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Quantum communication channels and quantum memories are the fundamental building blocks of large-scale
quantum communication networks. Estimating their capacity to transmit and store quantum information is crucial
in order to assess the performance of quantum communication systems and to detect useful communication paths
among the nodes of future quantum networks. However, the estimation of quantum capacities is a challenging
task for continuous-variable systems, such as the radiation field, for which a complete characterization via
quantum tomography is practically unfeasible. Here we introduce a method for detecting the quantum capacity
of continuous-variable communication channels and memories without performing a full process tomography.
Our method works in the general scenario where the devices are used a finite number of times, can exhibit
correlations across multiple uses, and can change dynamically under the control of a malicious adversary. The
method is experimentally friendly and can be implemented using only finitely squeezed states and homodyne
measurements.
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I. INTRODUCTION

Continuous-variable (CV) quantum systems are a promis-
ing platform for the realization of quantum technologies,
including quantum communication [1–5], quantum computa-
tion [6–8], and the quantum internet [9]. An essential building
block for all these quantum technologies is the realization
of devices that reliably transmit or store quantum informa-
tion [10–17]. An important performance measure for these
devices is the quantum capacity [18–22], that is, the number
of qubits that can be transmitted or stored with each use of
the device under consideration. To assess the performance of
realistic devices, one needs methods to estimate the capacity
from experimental data. Such methods are important not only
for the certification of new quantum hardware, but also as a
way to monitor future quantum communication networks, in
which the quality and availability of communication links may
change dynamically due to fluctuations in the environment or
to the amount of network traffic. In this setting, the estimation
of the quantum capacity provides a way to assess how much
information can be transmitted from one node to another
during a given time frame, and to identify optimal paths for
routing quantum information through the network.

Unfortunately, explicit expressions for the quantum capac-
ity are only known for particularly simple noise models, under
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the assumption that the noise processes at different times
are independent and identically distributed (i.i.d.) [23–26].
In realistic scenarios, however, the noise can change over
time and can exhibit correlations across different uses of the
same device [27]. Moreover, the calculation of the quantum
capacity requires a classical description of the devices under
consideration. To obtain such a description, one generally
needs a full quantum process tomography [28–32], which,
however, becomes practically unfeasible for devices acting on
high-dimensional quantum systems.

A promising approach to circumvent the above difficul-
ties is to search for lower bounds on the quantum capacity,
and for experimental setups that estimate such lower bounds
without requiring a full process tomography. In this way,
one can detect a guaranteed amount of quantum informa-
tion that can be transmitted or stored. For finite-dimensional
systems, this approach has been explored in Refs. [33–35],
which provided accessible lower bounds on the asymptotic
quantum capacity under the i.i.d. assumption. For qubit chan-
nels, these results were extended in Ref. [36] to a broader
scenario involving a finite number of uses of the device, pos-
sibly exhibiting correlations among different uses. However,
the existing results do not apply to CV quantum chan-
nels due to the infinite dimensionality of input and output
systems.

In this paper, we introduce two protocols for the detection
of quantum capacities in the CV domain. The two proto-
cols provide experimentally accessible lower bounds on the
number of qubits that can be transmitted or stored with a
finite number of uses of a given CV device. The first protocol
works in the general scenario where the behavior of the device
can change dynamically from one use to the next, can be
under the control of a malicious adversary, and can exhibit

2643-1564/2022/4(4)/043149(18) 043149-1 Published by the American Physical Society

https://orcid.org/0000-0002-9940-6128
https://orcid.org/0000-0002-1339-0656
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.043149&domain=pdf&date_stamp=2022-11-30
https://doi.org/10.1103/PhysRevResearch.4.043149
https://creativecommons.org/licenses/by/4.0/


YA-DONG WU AND GIULIO CHIRIBELLA PHYSICAL REVIEW RESEARCH 4, 043149 (2022)

FIG. 1. (a) Capacity detection for continuous-variable quantum channels. The protocol deals with a completely unknown multimode
quantum channel. A subset of the modes is randomly selected for testing the channel, while the remaining modes are kept for communication.
For each testing mode, the sender prepares a single-mode Gaussian input state. At the corresponding output port, a receiver performs a
Gaussian quantum measurement and sends the classical outcome to a classical computer for data analysis. If the test is passed, then the sender
and receiver infer a lower bound on the quantum capacity of the channel acting on the communication modes. For each communication mode,
the sender can feed one part of a two-mode squeezed state into the device, keeping the other part for a later quantum communication task.
(b) Schematic diagram for Alice’s and Bob’s operations at each test mode in the first protocol.

correlations across different uses. The second protocol works
in the less challenging setting where the different uses of
the device are independent and identical. The protocol works
for all phase-insensitive Gaussian channels [15] and requires
only the preparation of coherent states. Both protocols can
be implemented using current optical quantum technologies
and provide a practically useful method to validate quantum
communication channels and quantum memories.

Our protocols employ k + n uses of the given quantum
device and randomly select k uses for a test, as shown in
Fig. 1(a). The test involves the preparation of single-mode
input states (finitely squeezed states in the first protocol, co-
herent states in the second) and the execution of single-mode
measurements on the output (homodyne measurements in the
first protocol, heterodyne in the second). The result of the test
is an estimated lower bound on the number of qubits that can
be transmitted with the remaining n uses. Notably, the sender
and receiver do not need to agree in advance on which uses
of the device will be employed for testing and which ones
for communication: the sender can make this decision locally
and communicate it publicly after the transmission has taken
place.

In both protocols, the lower bound on the capacity comes
hand in hand with a lower bound on the amount of entangle-
ment that can be established by sending halves of two-mode
finitely squeezed vacuum states through the noisy channel
under consideration. By using the resulting entangled state as
a resource, the sender and receiver can then achieve practical
quantum communication, e.g., using optimal CV teleportation
[37,38]. The quantum capacity is a lower bound on the private
capacity, that is, the number of secret bits that can be sent
reliably per channel use [39]. For this reason, our estimated
lower bound of the quantum capacity is also an estimated
lower bound to the number of bits that can be sent privately
through the channel. Another application of the protocol is to
benchmark the performance of continuous-variable quantum

error correction codes [17,40]. Detecting the lower bound
on the quantum capacity of a quantum channel protected by
quantum error correction codes and comparing it with the
capacity of directly transmitting a physical quantum mode
provides a way to assess the performance of quantum error
correction codes.

II. BACKGROUND

A quantum process acting on a quantum system with
Hilbert space H can be mathematically modeled by a quantum
channel E : S (H) → S (H), where S (H) denotes the set of
density operators on the Hilbert space H. The highest rate at
which quantum information can be sent over a quantum chan-
nel E is quantified by its quantum capacity Q(E ) [28]. The
definition of quantum capacity refers to the scenario where
the channel is used an asymptotically large number of times,
and the noisy processes in the various uses of the channel
are identical and independently distributed. In this scenario,
the quantum capacity is defined as the maximum number of
qubits that can be transmitted per use of the channel with
optimal encoding and decoding maps, under the condition that
the error must vanish in the asymptotic limit.

Practical applications, however, often deviate from the
asymptotic i.i.d. scenario. Noise can fluctuate in each run and
correlations may arise between subsequent runs. Realistically,
the number of uses of the quantum channel is always finite
and it is reasonable to allow for a finite error tolerance, as in
the task of approximate quantum error correction [12,41–44].
In these scenarios, it is convenient to adopt a one-shot version
of the quantum capacity [45], denoted as Qε (E ), where ε is
the error tolerance. Explicitly, the one-shot quantum capacity
is defined as

Qε (E ) := max{log2 b|F (E, b) � 1 − ε},

043149-2



DETECTING QUANTUM CAPACITIES OF … PHYSICAL REVIEW RESEARCH 4, 043149 (2022)

where b is the dimension of the subspace in which information
is encoded, and

F (E, b) := max
H̄⊂H,dim(H̄)=b

max
D

min
|φ〉∈H̄

〈φ|D ◦ E (|φ〉 〈φ|)|φ〉

is the maximum fidelity obtained by optimizing the choice of
encoding subspace H and the choice of a decoding channel D,
in the worst case over all possible input states. When the chan-
nel is of the form E = �⊗n, corresponding to n i.i.d. uses of
a channel �, the asymptotic quantum capacity Q(�) is equal
to the limit of the regularized one-shot capacity Qε (�⊗n)/n
when the number of uses goes to infinity and the error toler-
ance goes to zero. In summary, the one-shot quantum capacity
includes as a special case the asymptotic quantum capacity.

For a generally correlated multipartite channel En :
H⊗n

A′ → H⊗n
B , the one-shot quantum capacity Qε (En) can be

bounded in terms of conditional entropies [36,45–48] as

Qε (En) � max
σA∈S(H⊗n

A )
sup

η∈(0,
√

ε/2)

× [ − H
√

ε/2−η
max (An|Bn)ρ + 4 log2 η − 2

]
, (1)

where ρAnBn := (IAn ⊗ En)(|�σ 〉 〈�σ |) is the state obtained
by applying the channel En on a purification |�σ 〉AnA′n of an
input state σAn , and H ε

max(A|B)ρ := minρ ′∈Bε (ρ) Hmax(A|B)ρ ′ is
the smooth max-entropy [49,50], defined as the minimum
of the max-entropy Hmax(A|B)ρ in an ε-neighborhood Bε (ρ)
of the state ρ, relative to the purified distance [51]. The
max-entropy and its smoothed version were originally intro-
duced in the finite-dimensional settings, and their infinite-
dimensional extension was provided in [52,53].

The bound given by Eq. (1) can be relaxed by choosing a
specific input σAn . In the continuous-variable case, we choose
the product state σAn = ρ⊗n

th , where each of the n input systems
is a bosonic mode in the thermal state with mean particle
number n̄, whose purification is a two-mode squeezed vacuum
state. Hence, prediction of a lower bound on the one-shot
quantum capacity is now reduced to estimating the smooth
max-entropy of an unknown state resulting from the applica-
tion of the channel to n two-mode squeezed states.

An indirect way to estimate H
√

ε/2−η
max (An|Bn)ρ would be

to perform a full quantum tomography of the state ρAnBn

[54]. However, full tomography is highly demanding for high-
dimensional systems and convergence issues from the use of
finite statistics arise in the CV case. Moreover, even if we
knew ρ exactly, evaluating the smooth max-entropy by op-
timizing over a neighborhood of ρ is hard in general [49]. To
circumvent these problems, we now propose two methods to
estimate an upper bound on the smooth max-entropy without
full tomography.

In the following, we will consider the situation where E
acts on n + k modes with Hilbert space H⊗(n+k). We will
provide two protocols for experimentally estimating lower
bounds to the one-shot capacity. In the first protocol, the
channel E will be an arbitrary (n + k)-mode channel, corre-
sponding to the situation where the n + k uses of the device
are generally correlated. In the second protocol, the channel
will be assumed to be of the i.i.d. form E = �⊗(n+k), where
� is a given single-mode channel, corresponding to the sit-

uation where the n + k uses of the device are identical and
independent.

III. PROTOCOL FOR ARBITRARY CORRELATED NOISES

This protocol provides an experimentally accessible lower
bound on the number of qubits that can be transmitted with
a completely unknown multimode channel. The protocol can
be viewed as an infinite-dimensional generalization of the
approach of Ref. [36]. A sender, Alice, prepares a quan-
tum state of k modes, each of which is subject to a finite
amount of squeezing and displacement. At the beginning,
Alice randomly selects k/2 modes and initializes each of
them in a single-mode position-squeezed vacuum state with
finite amount of squeezing given by s dB. For the remaining
k/2 modes, she initializes them in single-mode momentum-
squeezed vacuum states with the same amount of squeezing.
Practically, the amount of squeezing can be chosen by Alice
depending on the experimental capabilities of her laboratory.
Then, Alice performs a random displacement on each mode,
displacing the position-squeezed states (momentum-squeezed
states) in position (momentum). For each mode, the amount
of displacement is chosen independently according to a zero-
mean Gaussian distribution with variance σ 2 = 10

s
10 . With

this choice, the displaced squeezed states can also be ob-
tained by applying a homodyne measurement on one side of
a two-mode squeezed state with finite mean photon number
n̄ = (10

s
10 − 1)/2.

Notice that while the variance is finite, there is still a
nonzero probability that the randomly chosen amount of dis-
placement is too large to be implemented with Alice’s devices.
To take this experimental limitation into account, we intro-
duce a cutoff parameter α > 0 and allow Alice to repeat the
randomization procedure until she gets a value in the interval
[−α, α]. The probability that Alice does not need to repeat the
randomization for a given mode is pα,s := erf(α 10− s

20 /
√

2),
where erf is the error function. Note that the probability pα,s

can be increased by increasing the amount of squeezing in the
input states.

The receiver, Bob, performs homodyne detections on the
k modes sent by Alice. Specifically, Bob performs position
(momentum) measurements on the k/2 position-displaced
(momentum-displaced) modes. Here we take into account
that in a realistic setting, Bob’s detectors will have a finite
resolution and therefore the measurement outcomes will be
discretized. We denote by d the width of the detector pixels in
this discretization.

Finally, Alice and Bob perform a statistical test of the cor-
relations between Alice’s displacements and Bob’s outcomes.
For simplicity of analysis, we also apply the cutoff α to Bob’s
outcomes, and the discretization d also to Alice’s displace-
ments. In this way, both outcomes and displacements become
discrete dimensionless random variables in the finite interval
{0, 1, . . . , 2α

d − 1}, having chosen 2α/d to be an integer. In
the following, we will denote by xA (xB) the vector of Alice’s
displacements (Bob’s outcomes). The test is passed if the
condition

1

k

k∑
i=1

|xA,i − xB,i| � t (2)
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is satisfied, where t is a threshold value chosen by Alice and
Bob. In the following, we will see that choosing smaller values
of t results in higher values of the capacity guaranteed by the
test. On the other hand, however, low values of t make the test
harder to pass.

Theorem 1. If the test is passed on k randomly selected
modes, then, with error probability no larger than perr, the one-
shot quantum capacity of the channel corresponding to other
n modes is lower bounded by

Qε � max

{
0, sup

η∈(0,
√

ε/2−λ)
f (η)

}
, (3)

where

f (η) = n log2
2π

d2
− 2n log2 γ {t + μ[ζ (η)]} − �(η),

λ = 8
√

2
(
1 − pn

α,s

)(
3 + 5

4perr
− 1√

perr

)
,

γ (x) = (x +
√

1 + x2)

(
x√

1 + x2 − 1

)x

,

μ(ζ ) = 2α

d

√√√√ (k + n)(k + 1)

nk2
log2

1

ζ/4 − 2
√

2
(
1 − pn

α,s

) ,

ζ (η) =
⎛
⎝√

ε

2
− η + 8

√
2
(
1 − pn

α,s

)
perr

⎞
⎠(

3 + 5

4perr

)−1

,

�(η) = 4 log2
1

η
+ 2 log2

2

ζ (η)2
+ 2. (4)

Furthermore, the number of maximally entangled qubits that
can be established with infidelity at most ε through the re-
maining n modes is lower bounded by

sup
η∈(0,

√
ε−ε′ )

[
n log2

2π

d2
− 2n log2 γ {t + μ[ζ ′(η)]} − �(η) +1

]
,

(5)
where ζ ′ is defined in the same way as ζ , except that ε re-
placed by 2ε. This bound can be achieved by sending through
each mode half of a two-mode squeezed state with average
photon number n̄ = (10

s
10 − 1)/2.

The proof of the theorem is provided in the Appendix. Our
main technical contribution is to reduce the estimation of the
smooth max-entropy of the 2n-partite joint state ρAnBn to the
estimation of the smooth max-entropy of a classical-quantum
state ωX nBn obtained by performing homodyne measurements
on the n reference modes and by discretizing the outcomes in
classical registers X n. Our key result is the following bound:

H3χ+5χ ′
max (An|Bn)ρ � n log2

d2

2π
+ 2Hχ ′

max(X n|Bn)ω − 2 log2
2

χ2

(6)

for d � 1, and any χ, χ ′ > 0. The derivation of the bound is
provided in the Appendix. The strategy is to use a CV entropic
uncertainty relation derived in [55,56], and adapt the result
to practical homodyne measurements with a cutoff on the
maximum values of the measured quadratures. Hχ ′

max(X n|Bn)ω
can be further bounded using t , if the correlation test in (2) is
passed.

FIG. 2. Solid curves are the lower bounds on Qε

n , with ε = 0.02,
given by Eq. (3), as functions of n for different values of d , t , k, and
α, and dashed curves are the lower bounds on Qε

n , given by Eq. (10),
as functions of n for different values of a and c. Other parameters are
perr = 0.1 and n̄ = 9.5 for solid curves, and k = n and n̄ = 9.5 for
dashed curves.

In Fig. 2, we show numerical plots of the bound (3) for
different values of d , t , k/n, and α, setting n̄ = 9.5, cor-
responding to 13 dB single-mode squeezing, achievable by
state-of-the-art technology [57]. The figure shows that the
lower bound (3) can be raised by increasing k/n, and/or by re-
ducing d and/or by reducing t . Regarding the cutoff parameter
α, it should be chosen to be large enough that the parameter
λ defined in Eq. (4) does not exceed

√
ε/2, for otherwise the

bound (3) on the capacity Qε becomes trivially 0. As shown
by Fig. 2, when α = 34, the protocol yields a trivial lower
bound on the quantum capacity as n keeps increasing because
for any given pα,s there is an upper bound on adjustable n
above which the lower bound (3) equals 0 due to the fact that√

ε/2 � λ and the set of adjustable η becomes empty.
The probability of success of our protocol depends on

channel E . For example, if E is a pure loss channel, ob-
tained by sending each input mode through a beam splitter
with transmissivity τ , the success probability is approximately
1
2 + 1

2 erf[
√

k
π−2 ( td

√
π

2(
√

n̄+1−√
τ n̄)

− 1)].

IV. PROTOCOL FOR INDEPENDENT
AND IDENTICAL NOISES

The previous protocol can be applied to all correlated noisy
quantum channels. However, for some important i.i.d. noisy
channels, the lower bound in Eq. (3) can be far from the opti-
mal asymptotic lower bounds known in the literature [27]. To
address this problem, we now introduce another protocol that
works specifically for i.i.d. channels. Besides providing a bet-
ter lower bound, our second protocol has the additional benefit
that it does not require squeezing, but only the preparation
of coherent states. Since the protocol works in the coherent
state basis, the homodyne detection in the first protocol will
be replaced by heterodyne detection, which is the canonical
measurement in the coherent state basis.

The protocol works for phase-insensitive Gaussian chan-
nels, that is, Gaussian channels � satisfying the covariance
condition � ◦ Uθ = Uθ ◦ � for every θ ∈ [0, 2π ], where
Uθ is the unitary channel corresponding to the operator
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Uθ = exp[−iθa†a]. This class of channels includes important
examples in quantum optics and quantum communication,
such as optimal parametric amplifiers [58,59], Gaussian ad-
ditive channels, and Gaussian loss channels [60].

In the protocol, Alice prepares k coherent states, whose
mean values x ∈ Ck are random variables following a ro-
tationally symmetric Gaussian distribution in the complex
plane, with variance equal to 2n̄ + 3/2. At the output, Bob
applies a single-mode heterodyne measurement on each of the
k modes, obtaining outcomes y ∈ Ck .

At this point, Alice and Bob can test the correlations be-
tween x and y, as well as the amount of noise added by the
channel. Specifically, they can estimate the variance of Bob’s
outcomes y and their cross correlation with Alice’s inputs x.
The result of the estimates is two values in suitable confidence
intervals, which contain the true values with probability 1 − δ.
Here, the parameter δ can be chosen by Alice and Bob depend-
ing on how reliable they want their test to be. The results of
the estimate are then used to infer a bound on the quantum
capacity. The intuition is that higher cross correlations and
lower added noise witness higher values of the capacity. To
make this intuition rigorous, we consider the minimum value
of the cross correlation and the largest value of the added noise
in their respective confidence intervals. These two values,
denoted by γmin and σmax, are given by

σmax := ||y||2
2(k − √

2k ln 1/δ)
− 1/2, (7)

γmin := ||x||2 + ||y||2 + 2 〈x, y〉
4(k + √

2k ln 2/δ + ln 2/δ)
− n̄

− ||y||2
4(k − √

2k ln 1/δ)
− 3/4. (8)

The conditions of high cross correlation and low added noise
are then expressed as γmin � c and σmax � a, respectively,
where c and a are suitable thresholds that can be adjusted by
Alice and Bob in the data analysis phase. The only constraint
on c and a is that they need to be compatible with a quantum
state, that is, that the matrix

ξ :=
(

(2n̄ + 1)1 c σz

c σz a1

)
(9)

satisfies the bone fide conditions for the covariance matrix of
a quantum state [61].

Theorem 2. If both conditions γmin � c and σmax � a are
satisfied, then, with error rate no larger than δ, the one-shot
quantum capacity of the channel �⊗n is lower bounded by

Qε � n max

{
0, g(a) − g(ν1) − g(ν2) − inf

η∈(0,
√

ε/2)

h(η)

k

}
,

(10)

where g(x) := x+1
2 log2

x+1
2 − x−1

2 log2
x−1

2 , ν1 and ν2 are the
symplectic eigenvalues of the matrix ξ in Eq. (9), and
h(η) := ω

√
log2[2/(

√
ε/2 − η)2] − 4 log2 η + 2, with ω :=

4
√

k log2(2
√

1 + n̄ + 2
√

n̄ + 1).

The proof of the theorem is given in the Appendix. In the
i.i.d. scenario, the output state obtained when each mode is
initialized in half of a two-mode squeezed state takes the form
σ⊗k

AB for a suitable two-mode state σ . In this setting, the prop-
erty of quantum asymptotic equipartition (AEP) [62] implies
that Qε can be bounded by −nH (A|B)σ , plus an asymptot-
ically vanishing term. When the noisy quantum channel is
Gaussian and covariant with respect to any phase rotation
operation, an upper bound on H (A|B)σ can be calculated from
a confidence region of the covariance matrix of σ .

Similar to the second protocol for CV quantum channels,
we develop a protocol, using single-qubit preparations and
measurements, to estimate lower bounds on the one-shot
quantum capacity of qubit channels with i.i.d. noise. Quantum
AEP implies that a lower bound on one-shot quantum ca-
pacity can be obtained from estimating coherent information.
To reliably estimate coherent information, we apply quantum
process tomography, obtaining a confidence polytope [63] of
the Choi state. By minimizing the coherent information within
this polytope, we obtain a lower bound on the one-shot quan-
tum capacity. This protocol for i.i.d. noise can be extended
to a general non-i.i.d. scenario by utilizing the exponential de
Finetti theorem [49,64], as shown in the Appendix.

V. COMPARISON OF LOWER BOUNDS
IN THE i.i.d. ASYMPTOTIC LIMIT

In this section, we compare the lower bounds in Theorems
1 and 2 for particular i.i.d. noisy channels. When n grows lin-
early with k, Eq. (10) yields a lower bound on the asymptotic
i.i.d. capacity Q(�) = limε→0 limn→∞ Qε/n, which reads

Q(�) � Biid := max {0, g(a) − g(ν1) − g(ν2)}. (11)

This asymptotic lower bound can be compared with the anal-
ogous lower bound obtained from Eq. (3), which reads

Q(�) � B := max

{
0, log2

2π

d2
− 2 log2 γ (t )

}
, (12)

where γ (t ) is the function defined in Eq. (4). Here we compare
both asymptotic lower bounds for a practically important type
of channels, namely, Gaussian loss channels, corresponding
to the transmission of the input through an arm of a beam
splitter with transmissivity τ , with a thermal state with mean
photon number n̄th in the other arm. For our comparison,
we choose the threshold values that maximize the asymptotic
bounds under the condition that the probability to pass the test
approaches 1 in the asymptotic limit.

We first consider the protocol in Sec. III for i.i.d. Gaussian
loss channels in the asymptotic limit. For a Gaussian loss
channel with transmissivity τ and mean photon number of
thermal noise, n̄th, the random variable xA − xB follows a
Gaussian distribution with zero mean and standard deviation,

σ (xA − xB) :=
√

(sinh κ − √
τ cosh κ )2 + (cosh κ − √

τ sinh κ )2 + (1 − τ )(2n̄th + 1),

where κ is a squeezing parameter satisfying sinh2 κ = n̄.
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Then |xA − xB| simply follows a half-normal distribution
with mean value

√
2/πσ (xA − xB). From the central limit

theorem, the sample mean 1
k

∑k
i=1 |xA,i − xB,i| approximately

follows a Gaussian distribution with mean value
√

2/πσ (xA −
xB) and standard deviation

√
1−2/π

k σ (xA − xB).
When k is asymptotically large, the averaged distance

1/k
∑k

i=1 |xA,i − xB,i| approaches a sharp distribution around
its mean value. Thus, in the limit of the asymptotic limit, we
can set

t =
√

2/π

d
σ (xA − xB)

= 2

d

√
1

π

√
n̄(1 + τ ) + 1 + n̄th(1 − τ ) − 2

√
n̄(n̄ + 1)τ ,

where the second line comes from the fact that sinh2 κ = n̄.
The correlation test will almost always be passed. Inserting
the optimal threshold t into the expression (12) yields the
lower bound of quantum capacity for the Gaussian loss chan-
nel given by the protocol in Sec. III.

Then we show the asymptotic lower bound of quantum
capacity in Sec. IV for i.i.d. Gaussian loss channels. At the
input side, the covariance matrix of a two-mode Gaussian state
is (

(2n̄ + 1)1
√

(2n̄ + 1)2 − 1σz√
(2n̄ + 1)2 − 1σz (2n̄ + 1)1

)
.

After applying a Gaussian loss channel, with transmissivity τ

and thermal mean photon number n̄th, on half of the two-mode
squeezed vacuum state, the covariance matrix of this resulting
two-mode Gaussian state becomes(

2(n̄ + 1)1
√

τ
√

(2n̄ + 1)2 − 1σz
√

τ
√

(2n̄ + 1)2 − 1σz [τ (2n̄ + 1) + (1 − τ )(2n̄th + 1)]1

)
.

The definitions of σmax and γmin indicate that when k is
asymptotically large, σmax approaches the variance τ (2n̄ +
1) + (1 − τ )(2n̄th + 1) and γmin approaches the covariance√

τ
√

(2n̄ + 1)2 − 1. As the statistical errors from finite sam-
pling in estimators σmax and γmin asymptotically go to
zero, we choose a = τ (2n̄ + 1) + (1 − τ )(2n̄th + 1) and c =√

τ
√

(2n̄ + 1)2 − 1, which guarantees that the passing prob-
ability asymptotically approaches one. Inserting the optimal
thresholds a and c into the expression of the asymptotic
bound (11) for the Gaussian pure loss channel, we find the
value Biid = max{0, g[(1 − τ )(2n̄ + 1)] − g[τ (2n̄ + 1)]}. Re-
markably, this value is exactly equal to the energy-constrained
quantum capacity of the channel [25,65]. In Fig. 3, we numer-
ically compare both asymptotic lower bounds for Gaussian
thermal loss channels and Gaussian pure loss channels.

VI. CONCLUSION

We have introduced two protocols for experimentally esti-
mating lower bounds on quantum capacities of CV channels
in the realistic scenario where the channel under consideration
is used a finite number of times. The first protocol applies to
arbitrarily correlated, dynamically changing channels, possi-
bly under the control of a malicious attacker, while the second

FIG. 3. Asymptotic lower bounds Biid and B for i.i.d. Gaussian
loss channels. Here we show the case of pure loss (corresponding to
n̄th = 0) and of thermal loss with n̄th = 1. The bounds are shown
as functions of transmissivity τ , for two values of input photon
number n̄ = 9.5 and n̄ = 3. For the non-i.i.d. protocol, we set the
discretization parameter to d = 0.1.

protocol is restricted to i.i.d. phase-insensitive Gaussian chan-
nels, and has a simpler experimental implementation. Both
protocols can be implemented using current technologies on
optical platforms. They provide a flexible method to vali-
date practical quantum communication devices and quantum
memories. In the longer term, they could be employed to
discover useful quantum communication channels in quantum
networks where the behavior of the transmission lines changes
dynamically or adversarially. Similarly, they could be used
to witness the presence of causal relations between quantum
systems and to estimate the amount of quantum coherence
between causally connected systems [66,67].
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FIG. 4. Lower bound on Qε

n , with ε = 0.02, given by Theorem 1,
as a function of n for different cutoff values α = 50, α = 37, and
α = 33, respectively. Other parameters are d = 0.1, t = 3, k = n,
perr = 0.5, and n̄ = 9.5.

APPENDIX

1. More numerical analysis

In this section, we present more numerical simulation re-
sults to analyze the dependence of the inferred lower bound
of quantum capacity on those adjustable parameters in the
protocols. We first study how the cutoff threshold α and the
expected photon number n̄ in the first protocol affect the lower
bound in Theorem 1. As shown by Fig. 4, when we fix n̄ while
reducing the value of α, the protocol can fail to provide a
nontrivial lower bound on the quantum capacity as n keeps
increasing. This is because for any given pα,s, there is an
upper bound on adjustable n, above which the lower bound in
Theorem 1 does not work due to the fact that

√
ε/2 − λ � 0

and the set of adjustable η becomes empty. On the other hand,
if we increase α, the lower bound is reduced in the region
of positive bound. As shown by Fig. 5, when we fix α and
increase n̄, the protocol can fail to provide a nonzero bound
as n increases. This is because of the same reason as we
discussed above.

Then we investigate how different combinations of d and t
affect the inferred lower bound while keeping dt fixed. By
reducing d and fixing dt , we increase the number of bins
within a fixed region of real numbers. As shown by Fig. 6,
reducing d from 0.5 to 0.1, while keeping dt = 0.3, raises the
lower bound significantly. However, when we further reduce
d from 0.1 to 0.01, there is only a tiny increase in the lower
bound. This phenomenon is reasonable because when we re-
duce d from 0.5 to 0.1, the estimation of correlation between
input and output becomes more accurate, which statistically
yields more information about the quantum channel under
study. Given a fixed passing region given by dt , this additional
information leads to an increase of the inferred lower bound
on Qε . However, when we further reduce d , d no longer
dominate the change of the lower bound. Similar phenomena
are shown by Fig. 7 in the asymptotic limit.

FIG. 5. Lower bound on Qε

n , with ε = 0.02, given by Theorem 1,
as a function of n for different expected photon number n̄ = 9.5,
n̄ = 9, and n̄ = 7, respectively. Other parameters are d = 0.1, t = 3,
k = n, perr = 0.5, and α = 32.5.

Last, we study how the lower bound of Qε depends on the
tolerable infidelity ε. As Fig. 8 suggests, increasing ε raises
the lower bound, but this change is not quite significant.

2. Discussions on parameter choices

The adjustable parameters are either related to the limi-
tation of the experimental setups available to Alice and Bob
(e.g., the highest resolution of the detectors, the maximal
amount of squeezing in the input states) or related to the
required degree of confidence in their estimation procedure.
Here we discuss the meanings of each parameter and how to
choose those parameters.

In the first protocol, d , α and n̄ depend on the practi-
cal quantum devices. Specifically, d represents the resolution

FIG. 6. Lower bound on Qε

n , with ε = 0.02, given by Theorem 1,
as a function of n for different combinations of discretization widths
d , while dt = 0.3 is kept. Other parameters are k = n, perr = 0.1,
α = 37, and n̄ = 9.5.
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FIG. 7. Asymptotic lower bound B for Gaussian
pure loss channel as a function of transmissivity τ for
different values of discretization width d and threshold
t = 1

d

√
4
π

√
n̄(1 + τ ) + 1 − 2

√
n̄(n̄ + 1)τ .

of homodyne detections associated to the width of detector
pixels. (−α, α) is the maximal range of displacement that
can be performed by Alice’s quantum device. α must be
large enough to make

√
ε/2 − λ > 0, otherwise the bound

in Theorem 1 fails to give a nontrivial value. n̄ denotes the
expected photon number per input mode, which is limited by
achievable squeezing. Any n̄ � 13.6 is achievable by current
technology [57], corresponding to squeezing below 15 dB.
pα,s = erf[α/

√
2(2n̄ + 1)] is determined by α and n̄, denot-

ing the probability that a sample from zero-mean Gaussian
distribution with variance 2n̄ + 1 falls within (−α, α), where
erf is the error function.

Here, k is the number of modes Alice and Bob can sacrifice
for performing the test and n is the number of modes which
are demanded by Alice and Bob for later quantum commu-
nication. Both k and n are practically upper limited, and k,

FIG. 8. Lower bounds on Qε

n , given by Theorem 1, as functions
of n for different maximal tolerable infidelities ε = 0.2, ε = 0.02,
and ε = 0.005. Other parameters are d = 0.1, t = 3, k = n, perr =
0.1, α = 37, and n̄ = 9.5.

n � 109 are considered to be within the practical regime in
CV quantum key distribution [68], whose setting is similar
to ours. The ratio k/n, and other parameters t , perr, and ε,
can be chosen by the users of the channel, Alice and Bob. t
is the threshold value in the test. Reducing t can increase the
inferred lower bound on quantum capacity, but simultaneously
reduce the probability to pass the test. 0 < perr < 1 is the
tolerable error probability in the inference. ε is introduced
in the definition of one-shot quantum capacity and denotes
the tolerable infidelity of quantum communication. In Fig. 2,
we choose ε = 0.02, which is acceptable considering the fact
that the experimental fidelity of qubit teleportation over long
distance is just above 0.9 [69].

In the second protocol, k, n, and ε have the same meanings
as those we have discussed in the first protocol. The thresh-
old parameter a represents the maximal tolerable additional
noise in y and the other threshold parameter c represents the
minimal tolerable cross correlation between x and y. a and c
should be chosen to make matrix ξ (9) a viable covariance
matrix, which is to satisfy the bona fide conditions [61]

ξ + i� � 0 where � :=

⎛
⎜⎝

0 1 0 0
−1 0 0 0

0 0 0 1
0 0 −1 0

⎞
⎟⎠.

Suitable a and c can be adjusted by Alice and Bob in the
data analysis phase after obtaining measurement outcomes.
Basically, Alice and Bob can pick the values that give them the
best bound on the capacity of the channel under consideration.
The optimal values of a and b generally depend on the channel
itself.

3. Proof of Theorem 1

The one-shot quantum capacity is defined as

Qε (E ) := max{log2 b|F (E, b) � 1 − ε}, (A1)

where b is the dimension of the subspace in which information
is encoded, and

F (E, b) := max
H̄⊂H,dim(H̄)=b

max
D

min
|φ〉∈H̄

〈φ|D ◦ E (|φ〉 〈φ|)|φ〉
(A2)

is the maximum fidelity obtained by optimizing the choice of
encoding subspace H and the choice of a decoding channel D,
in the worst case over all possible input states. When the chan-
nel is of the form E = �⊗n, corresponding to n i.i.d. uses of
a channel �, the asymptotic quantum capacity Q(�) is equal
to the limit of the regularized one-shot capacity Qε (�⊗n)/n
when the number of uses goes to infinity and the error toler-
ance goes to zero. In summary, the one-shot quantum capacity
includes as a special case the asymptotic quantum capacity.

We then present all the related concepts of min- and max-
quantum entropies [49,50], which are rigorously generalized
into infinite dimensions [52]. The min-entropy of ρAB given
σB is

Hmin(ρAB|σB) := − log2 min{λ|λ1 ⊗ σB � ρAB}, (A3)

043149-8



DETECTING QUANTUM CAPACITIES OF … PHYSICAL REVIEW RESEARCH 4, 043149 (2022)

and the min-entropy of ρAB given system B is

Hmin(A|B)ρ := sup
σB

Hmin(ρAB|σB). (A4)

Given a purification ρABC of ρAB, the max-entropy of ρAB

given system B is

Hmax(A|B)ρAB := −Hmin(A|C)ρAC . (A5)

Similarly, one can define the smooth min-entropy

H ε
min(ρAB|σB) := max

ρ ′
AB∈Bε (ρAB )

Hmin(ρ ′
AB|σB), (A6)

where Bε (ρ) := {ρ ′ � 0|trρ ′ � 1,P (ρ, ρ ′) � ε} is an ε-ball

around ρ with P (ρ, ρ ′) :=
√

1 − ||√ρ
√

ρ ′||21 called purified
distance, and

H ε
min(A|B)ρ := max

ρ ′∈Bε (ρ)
Hmin(A|B)ρ ′ . (A7)

Given a purification ρABC of ρAB, the smooth max-entropy of
ρAB is

H ε
max(A|B)ρAB := −H ε

min(A|C)ρAC . (A8)

Suppose we apply a channel E : H⊗n
A′ → H⊗n

B to an input
state σA′n , where n denotes the number of subsystems. The pu-
rification of σA′n is |�σ 〉A′nAn . Then the joint state at reference
An and output Bn is ρAnBn := 1 ⊗ E (|�σ 〉 〈�σ |).

Lemma 1. (lower bound on one-shot quantum capacity as
optimization of max-entropy [36,45–48]). Given a quantum
channel E from HA′ to HB, the one-shot quantum capacity of
E is bounded by

Qε (E ) � sup
η∈(0,

√
ε/2)

max
σ∈S(H⊗n

A′ )

[−H
√

ε/2−η
max (An|Bn)ρ + 4 log2 η

]
− 2. (A9)

We can drop the maximization over all possible input states
by choosing a specific input σA′ . For an infinite-dimensional
quantum system, we can further restrict the energy of each
input mode to obtain a lower bound on the energy-constrained
one-shot quantum capacity. In the following, we choose the
input at each mode as a thermal state with mean photon
number n̄, i.e., ρth(n̄) = ∑∞

n=0
n̄n

(n̄+1)n+1 |n〉 〈n|, whose purifi-
cation is a two-mode squeezed vacuum state |�ρth(n̄)〉 :=
eκ/2(âb̂−â†b̂† ) |0〉 |0〉 with cosh(2κ ) = 2n̄ + 1.

Below we present a lower bound, closely related to the
above bound, on the maximal number of maximally entangled
pairs, which can be established by applying entanglement
distillation on ρAnBn .

Lemma 2. (lower bound on distillable entanglement
[47,48,70]). For any state ρAnBn , a lower bound of its one-shot
distillable entanglement is

sup
η∈(0,

√
ε)

[−H
√

ε−η
max (An|Bn)ρ + 4 log2 η

] − 1. (A10)

This Lemma shows that by estimating an upper bound of
Hmax(An|Bn)ρ , we can not only detect a lower bound on one-
shot quantum capacity, but also obtain a lower bound on the
amount of entanglement, which can be established by sending
just halves of two-mode squeezed vacuum states.

Hence, prediction of a lower bound on one-shot quantum
capacity is now reduced to estimating smooth max-entropy

of an unknown state resulting from the application of the
channel to n two-mode squeezed states. An indirect way to
estimate H

√
ε/2−η

max (An|Bn)ρ would be to perform a full quantum
tomography of the state ρAnBn [54]. However, full tomography
is highly demanding for high-dimensional systems and con-
vergence issues from the use of finite statistics arise in the
CV case. Moreover, even if we knew ρ exactly, evaluating the
smooth max-entropy by optimizing over a neighborhood of ρ

is hard in general [49]. To circumvent these problems, we now
propose a method to estimate an upper bound on the smooth
max-entropy without full tomography.

Here we present the protocol for arbitrary unknown cor-
related noise in the entanglement-based formalism, instead
of the one in the formalism of preparation and measurement
shown in the main text. Given a (k + n)-mode input chan-
nel and (k + n)-mode output channel, Alice prepares k + n
copies of two-mode entangled states |ψ〉 and feeds one party
of each to the channel. Through negotiation, Alice and Bob
agree on k random pairs of modes. On these k pairs, Alice
and Bob both apply homodyne detections at each of them in
the same random bases zk ∈ {0, 1}⊗k (0 denotes position and
1 denotes momentum). Suppose the discretization distance
when discretizing the outcomes is d > 0 and the outcome
cutoff is (−α + d, α − d ). Each measurement outcome is pro-
jected into one of the 2α/d regions, {(−∞,−α + d], (−α +
d,−α + 2d], . . . , (α − d,∞)}. Accordingly, each outcome
is mapped to an integer in the set χ := {0, 1, . . . , 2α

d − 1},
where d and α are chosen to make 2α/d ∈ N+. xpe

A ∈ χ⊗k and
xpe

B ∈ χ⊗k denote Alice’s and Bob’s discretized measurement
outcomes at k modes, respectively. Alice and Bob pass the test
at the k subsystems if the average distance

1/k
k∑

i=1

∣∣xpe
A,i − xpe

B,i

∣∣ � t . (A11)

Otherwise, they abort the protocol.
Denote the state at the other n pairs of modes by ρAnBn ,

whose purification is denoted by ρAnBnE . Alice applies homo-
dyne detections at the remaining n modes on random chosen
bases zn ∈ {0, 1}⊗n and xA ∈ χ⊗n denotes Alice’s measure-
ment outcomes at these n modes. Denote ωAnX nBn as the joint
postmeasurement state at An, X n, Bn, conditioned on the pre-
vious test being passed, where X n denotes classical registers
storing Alice’s discretized measurement outcomes xA, and
ωAnX nBnE as the purified state.

Now we present the proof of Theorem 1 by following the
idea in [36] and using mainly the technical tools proven in
Ref. [55]. Before we show the proof, we first present the
following three useful lemmas.

Lemma 3. (chain rule of smooth max-entropy) Smooth
max-entropy satisfies the following chain rule, for any ε > 0,
ε′, ε′′ � 0, and any σ ∈ S (HA ⊗ HB ⊗ HC ), where HA, HB,
and HC can be infinite-dimensional Hilbert spaces:

H ε+ε′+2ε′′
max (AB|C)σ � H ε′

max(A|BC)σ + H ε′′
max(B|C)σ + log2

2

ε2
.

(A12)

This lemma was first proven by Ref. [71] for finite-
dimensional state σ . This result can be extended to an
infinite-dimensional quantum system by combining the fact
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that max-entropy on infinite-dimensional Hilbert spaces can
be asymptotically approached by max-entropy on finite-
dimensional Hilbert spaces [52] and the chain rule of smooth
max-entropy in Ref. [71].

Lemma 4. (CV entropic uncertainty relation [55]) The post-
measurement state ω, conditioned on the test at n modes being
passed, satisfies the following entropic uncertainty relation:

H ε+2ε′
min (X n|E )ω � −n log2 c(d ) − H ε

max(X n|Bn)ω, (A13)

where c(d ) = d2

2π
S(1)

0 (1, d2

4 )2, ε′ =
√

2(1−(1−pα )n )
ppass

, ppass de-

notes the probability that the test is passed, and pα is an
upper bound of the probability that each xA exceeds the region
(−α, α).

Here, S(1)
0 (·, ·) denotes the radial prolate spheroidal wave

function of the first kind [56,72] and, when d � 1, we have
c(d ) ≈ d2/(2π ). If Alice’s state preparation can be trusted,
then the states in her possession are just copies of the ther-
mal states. For a thermal state ρ(n̄), the variances of both
quadratures are 2n̄ + 1. We can obtain the value of pα from
the error function. For example, when α = 37 and n̄ = 9.5,
pα = 1 − erf(6.17) ≈ 1.11×10−16.

Estimating H
√

ε/2−η
max (An|Bn)ρ can be reduced to the estima-

tion of H ζ ′
max(X n|Bn). At this point, the intuition is that if both

Alice and Bob apply homodyne detections in the same basis

at certain pairs of modes and their outcomes are highly corre-
lated, then H ζ ′

max(X n|Bn)ω must be small because Bn contains
much information about An. This intuition was made rigorous
in Ref. [55], as given in the following lemma, which showed
that if a suitable correlation test is passed, then H ζ ′

max(X n|Bn)ω
can be bounded using the data of homodyne outcomes.

Lemma 5. (upper bound on max-entropy [55]) Conditioned
on that 1/k

∑k
i=1 |X pe

A,i − X pe
B,i| � t , the smooth max-entropy of

Alice’s measurement outcomes xA, given Bob’s system Bn and
measurement basis choices zn, are bounded by

H
ε

4ppass
− 2 f (pα ,n)√ppass

max (X n|Bn) � n log2 γ [t + μ0(ε)], (A14)

where γ (t ) := (t + √
1 + t2)( t√

1+t2−1
)t , μ0(ε) =

2α
d

√
(k+n)(k+1)

nk2 log2
1

ε/4−2 f (pα,n) , and f (pα, n) :=√
2[1 − (1 − pα )n].
Now we are ready to present the result of the prediction

of lower bounds on quantum capacities over n-mode quantum
channels with general correlated noises.

Theorem 3. If the measurement outcomes at the k test
modes pass the test, i.e., 1/k

∑k
i=1 |xpe

A,i − xpe
B,i| � t , then either

the probability to pass this test is lower than ppass or the
one-shot quantum capacity of the channel corresponding to
the remaining n modes is bounded by

Qε � max

⎛
⎜⎝0, sup

η∈
[
0,

√
ε/2−8 f (pα,n)

(
3+ 5

4ppass
− 1√ppass

)]
{

n log2
2π

d2
− 2n log2 γ [t + μ0(ζ )] − 4 log2

1

η
− 2 log2

2

ζ 2
− 2

}⎞⎟⎠, (A15)

where ζ = (
√

ε/2 − η + 8 f (pα,n)√
ppass

)/(3 + 5
4ppass

), and the number of maximally entangled pairs, which can be established by

sending halves of two-mode squeezed vacuum states, can be lower bounded by

sup
η∈

[
0,

√
ε−8 f (pα,n)

(
3+ 5

4ppass
− 1√ppass

)]
{

n log2
2π

d2
− 2n log2 γ [t + μ0(ζ ′)] − 4 log2

1

η
− 2 log2

2

ζ ′2 − 1

}
, (A16)

where ζ ′ = (
√

ε − η + 8 f (pα,n)√
ppass

)/(3 + 5
4ppass

).

Proof. The proof closely follows the one in Ref. [36]. Denote {Qx}x∈χ as the positive operator-valued measure (POVM)
measurement corresponding to homodyne detection in the position basis and the measurement outcome is discretized in the set of
alphabets χ . Similarly, denote {Px}x∈χ as the POVM measurement corresponding to homodyne detection in the momentum basis
and the measurement outcome is discretized in χ . For any random z ∈ {0, 1}⊗n, we define an isometry Vz : HAn → HAn ⊗ HX n ⊗
HX ′n as an extension of the projective measurements on system An, where X ′n are classical registers copying the information in
X n,

Vz : |ψ〉An →
∑

x∈χ⊗n

�z,x |ψ〉An |x〉X n |x〉X ′n , (A17)

where �z,x = ⊗n
i=1�zi,xi and �z,x = {Qx if z = 0

Px if z = 1.

As ωAnX nX ′nBnE can be obtained by applying an isometry on ρAnBnE , we have

H3ζ+ζ ′+4ζ ′′
max (An|Bn)ρ = H3ζ+ζ ′+4ζ ′′

max (AnX nX ′n|Bn)ω. (A18)

Using Lemma 3, we get

H ζ+ζ ′+2(ζ+2ζ ′′ )
max (AnX nX ′n|Bn)ω � H ζ ′

max(X n|AnX ′nBn)ω + H ζ+2ζ ′′
max (AnX ′n|Bn)ω + log2

2

ζ 2
. (A19)

From the duality of min- and max-entropy (A8), we have

H ζ ′
max(X n|AnX ′nBn)ω = −H ζ ′

min(X n|E )ω. (A20)
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Using Lemma 3 again, we have

H ζ+2ζ ′′
max (AnX ′n|Bn)ω � Hmax(An|X ′nBn)ω + H ζ ′′

max(X ′n|Bn)ω + log2
2

ζ 2
. (A21)

As X and X ′ stores the same information,

H ζ ′′
max(X ′n|Bn)ω = H ζ ′′

max(X n|Bn)ω. (A22)

Combining all of the above, we have, for any ζ > 0 and ζ ′, ζ ′′ � 0,

H3ζ+ζ ′+4ζ ′′
max (An|Bn)ρ � Hmax(An|X ′nBn)ω + H ζ ′′

max(X n|Bn)ω − H ζ ′
min(X n|E )ω + 2 log2

2

ζ 2
. (A23)

We use the entropic uncertainty relation in Lemma 4 to obtain

−H3ζ+ζ ′+4ζ ′′
max (An|Bn)ρ � −n log2 c(d ) − H ζ ′′

max(X n|Bn)ω − H
ζ ′−2 f (pα ,n)√ppass
max (X n|Bn)ω − 2 log2

2

ζ 2
. (A24)

By setting ζ ′ = ζ

4ppass
and ζ ′′ = ζ ′ − 2 f (pα,n)√

ppass
, using Lemma 5, we have

H ζ ′′
max(X n|Bn)ω = H

ζ ′−2 f (pα ,n)√ppass
max (X n|Bn)ω � n log2 γ [t + μ0(ζ )]. (A25)

By setting the relation

3ζ + ζ ′ + 4ζ ′′ =
√

ε/2 − η, (A26)

we obtain

ζ =
(√

ε/2 − η + 8 f (pα, n)√
ppass

)/(
3 + 5

4ppass

)
. (A27)

When ζ

4 − 2 f (pα, n) > 0, i.e.,

0 < η <
√

ε/2 − 8 f (pα, n)

(
3 + 5

4ppass
− 1√

ppass

)
, (A28)

combining Lemma 1 and Eq. (A24), we get

Qε � sup
η∈

[
0,

√
ε/2−8 f (pα,n)

(
3+ 5

4ppass
− 1√ppass

)]
{

n log2
2π

d2
− 2n log2 γ [t + μ0(ζ )] − 2 log2

2

ζ 2
+ 4 log2 η − 2

}
. (A29)

Using Lemma 2, we obtain a lower bound on the number of maximally entangled pairs which can be established by sending
halves of two-mode squeezed vacuum states. �

4. Proof of Theorem 2

We first present the protocol for independent and identical noises in the entanglement-based formalism instead of in the
preparation-and-measurement formalism as shown in the main text. Alice prepares n copies of two-mode squeezed vacuum
states |�ρth(n̄)〉, feeds one party of each to a channel, and keeps the other party as reference modes. For each copy, Alice and Bob
choose a random phase shift operation U ∈ U (1), and apply operation U † ⊗ U at the reference mode and output mode. After
this symmetrization procedure, Alice and Bob both apply heterodyne measurements at the n pairs of modes. Their measurement
outcomes are denoted by x ∈ Cn and y ∈ Cn, respectively. Later, we show that if the i.i.d. noisy channel commutes with any
phase rotation operation, then this symmetrization procedure is unnecessary to perform.

Based on the measurement outcomes x and y as well as error probability δ, Alice and Bob calculate

σmax := ||y||2
2(k − √

2k ln 1/δ)
− 1/2,

γmin := ||x||2 + ||y||2 + 2x�y

4(k + √
2k ln 2/δ + ln 2/δ)

− n̄ − ||y||2
4(k − √

2k ln 1/δ)
− 3/4.

If the parameters satisfy σmax � a and γmin � c, then Alice and Bob pass the test. Otherwise, they abort the protocol.
Before we prove Theorem 2, we present a useful lemma.
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Lemma 6. (asymptotic equipartition property for CV states [52]) Let σ ∈ HA ⊗ HB such that the von Neumann entropy H (A)σ
is finite. For any ε > 0 and n > 8

5 log2
2
ε2 , we have

H ε
max(An|Bn)σ⊗n � nH (A|B)σ + 4

√
n log2 ν

√
log2

2

ε2
,

where H (A|B)σ = H (AB)σ − H (B)σ and ν :=
√

2−Hmin (A|B)σ +
√

2Hmax(A|B)σ + 1.
For i.i.d. noisy channels, we suppose E = �⊗n and σ = � ⊗ 1(|�ρth(n̄)〉 〈�ρth(n̄) |). Using the fact that Hmin(A|B)σ �

−2 log2 tr(
√

σA), Hmax(A|B)σ � 2 log2 tr(
√

σA), and σA = ρth(n̄), we have ν � 2
√

22 log2(tr
√

σA ) + 1 = 2
√

22 log2(
√

1+n̄+√
n̄) + 1 =

2
√

1 + n̄ + 2
√

n̄ + 1. Using Lemma 6, we have

H ε
max(An|Bn)σ⊗n �nH (A|B)σ + 4

√
n log2(2

√
1 + n̄ + 2

√
n̄ + 1)

√
log2

2

ε2
.

After the symmetrization procedure σ → σ̃ := ∫
U∈U (1) dUU † ⊗ UσU ⊗ U †, the covariance matrix of σ̃ is

⎛
⎜⎝

2n̄ + 1 0 �c �d

0 2n̄ + 1 �d −�c

�c �d �b 0
�d −�c 0 �b

⎞
⎟⎠.

We find that the symplectic eigenvalues of the above matrix only depend on n̄, �b, and �2
c + �2

d . Fixing n̄, �b, and �c, H (A|B)σ̃
is maximized by minimizing �2

c + �2
d , which is achieved when �d = 0. It is easy to find that H (A|B)σ̃ keeps increasing when

we raise �b and reduce �c because the noise within system B is increased, while the correlation between system A and system
B decreases. Thus, an upper bound of �b, together with a lower bound of �c, yields an upper bound on H (A|B)σ̃ .

Suppose the channel �(·) commutes with any phase rotation operation U · U †; then, σ̃ = 1 ⊗ �(
∫

U∈U (1) dUU † ⊗
U |�ρth(n̄)〉 〈�ρth(n̄) |U ⊗ U †). Note that any phase rotation U † ⊗ U keeps a two-mode squeezed vacuum state |�ρth(n̄)〉 invariant.
Thus, σ̃ = σ , which implies that the symmetrization procedure does not need to be performed.

Now we present how to obtain confidence intervals of variance �b and covariance �c from the finite measurement outcomes
x and y. To achieve this goal, we consider the random variables of Alice’s and Bob’s measurement outcomes as βA ∈ C and
βB ∈ C, respectively, which both follow Gaussian distributions. Then the covariance matrix of βA together with βB is⎛

⎜⎝
2n̄ + 3/2 0 �c �d

0 2n̄ + 3/2 �d −�c

�c �d �b + 1/2 0
�d −�c 0 �b + 1/2

⎞
⎟⎠.

This is because of the fact that the heterodyne measurement combines the signal mode with a vacuum state by a balanced beam
splitter and homodyne position and momentum of two resulting modes.

From the definition of chi-squared distribution, it is easy to see that ||y||2
�b+1/2 is a random variable following the chi-squared

distribution with 2k degrees. Then, let us first introduce a concentration inequality for the chi-squared distribution.
Lemma 7. (concentration inequality of chi-squared distribution [73]) Suppose variable X follows the chi-squared distribution

with n degrees. We have the following inequalities of probabilities, for any x > 0:

Pr(X − n � 2
√

nx + 2x) � e−x,

Pr(n − X � 2
√

nx) � e−x.

By setting δ = e−x, the above inequalities are transformed to

Pr(X � n + 2
√

n ln 1/δ + 2 ln 1/δ) � δ, (A30)

Pr(X � n − 2
√

n ln 1/δ) � δ. (A31)

Using (A31), we have

Pr

( ||y||2
�b + 1/2

� 2k − 2
√

2k ln 1/δ

)
� δ,

which is equivalent to

Pr

(
�b �

||y||2
2(k − √

2k ln 1/δ)
− 1/2

)
� δ.
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This is to say, with error probability of, at most, δ, the true variance satisfies

�b �
||y||2

2(k − √
2k ln 1/δ)

− 1/2. (A32)

On the other hand, we consider the combination β̄A + βB. It can be seen that both the real and imaginary parts of β̄A + βB

follow a Gaussian distribution with variance 2n̄ + 3/2 + �b + 1/2 + 2�c = 2n̄ + �b + 2�c + 2. Hence, ||x̄+y||2
2n̄+�b+2�c+2 follows

the chi-squared distribution with 2k degrees. Using (A30), we obtain

Pr

( ||x̄ + y||2
2n̄ + �b + 2�c + 2

� 2k + 2
√

2k ln 1/δ + 2 ln 1/δ

)
� δ.

Using the relation ||x̄ + y||2 = ||x||2 + ||y||2 + 2x�y, the above inequality can be transformed to

Pr

(
�c �

||x||2 + ||y||2 + 2x�y

4(k + √
2k ln 1/δ + ln 1/δ)

− n̄ − �b/2 − 1

)
� δ.

That is, with error probability of, at most, δ, the covariance is lower bounded by

�c �
||x||2 + ||y||2 + 2x�y

4(k + √
2k ln 1/δ + ln 1/δ)

− n̄ − �b/2 − 1.

Combining the fact in (A32) and the union bound, we obtain both the upper bound of variance �b the lower bound of covariance
�c with error probability of, at most, δ,

�b �
||y||2

2(k − √
2k ln 2/δ)

− 1/2,

�c �
||x||2 + ||y||2 + 2x�y

4(k + √
2k ln 2/δ + ln 2/δ)

− n̄ − ||y||2
4(k − √

2k ln 2/δ)
− 3/4.

Theorem 4. If the conditions σmax � a and γmin � c are satisfied, then with error probability of less than δ, the one-shot
quantum capacity corresponding to each mode of the k channels uses is bounded by

Qε

k
�max

{
0, g(a) − g(ν1) − g(ν2) + 1

k
sup

η∈(0,
√

ε/2)

[
−4

√
k log2(2

√
1 + n̄ + 2

√
n̄ + 1)

√
log2

2

(
√

ε/2 − η)2
+ 4 log2 η − 2

]}
.

Proof. Using Lemma 1, we have

Qε � sup
η∈(0,

√
ε/2)

[−H
√

ε/2−η
max (Ak|Bk )σ⊗k + 4 log2 η − 2

]
. (A33)

Using Lemma 6, we have

Qε � sup
η∈(0,

√
ε/2)

[
−kH (A|B)σ − 4

√
k log2(2

√
1 + n̄ + 2

√
n̄ + 1)

√
log2

2

(
√

ε/2 − η)2
+ 4 log2 η − 2

]
.

If the conditions σmax � a and γmin � c, then with probability of, at least, 1 − δ, H (A|B)σ is upper bounded by the conditional
entropy of a Gaussian state with covariance matrix ((2n̄ + 1)1 cσz

cσz a1 ). That is,

H (A|B)σ � g(ν1) + g(ν2) − g(a), (A34)

where g(x) := x+1
2 log2

x+1
2 − x−1

2 log2
x−1

2 , and ν1 and ν2 are the symplectic eigenvalues of covariance matrix ((2n̄ + 1)1 cσz

cσz a1 ).
�

5. Estimating lower bounds on quantum capacity of qubit channels

The protocol to estimate lower bounds on quantum capacities for i.i.d. qubit channels is first to prepare a maximally entangled
state |�+〉 = 1√

2
(|00〉 + |11〉). Then Alice applies a quantum channel at one party of |�+〉 〈�+| and keeps the other party as a

reference qubit. At the output side, Bob randomly chooses to measure Pauli observable σB,i ⊗ σA, j , where i, j = 0, 1, 2, 3 and
σ0,1,2,3 = 1, σx, σy, σz. After n rounds of measurements, following the theorem below, Alice and Bob can calculate a lower
bound on the quantum capacity.

Lemma 8. (fully quantum AEP [62]) For any σAB,

H ε
max(An|Bn)σ⊗n � nH (A|B)σ + 4

√
n log2 μ

√
log2

2

ε2
(A35)

where μ �
√

2Hmin (A|B)σ +
√

2−Hmax (A|B)σ + 1 � 2dA/2+2.
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FIG. 9. The difference between the coherent information (A40) and the detectable lower bound of quantum capacity in Ref. [36] for
quantum channels in Eq. (A39) within the region cos(2α)/ cos(2β ) > 0.

Lemma 9. (confidence polytope of quantum tomography [63]) For the kth (0 � k � d4 − 1) Pauli observable, denote the
corresponding POVM by Mk := {E (l )

k }d−1
l=0 on HA ⊗ HB, where l denotes the measurement outcome. After the measurements

⊗d2−1
k=0 M⊗nk

k , for each k, the number of rounds of measurements getting outcome l is nl
k . The confidence interval of the state

σ ∈ S (HA ⊗ HB), with confidence level 1 − δ, where δ = ∑d2−1
k=0

∑d−1
l=0 δl

k , is � = ∩0�k�d2−1,0�l�d−1�kl , where

�kl :=
{
ρ ∈ S (HA ⊗ HB) :

nk

n
tr
(
ρE (l )

k

)
� nl

k

n
+ ε

(
nl

k, δ
l
k

)}
. (A36)

Here, ε(nl
k, δ

l
k ) is the positive root of the equation

D

(
nl

k

n

∣∣∣∣
∣∣∣∣nl

k

n
+ ε

)
= −1

n
log2 δl

k, (A37)

where D(x||y) = x log2
x
y + (1 − x) log2

1−x
1−y .

Theorem 5. Suppose that by applying the quantum state tomography described above, we get a confidence region �. Then,
we have

Qε (E )

n
� − max

σAB∈�
H (A|B)σ + sup

η∈(0,
√

ε/2)

4

n

[
−(dA/2 + 2)

√
n

√
log2

2

(
√

ε/2 − η)2
+ log2 η

]
− 2

n
. (A38)

One of our motivations to propose this protocol to estimate lower bounds on one-shot quantum capacities for i.i.d. noisy
channels is that the previous lower bound obtained by the protocol in Ref. [36] can be far from the optimal lower bound for some
practically important i.i.d. noisy channels. Particularly consider the following parametrized quantum channel:

E (ρ) =
2∑

i=1

AiρA†
i , (A39)

where A1 = cos α |0〉 〈0| + cos β |1〉 〈1| and A2 = sin β |0〉 〈1| + sin α |1〉 〈0|. When α = β, the quantum channel is a dephasing
channel, and when β = 0, the channel becomes an amplitude damping channel. Its quantum capacity is nonzero only when
cos(2α)/ cos(2β ) > 0.

The detectable lower bound in our protocol asymptotically approaches coherent information,

−H (A|B)σ = h[(cos2 α + sin2 β )/2] + h[(sin2 α + sin2 β )/2]. (A40)

Figure 9 shows the difference between the lower bound (A40) and the one obtained using the method in Ref. [36]. As it shows,
for i.i.d. dephasing channels, our protocol, by estimating coherent information, provides the same lower bound on the quantum
capacity in the asymptotic limit. However, for i.i.d. amplitude damping channels, our protocol outperforms the one in Ref. [36]
asymptotically, providing a tighter lower bound on the quantum capacities.
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In the following, we extend the above result to a general non-i.i.d. scenario by using the quantum de Finetti theorem. We
suppose ρAn+kBn+k is an arbitrary state jointly at A and B with n + k pairs of qubits/qudits. As ρAn+kBn+k is permutation invariant,
there always exists a purification ρAn+kBn+kEn+k ∈ S{Sym[(HA ⊗ HB ⊗ HE )]⊗n+k}, where E ∼= A ⊗ B.

Lemma 10. (exponential quantum de Finetti theorem [49]) The trace distance between ρAnBnEn := trAkBkEk ρAn+kBn+kEn+k and a
mixture of almost i.i.d. pure states ρ̃θ ∈ S[Sym(H⊗n

ABE , |θ〉⊗n−r )] can be bounded by∥∥∥∥ρn
ABE −

∫
dν(θ )ρ̃θ

∥∥∥∥
1

� 2kd/2e− k(r+1)
2(n+k) , (A41)

where ν is a probability measure on HABE and d = dim(HABE ).

For qubits, d = 24 = 16 and the right-hand side of Eq. (A41) becomes 2k8e− k(r+1)
2(n+k) .

The quantum asymptotic equipartition property [62], shown in Lemma 8, can be generalized to almost i.i.d. states as follows:
Lemma 11. (fully quantum AEP for almost i.i.d. states) Given ρ̃θ := |�θ 〉 〈�θ | has an almost i.i.d. structure, i.e., |�θ 〉ABE ∈

Sym(H⊗n
ABE , |θ〉⊗n−r ), from the asymptotic equipartition property, we have

−H ε
max(An|Bn)ρ̃θ � −(n − r)H (A|B)|θ〉〈θ | − 4

√
n − r log2 μ

√
log2

2

ε̃2
− nh(r/n) − r log2 dA, (A42)

where ε̃ � ε2

6·2n·h(r/n) , and μ �
√

2−Hmin (A|E )|θ〉〈θ | +
√

2Hmax (A|E )|θ〉〈θ | + 1 � 2dA/2+1 + 1, where dA = dim(HA). The above bound can
be further simplified to

−H ε
max(An|Bn)ρ̃θ � (n − r)[H (B)|θ〉〈θ | − H (AB)|θ〉〈θ |]

− 4
√

n − r log2 μ
√

2nh(r/n) − 4 log2 ε + 2 log2 6 + 1 − nh(r/n) − r log2 dA. (A43)

The proof of this Lemma closely follows the idea in the proof of Theorem 4.4.1. in Ref. [49].
Proof. There exists a family of mutually orthonormal states {|ψs〉}s∈S on Sym(H⊗n

ABE , |θ〉⊗n−r ) with |S| � 2nh(r/n) such that
|�θ 〉 = ∑

s∈S γs |ψs〉 with
∑

s∈S |γs|2 = 1. Then, the reduced state ρAnEn = trBn (|�θ 〉 〈�θ |) and ρ̃s
AnEn = trBn (|ψs〉 〈ψs|). Another

state is defined, ρ̃AnEnS := ∑
s∈S |γs|2ρ̃s

AE ⊗ |s〉 〈s|. Then, it has been shown that

H ε
min(An|En)ρ � H ε̃

min(An|EnS)ρ̃ − Hmax(ρ̃S ) � min
s∈S

H ε̃
min(An|En)ρ̃s − nh(r/n),

where ε̃ = ε2

6|S| , and we have used the fact that Hmax(ρ̃S ) = log2 rank(ρ̃S ) = nh(r/n).

Without loss of generality, |ψs〉 = |θ〉n−r ⊗ |ψ̂s〉 for some |ψ̂s〉 ∈ H⊗r
ABE . Then,

ρ̃s
AnEn = trBn (|θ〉 〈θ |⊗n−r ⊗ |ψ̂s〉 〈ψ̂s|) = (trB |θ〉 〈θ |)⊗n−r ⊗ trBr |ψ̂s〉 〈ψ̂s| .

Denote ρ̂s
Ar Er = trBr |ψ̂s〉 〈ψ̂s| and σAE = trB |θ〉 〈θ |. By superadditivity of min-entropy, we have

H ε̃
min(An|En)ρ̃s � H ε̃

min(An−r |En−r )σ⊗n−r + Hmin(Ar |Er )ρ̂s .

Using the asymptotic equipartition property for i.i.d. states [62], that is, H ε
min(An−r |En−r )σ⊗n−r � (n − r)H (A|E )σ −

√
n − rδ(ε, μ), where δ(ε, μ) = 4 log2 μ

√
log2

2
ε2 , and Hmin(Ar |Er )ρ̂s � −2 log2 tr

√
ρ̂s

Ar � −r log2 dA, we obtain, for any s,

H ε̃
min(An|En)ρ̃s � (n − r)H (A|E )σ − √

n − rδ(ε̃, μ) − r log2 dA.

Hence, we have

H ε
min(A|E )ρAE � (n − r)H (A|E )σAE − √

n − rδ(ε̃, μ) − r log2 dA − nh(r/n).

From the duality of smooth min- and max-entropy, we obtain the result. �
Lemma 12. (polytope confidence interval for almost i.i.d. state quantum tomography) |�θ 〉 ∈ Sym(H⊗n

ABE , |θ〉⊗n−r ), where r <

n/2. Suppose we apply local Pauli measurements at input A and output B. For the kth (0 � k � d2 − 1) Pauli observable, denote
the corresponding POVM by Mk := {E (l )

k }d−1
l=0 on HA ⊗ HB, where l denotes the measurement outcome. After the measurements

⊗d2−1
k=0 M⊗nk

k , for each k, the number of rounds of measurements getting outcome l is nl
k . The confidence interval of state ρAB =

trE |θ〉 〈θ |, with confidence level 1 − δ, where δ = ∑d2−1
k=0

∑d−1
l=0 δl

k , is � = ∩0�k�d2−1,0�l�d−1�kl , where

�kl :=
⎧⎨
⎩ρ ∈ S (HAB) : tr

(
ρE (l )

k

)
� nl

k

nk
+ n

nk

√
log2 1/δl

k

n
+ h(r/n) + 2

n
log2(n/2 + 1)

⎫⎬
⎭. (A44)

Proof. The proof combines the idea of confidence polytope in quantum tomography [63] with the statistical properties of
almost i.i.d. states [49]. The POVM measurements at HAB can be easily extended to HABE by denoting M̃k := {Ẽ (l )

k }d−1
l=0 , where

Ẽ (l )
k := E (l )

k ⊗ 1E . A renormalized POVM on HABE is M̃ := { nk
n Ẽ (l )

k }d2−1,d−1
k=0,l=0 .
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Then we consider POVM { nk
n Ẽ (l )

k ,1ABE − nk
n Ẽ (l )

k }. Using Theorem 4.5.2 in Ref. [49], we obtain, for each k and l ,

Pr

⎛
⎝∣∣∣∣〈θ |Ẽ (l )

k |θ〉 − nl
k

nk

∣∣∣∣ >
n

nk

√
log2

(
1/δl

k

)
nk

+ h(r/n) + 2

n
log2(nk/2 + 1)

⎞
⎠ � δl

k . (A45)

By noting that tr[(trE |θ〉 〈θ |)E (l )
k ] = 〈θ |Ẽ (l )

k |θ〉, we get

Pr

⎡
⎣tr

(
ρE (l )

k

)
>

nl
k

nk
+ n

nk

√
log2 1/δl

k

n
+ h(r/n) + 2

n
log2(n/2 + 1)

⎤
⎦ � δl

k . (A46)

Finally, the union bound indicates that σ ∈ ∩0�k�d2−1,0�l�d−1�kl , with probability at least 1 − ∑d2−1
k=0

∑d−1
l=0 δl

k . �
Theorem 6. Suppose a quantum channel En+k : H⊗n+k

A′ → H⊗n+k
B . We feed one party of the maximally entangled state at each

input and keep the other party as a reference system. We randomly abandon k outputs and denote the channel corresponding to

the other n inputs and n outputs by En. For any error ε/2 > ε′ := 2kd/2e− k(r+1)
2(n+k) , we have the lower bound of one-shot quantum

capacity of En,

Qε (En) �max

{
0, sup

η∈(0,
√

ε/2−√
ε′)

[ − 4
√

n − r log2(2
√

2 + 1)
√

2nh(r/n) − 4 log2(
√

ε/2 − η −
√

ε′) + 2 log2 6 + 1 + 4 log2 η
]

− nh(r/n) − r + (n − r) min
σ∈�

(H (B)σ − H (AB)σ ) − 2

}
. (A47)

Proof. Lemma 1 tells us that Qε (En) can be bounded below by a function of smooth max-entropy H
√

ε/2−η
max (An|Bn)ρ optimized

over η ∈ (0,
√

ε/2), where ρn is the state at the n output qubits and the associated n ancillary qubits. The smooth max-entropy
itself is a minimum value within a neighborhood B

√
ε/2−η(ρAnBn ). As Lemma 10, together with the fact that partial trace can only

reduce trace distance, implies that ρAnBn is close to an unknown almost i.i.d. state ρ̃AnBn , we can use the minimum value over a
smaller neighborhood around ρ̃AnBn , which is a subset of B

√
ε/2−η(ρAnBn ), to obtain an upper bound on H

√
ε/2−η

max (An|Bn)ρ .
Using the triangle inequality of purified distance [51], we have, for any ρ ′

AnBn ∈ S (HAnBn ),

P (ρAnBn , ρ ′
AnBn ) � P

[
ρAnBn ,

∫
dν(θ )ρ̃θ

AnBn

]
+ P

[
ρ ′

AnBn ,

∫
dν(θ )ρ̃θ

AnBn

]
. (A48)

To make sure P (ρAnBn , ρ ′
AnBn ) � √

ε/2 − η, as P[ρAnBn ,
∫

dν(θ )ρ̃θ
AnBn ] �

√
λ with ε′ := 2k8e− k(r+1)

2(n+k) , we only need to set
P[ρ ′

AnBn ,
∫

dν(θ )ρ̃θ
AnBn ] � √

ε/2 − η − √
ε′. Hence, using both Lemma 11 and Lemma 12, we get a lower bound, when

η <
√

ε/2 − √
ε′,

−H
√

ε/2−η
max (An|Bn)ρ �−H

√
ε/2−η−√

ε′
max (An|Bn)ρ̃ � − 4

√
n −r log2(2

√
2 +1)

√
2nh(r/n) − 4 log2(

√
ε/2 − η −

√
ε′) +2 log2 6 +1

− nh(r/n) − r + (n − r) min
σ∈�

(H (B)σ − H (AB)σ ),

and hence, using Lemma 1, we get the result. �
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