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Exact Dirichlet Boundary Physics-informed Neural Network EPINN for 1 

Solid Mechanics 2 
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Abstract: Physics-informed neural networks (PINNs) have been rapidly developed for solving partial 4 

differential equations. The Exact Dirichlet boundary condition Physics-informed Neural Network (EPINN) 5 

is proposed to achieve efficient simulation of solid mechanics problems based on the principle of least work 6 

with notably reduced training time. There are five major building features in the EPINN framework. First, 7 

for the 1D solid mechanics problem, the neural networks are formulated to exactly replicate the shape 8 

function of linear or quadratic truss elements. Second, for 2D and 3D problems, the tensor decomposition 9 

was adopted to build the solution field without the need of generating the finite element mesh of 10 

complicated structures to reduce the number of trainable weights in the PINN framework. Third, the 11 

principle of least work was adopted to formulate the loss function. Fourth, the exact Dirichlet boundary 12 

condition (i.e., displacement boundary condition) was implemented. Finally, the meshless finite difference 13 

(MFD) was adopted to calculate gradient information efficiently. By minimizing the total energy of the 14 

system, the loss function is selected to be the same as the total work of the system, which is the total strain 15 

energy minus the external work done on the Neumann boundary conditions (i.e., force boundary conditions). 16 

The exact Dirichlet boundary condition was implemented as a hard constraint compared to the soft 17 

constraint (i.e., added as additional terms in the loss function), which exactly meets the requirement of the 18 

principle of least work. The EPINN framework is implemented in the Nvidia Modulus platform and GPU-19 

based supercomputer and has achieved notably reduced training time compared to the conventional PINN 20 

framework for solid mechanics problems. Typical numerical examples are presented. The convergence of 21 
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EPINN is reported and the training time of EPINN is compared to conventional PINN architecture and 22 

finite element solvers. Compared to conventional PINN architecture, EPINN achieved a speedup of more 23 

than 13 times for 1D problems and more than 126 times for 3D problems. The simulation results show that 24 

EPINN can even reach the convergence speed of finite element software. In addition, the prospective 25 

implementations of the proposed EPINN framework in solid mechanics are proposed, including nonlinear 26 

time-dependent simulation and super-resolution network.  27 

KEYWORDS: Physics-informed neural network (PINN); Exact Dirichlet boundary PINN (EPINN); 28 

Principle of least work; Solid mechanics; Finite element; Tensor decomposition; Meshless finite difference 29 

(MFD); Nvidia Modulus 30 

1. INTRODUCTION 31 

Over the past 50 years, there has been substantial development in simulating solid mechanics problems 32 

by solving the governing equations of partial differential equations (PDEs) using the finite element (FE) 33 

method [1]. Although significant progress has been achieved in the FE method for the forward problems of 34 

simulation in solid mechanics problems, the existing FE method may still face several challenges in solving 35 

inverse problems (i.e., model updating for material parameters [2]) or design optimization problems (i.e., 36 

optimum design of engineering structures) because of notable computational costs. Engineers and 37 

researchers may adopt FE models of varying levels of sophistication for mechanical performance 38 

assessment and design of structures, which may pose prohibitive procedural and time demands in 39 

computational structural optimization. In FE simulation, the gradient information of output fields with 40 

respect to design parameters is hard, if not impossible, to obtain. Therefore, any optimization of complicated 41 

structures according to the traditional approach would typically adopt gradient-free algorithms (e.g., genetic 42 

algorithm), which require thousands of FE simulations posing much greater computational demands 43 

compared to gradient-based algorithms (e.g., gradient descent algorithm). The optimization of structures 44 

may include hundreds of design parameters and gradient-free optimization using FE software can be 45 

infeasible in practice. In addition, traditional FE software mostly relies on Central Processing Units (CPUs), 46 
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while the utilization of Graphical Processing Units (GPUs) is seldom considered in conventional FE 47 

software. A CPU contains a few cores with substantial cache memory to complete fewer computational 48 

threads in parallel. In contrast, a GPU is composed of thousands of cores to complete thousands of threads 49 

in parallel. Compared to CPUs, GPUs are designed to subdivide complex problems into thousands of 50 

separate tasks and compute them in parallel, making them ideal for machine learning (ML) tasks. In general, 51 

the FE models may face challenges for inverse problems, optimization problems, and full utilization of 52 

GPUs and GPU-based supercomputers. 53 

With the rapid development of artificial intelligence (AI) and GPU-based supercomputers, deep 54 

learning using deep neural networks (DNNs) has achieved success in many research fields, including but 55 

not limited to computer vision [3], natural language processing, self-driving cars, biological science [4], 56 

generative modeling [5], and recommendation systems. DNNs with trillions of trainable weights can be 57 

trained on state-of-the-art GPU-based supercomputers [5] and the infusing between AI and computational 58 

solid mechanics has been a heated research topic. Figure 1 shows the schematic plot of AI models from 59 

model-driven to data-driven algorithms for solid mechanics. As shown in Figure 1, the FE approach is 60 

model-driven and meets the governing equations. In comparison, conventional deep-learning methods 61 

including convolutional neural networks (CNN)[6], recurrent neural networks (RNN)[7], and Transformers 62 

[8] are data-driven. Physics-informed Neural Networks (PINNs) [9, 10] were proposed to solve forward 63 

problems and inverse problems of physics systems governed by partial differential equations (PDEs) by 64 

training neural networks on GPUs, which is similar to the FE model approach. In addition, Fourier Neural 65 

Operators (FNO) were also proposed to learn the mapping from the input field to the solution field based 66 

on big data generated by FE simulation with zero-shot super-resolution performance [11]. The development 67 

of PINN architecture is briefly reviewed below while a comprehensive literature review can be referred to 68 

Karniadakis et al. [1]. Based on the universal approximation theorem [12], E and Yu [13] proposed the 69 

Deep Ritz method for solving PDEs, including a fully-connected deep neural network with residual 70 

connections to serve as the trial function, and neural networks to obtain the total energy of the system based 71 
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on trial functions. The Deep Ritz method showed converged results for the Poisson equation in two 72 

dimensions and high dimension and transfer learning was also proposed and implemented. Raissi et al. [9] 73 

proposed PINNs to replicate the shape function and minimize the error of force equilibrium equations to 74 

simulate solid mechanics problems, including both forward and inverse problems. The PINNs proposed by 75 

Raissi et al. [9] include both continuous-time models and discrete-time models, and the objective function 76 

is to minimize the total error of force equilibrium equations. Haghighat et al. [14] proposed the PINN 77 

framework for surrogate modeling of solid mechanics including both a linear elasticity problem and a von 78 

Mises elastoplastic problem. The fully connected neural networks were used to input coordinates and 79 

predict the displacement field and stress field, and the loss function is formulated as the total error of 80 

governing equations of solid mechanics (i.e. strain compatibility equation, equilibrium equation, 81 

constitutive model, Dirichlet boundary conditions, and Neumann boundary conditions). The challenges of 82 

conventional PINN in simulation of solid mechanics problems may be categorized into (1) difficulty in 83 

exact imposition of boundary conditions; (2) lack of efficient architecture of neural networks to fit solid 84 

mechanics problems; (3) difficulty in optimum definition of loss function; (4) automated differentiation for 85 

gradient back-propagation may be inaccurate. Because of these challenges, current PINN architectures are 86 

mostly used when there are labeled data obtained from experimental study or FE analysis, while the 87 

successful training of PINN without labeled data are still very challenging. 88 

 89 
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Figure 1. From model-driven to data-driven algorithms for solid mechanics 90 

Note: EPINN is proposed and implemented in this study, while SPINN is proposed in Sect. 4.2. 91 

For the boundary condition of PINN, Rao et al. [15] summarized that the conventional PINN 92 

framework considered residual loss components as soft constraints with Lagrange multipliers, which may 93 

not exactly meet the boundary conditions and may notably reduce convergence speed. In response to this 94 

issue, Rao et al. [15] proposed a PINN architecture to exactly imposing boundary conditions. The “hard” 95 

boundary condition enforcement was achieved by training and infusing three single neural networks: the 96 

boundary condition network, the distance function network, and the general solution network. Sukumar and 97 

Srivastava [16] also proposed a novel approach to exactly imposing boundary conditions in PINN 98 

architecture based on constructive solid geometry through approximate distance function (ADF). Based on 99 

ADF, a reasonable trial function can be obtained for the Dirichlet boundary condition and the Neumann 100 

boundary condition. However, the imposition of exact Neumann boundary conditions in solid mechanics 101 

PINN requires the neural network to predict displacement and stress simultaneously, thereby increasing the 102 

number of trainable weights in PINN architecture, and is inconsistent with the FE method. Furthermore, 103 

this is difficult to extend to nonlinear solid mechanics problems. In the EPINN architecture proposed in this 104 

study, the Dirichlet boundary condition is satisfied exactly by multiplying the displacement trial function 105 

with ADF, while the Neuman boundary condition is achieved by optimizing the loss function through the 106 

principle of least work.  107 

For the architectures of PINN, the research community proposed many network architectures [17] to 108 

improve the performance of PINN, including but not limited to the Fourier Network [18], Modified Fourier 109 

Network [19], Highway Fourier Network [20], Multi-scale Fourier Feature Network [21], Spatial-temporal 110 

Fourier Feature Network [21], Sinusoidal Representation Networks [22], Deep Galerkin Method (DGM) 111 

architecture [23] and Multiplicative Filter Network [24], which have been implemented in Nvidia Modulus 112 

platform [25]. In these architectures, it may be hard to define the concept equivalent to the mesh size in the 113 

FE method, and the number of trainable weights may be notably higher than the Degree of freedom (DOF) 114 
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in FE methods upon convergence. In addition, because the loss function of PINN is typically a summation 115 

of the error of various governing equations with various units, it may be challenging to balance each term 116 

in the loss function. Various normalization methods to balance the gradient of each loss term was proposed, 117 

including SoftAdapt [26], Relative Loss Balancing with Random Lookback (ReLoBRaLo) [27], and 118 

GradNorm [28]. However, these methods cannot guarantee the convergence of solid mechanics problems 119 

and the physical meaning of these methods in PINN are not clear. Recently, the infusing between PINN 120 

architecture and the FE method was proposed to achieve efficient architecture and loss function which are 121 

consistent with the FE method. Saha et al. [29] and Zhang et al. [30] proposed Hierarchical Deep Learning 122 

Neural Network (HiDeNN), where the weights and bias of deep neural networks are implemented based on 123 

spatial discretization and element mesh of the FE approach. As proved by Saha et al. [29] and Zhang et al. 124 

[30], HiDeNN can exactly replicate the spatial discretization of the FE method. HiDeNN was developed to 125 

achieve the construction of DNNs in the same manner as the FE software, which takes in the nodal 126 

coordinates as input and produces a shape function in the form of DNN, whose weights are exactly derived 127 

from nodal positions. The number of trainable parameters can be reduced to the same as the number of 128 

DOFs in traditional FE software at the same mesh size. Recently, a reduced-order Hierarchical Deep 129 

learning Neural Network based on Tensor Decomposition (HiDeNN-TD) was also proposed [31], which 130 

infuses the HiDeNN with TD methods and achieved convergence for solid mechanics problems with high 131 

accuracy and notably lower trainable weights. The TD method and principle of least work are adopted in 132 

the EPINN framework. In PINN architecture, the gradient of the solution field with respect to coordinates 133 

and time is mostly obtained using back-propagation and automated differentiation of neural networks. 134 

However, the automated differentiation may obtain notably high gradient results at stress localization 135 

regions, which may reduce the speed of convergence for solid mechanics problems. In this study, the 136 

meshless finite difference (MFD) is adopted in EPINN framework for efficient simulation of solid 137 

mechanics problems. In general, EPINN is proposed in this study to solve solid mechanics problems even 138 

without the need of additional labeled data of the solution field from FE simulation or experimental study.  139 
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In this study, the following technical development in this study is summarized: 140 

(1) First proved the shape function of truss element can be reformulated by Convolutional neural 141 

networks.  142 

(2) Adopted tensor decomposition to further reduce the number of trainable weights in EPINN to be 143 

even lower than the DOF of finite element method at the same mesh size, thereby notably reducing the 144 

training cost and improving the convergence. 145 

(3) Developed efficient loss function following the total action of the mechanical system, which is 146 

explainable and avoids the problem in conventional PINN methods, there is no need to balance the loss 147 

terms of PDE loss, Dirichlet boundary loss, and Neumann boundary loss. 148 

(4) In the EPINN framework, there is no need to meet the Neumann boundary condition exactly, thereby 149 

notably reducing the difficulty in training PINNs. The Dirichlet boundary condition can be exactly met, 150 

which may avoid the influence of error from the Dirichlet boundary to influence the training process. 151 

2. MODEL ARCHITECTURE OF EPINN 152 

In this section, the model architecture of EPINN is illustrated in detail with a comparison to existing 153 

PINN models. Figure 2 shows the schematic plot of EPINN. As shown in Figure 2, EPINN formulates 154 

neural networks in each direction (x,y,z) to exactly replicate the shape function of linear or quadratic truss 155 

element (Sect. 2.1) and use tensor decomposition (TD) to construct the 2D or 3D displacement field. For 156 

the forward problem, all trainable parameters in the EPINN framework are nodal displacements in this 157 

spatial discretization layer (denoted in blue color in Figure 2). TD can build the solution field without the 158 

need of generating mesh conforming to the complicated structure (Sect. 2.2). The exact displacement 159 

boundary condition was implemented (Sect. 2.4) based on ADF (approximate distance function). The 160 

meshless finite difference (MFD) was adopted to calculate the gradient of the displacement field with 161 

respect to coordinates (i.e. updating strain field) efficiently (Sect. 2.5). For the linear elastic problem or 162 

hyperelastic problem, the stress field can be obtained from strain field directly. For nonlinear problems, 163 

pretrained deep learning constitutive models can be adopted to achieve stress updating, including but not 164 
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limited to Temporal Convolutional Network (TCN) [32], Long-Short Term Memory (LSTM), Gated 165 

Recurrent Unit (GRU) and Sequence to Sequence models (Seq2Seq) [33]. MFD was used to formulate the 166 

strain solution layer and calculate the total strain energy of the system. By minimizing the total energy of 167 

the system, the solution can be achieved. All the PINN models reported and compared in this study are 168 

implemented using the Nvidia Modulus platform (version 22.07) [25] using Intel Xeon Platinum 8368 CPU 169 

with Nvidia A100 40GB SXM GPU accelerators provided by Osaka University SQUID (Supercomputer 170 

for Quest to Unsolved Interdisciplinary Datascience). The Nvidia Modulus platform is an open-source 171 

platform developed based on PyTorch and Sympy and can be used for Nvidia GPU accelerators. Single 172 

precision was used for the training process of all PINN models in this study. 173 

 174 

Figure 2. Flowchart of EPINN framework for solving static solid mechanics problems based on the 175 

principle of least work (Note: TD denotes tensor decomposition, ADF denotes approximate distance 176 

function, MFD denotes meshless finite difference) 177 

2.1 Reformulating shape function of 1D truss element with neural networks 178 

For the 1D problem of solid mechanics, the shape function of truss element (linear or quadratic) can 179 

be exactly reformulated by a few layers of neural networks, where the weights and biases can be calculated 180 

based on node coordinates of 1D truss elements as proved by Zhang et al. [30]. EPINN framework adopted 181 
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this method for constructing the shape function in the 1D case with convolutional architecture (which is 182 

slightly different from the original architecture proposed by Zhang et al. [30]), while tensor decomposition 183 

can be used to construct the solution field of displacement in 2D and 3D solid mechanics problems. Figure 184 

3 shows the schematic plot of the shape function of the truss element reformulated by neural networks. As 185 

shown in Figure 3(a), the shape function of linear 1D truss element is formulated as follows: 186 
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(3) 

where uI denotes the nodal solution at node number I, NI(x) denotes the shape function at node number I, 187 

and xI-1, xI, and xI+1 are node coordinates. Relu denotes Rectified Linear Unit (ReLU) activation function. 188 

When the node coordinates are fixed, the only trainable weights are the nodal displacement uI.  189 

Figure 3 shows the assembly of the shape function in the 1D truss element. Zhang et al. [30] adopted 190 

MLP (multi-layer perception) in the HiDeNN model. In this study, it is found that the shape function of the 191 

1D truss element can be reformulated by convolutional neural networks (CNNs). Figure 3(a) shows the 192 

neural network architecture to exactly reformulate the shape function of linear truss elements adopting 193 

convolutional architecture. As shown in Figure 3(a), the input layer is the x coordinate at an arbitrary point 194 

in the solution domain and it is fed into a fully connected layer and two subsequent Conv1D (1D 195 

convolutional) layers. Subsequently, Layer No. 4 is a 1D average pooling layer with a stride of 2, kernel 196 

size of 2, and padding of 1, which will obtain shape function at various nodes based on Eq. (2). After that, 197 

a Conv1D layer is used to obtain the displacement field inside each element as per Eq. (3). Finally, the 198 
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element displacements are assembled to obtain the total displacement field of the truss structure. In this 199 

architecture, the only trainable parameter is the solution of displacement fields at nodes in Layer No. 5 in 200 

Figure 3(a), while all other layers have fixed weights and biases when the coordinates of mesh nodes are 201 

fixed. Therefore, the number of trainable parameters in EPINN can be notably reduced to the mesh number 202 

in the 1D case compared to conventional PINN models [17-24]. Figure 3(b) shows the neural network 203 

architecture to exactly reformulate the shape function of the quadratic truss element. Compared to the linear 204 

truss element, the quadratic truss element has an additional shape function at the internal node 2

I+1/2 ( )N x , 205 

which can be obtained by multiplication of the linear truss element shape function as follows: 206 
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As shown in Figure 3(b), the input layer is the x coordinate of the node and it is fed into a fully 207 

connected layer and two subsequent Conv1D layers. Subsequently, Layer No. 4 is a multiplication layer, 208 

where the linear shape function NI and NI+1 are multiplied to obtain the quadratic shape function at the 209 

interior point 2

I 1/2N 
 as shown in Eq. (4). Layer No. 5 is a 1D average pooling layer with a stride of 3, 210 

kernel size of 2, and padding of 1, which will obtain shape function at various nodes. After that, a Conv1D 211 

layer (Layer No. 6) is used to obtain the displacement field inside each element. All trainable weights are 212 

in Layer No. 6, which are equivalent to the nodal displacements in FE methods. Finally, the element 213 

displacements are assembled to the total displacement field of the truss structure. As shown in Figure 3(b), 214 

the shape function of the quadratic truss element can be obtained by multiplication of the linear shape 215 

function of the truss element, which can be achieved by the PyTorch and Nvidia Modulus platform [25] by 216 

multiplication of tensors to obtain the quadratic shape function of truss elements. Similarly, the shape 217 

function of higher-order truss elements (with an order higher than 2) can be formulated in terms of neural 218 

networks by multiplication of linear truss elements.  219 
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 220 

(a) Neural networks that exactly reformulate the shape function of linear truss elements221 

 222 
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(b) Neural networks that exactly reformulate the shape function of the quadratic truss element 223 

Figure 3. Shape function of truss element reformulated by neural networks  224 

(Note: orange font denotes fixed weights, blue font denotes fixed bias, red font denotes trainable weights, 225 

Relu denotes Rectified Linear Unit, blue box denotes neural networks to reformulate shape function inside 226 

the single element, linear denotes no activation function is used in this layer, Conv1D denotes one-227 

dimensional convolutional layer) 228 

2.2 Tensor decomposition for 2D and 3D problems 229 

For 2D and 3D static solid mechanics problems, Zhang et al. [31] proposed to use the tensor 230 

decomposition (TD) method in the PINN framework to further reduce the dimension of unknowns. Figure 231 

4 shows the schematic plot of TD represented in terms of neural networks. TD was also known as canonical 232 

tensor decomposition [34], which decomposes a tensor as a summation of rank-one tensors. For the 3D 233 

case, the governing equations of TD are formulated as the following equations: 234 
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where Q denotes the total number of modes (typically ranging from 10 to 100 in numerical study); n1, n2, 235 

and n3 denote the number of nodes in the x, y, and z directions, respectively. 
( )q

I , 
( )q

J  and 
( )q

K  denote 236 

the nodal displacement weights in the x, y, and z directions in mode number q.  237 
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 238 

Figure 4. Schematic plot of tensor decomposition formulated by neural networks 239 

There are two motivations for adopting TD in the EPINN framework. First, the number of trainable 240 

parameters for 3D solid mechanics problems can be reduced to Q×(n1+n2+n3), which may be notably lower 241 

than the number of DOFs in FE methods (i.e., n1×n2×n3). Second, TD is efficient for the simulation of 242 

complicated shapes in solid mechanics, where the mesh conforming to the shape of the complicated solid 243 

body is not needed. TD can be used to generate the solution field of the box containing the simulation 244 

region, which notably reduces the difficulty in model generation.  245 

2.3 Principle of least work for the loss function  246 

Consider the solid mechanics problems where the labeled data of the solution field are unavailable (i.e. 247 

forward problem), the basic objective in the conventional PINN approach was to minimize the total loss as 248 

a sum of boundary loss and the PDE loss as follows (2D plane stress case was illustrated here for simplicity) 249 

as shown below. For conventional PINNs, the loss function based on weighted residuals is given as follows:  250 
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where ∂ΩD is the Dirichlet boundary condition (i.e. displacement boundary) of domain Ω, ∂ΩN is the 251 

Neumann boundary (i.e. force boundary) of domain Ω, *

xu  and 
*

yu  are the displacement components in 252 

x and y direction at displacement boundary condition, *  and 
*

xy  are the normal stress and shear stress 253 

at the force boundary, λ and μ are Lame first and Lame second parameters of elastic material, and λ1, λ2, and 254 

λ3 are three coefficients (similar to the Lagrange multiplier in FE methods) to balance the loss term with 255 

different units. 256 

The major issues of conventional PINN loss function in Eq. (9) are as follows. First, the loss function 257 

consists of a constitutive equation, compatibility equation, and boundary loss, which have different units 258 

and needs to be scaled by coefficients λ1, λ2, and λ3 to formulate a reasonable loss function. Although the 259 

coefficients λ1, λ2, and λ3 can be updated based on loss balancing approaches such as SoftAdapt [26], 260 

ReLoBRaLo [27], and GradNorm [28], there is a lack of physical meaning for the coefficients λ1, λ2 and λ3 261 

in conventional loss balancing approaches [26-28], and the training process involving loss balancing 262 

approaches may slow down the convergence of the PINN. Second, because the PDE of static solid 263 

mechanics problems are elliptical PDE, the error of boundary condition will propagate to the whole solution 264 

field at infinite speed. Therefore, the existence of a boundary condition error may notably hinder the 265 

convergence of PINN in solving static solid mechanics problems. Although some approaches were 266 

proposed to generate a solution field to meet the Dirichlet boundary condition and Neumann boundary 267 

condition simultaneously [15], it requires the PINN to predict the displacement field and stress field 268 
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simultaneously, which may increase the number of trainable parameters and may be difficult to extend to 269 

nonlinear constitutive models [32, 33].  270 

In this study, the principle of least work is selected as the loss function for static solid mechanics 271 

problems, and the loss function is formulated as follows: 272 
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where u is the displacement field,   and   are the stress and strain tensors, respectively, f is the body 273 

force and t  is the external traction applied to the force boundary. ADF denotes the Approximate Distance 274 

Function from any point to the Dirichlet boundary of the simulation region [16], p is a positive real number 275 

and is fixed as 1.0 in this study. TDu  is the trial displacement field constructed following Eq. (5) in Sect. 276 

2.2, and 
D

*

u Ω denotes the displacement field at the Dirichlet boundary condition.  277 

EPINN adopts the loss function as the total energy of the system. Based on the principle of least work, 278 

EPINN can efficiently solve solid mechanics problems by minimizing the total work of the system. The 279 

exact displacement boundary condition was required by the principle of least work. The Dirichlet boundary 280 

condition is satisfied throughout the training process by introducing Eq. (11), and the Neumann boundary 281 

condition and force equilibrium equations can be satisfied after the training process converges. Compared 282 

to the Deep Ritz method [13], HiDeNN [29, 30], and HiDeNN-TD [31], the exact Dirichlet boundary 283 

condition is enforced in the EPINN framework, which conforms to the requirement of the principle of least 284 

work. In addition, when calculating the numerical integration, the number and coordinates of integration 285 

points may differ from the mesh size. It is recommended that the number of integration points should exceed 286 

the number of mesh size in the EPINN framework to evaluate the integration result efficiently. 287 

2.4 Exact Dirichlet boundary condition 288 

The exact Dirichlet boundary condition is achieved by implementing the following ADF, which was 289 
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proposed [16] as an alternative to the signed distance function (SDF). ADF is 0 on the Dirichlet boundaries 290 

and the first-order derivative along the normal direction of the boundary equals 1. For complicated 291 

boundary shapes consisting of various surfaces, it may be too hard to compute the derivative of SDF with 292 

respect to coordinates and the derivative may be stiff, which may hinder the convergence of PINN. In 293 

comparison, ADF is a second-order smooth function with respect to the coordinate, which is favorable for 294 

the stochastic gradient descent method to minimize the loss function in Eq. (10). When there are multiple 295 

Dirichlet boundaries, the following equation is used to obtain the ADF of the whole system to achieve an 296 

exact Dirichlet boundary condition. This approach ensures the displacement field is exactly met on the 297 

Dirichlet boundary. 298 
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where ϕi denotes the approximate distance from the point (x,y,z) to boundary number i. On the displacement 299 

boundary, ϕ=0. m is a positive number and is selected as 2.0 in this study.  300 

2.5 Meshless finite difference for efficient gradient information 301 

Conventional PINN architecture mostly adopts automated differentiation to obtain the gradient of 302 

displacement with respect to coordinates to formulate the strain field. However, the strain localization in 303 

some solid mechanics problems may induce notably high gradient information and may hinder the 304 

convergence of conventional PINN models. Recently, meshless finite differentiation (MFD) was developed 305 

in the Nvidia Modulus platform (v22.07) [25] and numerical examples show that MFD can achieve a 306 

speedup of more than 50% based on conventional PINN architecture [25] on typical mechanics problems. 307 

EPINN implemented MFD in the framework as an alternative to automated differentiation. The motivations 308 

are summarized below. First, in solid mechanics problems, the stress localization effect may occur, while 309 

automated differentiation might induce notably high derivatives in the PINN framework, while MFD may 310 

mitigate the influence of stress localization by pre-definition of increments in each direction. Second, 311 

because the shape function of the 1D truss element requires the mesh size to be input as a parameter, EPINN 312 
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has the concept of mesh size in each direction, which is notably different from conventional PINN models 313 

without an explicit definition of the mesh size. Therefore, when MFD is adopted, the spatial increment of 314 

MFD is selected to be equal to the smallest mesh size in three directions in this study. 315 

2.6 Comparison between EPINN with existing PINN architecture 316 

The advantages of the EPINN model compared to the recurrent networks may be summarized as: 317 

(1) Improved training speed due to reduced number of trainable weights: In conventional PINN 318 

architecture, the number of trainable weights required to converge may be very high (exceeding 1 million 319 

trainable weights for many problems), which may notably hinder the solution of solid mechanics problems. 320 

In EPINN, based on tensor decomposition and shape function of the truss element, the number of trainable 321 

weights can be notably reduced and training speeds are notably reduced accordingly. 322 

(2) Extension to nonlinear problems: The EPINN model resembles the FE approach because only 323 

the displacement field is obtained from neural networks, while the strain fields are obtained from MFD of 324 

the displacement field, and the stress field is the output of the strain field. Because deep-learning-based 325 

constitutive models [32] are rapidly developing, the pre-trained deep-learning-based constitutive models 326 

[32] can be infused into EPINN architecture to achieve nonlinear simulation of solid mechanics problems. 327 

3. Performance of EPINN Framework for Solid Mechanics  328 

In this section, three typical cases are illustrated for solving a 1D truss problem, a 2D plane stress 329 

problem, and a 3D solid mechanics problem for the application of EPINN without the need for labeled data 330 

(which is the case for the forward problem). This study successfully implemented EPINN with Nvidia 331 

Modulus [25] deep-learning platform, which is open-source deep-learning software installed on the Osaka 332 

University supercomputer SQUID. All models are trained using Intel Xeon Platinum 8368 CPU with a 333 

single Nvidia A100 40GB SXM GPU accelerator at Osaka University SQUID (Supercomputer for Quest 334 

to Unsolved Interdisciplinary Datascience). The reference PINN architecture adopted a fully-connected 335 

neural network with 6 layers and a hidden layer size of 512 is used without skip connections. For PINN in 336 
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the reference group, the loss function adopts the conventional PINN approach. The initial learning rate is 337 

0.01 and the training precision was completed on TF32 precision [17] for both EPINN and PINN 338 

approaches. The reference FE simulation results in Sect. 3.2 and Sect. 3.3 was obtained using a single Intel 339 

i7-10870H CPU using the double precision FE solver without GPU acceleration. 340 

3.1 One-dimensional truss under complicated body force 341 

Consider a 1D elastic truss problem reported by Zhang et al. [30] with an elastic modulus of 175, area 342 

of 1, and length of 10 under complicated body force b(x) and fixed at both ends as shown in Figure 5(a): 343 
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The theoretical solution to this 1D problem is derived by Zhang et al. [30] as follows: 344 
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For PINN architecture, maximum training steps are selected as 2,000,000 steps, and the learning rate 345 

decays at a decay rate of 0.95 for every 1,500 steps. For EPINN architecture, the maximum number of 346 

training steps is selected as 50,000 steps, and the learning rate decays at a decay rate of 0.95 for every 500 347 

steps. The mesh size was selected as 0.1 and the total number of mesh is 100 for EPINN. The shape function 348 

of the quadratic truss element was adopted in EPINN. The comparison of the learning curve (i.e., relative 349 

L2 error between theoretical solution and PINN solution) is shown in Figure 5(b). Based on training results, 350 

the EPINN achieved convergence after 427 seconds of training with a displacement relative L2 error of 6e-351 

3, while conventional PINN with fully-connected architecture requires a significant training time of 5957 352 

seconds to reach a displacement relative L2 error of 0.161. Therefore, EPINN achieved a speedup of more 353 

than 13 times compared to conventional PINN for this truss problem. Figure 5(c-g) further compares the 354 

simulation results of the axial displacement field obtained from PINN and EPINN. Conventional PINN 355 

may observe a boundary condition error with non-zero displacement at both ends, while the EPINN result 356 

did not show this issue due to the exact Dirichlet boundary condition in the EPINN framework. Figure 5(h-357 
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j) compares the stress field predicted by EPINN, which also converged with a slightly larger relative error 358 

compared to the displacement field. Based on the comparison in Figure 5, EPINN achieved an efficient 359 

solution of a 1D truss under complicated body force. 360 

 361 

 362 
Figure 5. Comparison of EPINN and PINN for simulating 1D truss problem 363 

3.2 Plane stress panel under eccentric tension 364 



 

20 

Rao et al. [15] reported a benchmark FE model and PINN architecture for the plane-stress panel. Figure 365 

6(a) shows the FE simulation results using ABAQUS software as well as the boundary conditions. The 366 

panel is elastic material with an elastic modulus of 10 and a Poisson ratio of 0.2. The panel length and 367 

height are both 1.0 and the bottom line was fixed. The left half of the top surface was subject to vertical 368 

tension displacement uy of 0.1 while the horizontal displacement uy is 0. All other lines are stress-free. 369 

ABAQUS implicit solver was used to obtain the solution at 160,000 reduced-integration plane stress 370 

elements at a mesh size of 1/400 and the large displacement option was turned on. For conventional PINN 371 

with a fully connected network, maximum training steps are selected as 20,000 steps and the learning rate 372 

is decreasing by a decay rate of 0.95 for every 2,000 steps. For EPINN architecture, the maximum training 373 

steps are selected as 30,000 steps and the learning rate is decreasing by a decay rate of 0.95 for every 500 374 

steps. EPINN in this section adopts a mesh size of 1/50, mode number Q of 10 for tensor decomposition, 375 

and first-order shape function of the truss element. Figure 6(b) shows the time history L2 relative error of 376 

displacement ux field from PINN and EPINN models compared to ABAQUS output. The ABAQUS solver 377 

converged after 265 seconds of simulation time (using a single Intel i7-10870H CPU). In comparison, the 378 

EPINN solution also converged to ABAQUS simulation results after a training time of 253s (using a single 379 

Nvidia A100 GPU accelerator), which is even faster than the ABAQUS model. In comparison, conventional 380 

PINN architecture did not converge after 5957s of training. Figure 6(c-e) shows the comparison between 381 

EPINN training results and FE simulation outcome of the displacement ux field. Figure 6(f-h) shows the 382 

comparison between EPINN training results and FE simulation outcome of the displacement uy field. Based 383 

on the comparison, the EPINN model with the mesh size of 1/50 well captures the displacement field of FE 384 

simulation, which was obtained at a finer mesh size of 1/400. Therefore, the applicability and accuracy of 385 

EPINN for 2D plane stress cases are examined based on this case study. 386 
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 387 

Figure 6. Comparison of EPINN and PINN for simulating plane stress panel 388 

3.3 Three-dimensional bracket 389 

In this section, a three-dimensional problem is illustrated to show the performance of EPINN in solid 390 

mechanics. Figure 7(a) shows the schematic plot of the bracket. The bracket has the back face fixed and the 391 

shear stress is applied to the front surface in the negative z direction. The traction force induces shear stress 392 

of 0.4 MPa and the rest of the bracket was stress-free boundaries. The height, weight, and length of the 393 

bracket are equal to 1.0 m. The elastic modulus is 100GPa and the Poisson ratio is 0.3. Figure 7(b) shows 394 

the finite element mesh in MATLAB using quadratic tetrahedral elements with a mesh size of 0.003. A 395 
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total of 1,157,983 nodes are generated in the MATLAB FE model, and the linear solution of this reference 396 

FE model costs a total of 1140s on CPU. For conventional PINN with a fully connected network (6 layers, 397 

512 neurons each layer, no skip connection), maximum training steps are selected as 2,000,000 steps and 398 

the learning rate is reduced by a decay rate of 0.95 every 15,000 steps. For EPINN architecture, the 399 

maximum training steps are selected as 10,000 steps and the initial learning rate is set as 0.001. A total of 400 

25 meshes are used for each direction (i.e. mesh size of 0.04) and the number of modes is set to 20 for 401 

EPINN. The shape function of the linear truss element was used for EPINN. Figure 7(c-e) shows the relative 402 

L2 error of displacement components of PINN and EPINN compared to MATLAB FE results. As shown 403 

in Figure 7(c-e), EPINN rapidly converges to the MATLAB FE model within 685s. In comparison, 404 

conventional PINN with fully-connected architecture converged to a similar level of accuracy after 87052s 405 

of training. Therefore, EPINN achieved a speedup of 127 times compared to conventional PINN in this 3D 406 

solid example. 407 

 408 

Figure 7. Comparison of EPINN and PINN for simulating 3D bracket under uniform force boundary 409 
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 Figure 8 shows the comparison of displacement simulation outcomes on the 3D point cloud. Figure 410 

8(a-c) shows the EPINN simulation results of the displacement field in the x, y, and z directions. Figure 411 

8(d-e) shows the FE analysis results. Figure 8(f-h) shows the relative error defined as EPINN simulation 412 

results minus the FE analysis results. As shown in Figure 8, EPINN well captured the simulation results of 413 

FE results even with the mesh size of 0.04. In this study, EPINN trained on Nvidia A100 GPU achieved 414 

faster convergence compared to FE analysis and achieved more than 100 times speedup compared to the 415 

conventional PINN method. In general, EPINN rapidly converges to the solution field of FE simulation 416 

results with similar computational time for the forward problem. Compared to FE analysis, the gradient of 417 

the solution field with respect to input parameters can be obtained in real-time, which is favorable for 418 

inverse problems and design problems. 419 

 420 

Figure 8. Comparison of EPINN and PINN for simulating 3D bracket under uniform force boundary (in 421 
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units of mm) 422 

4. DISCUSSION AND EXTENSIONS 423 

4.1 Extension to nonlinear mechanical systems 424 

The principle of least work is adopted in EPINN for solving static solid mechanics problems. For 425 

dynamic problems, EPINN can also be further extended to solve the nonlinear static analysis and nonlinear 426 

dynamic analysis problems with efficient access to gradient information. In dynamic analysis, FE software 427 

based on implicit solvers generally adopts the implicit Newmark-β method with second-order accuracy, 428 

while high-order (typically fourth-order) implicit Runge-Kutta methods are also adopted in some FE 429 

software. Figure 9(a) shows the proposed EPINN to reformulate the implicit Newmark-β method with 430 

second-order accuracy. The input layer contains the initial boundary condition, and the trainable parameters 431 

are displacement vectors {U2} to be solved in Step 2. The input layer and {U2} will be fed to neural networks 432 

to obtain the acceleration {A2} and velocity {V2}. The weights of the neural network will be derived from 433 

the Newmark-β method. Subsequently, the internal force {R2} will be updated based on {U2} based on the 434 

EPINN framework. Because this step is a static problem, it can be solved by training EPINN. The loss 435 

function is formulated as the total error of the force equilibrium equation, which will be minimized to solve 436 

displacement {U2}. Figure 9(b) shows the proposed EPINN architecture to reformulate the alternative high-437 

order implicit Runge-Kutta method with arbitrary q stages [9], which can increase stable time increments 438 

and exploit the parallel computing capability of GPUs by parallel internal force updating at q stages. The 439 

trainable parameters are displacement and velocity at q stages. The internal force vectors at q stages will be 440 

updated based on displacement vectors in parallel using GPUs. The loss function will be formulated 441 

following the implicit Runge-Kutta method [35] and the optimization function can be used to solve the 442 

displacement and velocity at q stages. Finally, the implicit Runge-Kutta method will infer the displacement 443 

{U2} and velocity {V2} at the end of the multi-stage step. For both methods, the gradient of output fields 444 

with respect to major input parameters (such as dimensions of components or external loads) can be 445 

obtained using the automated backpropagation of the neural network efficiently.  446 
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 447 

(a) EPINN to reformulate implicit Newmark-β method 448 

 449 
(b) EPINN to reformulate implicit Runge-Kutta method with q stages 450 

Figure 9. Proposed EPINN architecture to reformulate implicit time integration methods for dynamic 451 

analysis 452 

In addition, causal training [37] has also been proposed in the PINN research field. Causal training is 453 

another method to ensure the continuous-time PINN models obey causality. This method discretized the 454 

time domain and defined the temporal residual loss. The temporal residual loss ensures the training process 455 

will first train the PINN for initial short time period, and the training of future time will only start upon 456 

convergence of previous time steps. Therefore, the future development includes extending EPINN to 457 
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include the causal training technique to extend to nonlinear problems. 458 

4.2 Extension to Super-resolution EPINN (SPINN) 459 

In the computational mechanics research field, the super-resolution networks [8, 36] were also rapidly 460 

adopted in turbulence super-resolution. In addition, the Fourier Neural Operator (FNO) also achieves zero-461 

shot super-resolution performance [11]. This study proposes to infuse EPINN with a super-resolution 462 

network to achieve high-fidelity PINN with an acceptable computational cost. The motivation is that 463 

EPINN has a mesh size of x, y, and z direction. The mesh size needs to be fixed before training. After 464 

training is complete, when finer results of the solution field are needed, a super-resolution network can be 465 

adopted based on the following steps:  466 

(1) Develop solid mechanics datasets including FE analysis data, test data, and EPINN simulation data. 467 

(2) Pre-train super-resolution networks [8, 36] based on solid mechanics dataset. 468 

(3) For specific solid mechanics problems, use EPINN to solve solid mechanics problems with low-469 

resolution grid size. 470 

(4) Based on the solution of EPINN at a low-resolution grid, use a pre-trained super-resolution network to 471 

infer a high-resolution solution field. 472 

5. CONCLUSIONS 473 

To achieve efficient simulation of solid mechanics problems with reduced computational cost, the 474 

EPINN framework is proposed in this study, which adopts the exact Dirichlet boundary condition and 475 

principle of least work for the simulation of solid mechanics problems. There is no requirement for 476 

additional labeled data of the solution field and notably reduces the training cost compared to recurrent 477 

networks. Even when no labeled data of the solution field are input, the EPINN architecture can directly 478 

solve the solid mechanics problems by minimizing the PDE loss. The future extensions of the EPINN model 479 

into nonlinear dynamic simulation and super-resolution networks are also discussed. (5) Because EPINN 480 

is a special version of PINN, it can be extended to parametric simulation, structural health monitoring 481 
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problems, and design optimization problems with higher flexibility compared to conventional finite element 482 

methods. The major conclusions are summarized as follows: 483 

(1) The EPINN framework adopts the principle of least work and exactly meets the Dirichlet boundary 484 

condition throughout the training process, while the Neumann boundary condition and governing equations 485 

(PDEs) are met when the training converges. Based on the shape function of the 1D truss element and tensor 486 

decomposition theory, the number of trainable weights can be reduced notably compared to conventional 487 

PINN architecture. The number of trainable weights can be even smaller than the DOFs in the FE method 488 

at the same spatial resolution. 489 

(2) For the 1D truss problem, EPINN achieved a speedup of 13 times compared to conventional PINN 490 

architecture adopting a fully connected neural network in the case study with notably reduced error. 491 

(3) For the 2D plane stress problem, EPINN rapidly converged to ABAQUS FE simulation results with 492 

a similar solution time compared to ABAQUS implicit solver while conventional PINN did not converge 493 

for the same problem.  494 

(4) For the 3D plane stress problem, EPINN efficiently converged to FE simulation results with lower 495 

training time than the FE solver. EPINN achieved a speedup of 127 times compared to the conventional 496 

PINN model with a reasonable level of accuracy.  497 
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