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The circum-Gondwana subduction initiated by the early Cambrian has been suggested to reflect the
establishment of the modern plate tectonics. The metamorphic rocks with low thermobaric (T/P) ratios
indicative of cold subduction in the present tectonic regime have not been well investigated. To better
understand the circum-Gondwana subduction and to test its possible link with the emergence of the
modern plate tectonics, this study focused on blueschist-facies metamorphic rocks in the Altyn Tagh of
the southeastern Tarim craton. Mineral assemblage and chemistry, phase equilibrium modelling, and
quartz-in-garnet Raman elastic geobarometry reveal that the zoisite blueschist and glaucophane (Gln)-
bearing quartz schist in northern Altyn Tagh were metamorphosed to lawsonite to epidote blueschist-
facies at 520–545 �C and 16–19 kbar. It reflects high-pressure (HP)/low temperature (LT) metamorphism
with low T/P ratios of <300 �C/GPa and thermal gradients of <10 �C/km. These blueschist-facies metamor-
phic rocks underwent rapid decompression starting at P-T conditions of <495 �C and <9.6 kbar during
exhumation. Ar-Ar geochronology records paragonite Ar-Ar plateau ages of 520–506 Ma for the zoisite
blueschist samples and phengite Ar-Ar plateau ages of 522–516 Ma for the Gln-bearing quartz schist
samples, suggesting that the peak HP/LT metamorphism occurred prior to ca. 522 Ma. Based on new
results and available data from the major Gondwana blocks, cold subduction was suggested to pro-
foundly operate along circum-Gondwana in the early Cambrian after the amalgamation of Gondwana.
The extensive circum-Gondwana subduction represents the earliest global cold subduction in Earth’s his-
tory associated with the establishment of the modern plate tectonics, as directly recorded by the studied
early Cambrian blueschist-facies metamorphic rocks and a dramatic drop in the mean T/P of metamor-
phism since the early Paleozoic.
� 2023 China University of Geosciences (Beijing) and Peking University. Published by Elsevier B.V. on

behalf of China University of Geosciences (Beijing). This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The initial subduction of the Proto-Tethys Ocean occurred along
the northern margin of Gondwana in the early Cambrian (e.g., Yao
et al., 2021), coincident with the subduction processes of the Iape-
tus Ocean and the Proto-Pacific Ocean along the western and
southern margins of Gondwana, respectively (Murphy et al.,
2006; Cawood and Buchan, 2007; Linnemann et al., 2008). Such
circum-Gondwana subduction has been considered to reflect the
establishment of the modern plate tectonic regime corresponding
with global plate re-organization associated with the final assem-
bly of Gondwana (Cawood and Buchan, 2007; Yao et al., 2021).
Indicators for the circum-Gondwana subduction subject to the
modern plate tectonics regime, which is characterized by sinking
of cold, dense lithosphere at subduction zones, are primarily
Mariana-type ophiolites and trench-arc assemblages (e.g., Yao
et al., 2021). Unique metamorphic rocks, especially blueschist
and low temperature (LT) eclogite as a hallmark of cold subduction
with low geothermal gradients characterizing the present tectonic
g).
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regime (e.g., Brown and Johnson, 2018; Stern, 2018), have not been
well investigated.

Blueschist and LT eclogite are generated under high pressure
(HP)/LT conditions with low thermobaric (T/P) ratios and found
only in the fluid-rich environments above the cold oceanic subduc-
tion zones (e.g., Tsujimori and Ernst, 2014; Stern, 2018), providing
direct evidence of cold subduction. The early Paleozoic HP/LT
metamorphic rocks are documented in the Altyn Tagh, the south-
eastern Tarim craton (Fig. 1), recording the initial subduction of
the Proto-Tethys Ocean (Zhang et al., 2007). They are key to under-
standing the subduction processes along the margins of Gondwana
and to testing the possible link between the circum-Gondwana
subduction with the establishment of the modern plate tectonics.
To date, only unprecise P-T conditions of 430–540 �C and 20–23
kbar based on conventional geothermobarometers have been
obtained for eclogite in northern Altyn Tagh (Zhang et al., 2007),
and the P-T conditions of blueschist in the region are unclear.
Besides, an Ar-Ar plateau age of 512±3 Ma for phengite from eclog-
ite and a younger Ar-Ar plateau age of 491±3 Ma for paragonite
from blueschist have been reported and interpreted as the timing
of peak eclogite-facies and late greenschist-facies metamorphism,
respectively (Zhang et al., 2007). The age interpretations need fur-
ther consideration, because the available peak metamorphic tem-
perature (430–540 �C; Zhang et al., 2007) seemingly exceeds the
closure temperature of Ar within white mica (350–400 �C; Purdy
and Jager, 1976; Hames and Bowring, 1994).

P-T conditions are challenging to determine for blueschist-
facies metamorphic rocks due to a lack of robust conventional geo-
barometers applicable to high pressure mineral parageneses (e.g.,
Li, 2020). Nonetheless, phase equilibrium modelling can provide
significant information on metamorphic P-T conditions. Addition-
ally, quartz-in-garnet geobarometry based on pressure-
dependent Raman spectra of quartz inclusions has been applied
to estimate pressure conditions at which they were trapped during
garnet growth (e.g., Enami et al., 2007; Ashley et al., 2014;
Yoneguchi et al., 2021). This study integrated petrography, mineral
chemistry, phase equilibrium modelling, and quartz-in-garnet
Raman elastic geobarometry to constrain the P-T evolution of the
Fig. 1. (a) Topographic map (from website http://www.ngdc.noaa.gov/mgg/global/) show
Lu et al., 2008). EKL— East Kunlun. (b) Simplified tectonic division of the Altyn Tagh (
(modified after GBGP, 1976; GBGP, 1977; GBGP, 1979; IGQP, 1984; IGQP, 1986; IGHP,
compiled ages of metamorphic rocks (Zhang et al., 2007, 2017; Liu et al., 2009, 2012b;
Abbreviations for dating methods: Ar— Phengite/Paragonite 40Ar/39Ar, Zr U— Zircon U-P
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blueschist-facies metamorphic rocks in northern Altyn Tagh. Ar-
Ar geochronology was also carried out to examine the timing of
the HP/LT metamorphism in the region. New results define the
subduction process of the Proto-Tethys Ocean in northern Gond-
wana. Combined with the subduction processes along the other
margins of Gondwana, new insights were shed on the circum-
Gondwana subduction that marks the oldest cold subduction glob-
ally in Earth’s history.
2. Geological background

The Altyn Tagh is located along the southeastern margin of the
Tarim craton, to the southwest of the Qilian orogen and the Qai-
dam block, and to the north of the East Kunlun orogen (Fig. 1a).
The Altyn Tagh consists of four units, including the North Altyn
Tagh terrane, the North Altyn Tagh subduction-accretion belt
(NAT), the Central Altyn Tagh terrane, and the South Altyn Tagh
subduction-collision belt (Fig. 1b).

Precambrian metamorphic rocks are dominated in the North
Altyn Tagh terrane (Fig. 1c). Major lithologies are ca. 3.7 Ga and
2.8–2.5 Ga tonalite-trondhjemite-granodiorite gneiss, 2.0 Ga felsic
and mafic gneiss, 1.9 Ga paragneiss, and 1.85 Ga granitic veins and
mafic dykes (e.g., Ge et al., 2020 and references therein).

The NAT between the North Altyn Tagh terrane and the Central
Altyn Tagh terrane has been considered as an early Paleozoic accre-
tionary orogen (e.g., Zhang et al., 2015). It consists mainly of ca.
520–480 Ma supra-subduction zone (SSZ)-type ophiolitic
mélanges (e.g., Liu et al., 2021a and references therein), 520–
400 Ma magmatic rocks (summarized in Liu et al. 2021b), HP/LT
blueschist and eclogite with white mica Ar-Ar isochron ages of
512–491 Ma (Zhang et al., 2007), and early Paleozoic volcanosedi-
mentary rocks (Liu et al., 2021b). Some ca. 760–750 Ma mafic
dykes and bimodal volcanic rocks have also been reported in the
NAT (GSIX, 2009; Liu et al., 2012a; Li et al., 2020b).

The Central Altyn Tagh terrane preserves predominant Meso- to
Neoproterozoic clastic and volcanic rocks, which are represented
by weakly metamorphosed conglomerate, quartz sandstone,
ing location of the Altyn Tagh (AT) in the southeastern Tarim craton (modified from
modified after Liu et al., 2012b; Wu, 2016). (c) Geological map of the Altyn Tagh
1985; RGGR, 2002; RGGR, 2003; RGHP, 2003; TIMR, 2007; XCGS, 2012) showing
Li et al., 2015, 2020c; Wang et al., 2016; Cao et al., 2019a, 2019b; Gai et al., 2022).
b, Ru U— Rutile U-Pb, and Mnz U— Monazite U-Pb.
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volcanic layers, and limestone, in which maximum depositional
ages of ca. 1.2 Ga were reported for quartzite (Gehrels et al.,
2003). In addition, some ca. 522–433 Ma magmatic rocks and
minor 920 Ma foliated rhyolite, 754 Ma basalt, and 703 Ma A-
type granite are exposed in the terrane (GSIX, 2009; Zhang et al.,
2010; Wang, 2011; Liu et al., 2016).

The South Altyn Tagh subduction-collision belt has been identi-
fied as an early Paleozoic collisional orogen (e.g., Zhang et al.,
2015), as evidenced by ca. 508–475 Ma ultra(U)HP and ca. 457–
436 Ma Barrovian-type metamorphic rocks (e.g., Liu et al., 2007,
2012b; Wang et al., 2016; Zhang et al., 2017) in the matrix of the
Altyn Tagh Complex. The Altyn Tagh Complex consists mainly of
Meso- to Neoproterozoic tonalitic-granodioritic gneiss and
metasedimentary rocks (Wang et al., 2013; Yu et al., 2013). Ca.
501 Ma SSZ-type ophiolitic mélange (Li et al., 2009) and 504 Ma
granite (Liu et al., 2016) are also recorded in the belt.

3. Field relation and sample description

The HP/LT metamorphic rocks occur as a tectonic sliver in the
western segment of the NAT (Fig. 1c). They are in W–E striking
reverse fault contact with the early Paleozoic volcanosedimentary
sequences, which is cut by sinistral strike-slip fault relative to the
Cenozoic Altyn Tagh fault system (Fig. 2). The HP/LT metamorphic
rocks include zoisite blueschist, glaucophane (Gln)-bearing quartz
schist, muscovite quartz schist, calcic muscovite schist, and quart-
zite (Fig. 3a). The zoisite blueschist is enclosed by (Fig. 3b) or inter-
calated with (Fig. 3c) the Gln-bearing quartz schist, both of which
constitute a lens of a 2 m width (GPS: 39�0700.4700N and
90�3201.4200E) surrounded by muscovite quartz schist (Fig. 3a). In
this study, three zoisite blueschist samples (19LQ03-9, �10, and
�16) and four Gln-bearing quartz schist samples (19LQ03-4, �8–
2, –22, and �24) were collected.

The zoisite blueschist samples show schistose structures
defined by major elongated glaucophane and minor flaky parago-
nite (Fig. 4a – d). Garnet crystals are idiomorphic to subidiomor-
phic and show porphyroblastic and poikiloblastic textures
(Fig. 4e and f). Zoisite, paragonite, titanite, chlorite, albite, and
Fig. 2. Geological map showing sampling site in the western segment of the
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quartz are common inclusions in the inner domains of garnet
(Fig. 4e and f), while zoisite, glaucophane, quartz, chlorite, and
rutile are dominated in the outer domains of garnet (Fig. 4e and
f). Zoisite commonly forms lath-like porphyroblasts with their long
axes parallel to the foliation (Fig. 4b and c) and contains glauco-
phane, titanite, quartz, and chlorite inclusions (Fig. 4g and h). Occa-
sionally, zoisite contains pumpellyite components in the central
domains (Fig. 4h), suggesting prograde metamorphism from
prehnite-pumpellyite- to blueschist-facies. Zoisite also occurs in
the inner and outer domains of garnet (Fig. 4e and f). Glaucophane
is tiny and elongated in shape and predominantly distributed in
the matrix (Fig. 4a – c) with minor crystals as inclusions in zoisite
and garnet (Fig. 4e – g). Paragonite is flaky in the matrix or inclu-
sions in the garnet inner domains (Fig. 4d – f). Titanite is euhedral
in the matrix or enclosed in the zoisite and garnet inner domains
(Fig. 4g and h). Mineral relations coupled with geochemical com-
ponents of garnet reflecting prograde metamorphism (details in
the next section), the blueschist-facies mineral assemblage of gar-
net (outer domains) + glaucophane + zoisite + rutile + quartz +
chlorite is recorded in the zoisite blueschist samples. Additionally,
one omphacite crystal was identified in the garnet outer domains
of sample 19LQ03-9 (Fig. 4f), implying that this sample had under-
gone eclogite-facies metamorphism but largely retrograded to epi-
dote blueschist-facies. Retrogression is demonstrated by
replacement of glaucophane by predominant winchite (Fig. 4i),
which is locally replaced by magnesio-hornblende. Other evidence
of retrograde metamorphism includes chloritization of garnet and
zoisite (Fig. 4d), as well as chlorite, albite, and ferro-ferri-
hornblende located in the fractures and edges of garnet (Fig. 4e
and f).

The Gln-bearing quartz schist samples show schistosity with
oriented phengite and elongated quartz (Fig. 5a – c). Garnet crys-
tals are porphyroblastic and poikiloblastic with inclusions of zoi-
site, quartz, chlorite, and paragonite in the inner domains and
rutile, quartz, chlorite in the outer domains (Fig. 5d). Some zoisite
crystals are lath-like porphyroblasts with their long axes parallel to
the foliation and contain phengite, titanite, quartz, and chlorite
inclusions (Fig. 5a – c). Zoisite occasionally intergrows with
North Altyn Tagh subduction-accretion belt (modified after XCGS, 2012).



Fig. 3. Representative field photographs of (a) an overview of HP/LT metamorphic rocks, (b) zoisite blueschist enclosed by Gln-bearing quartz schist, and (c) zoisite blueschist
intercalated with Gln-bearing quartz schist.
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titanite + glaucophane + quartz ± phengite, which together pre-
serves as lensoidal domains in the matrix (Fig. 5e – h). Glauco-
phane appears mainly in the matrix or as relics within zoisite
(Fig. 5e – h). Locally, glaucophane shows chemical zoning
(Fig. 5i) with more iron components in the outer domains. The
matrix is composed mainly of quartz, phengite, and glaucophane.
Albite is surrounded by matrix minerals (Fig. 5f), and chlorite is
surrounded by garnet or occupies the fractures or retrograde
domains of zoisite and garnet (Fig. 5c and d). Accordingly, the
blueschist-facies mineral assemblage in the Gln-bearing quartz
schist samples is garnet + phengite + glaucophane + zoisite +
rutile + quartz + chlorite.
4. Analytical methods

A wavelength-dispersive spectroscopy electron microprobe
(JEOL JXA8530F Hyperprobe) was applied for mineral chemical
analysis at the Chemical Analysis Division of the Research Facility
Center for Science and Technology, the University of Tsukuba,
4

Japan. Accelerating voltage, beam current, and focal spot diameter
were set at 15 kV, 10nA, and 3 lm, respectively. For raw data cor-
rection, an oxide-ZAF correction method was adopted. The mineral
chemical data is presented in Supplementary Data Table S1.

Whole-rock major-element compositions were analyzed by
using a Thermo Scientific ARL 9900 X-ray fluorescence (XRF) spec-
trometer at FocuMS Technology Co., Ltd., Nanjing, China. For qual-
ity control, BHVO-2 and AGV-2 (U.S. Geological Survey rock
reference materials) were used, and uncertainties were <2%. FeO/
Fe2O3 ratio was determined by titration. The whole-rock major-
element data is listed in Supplementary Data Table S2.

Phase equilibrium modelling was conducted for samples
19LQ03-10 and 19LQ03-16 by employing THERMOCALC 3.47 with
a thermodynamic dataset of tc-ds62 (Powell and Holland, 1988;
Holland and Powell, 1998; Holland and Powell, 2011; Green
et al., 2016). Pseudosection modelling was undertaken in the sys-
tem of Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3

(NCKFMASHTO; Holland and Powell, 2011; Green et al., 2016),
which is the most suitable approximation for the studied blues-
chist samples. In the modeling, MnO was ignored because of its



Fig. 4. (a–c) Representative photomicrographs and (d–i) backscattered (BSE) images of zoisite blueschist samples. Descriptions are detailed in the text. (a) and (b) are the
photomicrographs of sample 19LQ03-10 from the same vision under plane and crossed polarization, respectively. Mineral abbreviations: Zo— Zoisite, Qtz— Quartz, Grt—
Garnet, Gln-Glaucophane, Ttn— Titanite, Pg— Paragonite, Chl— Chlorite, Ab— Albite, Rt— Rutile, Omp— Omphacite, Wnc—Winchite, Mhb—Magnesio-hornblende, Ferro-ferri-
hbl— Ferro-ferri-hornblende, and Pmp— Pumpellyite.
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low content (<0.3 wt.%), and water content was set to excess. The
applied phases in the modelling and their corresponding activity
composition models were garnet and chlorite (White et al.,
2014), clinoamphibole (Green et al., 2016), epidote (Holland and
Powell, 2011), plagioclase (Holland and Powell, 2003), and ilmenite
(White et al., 2000). Quartz, rutile, titanite, albite, lawsonite, and
H2O were fixed as pure phases.

The Raman spectra of quartz in garnet from samples 19LQ03-10
and 19LQ03-4 were obtained at Faculty of Life and Environmental
Sciences, the University of Tsukuba, Japan. A Renishaw inVia
Raman microscope is equipped with an 1800 lines/mm grating
To obtain ambient peak positions, we used Herkimer quartz stan-
dard. 1 lm spot diameter of 532 nm excitation laser and approxi-
mate 20 mW irradiation power on the sample surface were
applied. Spectra were acquired for 5–30 s and 5 s for the inclusions
and standard, respectively. For spectral accuracy, before and after
the inclusion measurements, the quartz standard was analyzed.
Each quartz inclusion was analyzed twice with mostly <2% uncer-
tainties and the average value was used for calculation and plot-
ting. A microscope (100x, N.A. = 0.85) was equipped to
centralize the laser. A silicon wafer’s 520.5 cm�1 band was cali-
brated to 520.5±0.1 cm�1 for the spectrometer. A spectral resolu-
tion of 4 cm�1 was used, and the spectra were analyzed at
conditions of atmospheric pressure and room temperature. To fit
5

the quartz peaks, the raw data was primarily obtained based on
the vicinity of 464, 205, and 127 cm�1 peaks of quartz and PeakFit
v4.12, followed by applying a linear baseline subtraction and a
PearsonIV model (Schmidt and Ziemann, 2000). The quartz inclu-
sion pressure was calculated based on strains via stRAinMAN
(Angel et al., 2019). The quartz phonon-mode Grüneisen tensors
were referred to Murri et al. (2019). The obtained strains were
transformed to a mean stress according to a matrix relationship
(Nye, 1957) and quartz elastic moduli (Wang et al., 2015). The
entrapment pressure of quartz was calculated by using EoSFit-
Pinc with an elastic model of Angel et al. (2017b). A full P-T-V equa-
tion of state by Angel et al. (2017a) was calculated for quartz vol-
umes, and an advanced Tait P-T-V equation of state by Holland and
Powell (2011) was applied for garnet volumes. Wang and Ji
(2001)’s shear moduli were used for garnet end members. The used
garnet outer domain components were Alm65Prp8Grs26Sps1 and
Alm65Pyr7Gr27Sps0.5 for a blueschist sample 19LQ03-10 and a
Gln-bearing quartz schist sample 19LQ03-4, respectively. The
Raman analytical results are presented in Supplementary Data
Table S3.

Paragonite and phengite for Ar-Ar geochronology were sepa-
rated by applying heavy liquid and magnetic separation tech-
niques. Paragonite and phengite separates were irradiated for
24 h at Northwest Institute of Nuclear Technology, Xi’an, China.



Fig. 5. (a–b and g–h) Representative photomicrographs and (c–f and i) backscattered (BSE) images of Gln-bearing quartz schist samples. Descriptions are detailed in the text.
(a), (b), and (c) are from the same vision of sample 19LQ03-22; (g) and (h) are from the same vision of sample 19LQ03-24. Ph— Phengite, and other mineral abbreviations are
the same as Fig. 4.
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The national standard ZBH-25 (biotite) with an age of
132.7±1.2 Ma and the standard GBW04418 (amphibole) with an
age of 2060±8 Ma were used to monitor neutron fluxes. Ar isotopes
of the irradiated minerals were measured by using noble gas mass
spectrometry Helix SFT at the Analytical Laboratory, Beijing
Research Institute of Uranium Geology, China. Step-heating was
performed at 9–11 steps with incrementally elevated power. All
primary data was corrected, according to the obtained correction
factors of interfering Ar isotopes during the irradiation in this
study: (36Ar/37Ar)Ca = 0.0003011, (39Ar/37Aro)Ca = 0.0007694, and
(40Ar/39Ar)K = 0.0020826. 37Ar was corrected for radiogenic decay,
and the applied decay constant of 40K is k = 5.543�10�10 a�1

(Steiger and Jäger, 1977). The Ar isotopic results are shown in Sup-
plementary Data Table S4.
5. Results

5.1. Mineral chemistry

5.1.1. Garnet
Garnet crystals in all the studied samples are comparably

almandine-rich, with components of Alm59-69Prp4-10Grs21-
31Sps0.3-9 and Alm59-69Pyr5-9Grs21-29Sps2-6 in the zoisite blueschist
and Gln-bearing quartz schist samples, respectively. Garnet dis-
plays weak zoning from inner to outer domain with decreases in
6

spessartine and almandine components and increases in grossular
and pyrope components, reflecting prograde growth (Fig. 6).
5.1.2. Amphibole
Based on nomenclature of amphiboles by (Leake et al., 1997)

and method for calculating amphibole formula by (Li et al.,
2020a), predominant amphibole minerals in the studied samples
are classified as glaucophane (Fig. 7). Regardless of occurring as
inclusions in garnet and zoisite or as matrix compositions, glauco-
phane crystals have Si contents of 7.56–7.99 p.f.u. and NaB contents
of >1.51 p.f.u. (Fig. 7) with Mg/(Mg + Fe2+) ratios of 0.51–0.71. Win-
chite occupying the outer domains of glaucophane shows various
Si contents of 6.86–7.71 p.f.u., NaB contents of 0.50–1.18 p.f.u.,
and Mg/(Mg + Fe2+) ratios of 0.58–0.76. Winchite is locally replaced
by magnesio-hornblende with low NaB contents of 0.39–0.45 p.f.u.
and high Mg/(Mg + Fe2+) ratios of 0.72–0.75 (Fig. 7). One ferro-
ferri-hornblende inclusion occurs in the edge of one garnet crystal
shows low NaB contents of 0.20–0.30 p.f.u. and Mg/(Mg + Fe2+)
ratios of 0.43–0.47 (Fig. 7).
5.1.3. Zoisite
Assuming all iron to be Fe3+ (e.g., Armbruster et al., 2006), zoi-

site inclusions in garnet and zoisite associated with garnet contain
high Fe3+ contents of 0.22–0.73 p.f.u. Comparatively, zoisite in the
matrix shows various Fe3+ contents of 0.08–0.38 p.f.u., and no obvi-



Fig. 6. Compositional mapping and profiles of almandine (Alm), grossular (Grs), spessartine (Sps), and pyrope (Prp) components of a representative garnet crystal from
sample 19LQ03-16.
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ous zoning was detected for a single zoisite crystal. Zoisite in
sample 19LQ03-24 intergrowing with titanite + quartz +
glaucophane ± phengite contains relatively high Fe3+ contents of
0.22–0.40 p.f.u.
7

5.1.4. Other minerals
One omphacite inclusion in garnet from sample 19LQ03-9 has

Mg/(Mg + Fe2+) ratios of 0.53–0.57, Na/(Ca + Na) ratios of 0.44–
0.48, and Al contents of 0.34–0.42p.f.u. Paragonite shows concen-



Fig. 7. Si (p.f.u.) versus NaB (p.f.u.) diagram showing compositions of amphibole
(after Leake et al., 1997).
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trated Si contents of 5.91–6.25 p.f.u. based on 22 oxygen calcula-
tion and high Na/(Na + K) ratios of 0.83–0.99 with no obvious dif-
ference between paragonite in the matrix and garnet. Phengite in
the Gln-bearing quartz schist samples has Si and Mg + Fe contents
of 6.58–7.07 p.f.u. and 0.84–1.27 p.f.u., respectively, based on 22
oxygen calculation. Feldspar is pure albite (An mostly <5) and
titanite is slightly aluminous (Al = 0.04–0.16 p.f.u.) in the studied
samples.
5.2. Whole-rock major-element compositions

The zoisite blueschist samples have low SiO2 contents of 49.2–
50.1 wt.%, and high FeO (11.3–12.3 wt.%), MgO (5.79–5.95 wt.%),
Fig. 8. (a) Niggli index discrimination diagram (after Winkler, 1976) and (b) sedimen
metamorphic rocks.
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CaO (5.27–7.60 wt.%), and NaO (2.58–2.82 wt.%) contents. Compar-
atively, the Gln-bearing quartz schist samples have higher SiO2

(58.7–65.9 wt.%) with lower FeO (2.80–7.75 wt.%), MgO (2.70–
4.72 wt.%), CaO (2.66–3.97 wt.%), and NaO (1.47–1.76 wt.%) con-
tents. In the Niggli index discrimination diagram (Fig. 8a), all stud-
ied samples plot into the field of sedimentary rocks, reflecting
sedimentary protoliths (Winkler, 1976). According to sedimentary
source discrimination (Roser and Korsch, 1988), the protoliths of
the zoisite blueschist samples were probably derived from mafic
igneous provenance (Fig. 8b), as also supported by their large
amounts of glaucophane and zoisite. The protoliths of the Gln-
bearing quartz schist samples show quartzose sedimentary prove-
nance (Fig. 8b), consistent with abundant garnet, phengite, and
quartz components in these samples.
5.3. P-T estimation

5.3.1. Phase equilibrium modelling
Figs. 9 and 10 illustrate P-T pseudosections calculated for the

zoisite blueschist samples 19LQ03-10 and 19LQ03-16, respec-
tively. Peak metamorphic mineral assemblage is represented by
garnet (outer domain) + glaucophane + epidote (zoisite) + rutile +
chlorite + quartz, with a wide P-T range of 510–580 �C and 13–
19 kbar (Figs. 9 and 10).

For sample 19LQ03-10, the lawsonite-out line limits the upper-
pressure stability, while the hornblende-in line constrains the
lower-pressure stability (Fig. 9). Its upper- and lower-
temperature stabilities are defined by the chlorite-out and
titanite-out lines, respectively (Fig. 9). The peak metamorphic P-T
condition of sample 19LQ03-10 was further constrained by using
XAlm isopleths of garnet outer domains (average of 0.86–0.87) to
520–547 �C and 15.0–18.5 kbar (Fig. 9). The retrograde metamor-
phic P-T condition at 480–496 �C and 8.6–9.5 kbar was estimated
based on the stability of hornblende + epidote (zoisite) + titanite +
chlorite + albite + quartz + paragonite (Fig. 9).

Similar lawsonite-out and hornblende-in lines limit the pres-
sure stabilities for sample 19LQ03-16 (Fig. 10). The chlorite-out
line defines the upper-temperature stability of sample 19LQ03-
16, and its lower-temperature stability is constrained by the
garnet-in line (Fig. 10). XAlm isopleths of garnet outer domains
tary source discrimination diagram (after Roser and Korsch, 1988) of the studied



Fig. 9. P-T diagram showing calculated pseudosection of the mineral assemblage in the zoisite blueschist sample 19LQ03-10 in the NCKFMASHTO system. Orange lines are
the calculated entrapment isomekes based on quartz-in-garnet Raman elastic geobarometry, and pseudosection was contoured with isopleths of almandine contents in
garnet. The estimated field of peak P-T condition is filled with red, and dashed arrow marks the inferred P-T path of sample 19LQ03-10. Mineral abbreviations are from
Whitney and Evans (2010).
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(average of 0.85–0.86) and XFe isopleths of glaucophane (average of
0.34–0.36) further constrain the peak metamorphic P-T condition
at 530–546 �C and 15.8–17.2 kbar for sample 19LQ03-16
9

(Fig. 10). The retrogression was defined by hornblende + epidote
(zoisite) + titanite + chlorite + albite + quartz at <495 �C and <9.6
kbar (Fig. 10).



Fig. 10. P-T diagram showing calculated pseudosection of the mineral assemblage in the zoisite blueschist sample 19LQ03-16 in the NCKFMASHTO system. The
pseudosection was contoured with isopleths of almandine contents in garnet (red) and iron contents in glaucophane (yellow). The estimated field of peak P-T condition is
filled with red, and dashed arrow suggests the P-T path of sample 19LQ03-16. Mineral abbreviations are from Whitney and Evans (2010).
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5.3.2. Quartz-in-garnet Raman elastic geobarometry
Raman elastic geobarometry on quartz inclusions trapped in the

garnet outer domains in the zoisite blueschist sample 19LQ03-10
records entrapment pressures of 17.9–18.9 kbar (at 525 �C;
Fig. 11). The Gln-bearing quartz schist sample 19LQ03-4 has a large
range of calculated inclusion pressures, varying from 14.4 to 18.0
kbar (an average of 16.5 kbar) at 525 �C (Fig. 11). Correlation
between the location of quartz inclusion in garnet and the calcu-
lated entrapment isomeke is challenging to observe in sample
19LQ03-4.

5.4. Ar-Ar geochronology

Paragonite extracted from the zoisite blueschist sample
19LQ03-9 recorded a plateau age of 520±2 Ma (mean square of
10
weighted deviate (MSWD) = 1.6; Fig. 12a) covering 55% of the total
released 39Ar. This plateau age is in concordance with an isochron
age of 514±7 Ma (MSWD = 1.7) yielding a near-atmospheric initial
40Ar/36Ar value of 317±24 (Fig. 12b). Paragonite from the blueschist
sample 19LQ03-16 yielded a plateau age of 506±3Ma (MSWD= 7.2;
Fig. 12c), which was constrained by 83% 39Ar released. A consistent
isochron age of 501±7 Ma (MSWD = 7.6) was obtained with a near-
atmospheric initial 40Ar/36Ar value of 317±26 (Fig. 12d).

Phengite from the Gln-bearing quartz schist sample 19LQ03-8–
2 gave a plateau age of 522±2 Ma (MSWD = 2.1; Fig. 12e), defined
by more than 97% released 39Ar. An equal isochron age of
522±2 Ma (MSWD = 2.2) with a near-atmospheric initial 40Ar/36Ar
value of 268±32 was obtained for phengite from sample 19LQ03-
8–2 (Fig. 12f). Phengite from the Gln-bearing quartz schist sample
19LQ03-22 yielded a plateau age of 516±2 Ma (MSWD = 1.8;



Fig. 11. P-T diagram presenting the calculated entrapment isomekes based on
quartz-in-garnet Raman elastic geobarometry.
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Fig. 12g) and a similar isochron age of 515±3 Ma (MSWD = 2.0;
Fig. 12h). These ages were calculated based on more than 95%
released 39Ar and produced a near-atmospheric initial 40Ar/36Ar
value of 308±29.
6. Discussion

6.1. P-T evolution

The peak metamorphic P-T range of the zoisite blueschist sam-
ple 19LQ03-10 was primarily defined by pseudosection calculation
based on the stability of peak mineral assemblage (garnet outer
domain + glaucophane + zoisite + rutile + chlorite + quartz) and
XAlm isopleths of garnet outer domains (Fig. 9). This P-T range inter-
sects the calculated entrapment isomeke deduced from Raman
elastic geobarometry on the quartz inclusions in the garnet outer
domains, which potentially records the maximum pressure condi-
tion because of the prograde growth of garnet in the sample, as
indicated by mineral chemistry (Fig. 6). Accordingly, we estimated
a peak metamorphic P-T condition at 520–528 �C and 17.8–18.5
kbar for sample 19LQ03-10 (Fig. 9). Another zoisite blueschist sam-
ple 19LQ03-16 yielded a consistent peak metamorphic P-T range of
530–546 �C and 15.8–17.2 kbar defined by the calculated pseudo-
sections and isopleths of garnet XAlm and glaucophane XFe (Fig. 10).
The Gln-bearing quartz schist samples were probably equilibrium
at the same metamorphic conditions with the zoisite blueschist
samples, as evidenced by their close association in the outcrop
(Fig. 3b and c) and the same peak mineral assemblage of garnet
(outer domain) + glaucophane + epidote (zoisite) + rutile + chlor
ite + quartz. This suggestion is also supported by the calculated
quartz inclusion pressures up to 18.0 kbar at 525 �C for a Gln-
bearing quartz schist sample 19LQ03-4 (Fig. 11).

Notably, the quartz-in-garnet entrapment isomeke of the zoi-
site blueschist sample 19LQ03-10 suggests a possible maximum
pressure condition up to 19 kbar (at 525 �C, Fig. 9), which falls into
the pressure range of lawsonite blueschist-facies metamorphism.
The intergrowth of glaucophane and zoisite in the Gln-bearing
quartz schist samples (Fig. 5f – h) with oxidized bulk compositions
probably records the following reaction, indicative of the entry
11
from lawsonite to epidote blueschist-facies (i.e., Evans, 1990; Ao
and Bhowmik, 2014).

Omp þ Lws ! Gln þ Ep þ Qtz þ H2O

Collectively, the studied samples experienced lawsonite to epi-
dote blueschist-facies metamorphism at 520–545 �C and 16–19
kbar with low T/P ratios (<300 �C/GPa) and corresponding thermal
gradients of <10 �C/km (Brown and Johnson, 2018). It reflects
HP/LT metamorphism, in agreement with the coeval eclogite adja-
cent to the sampling location with conventional geothermobarom-
eters yielding peak P-T conditions of 430–540 �C and 20–23 kbar
(Zhang et al., 2007) and comparable Alm62-70Prp6-10Grs23-27Sps1-6
components of garnet (Zhang et al., 2007).

Retrograde metamorphism of the studied blueschist-facies
metamorphic rocks was indicated by the stability of the mineral
paragenesis of hornblende + epidote (zoisite) + titanite + chlorite +
albite + quartz ± paragonite (Figs. 9 and 10). The retrograde P-T
condition of 480–496 �C and 8.6–9.5 kbar was estimated by the
pseudosection calculation for the zoisite blueschist sample
19LQ03-10 (Fig. 9), comparable with the rapid retrogression P-T
condition of <495 �C and <9.6 kbar for the zoisite blueschist sample
19LQ03-16 (Fig. 10). According to the above P-T estimations, the
blueschist-facies metamorphic rocks probably underwent fast
decompression due to exhumation (Figs. 9 and 10).

6.2. Timing of HP/LT metamorphism

The zoisite blueschist samples 19LQ03-9 and 19LQ03-16
yielded paragonite Ar-Ar plateau ages of 520–506 Ma (Fig. 12a
and b), and phengite from the Gln-bearing quartz schist samples
19LQ03-8–2 and 19LQ03-22 gave Ar-Ar plateau ages of 522–
516 Ma (Fig. 12c-d). Previous study reported a similar Ar-Ar pla-
teau age of ca. 512 Ma for phengite from eclogite and a younger
Ar-Ar plateau age of ca. 491 Ma for paragonite from blueschist
(Zhang et al., 2007). Generally, the closure temperature of Ar
within white mica are well documented at ca. 350–400 �C (Purdy
and Jager, 1976; Hames and Bowring, 1994). The Ar-Ar ages of
522–506 Ma recorded in the studied blueschist-facies metamor-
phic rocks and reported eclogite (Zhang et al., 2007) probably
reflect the retrograde metamorphism during exhumation stage
after peak blueschist-facies metamorphism. A younger Ar-Ar pla-
teau age of 491±3 Ma for paragonite from blueschist has also been
reported by Zhang et al. (2007). Paragonite in that blueschist sam-
ple is closely associated with the edge of glaucophane with orien-
tation intersecting with schistosity, implying the late
crystallization of paragonite (Zhang et al., 2007). Accordingly, the
younger paragonite Ar-Ar age of 491 Ma was interpreted as the
timing of late greenschist-facies metamorphism (Zhang et al.,
2007). Considering the oldest Ar-Ar plateau age of 522Ma obtained
in this study and the P-T evolution of the zoisite blueschist samples
demonstrating fast decompression at exhumation stage (Figs. 9
and 10), we inferred that the peak HP/LT metamorphism might
have occurred in the early Cambrian (prior to ca. 522 Ma).

6.3. Cold subduction along circum-Gondwana initiated by the early
Cambrian

In this study, the early Cambrian HP/LT blueschist-facies meta-
morphic rocks from northern Altyn Tagh suggest that the subduc-
tion of the Proto-Tethys Ocean had commenced before ca. 522 Ma
along the southeastern Tarim craton. This suggestion is also sup-
ported by ca. 521 Ma Qingyazi SSZ-type ophiolite in northern Altyn
Tagh (Zhang et al., 2009), ca. 518 Ma Munabulake Mariana-type
ophiolite in southern Altyn Tagh (Yao et al., 2021), and ca.
515 Ma oldest arc-related magmatic rocks in Altyn Tagh (e.g.,
Han et al., 2012; Meng et al., 2017). The subduction initiation of



Fig. 12. 40Ar/39Ar apparent age spectra and corresponding inverse isochron plots of (a-b) paragonite from the zoisite blueschist sample 19LQ03-9, (c-d) paragonite from the
zoisite blueschist sample 19LQ03-16, (e-f) phengite from Gln-bearing quartz schist sample 19LQ03-8–2, and (g-h) phengite from Gln-bearing quartz schist sample 19LQ03-
22.
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the Proto-Tethys Ocean is also sporadically recorded in some East
Asian continental blocks along the northern margin of Gondwana
(e.g., Li et al., 2018; Zhao et al., 2018). For example, ca. 533–
513 Ma oldest arc-related magmatism (Yin et al., 2020) and ca.
516–512 Ma Kudi back-arc ophiolite in West Kunlun (Wang
et al., 2021) indicate the subduction initiation of the
12
Proto-Tethys Ocean should have occurred prior to ca. 533 Ma in
West Kunlun. The Proto-Tethys Ocean had existed in East Kunlun
since the late Sinian, as suggested by ca. 555 Ma oceanic island
basalt (OIB)-type Kuhai ophiolite (Li et al., 2007). Its subduction
in East Kunlun probably had commenced in the early Cambrian
based on the recognition of ca. 537–520 Ma SSZ-type ophiolites
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(Wei, 2015; Qi et al., 2016) and 550–490 Ma subduction-related
granitic magmatism and metamorphism (Dong et al., 2018 and
reference therein). The North Qilian region crops out ca. 525 Ma
ophiolite and ca. 517–505 Ma tholeiite magmatic rocks in response
to early-stage subduction (Xia et al., 2012; Song et al., 2013),
recording the subduction initiation of the Proto-Tethys Ocean since
ca. 525 Ma in North Qilian. The ophiolitic assemblages with
middle-ocean ridge basalt (MORB) affinities in North Qinling indi-
cate the formation of the Proto-Tethys Ocean between the North
and South China blocks at ca. 534–517 Ma, and the subduction
occurred at ca. 515 Ma producing predominant arc-related gab-
broic and granitic intrusions (summarized in Dong et al., 2011;
Dong and Santosh, 2016). Along the northern margin of India, Teth-
yan Himalaya and Amdo underwent convergent Andean-type mar-
gin activity in response to the subduction of the Proto-Tethys
Ocean at 560–530 Ma (Cawood et al., 2007, 2021; Guynn et al.,
2012). Collectively, the initial subduction of the Proto-Tethys
Ocean started at ca. 535–515 Ma along the northern margin of
Gondwana, constituting the North Indo-Australie Orogen
(Fig. 13). With respect to the subduction initiation along the other
Gondwana’s margins, the timing is relatively earlier. The subduc-
tion initiation of the Proto-Pacific Ocean operating eastern Aus-
tralia, southern Antarctica, and western South America along the
southern margin of Gondwana, i.e. the Terra Australis Orogen
(Fig. 13), probably occurred as earlier as ca. 590–560 Ma (e.g.,
Fig. 13. Reconstruction of Gondwana at ca. 520 Ma (modified after Cawood et al., 2021;
Qilian, Qai— Qaidam, NOL— North Qinling, IC— Indochina, Sibu— Sibumasu, WDF— West
Carolina, CC— Cuyania and Chilenia, SF— San Francisco, Mad— Madagascar, and Tas— Ta
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Cawood and Buchan, 2007; Schwartz et al., 2008; Hagen-Peter
et al., 2016). In addition, as a part of the Avalonian-Cadomian Oro-
gen in the margin of West Gondwana (Fig. 13), the accretionary
orogen due to the subduction of the Iapetus Ocean commenced
at ca. 600 Ma at the periphery of West Africa and the Iranian Block
(Linnemann et al., 2008; Moghadam et al., 2021). Therefore, the
overall timing of the oceanic subduction initiation along circum-
Gondwana was diachronous, commencing at ca. 590–560 Ma along
the southern and western margins and ca. 535–515 Ma in the
northern margin.

Yao et al. (2021) considered the intense subduction initiation
along circum-Gondwana accomplished by the early Cambrian
marking the establishment of modern plate tectonic regime during
that time, primarily evidenced by Mariana-type ophiolites and
trench-arc assemblages. Nonetheless, the HP/LT metamorphism,
directly indicative of cold subduction in the modern tectonic
regime, is worthy to be considered regarding circum-Gondwana
subduction processes. This study identified early Cambrian
(slightly prior to ca. 522 Ma) HP/LT blueschist-facies metamor-
phism with low T/P ratios of <300 �C/GPa and thermal gradients
of <10 �C/km in northern Altyn Tagh, providing a direct record of
the cold subduction processes of the Proto-Tethys Ocean in north-
ern Gondwana.

Despite that other coeval blueschist-facies metamorphic rocks
have not yet been reported in northern Gondwana, the available
Liu et al., 2021b). Abbreviations: CAT— Central Altyn Tagh, AL— Alxa, CQL— Central
ern Deformational Front, Oax— Oaxaquia, C— Cortis, Y— Yucatan, Fl— Florida, Car—
smania.



Fig. 14. Metamorphic thermobaric ratios (T/P) for three types of metamorphic rocks
plotted against age (Data from Brown and Johnson, 2019 and this study) and locally
weighted scatter plot smoothing (LOWESS) curve (after Brown et al., 2020). Dashed
line represents the boundary between the Precambrian and the Phanerozoic. UHT—
ultrahigh temperature, HP— high pressure, MT— middle temperature, HT— high
temperature, LT— low temperature, and UHP— ultrahigh pressure.
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subduction-related metamorphic records in the East Asian blocks
also support the cold subduction processes of the Proto-Tethys
Ocean. For example, in North Qilian, a low-grade blueschist belt
and a high-grade blueschist belt containing massive blocks of
eclogite were identified to be a cold subduction zone with low
thermal gradients of �6 – 7 �C/km (Song et al., 2013 and reference
therein). The timing of the peak HP/LT metamorphism in North Qil-
ian was constrained to be 490–460 Ma (Song et al., 2013; Cheng
et al., 2016), slightly younger than that in northern Altyn Tagh.
Some orthogneiss and amphibolite in East Kunlun contain a num-
ber of metamorphic zircons with a large range U-Pb age of 549–
517 Ma (Chen et al., 2008), interpreted as the timing of the
subduction-related metamorphism (Dong et al., 2018).
Subduction-related metamorphic rocks are also documented in
North Qinling, represented by (U)HP eclogite metamorphosed at
ca. 516–486 Ma under 2.2–3.1 GPa and 550–770 �C conditions
(Wang et al., 2011; Cheng et al., 2012; Dong and Santosh, 2016)
and garnet amphibolite yielding peak metamorphic ages of
515 Ma and P-T conditions of 15–19 kbar and 750–850 �C (Tang
et al., 2016). The cold subduction conditions with �10 �C/km ther-
mal gradients can be inferred in North Qinling accordingly. The
early Paleozoic high-grade metamorphism might have also been
preserved in Himalaya to the north of India, as implied by various
metamorphic ages of 550–435 Ma (Cawood et al., 2007). In addi-
tion, ca. 530–500 Ma UHP eclogite with peak metamorphic condi-
tions up to 800–850 �C and 23–25 kbar was reported in East
Antarctica and southeastern Australia along the southern margin
of Gondwana (Palmeri et al., 2009; Romer et al., 2009; Di
Vincenzo et al., 2016), even though coeval HP/LT blueschist-facies
metamorphism is lacking. Collectively, cold subduction was pro-
foundly operative along themargins of Gondwana in the early Cam-
brian (Fig. 13), which is directly recorded by the early Cambrian
blueschist-facies metamorphic rocks in the northern Altyn Tagh.

6.4. Implications for the earliest global, cold subduction in Earth’s
history

Brown and Johnson (2018) distinguished three types of meta-
morphism based on T/P ratios. They are high T/P type (T/
P >775 �C/GPa) represented by common and ultra-high tempera-
ture granulite, intermediate T/P type (T/P of 375–775 �C/GPa)
including HP granulite and middle- to high-temperature eclogite,
and low T/P type (T/P <375 �C/GPa) dominated by blueschist, LT
eclogite, and UHP metamorphic rocks (Fig. 14). With minor excep-
tions, the low T/P metamorphic rocks were absent in Earth’s his-
tory until the late Neoproterozoic (Fig. 14), in which blueschist
and LT eclogite are generally associated with cold subduction in
accretionary orogens and UHP metamorphic rocks normally occur
in collisional orogens (e.g., Brown and Johnson, 2019). The emer-
gence of the low T/P metamorphism in the late Neoproterozoic
was attributed to the secular cooling of mantle (Holder et al.,
2019) facilitating deep breakoff of subducting slab and deep sub-
duction of continental lithosphere (Sizova et al., 2014; Brown
et al., 2020). However, whether the cold subduction and collision
orogens operated globally in the late Neoproterozoic remains
ambiguous. The first evidence of blueschist-facies metamorphism
is ca. 800–750 Ma Aksu blueschist in northwestern Tarim (Yong
et al., 2013; Xia et al., 2019). Precambrian blueschist-facies meta-
morphic records are scarce, as only exemplified by ca. 560–
550 Ma blueschist in the Anglesey-Lleyn accretionary orogen in
UK (Kawai et al., 2007) and blueschist of uncertainly Pan-African
ages in West Africa (Caby et al., 2008). Major evidence of Precam-
brian low T/P metamorphism is UHP eclogite with peak metamor-
phic ages of 650–600 Ma limited within the West Gondwana-
forming orogens, including the Pan-African orogenic system in
western and southern Africa (John and Schenk, 2003; Liégeois
14
et al., 2003; Reno et al., 2012; Berger et al., 2014) and the colli-
sional orogen between South America and West Africa (Reno
et al., 2012; Ganade de Araujoet al., 2014).

Alternatively, the early Cambrian subduction along circum-
Gondwana (Fig. 13) registers a globally linked network of narrow
plate boundaries, probably representing the earliest cold subduc-
tion of a global behavior in Earth’s history. Such global, cold sub-
duction is coincident with the widespread occurrence of
blueschist and a dramatic drop in the mean T/P of metamorphism
in the earliest Paleozoic (Fig. 14), interpreted to mark the establish-
ment of the modern plate tectonic regime (Yao et al., 2021). The
interval of the late Neoproterozoic to early Paleozoic might have
been the transitional period of a change to the global, cold subduc-
tion and the establishment of the modern plate tectonics. This per-
iod coincides well with the amalgamation of Gondwana at ca. 670–
500 Ma (e.g., Cawood and Buchan, 2007; Schmitt et al., 2018). The
resultant mountain building and subsequent erosion contributed
to high sediment fluxes as lubrication for convergent plate inter-
faces, which intensified subduction facilitating sustained plate tec-
tonics (Sobolev and Brown, 2019). This scenario is also indicated by
remarkably evolved Hf-O isotopic compositions of ca. 720–540 Ma
zircons due to considerable crustal reworking during the amalga-
mation of Gondwana (Gardiner et al., 2016). In the early Cambrian,
the circum-Gondwana subduction accomplished after the amalga-
mation of the main Gondwana blocks (Fig. 13) (e.g., Cawood et al.,
2007; Yao et al., 2021), marking the earliest cold subduction glob-
ally in Earth’s history indicative of the emergence of the modern
plate tectonics.
7. Conclusion

The zoisite blueschist and Gln-bearing quartz schist in the Altyn
Tagh southeastern Tarim, experienced HP/LT lawsonite to epidote
blueschist-facies metamorphism at 520–545 �C and 16–19 kbar
with low T/P ratios of <300 �C/GPa and thermal gradients
of <10 �C/km. They underwent fast decompression under P-T con-
dition of <495 �C and <9.6 kbar during exhumation. The peak HP/LT
metamorphism probably occurred in the early Cambrian, slightly
prior to ca. 522 Ma. The early Cambrian blueschist-facies metamor-
phic rocks in Altyn Tagh directly record the extensive cold subduc-
tion along circum-Gondwana after the amalgamation of the main
Gondwana blocks, which represents the earliest cold subduction
of a global behavior in Earth’s history suggesting the emergence
of the modern plate tectonics.
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