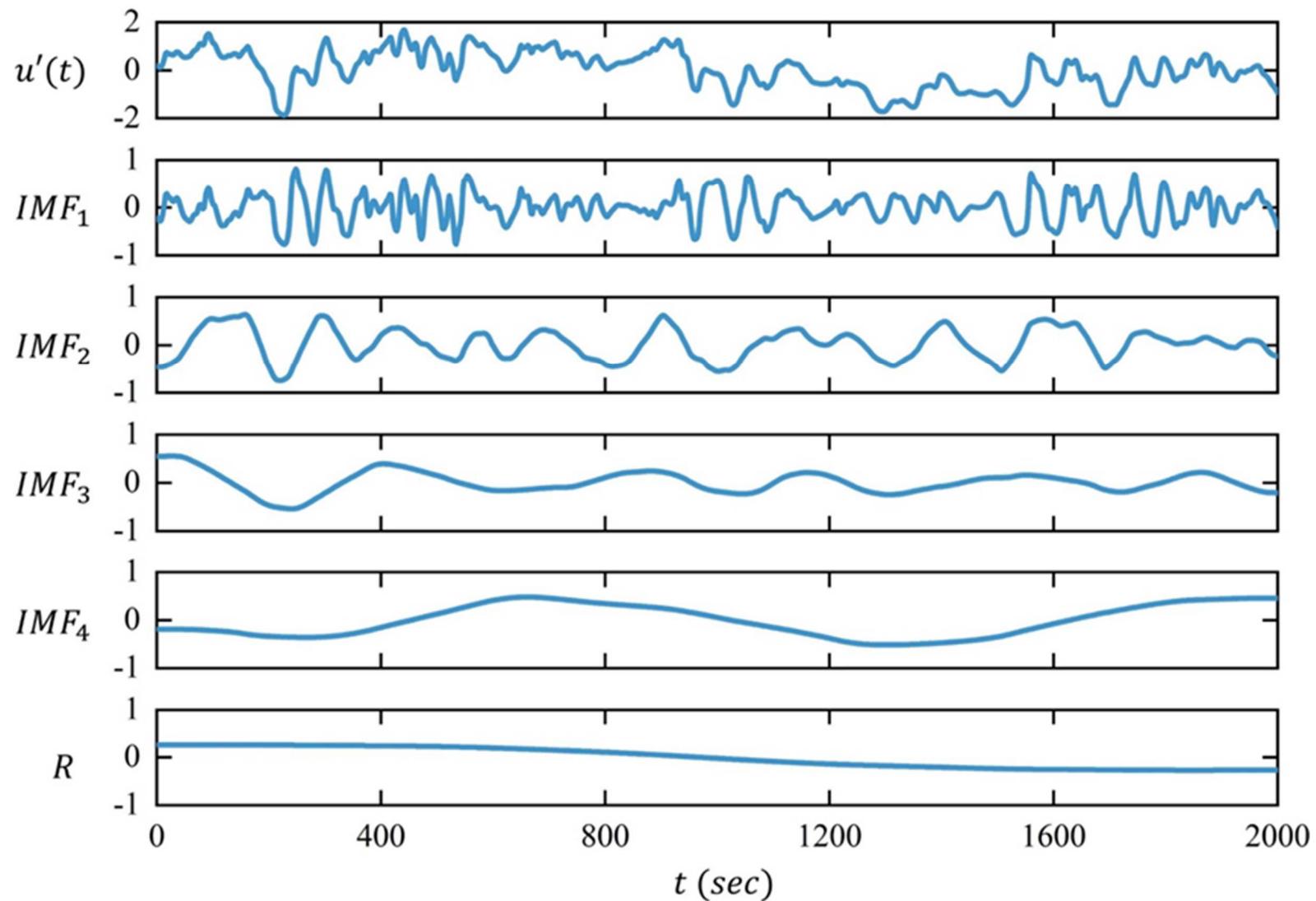


Figure A1. Pointwise example of EMD: the original signal $u'(t)$, IMF_i components, and residual R .

539 **References**

540

541 Agostini, L., et al. (2018). "The Impact of Footprints of Large-Scale Outer Structures on the
542 Near-Wall Layer in the Presence of Drag-Reducing Spanwise Wall Motion." *Flow, Turbulence and Combustion* 100(4): 1037-1061.

543

544 Anderson, W. (2016). "Amplitude modulation of streamwise velocity fluctuations in the
545 roughness sublayer: evidence from large-eddy simulations." *Journal of Fluid Mechanics* 789: 567-588.

546

547 Antoniou, N., et al. (2017). "CFD and wind-tunnel analysis of outdoor ventilation in a real
548 compact heterogeneous urban area: Evaluation using "air delay"." *Building and
549 Environment* 126: 355-372.

550 Ardestiri, H., et al. (2020). "On the Convergence and Capability of the Large-Eddy Simulation
551 of Concentration Fluctuations in Passive Plumes for a Neutral Boundary Layer at
552 Infinite Reynolds Number." *Boundary-Layer Meteorology* 176(3): 291-327.

553 Aristodemou, E., et al. (2018). "How tall buildings affect turbulent air flows and dispersion of
554 pollution within a neighbourhood." *Environmental Pollution* 233: 782-796.

555 Auvinen, M., et al. (2020). "Study of Realistic Urban Boundary Layer Turbulence with High-
556 Resolution Large-Eddy Simulation." *Atmosphere* 11(2).

557 Batchelor, G. K. (1952). "Diffusion in a field of homogeneous turbulence: II. The relative
558 motion of particles." *Mathematical Proceedings of the Cambridge Philosophical
559 Society* 48(2): 345-362.

560 Bernardini, M., et al. (2014). "Velocity statistics in turbulent channel flow up to $Re-\tau=4000$."
561 *Journal of Fluid Mechanics* 742: 171-191.

562 Cassiani, M., et al. (2009). "A coupled Eulerian and Lagrangian mixing model for intermittent
563 concentration time series." *Physics of fluids* (1994) 21(8): 85105.

564 Cheng, C., et al. (2019). "Identity of attached eddies in turbulent channel flows with
565 bidimensional empirical mode decomposition." *Journal of Fluid Mechanics* 870: 1037-
566 1071.

567 Cheng, W.-C., et al. (2021). *Turbulent flows over real heterogeneous urban surfaces: Wind*
568 *tunnel experiments and Reynolds-averaged Navier-Stokes simulations*. Building
569 simulation, Springer.

570 Cheng, X. X., et al. (2017). "A Study of Nonstationary Wind Effects on a Full-Scale Large
571 Cooling Tower Using Empirical Mode Decomposition." *Mathematical problems in*
572 *engineering* 2017: 1-15.

573 Cheng, Y., et al. (2020). "Power-Law Scaling of Turbulence Cospectra for the Stably Stratified
574 Atmospheric Boundary Layer." *Boundary-Layer Meteorology* 177(1): 1-18.

575 Csanady, G. T. (1973). *Turbulent diffusion in the environment*. Dordrecht, Reidel.

576 Debert, S., et al. (2010). "Ensemble-Empirical-Mode-Decomposition method for instantaneous
577 spatial-multi-scale decomposition of wall-pressure fluctuations under a turbulent flow."
578 *Experiments in Fluids* 50(2): 339-350.

579 del ÁLamo, J. C., et al. (2006). "Self-similar vortex clusters in the turbulent logarithmic
580 region." *Journal of Fluid Mechanics* 561: 329-358.

581 Deshpande, R., et al. (2019). "Streamwise inclination angle of large wall-attached structures in
582 turbulent boundary layers." *Journal of Fluid Mechanics* 877.

583 Duan, G., et al. (2021). "Predicting Urban Surface Roughness Aerodynamic Parameters Using
584 Random Forest." *Journal of Applied Meteorology and Climatology* 60(7): 999-1018.

585 Duan, Y., et al. (2020). "Contributions of very large-scale motions to turbulence statistics in
586 open channel flows." *Journal of Fluid Mechanics* 892.

587 Duan, Y., et al. (2021). "Contributions of different scales of turbulent motions to the mean
588 wall-shear stress in open channel flows at low-to-moderate Reynolds numbers." *Journal*

589 of Fluid Mechanics 918.

590 Encinar, M. P., et al. (2020). "Momentum transfer by linearised eddies in turbulent channel
591 flows." Journal of Fluid Mechanics 895.

592 Fan, Y., et al. (2022). "Decomposition of the mean friction drag on an NACA4412 airfoil under
593 uniform blowing/suction." Journal of Fluid Mechanics 932.

594 Fang, J., et al. (2015). "Large-Eddy Simulation of Very-Large-Scale Motions in the Neutrally
595 Stratified Atmospheric Boundary Layer." Boundary-Layer Meteorology 155(3): 397-
596 416.

597 Fesquet, C., et al. (2009). "Impact of terrain heterogeneity on near-surface turbulence
598 structure." Atmospheric Research 94(2): 254-269.

599 Franzese, P., et al. (2007). "A statistical theory of turbulent relative dispersion." Journal of
600 Fluid Mechanics 571: 391-417.

601 Fu, X., et al. (2020). "High-resolution simulation of local traffic-related NO_x dispersion and
602 distribution in a complex urban terrain." Environmental Pollution 263: 114390.

603 Gao, Z., et al. (2016). "Large eddies modulating flux convergence and divergence in a disturbed
604 unstable atmospheric surface layer: LARGE EDDIES MODULATING FLUX."
605 Journal of geophysical research. Atmospheres 121(4): 1475-1492.

606 Gifford, F. (1959). Statistical Properties of A Fluctuating Plume Dispersion Model. Advances
607 in Geophysics. H. E. Landsberg and J. Van Mieghem, Elsevier. 6: 117-137.

608 Gousseau, P., et al. (2012). "Large-Eddy Simulation of pollutant dispersion around a cubical
609 building: analysis of the turbulent mass transport mechanism by unsteady concentration
610 and velocity statistics." Environmental Pollution 167: 47-57.

611 Gousseau, P., et al. (2015). "Near-field pollutant dispersion in an actual urban area: Analysis
612 of the mass transport mechanism by high-resolution Large Eddy Simulations."
613 Computers & Fluids 114: 151-162.

614 Hang, J., et al. (2017). "The influence of street layouts and viaduct settings on daily carbon
615 monoxide exposure and intake fraction in idealized urban canyons." *Environmental
616 Pollution* 220: 72-86.

617 Hawinkel, P., et al. (2015). "A time series processing tool to extract climate-driven interannual
618 vegetation dynamics using Ensemble Empirical Mode Decomposition (EEMD)." *Remote Sensing of Environment* 169: 375-389.

619
620 Held, A. (2013). "Spectral Analysis of Turbulent Aerosol Fluxes by Fourier Transform,
621 Wavelet Analysis, and Multiresolution Decomposition." *Boundary-Layer Meteorology*
622 151(1): 79-94.

623 Held, A. (2014). "Spectral Analysis of Turbulent Aerosol Fluxes by Fourier Transform,
624 Wavelet Analysis, and Multiresolution Decomposition." *Boundary-Layer Meteorology*
625 151(1): 79-94.

626 Hertwig, D., et al. (2019). "Wake Characteristics of Tall Buildings in a Realistic Urban
627 Canopy." *Boundary-Layer Meteorology* 172(2): 239-270.

628 Horiguchi, M., et al. (2012). "Large-Scale Turbulence Structures and Their Contributions to
629 the Momentum Flux and Turbulence in the Near-Neutral Atmospheric Boundary Layer
630 Observed from a 213-m Tall Meteorological Tower." *Boundary-Layer Meteorology*
631 144(2): 179-198.

632 Horiguchi, M., et al. (2022). "Large-Scale Turbulence Structures in the Atmospheric Boundary
633 Layer Observed above the Suburbs of Kyoto City, Japan." *Boundary-Layer
634 Meteorology* 184(2): 333-354.

635 Hu, R., et al. (2020). "Wall-attached and wall-detached eddies in wall-bounded turbulent
636 flows." *Journal of Fluid Mechanics* 885.

637 Huang, N. E., et al. (1998). "The empirical mode decomposition and the Hilbert spectrum for
638 nonlinear and non-stationary time series analysis." *Proceedings of the Royal Society.*

639 A, Mathematical, physical, and engineering sciences 454(1971): 903-995.

640 Hwang, Y. (2015). "Statistical structure of self-sustaining attached eddies in turbulent channel

641 flow." Journal of Fluid Mechanics 767: 254-289.

642 Inagaki, A., et al. (2017). "A Numerical Study of Turbulence Statistics and the Structure of a

643 Spatially-Developing Boundary Layer Over a Realistic Urban Geometry." Boundary-

644 Layer Meteorology 164(2): 161-181.

645 Jacobi, I., et al. (2021). "Interactions between scales in wall turbulence: phase relationships,

646 amplitude modulation and the importance of critical layers." Journal of Fluid

647 Mechanics 914.

648 Jadidi, M., et al. (2017). "Scale-adaptive simulation of unsteady flow and dispersion around a

649 model building: spectral and POD analyses." Journal of Building Performance

650 Simulation 11(2): 241-260.

651 Jiang, G., et al. (2018). "Large-eddy simulation of flow and pollutant dispersion in a 3D urban

652 street model located in an unstable boundary layer." Building and Environment 142:

653 47-57.

654 Jiménez, J. (2018). "Coherent structures in wall-bounded turbulence." Journal of Fluid

655 Mechanics 842.

656 Kim, T., et al. (2020). "Experimental evidence of amplitude modulation in permeable-wall

657 turbulence." Journal of Fluid Mechanics 887.

658 Lateb, M., et al. (2016). "On the use of numerical modelling for near-field pollutant dispersion

659 in urban environments – A review." Environmental Pollution 208: 271-283.

660 Lee, J., et al. (2014). "Spatial organization of large- and very-large-scale motions in a turbulent

661 channel flow." Journal of Fluid Mechanics 749: 818-840.

662 Li, Q., et al. (2019). "Contrasts between momentum and scalar transport over very rough

663 surfaces." Journal of Fluid Mechanics 880: 32-58.

664 Li, X.-X., et al. (2006). "Recent progress in CFD modelling of wind field and pollutant
665 transport in street canyons." *Atmospheric Environment* 40(29): 5640-5658.

666 Li, X., et al. (2021). "Turbulent/Synoptic Separation and Coherent Structures in the
667 Atmospheric Surface Layer for a Range of Surface Roughness." *Boundary-Layer
668 Meteorology* 182(1): 75-93.

669 Liu, C.-H., Leung, D.Y.C. and Barth, M.C. (2005). "On the prediction of air and pollutant
670 exchange rates in street canyons of different aspect ratios using large-eddy simulation."
671 *Atmospheric Environment* 39: 1567-1574.

672 Liu, H., et al. (2019). "Amplitude modulation between multi-scale turbulent motions in high-
673 Reynolds-number atmospheric surface layers." *Journal of Fluid Mechanics* 861: 585-
674 607.

675 Liu, Y., et al. (2023a). "Wavelet analysis of the atmospheric flows over real urban
676 morphology." *Science of the Total Environment* 859: 160209.

677 Liu, Y., et al. (2023b). "Proper orthogonal decomposition of large-eddy simulation data over
678 real urban morphology." *Sustainable Cities and Society* 89: 104324.

679 Liu, Y., et al. (2023c). "Amplitude modulation of velocity fluctuations in the atmospheric flows
680 over real urban morphology.", *Physics of Fluids* 35: 025116.

681 Lotfy, E. R., et al. (2019). "Characteristics of Turbulent Coherent Structures in Atmospheric
682 Flow Under Different Shear-Buoyancy Conditions." *Boundary-Layer Meteorology*
683 173(1): 115-141.

684 Lv, Y., et al. (2016). "Multivariate empirical mode decomposition and its application to fault
685 diagnosis of rolling bearing." *Mechanical systems and signal processing* 81: 219-234.

686 Martins, L. G. N., et al. (2016). "Using Empirical Mode Decomposition to Filter Out Non-
687 turbulent Contributions to Air-Sea Fluxes." *Boundary-Layer Meteorology* 163(1): 123-
688 141.

689 Masoumi-Verki, S., et al. (2021). "Embedded LES of thermal stratification effects on the
690 airflow and concentration fields around an isolated high-rise building: Spectral and
691 POD analyses." *Building and Environment* 206.

692 Mäteling, E., et al. (2020). "Detection of small-scale/large-scale interactions in turbulent wall-
693 bounded flows." *Physical Review Fluids* 5(11).

694 Mathis, R., et al. (2009). "Large-scale amplitude modulation of the small-scale structures in
695 turbulent boundary layers." *Journal of Fluid Mechanics* 628: 311-337.

696 Meng, L., et al. (2015). "A hybrid fault diagnosis method using morphological filter–translation
697 invariant wavelet and improved ensemble empirical mode decomposition." *Mechanical
698 systems and signal processing* 50-51: 101-115.

699 Michioka, T., et al. (2011). "Wind-Tunnel Experiments for Gas Dispersion in an Atmospheric
700 Boundary Layer with Large-Scale Turbulent Motion." *Boundary-Layer Meteorology*
701 141(1): 35-51.

702 Mikkelsen, T., et al. (1987). "Diffusion of Gaussian Puffs." *Quarterly Journal of the Royal
703 Meteorological Society* 113: 81-105.

704 Mo, Z., et al. (2021). "Roughness sublayer flows over real urban morphology: A wind tunnel
705 study". *Building and Environment*, 188: 107463,

706 Monin, A. S., et al. (1975). *Statistical Fluid Mechanics: Mechanics of Turbulence*, MIT Press.

707 Nordbo, A., et al. (2012). "A Wavelet-Based Correction Method for Eddy-Covariance High-
708 Frequency Losses in Scalar Concentration Measurements." *Boundary-Layer
709 Meteorology* 146(1): 81-102.

710 O'Gorman, P. A., et al. (2005). "Effect of Schmidt number on the velocity–scalar cospectrum
711 in isotropic turbulence with a mean scalar gradient." *Journal of Fluid Mechanics* 532:
712 111-140.

713 Oladosu, G. (2009). "Identifying the oil price–macroeconomy relationship: An empirical mode

714 decomposition analysis of US data." Energy Policy 37(12): 5417-5426.

715 Oliveira, P. E. S., et al. (2018). "Nighttime wind and scalar variability within and above an

716 Amazonian canopy." Atmos. Chem. Phys. 18(5): 3083-3099.

717 Perret, L., et al. (2013). "Large-Scale Structures over a Single Street Canyon Immersed in an

718 Urban-Type Boundary Layer." Boundary-Layer Meteorology 148(1): 111-131.

719 Ramamurthy, P., et al. (2015). "Turbulent Transport of Carbon Dioxide over a Highly

720 Vegetated Suburban Neighbourhood." Boundary-Layer Meteorology 157(3): 461-479.

721 Rehman, N., et al. (2010). "Multivariate empirical mode decomposition." 466(2117): 1291-

722 1302.

723 Richardson, L. F. (1926). "Atmospheric diffusion shown on a distance-neighbour graph."

724 Proceedings of the Royal Society of London. Series A, Containing papers of a

725 mathematical and physical character 110(756): 709-737.

726 Rilling, G., et al. (2007). "Bivariate Empirical Mode Decomposition." IEEE signal processing

727 letters 14(12): 936-939.

728 Salesky, S. T., et al. (2018). "Buoyancy effects on large-scale motions in convective

729 atmospheric boundary layers: implications for modulation of near-wall processes."

730 Journal of Fluid Mechanics 856: 135-168.

731 Sawford, B. (2001). "TURBULENT RELATIVE DISPERSION." Annual Review of Fluid

732 Mechanics 33(1): 289-317.

733 Sørensen, L. L., et al. (2010). "Atmosphere-Surface Fluxes of CO₂ using Spectral

734 Techniques." Boundary-Layer Meteorology 136(1): 59-81.

735 Talluru, K. M., et al. (2014). "Amplitude modulation of all three velocity components in

736 turbulent boundary layers." Journal of Fluid Mechanics 746.

737 Tang, Z., et al. (2020). "Tomographic particle image velocimetry flow structures downstream

738 of a dynamic cylindrical element in a turbulent boundary layer by multi-scale proper

739 orthogonal decomposition." Physics of Fluids 32(12).

740 Tang, Z., et al. (2019). "Local dynamic perturbation effects on amplitude modulation in
741 turbulent boundary layer flow based on triple decomposition." Physics of Fluids 31(2).

742 Thirumalaisamy, M. R., et al. (2018). "Fast and Adaptive Empirical Mode Decomposition for
743 Multidimensional, Multivariate Signals." IEEE signal processing letters 25(10): 1550-
744 1554.

745 Tominaga, Y., et al. (2008). "AIJ guidelines for practical applications of CFD to pedestrian
746 wind environment around buildings." Journal of Wind Engineering and Industrial
747 Aerodynamics 96(10): 1749-1761.

748 Tominaga, Y., et al. (2013). "CFD simulation of near-field pollutant dispersion in the urban
749 environment: A review of current modeling techniques." Atmospheric environment
750 (1994) 79: 716-730.

751 Townsend, A. A. (1976). The structure of turbulent shear flow. Cambridge, Cambridge
752 University Press.

753 Vincent, C. L., et al. (2013). "Cross-Spectra Over the Sea from Observations and Mesoscale
754 Modelling." Boundary-Layer Meteorology 146(2): 297-318.

755 Vinuesa, J.-F., et al. (2009). "Turbulent Dispersion of Non-uniformly Emitted Passive Tracers
756 in the Convective Boundary Layer." Boundary-Layer Meteorology 133(1): 1-16.

757 Vinuesa, R., et al. (2016). "Convergence of numerical simulations of turbulent wall-bounded
758 flows and mean cross-flow structure of rectangular ducts." Meccanica (Milan) 51(12):
759 3025-3042.

760 Wang, G., et al. (2014). "Transition region where the large-scale and very large scale motions
761 coexist in atmospheric surface layer: wind tunnel investigation." Journal of Turbulence
762 15(3): 172-185.

763 Wang, G., et al. (2016). "Very large scale motions in the atmospheric surface layer: a field

764 investigation." *Journal of Fluid Mechanics* 802: 464-489.

765 Wang, W., et al. (2017). "Quasi-bivariate variational mode decomposition as a tool of scale
766 analysis in wall-bounded turbulence." *Experiments in Fluids* 59(1): 1-18.

767 Wang, W., et al. (2019). "Multi-component variational mode decomposition and its application
768 on wall-bounded turbulence." *Experiments in Fluids* 60(6): 1-16.

769 Wu, Z., et al. (2018). "Budget analysis for reactive plume transport over idealised urban areas."
770 *Geoscience Letters* 5(1): 19.

771 Yao, L., et al. (2022). "Statistical analysis of the organized turbulence structure in the inertial
772 and roughness sublayers over real urban area by building-resolved large-eddy
773 simulation." *Building and Environment* 207: 108464.

774 Zhang, Z.-L., et al. (2019). "Characteristics of large- and small-scale structures in the turbulent
775 boundary layer over a drag-reducing riblet surface." *Proceedings of the Institution of
776 Mechanical Engineers, Part C: Journal of Mechanical Engineering Science* 234(3): 796-
777 807.

778 Zheng, X., et al. (2021). "CFD simulations of wind flow and pollutant dispersion in a street
779 canyon with traffic flow: Comparison between RANS and LES." *Sustainable cities and
780 society* 75: 103307.

781 Zhong, J., et al. (2015). "Modelling the dispersion and transport of reactive pollutants in a deep
782 urban street canyon: Using large-eddy simulation." *Environmental Pollution* 200: 42-
783 52.