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Abstract

The momentum transport and pollutant dispersion in the atmospheric surface layer
(ASL) are governed by a broad spectrum of turbulence structures. Whereas, their contributions
have not been explicitly investigated in the context of real urban morphology. This paper aims
to elucidate the contributions from different types of eddies in the ASL over a dense city to
provide the reference of urban planning, realizing more favorable ventilation and pollutant
dispersion. The building-resolved large-eddy simulation dataset of winds and pollutants over
the Kowloon downtown, Hong Kong, is decomposed into a few intrinsic mode functions (IMFs)
via empirical mode decomposition (EMD). EMD is a data-driven algorithm that has been
successfully implemented in many research fields. The results show that four IMFs are
generally enough to capture most of the turbulence structures in real urban ASL. In particular,
the first two IMFs, which are initiated by individual buildings, capture the small-scale vortex
packets that populate within the irregular building clusters. On the other hand, the third and
fourth IMFs capture the large-scale motions (LSMs) detached to the ground surface that are
highly efficient in transport. They collectively contribute to nearly 40% of vertical momentum
transport even with relatively low vertical turbulence kinetic energy (TKE). LSMs are long,
streaky structures that mainly consist of streamwise TKE components. It is found that the open
areas and regular streets promote the portion of streamwise TKE in LSMs, improving the
vertical momentum transport and pollutant dispersion. In addition, these streaky LSMs are
found to play a crucial role in pollutant dilution in the near field after the pollutant source,
while the small-scale vortex packets are more efficient in transport in the mid-field and far-

field. (Word count: 276)

Keywords: Attached Eddies, Empirical Mode Decomposition, Large-Eddy Simulation, Large-

Scale Motions, Pollutant Dispersion, and Turbulence Structures.
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1. Introduction

The urban environment has been recognized as a serious, worldwide health concern
because of the continuous increases in buildings and population. In particular, the air quality
in cities has raised more public attention recently. It is estimated that air pollution is responsible
for millions of premature deaths annually (Forouzanfar et al. 2016, Shrivastava et al. 2016). As
such, it is of considerable importance to advance our understanding of ventilation and pollutant

dispersion in the atmospheric surface layer (ASL) over urban areas (Lateb et al. 2016).

The turbulence structures in the atmospheric surface layer (ASL) govern the transport
of momentum, gaseous pollutants, heat, particulate matter, and aerosol (Li et al. 2006,
Gousseau et al. 2012, Tominaga et al. 2013, Zhong et al. 2015, Hang et al. 2017). However,
the massive construction in urban areas slows down the winds that complicate the turbulence
structures. For example, the inertial sublayer (ISL) away from the buildings is rather
homogenous and therefore can be modeled empirically. However, the roughness sublayer (RSL)
is affected tightly by the underlying buildings (Mo et al. 2021). It is inhomogeneous hence calls

for a building-resolved description of the dynamics.

Recent progress in computation science and measurement techniques has enabled a
detailed description of ASL over real urban morphology, in which a multitude of coexisting
turbulence structures renders the velocity energy spectrum from viscosity scales to integral
length scales (Fesquet et al. 2009, Inagaki et al. 2017, Zhang et al. 2019, Auvinen et al. 2020,
Li et al. 2021, Liu et al. 2023a). In particular, a range of experiments (Michioka et al. 2011,
Perret et al. 2013, Wang et al. 2014, Tang et al. 2019, Kim et al. 2020), field measurements
(Wang et al. 2016, Liu et al. 2019), and numerical models (Mathis et al. 2009, Fang et al. 2015,

Salesky et al. 2018, Jacobi et al. 2021) have consistently confirmed the existence of the large-
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scale (LSM) and very large-scale (VLSM) motions, whose streamwise wavelength 4, could be
as large as 20 times of the turbulent boundary layer (TBL) thickness J. Meanwhile, the
turbulence structure can be classified by its shape. Based on the attached eddy hypothesis
(Townsend 1976), Hwang (2015) and Cheng et al. (2019) have concluded that one single
attached eddy in the equilibrium TBL should consist of two distinct components. The first one
is a long streaky structure whose streamwise A. and spanwise 4, wavelengths follow
A = 10/1y. (1)

This geometrical property is nearly identical to that proposed by Jiménez (2018) (4 ~ 84,). The
second component is a specific kind of vortex packet that carries all three components of
fluctuating velocity. It is also known as “attached clusters” (del ALamo et al. 2006) or “short
and tall vortex packet” (Hwang 2015). Its wavelength in the streamwise and spanwise direction
is described as

24, <A, <52, (2)

that has been verified by several smooth-wall simulations (Lee et al. 2014, Cheng et al. 2019,

Deshpande et al. 2019, Hu et al. 2020).

In this study, we critically examine the ASL turbulence structures over urban areas
together with their contribution to momentum transport and pollutant dispersion via
decomposing the dynamics into a range of turbulence structures by empirical mode
decomposition (EMD). An area source with constant pollutant concentration is placed
upstream of downtown Kowloon peninsula, Hong Kong in the large-eddy simulation (LES).
The LES calculates the velocity and pollutant concentrations in the street canyons with
buildings resolved. The fluctuations of velocity and pollutant concentration are decomposed
into a series of intrinsic mode functions (IMFs) simultaneously based on the multivariable

EMD technique (Wang et al. 2017, Thirumalaisamy et al. 2018, Wang et al. 2019). The motion
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scales, energy contents, momentum transport, and pollutant dispersion driven by the full

spectrum of eddies are critically examined.

2. Methodology

2.1 Governing Equation

LES of isothermal, incompressible flows is adopted in our study. Its principal idea is to
reduce the computational cost by modeling the small turbulence scales, which are isotropic but
most computationally demanding to be resolved, via filtering the Navier—Stokes equations

spatially. As such, the resolved-scale continuity is

o

. 3)

and the resolved-scale momentum conservation is

our & ~~  0p or, Og
—t—uu,=—————E 1 (4)
ot Ox; ox, Ox, Ox,

The tilde 1/7 denotes the spatial filter arriving the LES resolvable scales. Here, i = (u,v, w)

refers to the resolved-scale velocity components in the streamwise x, spanwise y, and vertical
z direction of the Cartesian coordinates x;, respectively, ¢ the time, and p the kinematic pressure.
The summation convention on repeated indices (i, j = 1, 2 and 3) applies. The unresolvable

subgrid-scale (SGS) momentum flux

8x_ ; ox; 3

— - du; du, | 2
Ty =uU; —Uill) ="V [_"' - J—l—_kSGSé‘ij (5)
are modeled by the Smagorinsky model (Smagorinsky 1963). Here,

Vses = Ckké/c?SA (6)
is the SGS kinematic viscosity, Cx (= 0.07) the Smagorinsky constant, A (= AQ!?) the LES

filter width, and AQ the volume of computation cell (Deardorff 1970). The one-equation SGS
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TKE model (Yoshizawa et al. 1985)

ok o - 1 ow 0 ok k32
SGS oui (VSGS SGS j_cg SGS (7)

— Ui=——r1, +—
o ox, 2 "ox, ox ox, A
is adopted to handle the SGS TKE conservation where C; (= 1.05) is the modeling constant for

the dissipation term. Inert pollutants, for instance, carbon monoxide (CO) or aerosol with

neglectable buoyancy, are considered. As such, their transport is governed by

¢, 9 Gy = Yous ¢ 8)
ot Ox, Sc ox,

where ¢ is the resolvable pollutant concentration and Sc (= 0.72) the Schmidt number.

2.2 Numerical Method

The governing equations are solved by the open-source finite volume code
OpenFOAM-V1806 (OpenFOAM 2022). The implicit, first-order-accurate backward
differencing is used in the time integration. The gradient term is handled by the second-order-
accurate Gaussian finite volume method (FVM) integration of cell-limited gradient scheme and
the divergence term is solved by the limited linear divergence scheme. The pressure-velocity
coupling is solved by the combination of pressure implicit with the splitting of operator (PISO)
and semi-implicit method for pressure-linked (SIMPLE) algorithm. After the geometric
algebraic multigrid (GAMG) preconditioner, the symmetric equation systems are solved by the
conjugate gradient (CG) method. Likewise, the asymmetric equation systems are
preconditioned by the simplified diagonal-based incomplete, lower and upper triangular

matrices (DILU) then are solved by the bi-conjugate gradient (BiCG) method.

The mathematical model is integrated for 6,000 seconds to initialize the flows and

pollutant dispersion. After reaching the quasi-steady state, another 10,800 seconds (180H ve/u+)
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of digital output data are recorded for analyses that are sufficiently long for statistical
convergence (Bernardini et al. 2014, Vinuesa et al. 2016). Here, Hauve (= 36 m) is the mean
building height and u, (= 0.59 m sec™) is the spatially averaged friction velocity of the entire
computation domain. It is noteworthy that the local friction velocity is in the range of 0.5 m

sec! <u,;<0.6 m sec’!, depending on the surface roughness (Yao et al. 2022).

2.3 Boundary Conditions and Computation Domain

The downtown Kowloon Peninsula, Hong Kong (Figure 1a), where is a dense urban
region, is discretized by almost 10 million finite volume cells (FVCs). The computation domain
(Figure 1b), whose streamwise x, spanwise y, and vertical z direction, has respective spatial
extents of 5,440 m (L), 1,230 m (L)), and 2,000 m (L:). The near-ground region with dense
buildings is refined by a grid stretching from 1:2 to 1:4 to improve the spatial resolution. The
characteristic FVC size A (= AQ"3) ranges from 0.65 m to 60 m. In the near-ground regions (z
< 100 m; Figure Ic), the characteristic size A is around meters whose 5%, 50%, and 95%
percentiles are 3.08 m, 3.81 m, and 4.22 m, respectively. This resolution also fulfills the
practical guidelines (Tominaga et al. 2008) in which 1/10 of the characteristic building size is
suggested (equal to mean building height Have =36 m in this study). The criterion of the Courant
Friedrichs-Lewy (CFL) number is ensured by setting the time step Az = 0.02 sec. The wall
function follows Spalding (1962) which is applicable throughout laminar and turbulent flow

regimes.

The wind speeds at the inlet boundary are prescribed by

1/5
;tzst(ij and v=w=0, (9)

z

N

where Uy is the average wind speed at the reference height z; (= 300 m). The outlet boundary
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condition (BC) is non-reflective for flow and pollutant so they do not bounce back. The domain
top and the lateral boundaries are symmetry BCs for flow and zero-gradient for pollutant. Both
the building facades and the natural terrains are set to no-slip solid walls for flow and zero-

gradient for pollutant. The freestream wind speed at the domain top is U.. = 10 m sec™ and the

maximum building height Hy.. is 180 m. Hence, the Reynolds number Re (= UxHnax/v) exceeds

103, satisfying the Reynolds number independence.

The TBL height 6 (= 330 m), RSL top (zrsz = 95 m), and ISL top (zzsz = 228 m) are all
determined based on our previous work (Yao et al. 2022, Liu et al. 2023c). The area source of
inert pollutants is placed in the upstream region of the computation domain. Constant pollutant
concentration Co (= 1,000 ppm) is set at the source to simulate the accidental gas leakage. The
mesh independence was tested in our previous research (Cheng et al. 2021). No significant
difference in the turbulence statistics was observed among different spatial resolutions.
Moreover, the current LES results (Yao et al. 2022) are in line with those of wind tunnel
observations (Mo et al. 2021). The flow near the inlet might not be fully developed due to the
inlet BC. Therefore, the first 1,000 m is used for flow development. We perform the analysis
downstream at least 1,000 m (27H..e) after the inlet. According to similar studies of real urban
morphology (Tominaga et al. 2008, Antoniou et al. 2017, Duan et al. 2021), this distance from
the inlet is long enough to allow for full flow development. The intermittent LSMs/VLSMs
over real urban morphology is frequently examined by wavelet (Lotfy et al. 2019, Auvinen et
al. 2020, Horiguchi et al. 2022) whose instantaneous feature is suitable for capturing the
intermittent LSMs/VLSMs. Liu et al. (2023a) investigated the energy spectrum of streamwise
velocity and the detection of LSMs/VLSMs based on the LES dataset used in this study
Moreover, wavelet was adopted to illustrate the influence of individual buildings on the

intermittency of LSMs/VLSMs.



Liu et al. (2023)

“ L, = 5440 m -

Figure 1. (a) Satellite image of downtown Kowloon Peninsula, Hong Kong from Google Maps. (b) LES Computation domain (Tsim Sha Tsui to
Sham Shui Po). (¢) Surface and building meshes in the near-ground region.
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3. Theoretical Background

Effort has been sought to differentiate the contributions from motion scales to the
turbulence kinetic energy (TKE), momentum flux, and pollutant transport (Held 2013, Lee et
al. 2014, Wang et al. 2016, Auvinen et al. 2020, Encinar et al. 2020). For example, wavelet
analysis was applied to detect the LSMs and VLSMs in field measurements (Fesquet et al.
2009, Horiguchi et al. 2012, Lotfy et al. 2019) in favor of providing the instantaneous energy
spectra. When the LSMs or VLSMs pass by, (temporal) conditional sampling can be conducted
to contrast the flow properties between LSMs and other small-scale eddies. Other methods,
such as signal processing (low-pass filter), needs a pre-determined cutoff wavelength
(frequency) to separate different motion scales. For example, the scale interaction between
outer-layer VLSMs and inner-layer small-scale eddies is commonly investigated via a low-
pass filter. Evidently, the small-scale eddies are amplitude modulated by VLSMs (Mathis et al.

2009, Talluru et al. 2014, Anderson 2016).

More recently, data-driven algorithms, such as proper orthogonal decomposition (POD),
enable researchers to decompose the velocity field into a range of eddies ranked by their TKE
contents (Jadidi et al. 2017, Tang et al. 2020, Masoumi-Verki et al. 2021, Liu et al. 2023b). In
this connection, the contributions and properties of various eddies (represented by different
modes) can be examined in detail. However, the (temporal) conditional sampling unavoidably
mixed up the dominant LSMs with some unignorable small-scale components (Horiguchi et al.
2012, Auvinen et al. 2020). Tools for scale separation, such as wavelet, Fourier transform, or
POD, need for a priori knowledge of cutoff standards to partition the eddies into different scales.
However, the cutoff frequency (signal processing) or mode (POD) is determined mainly based
on experience rather than the intrinsic data scale. In addition, the filter and POD hardly

decompose the velocity or scaler fields (e.g., pollutant concentration or temperature)
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simultaneously. They are thus inadequate to investigate the coupling between flows and other

variables.

EMD is another data-driven technique to decompose signals into IMFs. It has drawn
keen attention lately in the areas of the economy, remote sensing, defect detection, oceanic
boundary layer, and ASL (Oladosu 2009, Hawinkel et al. 2015, Meng et al. 2015, Gao et al.
2016, Martins et al. 2017). Compared with wavelet analysis, Fourier transform, or POD, EMD
has several advantages. First, it is purely data-driven, so no pre-determined basis function (e.g.,
sinusoidal wave) is required to partition the motion scales. In fact, EMD solely bases on the
characteristic space or time scales inherent in the data. Thus, the IMFs are adaptively biased
toward locally dominant frequencies that enable the extraction of physically relevant processes
in a finite bandwidth in a transient manner (Maiteling et al. 2020). Besides, EMD is able to
decompose multiple fields (multivariate EMD; Rilling et al. 2007, Rehman et al. 2010, Lv et
al. 2016, Wang et al. 2017, Thirumalaisamy et al. 2018, Wang et al. 2019) while preserving
their intrinsic relationship/coupling. Therefore, the pollutant concentration can be decomposed
along with the velocity field that enables a detailed investigation of the contribution from

different turbulence structures to momentum transport and pollutant dispersion.

With recent progress in computer science and measurement technology, a detailed
description of ASL flows over real urban morphology and the turbulence motion scales has
been available (Antoniou et al. 2017, Aristodemou et al. 2018, Hertwig et al. 2019, Fu et al.
2020, Cheng et al. 2021, Yao et al. 2022, Zheng et al. 2021, Liu et al. 2023a). Those datasets
enable the data-driven algorithm, such as EMD, to investigate the dynamics and their
contributions to the transport processes. To the best knowledge of the authors, however, most

EMD applications were based on smooth walls (Wang et al. 2017, Cheng et al. 2019) or

10
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idealized urban surfaces (Agostini et al. 2018). Its applications for real urban morphology are
rather limited. EMD has been only utilized by a handful of researchers to investigate the
contribution from different motion scales based on field measurement (Martins et al. 2016,
Cheng et al. 2017), which, however, is limited to pointwise samples. Besides, the pollutant
transport, which directly affects the air quality in street canyons, has not been examined in

detail yet.

EMD was first introduced by Huang et al. (1998). It is a data-driven algorithm to
decompose the input signal into the linear combination of a range of IMFs. In contrast to
Fourier and wavelet analyses, EMD does not require any pre-determined basis functions.
Instead, it directly extracts the IMFs based on the instantaneous features of the input signal.
Therefore, it is a data-driven, a posteriori method for data analysis that minimizes the artificial

numerical enforcement or truncation (Cheng et al. 2019).

We start with decomposing the time trace of streamwise fluctuating velocity u(¢) to

introduce the methodology of EMD. The steps involved in the IMF computation are as follows:

1. Find all the local maxima of u ’(¢) then link them up with a smooth curve (e.g., cubic
spline interpolating function) to form the upper envelope of the signal u y(?).
Correspondingly, the lower envelope u iow(?) 1s identified via the local minima.

2. Subtract the average envelope u ave(?) = (1 up(?) + 11 10w(£))/2 from the original signal u (¢)
to obtain the new data series /(¢) = u () — u ave(2).

3. Replace u(¢) by A(¢) in Step 1 and repeat the above steps until convergent at the A-th

iteration according to the criterion (Huang et al. 1998, Cheng et al. 2019)

11
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SD =20 <0.1. (10)

Here, T is the total number of samples in the time trace. Once the convergence criterion
is satisfied, the first IMF is defined as IMF'1(¢) = u’i(¢).
4. Afterward, IMF) is subtracted from the original signal u’(¢) to update the signal input

U new(t) (= u’(f) - IMF(2)). Steps 1 to 4 are then repeated until all the IMFs are derived.

After the converged iteration, the original time-trace signal u(¢) is decomposed into a

series of IMFs plus a residual R(z), as follows

u'(t)zzm:IMF;(t)JrR(t). (11)

i=1

An example of EMD is recorded in Appendix A. As the IMF (mode) number increases,
the IMFs gradually shift from the local-scale information to the global one. Multivariate EMD,
which was proposed by Rehman et al. (2010), is adopted in this study to decompose the

’

fluctuating velocities u;” (= (u’, v’, w’)) and the fluctuating pollutant concentration ¢’
simultaneously to elucidate the coupling (see Wang et al. 2017 and Thirumalaisamy et al. 2018

for details), examining the contribution to the fluxes of momentum u’w’ and pollutant w’c’

from different scales (IMFs).

4. Result and Discussion

4.1 Flow Field
Figure 2 presents the shaded contours of premultiplied energy spectrum kixd,ii as

functions of wavelength 4; and elevation z. Here, the index i denotes the x, y, and z directions

12
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and k; (= 2m/A;) the wavenumber in the i direction. The shaded contours (white to black) and
the solid lines (0.3:0.6:0.9 of IMFs) depict the premultiplied spectrum of the original signal (i,
v’,w’) and individual IMFs, respectively. In line with Agostini et al. (2018), Debert et al. (2010),
and Fan et al. (2022), a few IMFs are sufficient to represent the original signal that carry most
of the energy. In this case, only 4 modes can be universally detected in most locations while
up to 6 modes can be found in some locations down in the RSL close to the buildings. For the
sake of consistency, only the first four IMFs are shown in this paper. In particular, IMF4
includes the contribution from and above the 4-th mode (IMFs+ IMF’s + IMFs, if any) that
signifies the global characteristic of the original signal (Cheng et al. 2019). The IMFs capture
well the original fluctuations in different ranges of wavenumber because the contour lines of

individual IMFs collectively cover the full spectrum of the original signals (Figure 2).

13
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Figure 2. Shaded contours of premultiplied energy spectra kx¢., and k,x¢,, of (a) streamwise (1) and (b) spanwise (v’) IMFs. The shaded
contours (white-black) are premultiplied spectrum of original signal, and the solid lines represent the 0.3, 0.6, 0.9 maximum of individual
IMF spectra.
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The turbulence structures represented by IMFs illustrate a wide range of motion scales.

Their dominant wavelength can be derived from the peaks of IMF energy spectra (Figure 2).
The streamwise wavelengths 4. of IMF to IMF4 dominate at 90 m, 250 m, 600 m, and 1,500
m, respectively. Analogously, the spanwise wavelengths A, of IMF| to IMF4 dominate at 30 m,
50 m, 60 m, and 180 m, respectively. According to the streamwise wavelength A., IMF and
IMF> can be classified as small-scale eddies (A« < 0; where 0 = 330 m), while /MF3 and IMF4
LSMs (4x > 0). In addition, based on the Townsend attached-wall hypothesis (Townsend 1976),
IMF and IMF> are vortex packets that carry the velocity fluctuations in all the three directions
(Cheng et al. 2019, Hu et al. 2020) as their streamwise and spanwise wavelengths follow 24, <
Ax < 54, (Equation 2). In contrast, /IMF3 and IMF4 are long streaky structures (4» = 104y;
Equation 1) that mainly carry streamwise velocity fluctuations. These two standards suggest a
consistent classification. They in turn echo the simulation and measurement results in the
literature that the long streaky structures (4. = 104,) are mainly LSMs or even VLSMs (Lee et

al. 2014, Hwang 2015, Cheng et al. 2019).
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Figure 3. Ensemble average of dimensionless profiles of streamwise u’, spanwise v’, and vertical w’ fluctuating velocities. (a) Contributions

from small scales, large scales, and cross-scale interactions; together with (b) detailed contributions from different IMFs.
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Figure 3 presents the ensemble average of the TKE contribution from different IMFs in
the streamwise, spanwise, and vertical directions as functions of elevation z. The spatial

average on the horizontal x-y plane is denoted by the angle brackets <1//> The interaction

between different scales illustrates a relatively small contribution because the correlation
among different modes is generally weak due to different motion scales (Figure 3a). By contrast,

the direct contribution from individual IMFs plays a dominant role in TKE (Figure 3b).

It is noteworthy that /MF4 contributes far more in the streamwise direction than it does
in the spanwise or vertical directions (Figure 3b). This echoes the conclusion from Hwang
(2015) and Cheng et al. (2019). It is because the long-streaky (detached) structures in the IMF4
mainly carry the streamwise velocity fluctuations. In contrast, /IMF and IMF> contribute more
in the spanwise and vertical directions because they are the vortex packets containing all three
components of velocity fluctuation. Besides, the LSMs contribute nearly 50% to the

streamwise TKE component that is in line with the LSM contribution in open-channel flows

(Duan et al. 2020).

Multivariable EMD separates the motion scales while keeps the inherent coupling
among the variables. It enables the comparison of small-scale (u;” and w;’) and large-scale (u;’
and w;’) contributions from fluctuating streamwise #’ and vertical w’ velocities to momentum

transport. Figure 4a contrasts the vertical momentum flux contribution from small scale (/MF

and IMF>; <us'ws '> , large scale (IMF3 and IMFyu; <u,'w, '> ), together with their scale

interaction (<us'w, '> and <u,'ws '> ). In addition, Figure 4b details the contribution to

momentum flux from different IMFs. It is noteworthy that the LSMs (IMF3, A« > 2J) and

VLSMs (IMF4, Ax = 50) are responsible for nearly 40% of momentum transport u’w’. This
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finding echoes that the VLSMs are responsible for more than 40% momentum flux in open-
channel-flow experiments (Duan et al. 2021). Moreover, Agostini et al. (2018) reported that
the large-scale fluctuations are responsible, directly on their own, for roughly 30% to the skin
friction. The current mathematical modeling result further supports the analogy of real urban
morphology above the urban canopy layer (UCL) to their smooth-wall counterparts because of

their similar turbulence structures and TKE contribution.

Figure 4c contrasts the correlation coefficient

(17w
IMF,

Fow,mr, = <u'_u'>1/2 <w'w'>1/2 (12)

IMF, IMF,

of different IMFs. In the RSL (95 m < z), ruw,; of all IMFs increases with increasing elevation
because of eddy development. Apparently, IMF3 (LSMs) and IMF4 (VLSMs) show stronger

(negative) correlations between the streamwise u and vertical w velocities. Given the

comparable TKE contents in the streamwise <u 'u '> and vertical <w' w'> direction, it is implied

that large-scale eddies contribute more to the RSL momentum transport <u 'w'> than do their

small-scale counterparts close to the buildings. That is also why the momentum flux of LSMs

is found comparable to small-scale motions even the vertical TKE components are much less.
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Figure 4. Momentum flux u’w’ contribution from different IMFs. (a) Total contribution from different scales, (b) detailed contribution from

different IMFs, and (c) the correlation coefficient 7., of different IMFs.
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Evidently, the large-scale momentum flux <ul'wl '> outweighs the small-scale one

<us 'w, '> in the RSL (z < 95 m; Figure 4a). On the other hand, it is less than the small-scale

transport in and above the ISL (z > 95 m). This is one of key differences between the dynamics
over smooth walls (Cheng et al. 2019) and real urban morphology with explicitly resolved
buildings. In the smooth-wall configuration, small-scale and large-scale eddies populate in the
near-wall and logarithmic (ISL) regions, respectively, dominating the transport. In real urban
morphology, on the contrary, small-scale eddies are not only initiated by the ground surfaces
(flow shear) but also by the heterogeneous buildings (flow impingements). These small-scale
eddies would populate instantaneously above the RSL if they are initiated by high-rise
buildings (building wakes). On the other hand, the channeling within street canyons (below
UCL) enables the existence and development of LSMs in the near-ground region between two
rows of buildings. The buildings and ground surface constitute open channels where the LSMs

develop within, promoting the streamwise, long-streaky structures in UCLs.

Figure 5 further illustrates the existence of LSMs within the street canyons (channels)

by contrasting the momentum flux contribution S, from small-scale (= u, 'w, '/ u'w'; IMFy
and IMF>) and large-scale (= u,'w, '/ u'w'; IMF3 and IMF4) motions at z = 50 m (in the RSL).

As shown in Figure 5a, most contributions from small scales concentrate in the building near
wakes, especially in some upstream regions, where the flows and turbulence are disturbed by
staggering building clusters. In contrast, the contributions from large-scale eddies populate in
the downstream street canyon, where the building layout is more uniform and regular. This
finding once again illustrates the significance of LSMs in transport processes and the
importance of proper urban planning in pedestrian-level ventilation to promote sustainability.

Although substantial small-scale eddies could be initialized by staggered buildings, their
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transport efficiency is rather limited that could barely help the transport processes. On the other
hand, the regular street canyons are spacious for eddy development. The dynamics are
prominent especially for those long-streaky structures aligned in the streamwise direction that

are beneficial for LSMs with remarkable transport efficiency.

4.2 Tracer Field

Figure 6a presents the distribution of time-averaged pollutant concentration ¢ in the
computation domain. The area source is located in -1,800 m <x < -1,000 m at the ground level
with a constant pollutant concentration co = 1,000 ppm. The pollutant is prescribed as the inert
tracer without buoyancy or chemical reaction. The region -500 m < x < 500 m is prescribed as
the near field, 500 m < x < 1,500 m the mid field, and 1,500 m < x < 2,500 m the far field,

according to their distance after the pollutant area source. Figure 6b depicts the ensemble-

averaged concentration <c> / <E>

normalized by the ground-level concentration <c> as a
g

g
function of elevation z. In the near field, most of the pollutant resides at the pedestrian level (z
< 50 m) and the concentration drops significantly with increasing elevation thereafter. In the

mid field and far field, on the contrary, more pollutant resides at higher elevation due to the

turbulent dispersion in the vertical direction (Jiang et al. 2018, Wu et al. 2018).
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Figure 5. Horizontal view of the contribution S+ from (a) small u_'w, '/ u'w' and (b) large u,'w, '/ u'w' scales to momentum flux at z =50 m (RSL).
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Figure 7a contrasts the pollutant flux contribution <w'c'> between small and large

scales, together with their interactions. It is shown that LSMs (IMF3 + IMF4) dominate the
transport, especially in the near-field regions. Figure 7b further contrasts the pollutant flux
contribution directly from individual IMFs. The peaked value of the original pollutant flux
<w’c >y 1s adapted for normalization. Obviously, the VLSMs (IMF4) dominates the near-
field pollutant transport. Other IMFs, however, have little contributions because they are
substantially smaller than the plume coverage. In the far field, as the plume is continuously
disrupted by the buildings and terrains, the pollutant concentration becomes inhomogeneous
and the pollutant puff splits into small pieces. Therefore, all the four IMFs contribute
comparably to the pollutant removal. IMF3 and IMF4 (LSMs) contribute more than 40% to total

pollutant flux in the far field which is consistent with that in the momentum-flux contribution.

Compared with plume coverage, LSMs drive pollutant meandering/fluctuations
(Gifford 1959, Csanady 1973, Franzese et al. 2007, Cassiani et al. 2009, Ardeshiri et al. 2020),
i.e., large-scale ejection 0> and sweep Qs, leading to the pollutant-plume undulation as a whole
with respect to the source location. By contrast, eddies of size comparable to, but smaller than,
the plume coverage result in relative dispersion, giving rise to the plume spread with respect to
the instantaneous center of mass (Richardson 1926, Batchelor 1952, Monin et al. 1975,
Sawford 2001, Franzese et al. 2007). Eddies, whose size is far smaller than the plume coverage,

barely affect relative dispersion (Mikkelsen et al. 1987).

In the near field, the pollutant is rather horizontally homogenous in the near-ground
regions (at high concentrations). As such, the small-scale eddies (/MF and IMF>) only spread
the plume with respect to the instantaneous center of mass, which, however, contributes

limitedly to fluctuating pollutant concentration. In the streamwise direction, three-dimensional
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(3D) obstacles exist that significantly disturb the flows, enhancing plume dispersion (Li et al.
2019). Therefore, in the downstream, the large-scale pollutant plume segments into smaller,
puffy air masses whose distribution is more inhomogeneous. These dynamics further facilitate

small-scale eddies to pollutant mixing, augmenting fluctuating pollutant concentrations.

Figure 8 contrasts the premultiplied pollutant flux cospectrum k.x ¢ (Nordbo et al.
2012, Vincent et al. 2013, Cheng et al. 2020) as a function of streamwise wavelength A, and
elevation z that exhibits the streamwise scale of pollutant plume transport resulted from the

turbulent transport (O'Gorman et al. 2005).
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Figure 7. Contribution from (a) small or large scales and (b) different IMFs to pollutant flux <w'c '> in the near field, mid field, and far field.
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The dispersion scale ranges from around 100 m to 1,000 m that echoes the cospectrum
scale in the field measurements (Serensen et al. 2010, Held 2014, Oliveira et al. 2018), in which
the frequency is peaked in the range of 10"! Hz < f< 10 Hz, depending on the elevation and
weather conditions. In addition, the multiscale feature of scalar transport is reported
(Ramamurthy et al. 2015, Oliveira et al. 2018), where disparate dominant scales can be
observed in the scalar flux cospectra. Through the EMD method, this work provides insight
into different kinds of eddies to further address the multiscale features of scale transport. As
shown in Figure 8, the streamwise extent of vertical pollutant flux increases with enlarging
eddy size (from IMF to IMF4) and elevated location z. In the near field, most pollutants reside
in the near-ground regions (z < 60 m; RSL), where the turbulence is mostly initiated and limited
by the building blocks. The pollutant transport is determined by the near-canopy turbulence
structures. Therefore, the transport scale ranges from 60 m (/MF1) to 300 m (IMF4) that is

comparable to the separation between two high-rise buildings in the streamwise direction.

In the mid- and far-field, the pollutant concentrations fluctuate more vigorously around
z =150 m and 200 m, respectively. Far above the street canopy, the transport scale increases
significantly that ranges from 200 m (/MF;) to 1,500 m (IMF34). It is noteworthy that the
pollutants are transported by a wide spectrum of eddies (IMFs for flows), whose size does not
change much in the streamwise (x) direction. In this connection, given the same elevation (2),
the dominant motion scales of pollutant dispersion are consistent in the near, mid and far fields,

though the locations of the spectral peaks are elevated downstream.

Compared with the turbulence motion scales (Figure 2), the dispersion scales are
smaller or at most comparable at the same elevation z. This once again echoes that the eddies,

whose size is far smaller than the plume coverage, barely affect pollutant dispersion (Mikkelsen
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et al. 1987). Simultaneously, the large eddies drive the plume meandering, leading to pollutant

concentration fluctuations (Ardeshiri et al. 2020).

Figure 9 illustrates the horizontal view of the contribution to the vertical pollutant flux

from the small (/MF and IMF>) and large (IMF3 and IMF}4) scales at z = 50 m. The absolute

value of total vertical pollutant flux ‘w'c" is used to normalize the contribution that helps

differentiate the positive (pollutant removal) and negative (pollutant re-entrainment or counter-
gradient transport) contributions. In the upstream region, the large-scale pollutant flux w,'c,",

which is dominated by IMF4, plays an important role in pollutant removal, though the re-
entrainment is found occasionally in some areas. This finding concurs the near-field pollutant

dispersion within building clusters, where counter-gradient transport would be observed

occasionally (Gousseau et al. 2015). The small-scale pollutant flux w, 'c ' exhibits mildly in

the pollutant removal and re-entrainment. However, the areas with negative w,'c,' expand in

the downstream region, implying more frequent pollutant re-entrainment. The LSMs are larger
than 100 m in the vertical that could reside/cover in the street canyons and the outer layer
simultaneously. Such large eddies could help pollutant dilution (effectively) given heavy
pedestrian-level pollution (Figure 9b, upstream). Whereas, there would be a drawback. They
could drive the pollutants from the roof-level re-entraining down to the street canyons in case
aged air accumulates in the far-field, outer layer, which trims down the roles of LSMs (Liu et

al. 2005).
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In the downstream region, the negative contribution from small-scale pollutant flux

w, 'c,' remains almost unchanged. It is mainly initiated by the buildings and the terrain
(explicitly resolved roughness elements) that barely interacts with the high-concentration
pollutant plume in the outer layer. However, the positive contribution from w, 'c ' increases

(Figure 9a, red color darkens). The pollutants are thus continuously disturbed by the buildings
in the streamwise direction that subsequently split into small puffs. In this connection, even
small-scale eddies could contribute more by carrying the inhomogeneous pollutants away from

their plume centerline.

5.  Practical implication

The need for effectuating pollutant-control strategy in ASLs, especially in UCLs and
RSLs, arouses the concern of how to distinguish the contributions to momentum transport and
pollutant dispersion from the full spectrum of turbulent motion scales. More specifically,
along with the attached, small-scale eddies initiated by individual buildings and terrain, large-
scale, detached motions exist that are mainly modulated by the aecrodynamic resistance of the
entire urban surface. Based on a building-resolved LES dataset, EMD is utilized to examine
the multiscale nature of ASL turbulence over real urban morphology. The first (/MF1) and
second (IMF>) EMD modes are able to capture the detached, small-scale eddies (4. < ) that
carry the TKE components in all three directions simultaneously. Meanwhile, the third (IMF3)
and fourth (/MF4) EMD modes collectively capture the long-streaky, detached, large-scale

eddies (4x up to 50) that mainly carry the streamwise TKE.

Separating the attached and detached eddies could help evaluate their (dissimilar) roles
in momentum transfer and pollutant dispersion. Compared with the small-scale ones, the
large-scale eddies are found to be more efficient in transport processes especially in the
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settings of aligned street canyons. By contrast, the small-scale eddies show more contributions
in staggered-building layout but less efficient. This finding suggests the (importance) potential
of aligned-building layout to improve street-canyon wind speeds and pollutant removal. It is
noteworthy that, the increased ventilation speed in the aligned street does not necessarily
improve the momentum transport and pollutant removal in the vertical direction because the
inflow air upstream might be polluted already, especially in large urban areas. Therefore, a
compromise could be achieved between enhanced (vertical) transport and favorable pedestrian
comfort. For example, the streets could be widened to avoid channeling (extremely high wind
speed that degrades the wind comfort and safety) as well as promote large-scale, energetic

entrainment simultaneously.

The LSMs also dominate the near-field pollutant dispersion, while other small-scale
eddies have rather limited contributions. This finding could be implemented in hazard
assessment of the danger in those areas being affected by accidental poison gas leakage based
on different building layouts and terrain configurations, as well as the evaluation of vehicular
pollutant dispersion in dense cities. In addition, in a district with aligned streets, there will
usually be bystreets crossing the aligned streets at about 90° angle. This configuration often
degrades the vertical transport. To avoid such unfavorable wind direction, urban planners
could align streets (avenue) along the prevailing winds. Therefore, in the perspective of long-
term pollutant removal performance, it is always useful to enhance the vertical transport even

along aligned streets, especially when they are in the direction of the yearly prevailing wind.

6. Conclusion

With a building-resolved LES dataset over real urban morphology, we critically

examine the ASL turbulence structures and their contribution to momentum transport and
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pollutant dispersion especially in the RSLs. The flows and pollutant concentrations are
decomposed into a range of turbulence structures according to their motion scales by EMD.
The small-scale eddies (4: < J) follow 24, < A, < 54, that could be classified as attached eddies
initiated by individual buildings and terrains. These eddies carry the TKE components of all
three directions that are captured by the first two EMD modes (IMF and IMF>). In contrast,
the third (/MF3) and fourth (IMFs) EMD modes extract the large-scale eddies (A« > o) that
could be classified by the detached eddies (4 = 104,). These eddies are long, streaky structures
that carry the majority streamwise TKE components u u " (up to 40%). In addition, these LSMs
transport around 40% momentum flux mainly due to the rather high transport efficiency

compared with the small-scale eddies.

Building configurations are found to influence the turbulence structure significantly.
The aligned building configuration could promote the LSMs because the long street canyons
provide the room for eddy development. Moreover, the abrupt velocity gradient resulting from
the mechanical shear between buildings and mean flows produces sufficient TKE for those
turbulence structures. Small-scale eddies, on the contrary, are mainly initiated by the

staggering building clusters.

Finally, the large-scale structures dominate the pollutant dispersion in the near-field
region, where the small-scale eddies help merely the pollutant dispersion. Because the
pollutants are transported downstream, the small-scale eddies subsequently play more
important roles in the pollutant dispersion. Nonetheless, the large-scale structures are
responsible for nearly 40% of pollutant transport. The separation of different eddies initiated
by individual buildings or city-scale street network helps improving our understanding and

management of the air quality in urban areas, contributing to sustainable cities.
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Appendix A. Supplementary data

Figure Al illustrates a pointwise example of the IMFs of input signal of streamwise

fluctuating velocity u ’(¢). The first IMF IMF contains the minimum (local) scale properties of

the original signal. As the IMF (mode) number increases, the IMFs gradually shift from the

local-scale information to the global one.
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