

Exact Dirichlet Boundary Physics-informed Neural Network EPINN for Solid Mechanics

Jiaji Wang¹, Y.L. Mo², Bassam Izzuddin³, Chul-Woo Kim^{*,4}

4 **Abstract:** Physics-informed neural networks (PINNs) have been rapidly developed for solving partial
5 differential equations. The Exact Dirichlet boundary condition Physics-informed Neural Network (EPINN)
6 is proposed to achieve efficient simulation of solid mechanics problems based on the principle of least work
7 with notably reduced training time. There are five major building features in the EPINN framework. First,
8 for the 1D solid mechanics problem, the neural networks are formulated to exactly replicate the shape
9 function of linear or quadratic truss elements. Second, for 2D and 3D problems, the tensor decomposition
10 was adopted to build the solution field without the need of generating the finite element mesh of
11 complicated structures to reduce the number of trainable weights in the PINN framework. Third, the
12 principle of least work was adopted to formulate the loss function. Fourth, the exact Dirichlet boundary
13 condition (i.e., displacement boundary condition) was implemented. Finally, the meshless finite difference
14 (MFD) was adopted to calculate gradient information efficiently. By minimizing the total energy of the
15 system, the loss function is selected to be the same as the total work of the system, which is the total strain
16 energy minus the external work done on the Neumann boundary conditions (i.e., force boundary conditions).
17 The exact Dirichlet boundary condition was implemented as a hard constraint compared to the soft
18 constraint (i.e., added as additional terms in the loss function), which exactly meets the requirement of the
19 principle of least work. The EPINN framework is implemented in the Nvidia Modulus platform and GPU-
20 based supercomputer and has achieved notably reduced training time compared to the conventional PINN
21 framework for solid mechanics problems. Typical numerical examples are presented. The convergence of

¹ Ph.D., Assistant professor, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China. Email: cewang@hku.hk

2 Ph.D., John and Rebecca Moores Professor, Department of Civil and Environmental Engineering, University of Houston, US.
Email: yilungmo@central.uh.edu

3 Ph.D., Professor, Department of Civil and Environmental Engineering, Imperial College London, London, UK. Email: b.izzuddin@imperial.ac.uk

4 Ph.D., Professor, Corresponding author, Department of Civil and Earth Resources Engineering, Kyoto University, Japan. Email: kim.chulwoo.5u@kyoto-u.ac.jp

22 EPINN is reported and the training time of EPINN is compared to conventional PINN architecture and
23 finite element solvers. Compared to conventional PINN architecture, EPINN achieved a speedup of more
24 than 13 times for 1D problems and more than 126 times for 3D problems. The simulation results show that
25 EPINN can even reach the convergence speed of finite element software. In addition, the prospective
26 implementations of the proposed EPINN framework in solid mechanics are proposed, including nonlinear
27 time-dependent simulation and super-resolution network.

28 **KEYWORDS:** Physics-informed neural network (PINN); Exact Dirichlet boundary PINN (EPINN);
29 Principle of least work; Solid mechanics; Finite element; Tensor decomposition; Meshless finite difference
30 (MFD); Nvidia Modulus

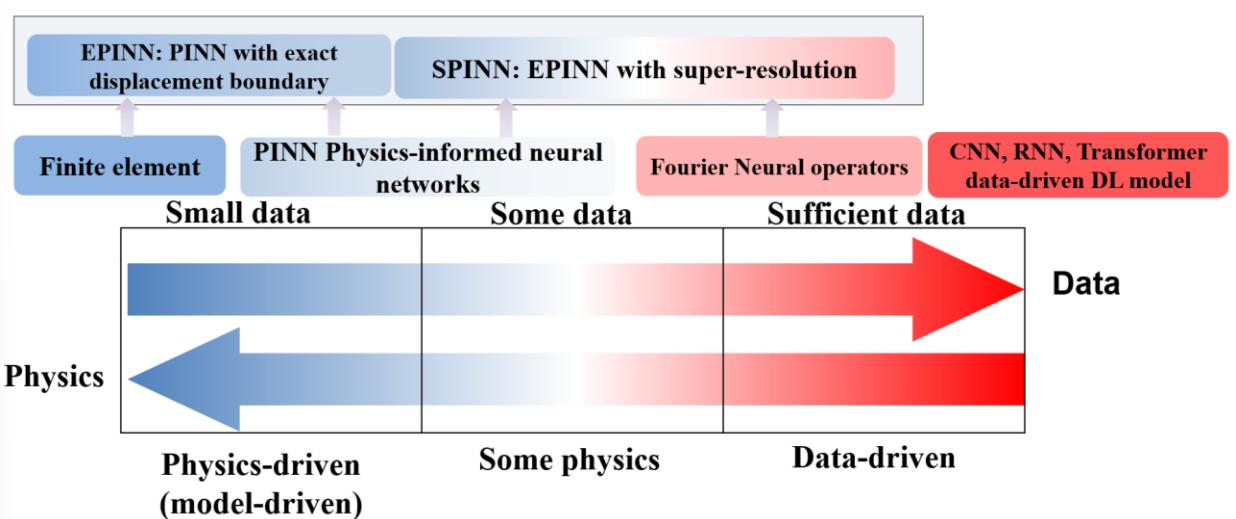
31 **1. INTRODUCTION**

32 Over the past 50 years, there has been substantial development in simulating solid mechanics problems
33 by solving the governing equations of partial differential equations (PDEs) using the finite element (FE)
34 method [1]. Although significant progress has been achieved in the FE method for the forward problems of
35 simulation in solid mechanics problems, the existing FE method may still face several challenges in solving
36 inverse problems (i.e., model updating for material parameters [2]) or design optimization problems (i.e.,
37 optimum design of engineering structures) because of notable computational costs. Engineers and
38 researchers may adopt FE models of varying levels of sophistication for mechanical performance
39 assessment and design of structures, which may pose prohibitive procedural and time demands in
40 computational structural optimization. In FE simulation, the gradient information of output fields with
41 respect to design parameters is hard, if not impossible, to obtain. Therefore, any optimization of complicated
42 structures according to the traditional approach would typically adopt gradient-free algorithms (e.g., genetic
43 algorithm), which require thousands of FE simulations posing much greater computational demands
44 compared to gradient-based algorithms (e.g., gradient descent algorithm). The optimization of structures
45 may include hundreds of design parameters and gradient-free optimization using FE software can be
46 infeasible in practice. In addition, traditional FE software mostly relies on Central Processing Units (CPUs),

47 while the utilization of Graphical Processing Units (GPUs) is seldom considered in conventional FE
48 software. A CPU contains a few cores with substantial cache memory to complete fewer computational
49 threads in parallel. In contrast, a GPU is composed of thousands of cores to complete thousands of threads
50 in parallel. Compared to CPUs, GPUs are designed to subdivide complex problems into thousands of
51 separate tasks and compute them in parallel, making them ideal for machine learning (ML) tasks. In general,
52 the FE models may face challenges for inverse problems, optimization problems, and full utilization of
53 GPUs and GPU-based supercomputers.

54 With the rapid development of artificial intelligence (AI) and GPU-based supercomputers, deep
55 learning using deep neural networks (DNNs) has achieved success in many research fields, including but
56 not limited to computer vision [3], natural language processing, self-driving cars, biological science [4],
57 generative modeling [5], and recommendation systems. DNNs with trillions of trainable weights can be
58 trained on state-of-the-art GPU-based supercomputers [5] and the infusing between AI and computational
59 solid mechanics has been a heated research topic. Figure 1 shows the schematic plot of AI models from
60 model-driven to data-driven algorithms for solid mechanics. As shown in Figure 1, the FE approach is
61 model-driven and meets the governing equations. In comparison, conventional deep-learning methods
62 including convolutional neural networks (CNN)[6], recurrent neural networks (RNN)[7], and Transformers
63 [8] are data-driven. Physics-informed Neural Networks (PINNs) [9, 10] were proposed to solve forward
64 problems and inverse problems of physics systems governed by partial differential equations (PDEs) by
65 training neural networks on GPUs, which is similar to the FE model approach. In addition, Fourier Neural
66 Operators (FNO) were also proposed to learn the mapping from the input field to the solution field based
67 on big data generated by FE simulation with zero-shot super-resolution performance [11]. The development
68 of PINN architecture is briefly reviewed below while a comprehensive literature review can be referred to
69 Karniadakis et al. [1]. Based on the universal approximation theorem [12], E and Yu [13] proposed the
70 Deep Ritz method for solving PDEs, including a fully-connected deep neural network with residual
71 connections to serve as the trial function, and neural networks to obtain the total energy of the system based

72 on trial functions. The Deep Ritz method showed converged results for the Poisson equation in two
 73 dimensions and high dimension and transfer learning was also proposed and implemented. Raissi et al. [9]
 74 proposed PINNs to replicate the shape function and minimize the error of force equilibrium equations to
 75 simulate solid mechanics problems, including both forward and inverse problems. The PINNs proposed by
 76 Raissi et al. [9] include both continuous-time models and discrete-time models, and the objective function
 77 is to minimize the total error of force equilibrium equations. Haghigat et al. [14] proposed the PINN
 78 framework for surrogate modeling of solid mechanics including both a linear elasticity problem and a von
 79 Mises elastoplastic problem. The fully connected neural networks were used to input coordinates and
 80 predict the displacement field and stress field, and the loss function is formulated as the total error of
 81 governing equations of solid mechanics (i.e. strain compatibility equation, equilibrium equation,
 82 constitutive model, Dirichlet boundary conditions, and Neumann boundary conditions). The challenges of
 83 conventional PINN in simulation of solid mechanics problems may be categorized into (1) difficulty in
 84 exact imposition of boundary conditions; (2) lack of efficient architecture of neural networks to fit solid
 85 mechanics problems; (3) difficulty in optimum definition of loss function; (4) automated differentiation for
 86 gradient back-propagation may be inaccurate. Because of these challenges, current PINN architectures are
 87 mostly used when there are labeled data obtained from experimental study or FE analysis, while the
 88 successful training of PINN without labeled data are still very challenging.



90 Figure 1. From model-driven to data-driven algorithms for solid mechanics

91 Note: EPINN is proposed and implemented in this study, while SPINN is proposed in Sect. 4.2.

92 For the boundary condition of PINN, Rao et al. [15] summarized that the conventional PINN
93 framework considered residual loss components as soft constraints with Lagrange multipliers, which may
94 not exactly meet the boundary conditions and may notably reduce convergence speed. In response to this
95 issue, Rao et al. [15] proposed a PINN architecture to exactly imposing boundary conditions. The “hard”
96 boundary condition enforcement was achieved by training and infusing three single neural networks: the
97 boundary condition network, the distance function network, and the general solution network. Sukumar and
98 Srivastava [16] also proposed a novel approach to exactly imposing boundary conditions in PINN
99 architecture based on constructive solid geometry through approximate distance function (ADF). Based on
100 ADF, a reasonable trial function can be obtained for the Dirichlet boundary condition and the Neumann
101 boundary condition. However, the imposition of exact Neumann boundary conditions in solid mechanics
102 PINN requires the neural network to predict displacement and stress simultaneously, thereby increasing the
103 number of trainable weights in PINN architecture, and is inconsistent with the FE method. Furthermore,
104 this is difficult to extend to nonlinear solid mechanics problems. In the EPINN architecture proposed in this
105 study, the Dirichlet boundary condition is satisfied exactly by multiplying the displacement trial function
106 with ADF, while the Neuman boundary condition is achieved by optimizing the loss function through the
107 principle of least work.

108 For the architectures of PINN, the research community proposed many network architectures [17] to
109 improve the performance of PINN, including but not limited to the Fourier Network [18], Modified Fourier
110 Network [19], Highway Fourier Network [20], Multi-scale Fourier Feature Network [21], Spatial-temporal
111 Fourier Feature Network [21], Sinusoidal Representation Networks [22], Deep Galerkin Method (DGM)
112 architecture [23] and Multiplicative Filter Network [24], which have been implemented in Nvidia Modulus
113 platform [25]. In these architectures, it may be hard to define the concept equivalent to the mesh size in the
114 FE method, and the number of trainable weights may be notably higher than the Degree of freedom (DOF)

115 in FE methods upon convergence. In addition, because the loss function of PINN is typically a summation
116 of the error of various governing equations with various units, it may be challenging to balance each term
117 in the loss function. Various normalization methods to balance the gradient of each loss term was proposed,
118 including SoftAdapt [26], Relative Loss Balancing with Random Lookback (ReLoBRaLo) [27], and
119 GradNorm [28]. However, these methods cannot guarantee the convergence of solid mechanics problems
120 and the physical meaning of these methods in PINN are not clear. Recently, the infusing between PINN
121 architecture and the FE method was proposed to achieve efficient architecture and loss function which are
122 consistent with the FE method. Saha et al. [29] and Zhang et al. [30] proposed Hierarchical Deep Learning
123 Neural Network (HiDeNN), where the weights and bias of deep neural networks are implemented based on
124 spatial discretization and element mesh of the FE approach. As proved by Saha et al. [29] and Zhang et al.
125 [30], HiDeNN can exactly replicate the spatial discretization of the FE method. HiDeNN was developed to
126 achieve the construction of DNNs in the same manner as the FE software, which takes in the nodal
127 coordinates as input and produces a shape function in the form of DNN, whose weights are exactly derived
128 from nodal positions. The number of trainable parameters can be reduced to the same as the number of
129 DOFs in traditional FE software at the same mesh size. Recently, a reduced-order Hierarchical Deep
130 learning Neural Network based on Tensor Decomposition (HiDeNN-TD) was also proposed [31], which
131 infuses the HiDeNN with TD methods and achieved convergence for solid mechanics problems with high
132 accuracy and notably lower trainable weights. The TD method and principle of least work are adopted in
133 the EPINN framework. In PINN architecture, the gradient of the solution field with respect to coordinates
134 and time is mostly obtained using back-propagation and automated differentiation of neural networks.
135 However, the automated differentiation may obtain notably high gradient results at stress localization
136 regions, which may reduce the speed of convergence for solid mechanics problems. In this study, the
137 meshless finite difference (MFD) is adopted in EPINN framework for efficient simulation of solid
138 mechanics problems. In general, EPINN is proposed in this study to solve solid mechanics problems even
139 without the need of additional labeled data of the solution field from FE simulation or experimental study.

140 In this study, the following technical development in this study is summarized:

141 (1) First proved the shape function of truss element can be reformulated by Convolutional neural
142 networks.

143 (2) Adopted tensor decomposition to further reduce the number of trainable weights in EPINN to be
144 even lower than the DOF of finite element method at the same mesh size, thereby notably reducing the
145 training cost and improving the convergence.

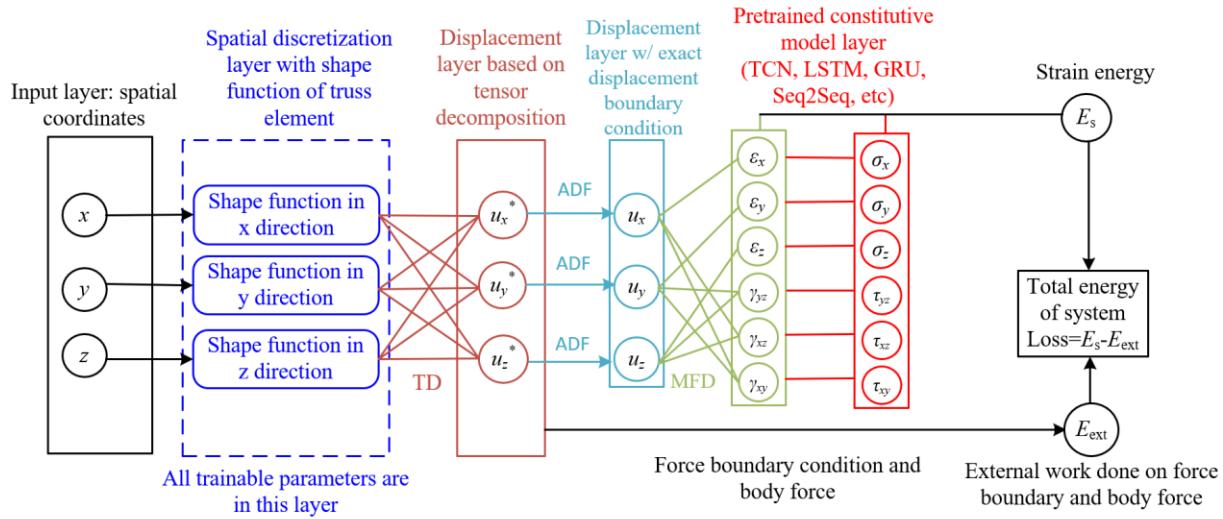
146 (3) Developed efficient loss function following the total action of the mechanical system, which is
147 explainable and avoids the problem in conventional PINN methods, there is no need to balance the loss
148 terms of PDE loss, Dirichlet boundary loss, and Neumann boundary loss.

149 (4) In the EPINN framework, there is no need to meet the Neumann boundary condition exactly, thereby
150 notably reducing the difficulty in training PINNs. The Dirichlet boundary condition can be exactly met,
151 which may avoid the influence of error from the Dirichlet boundary to influence the training process.

152 **2. MODEL ARCHITECTURE OF EPINN**

153 In this section, the model architecture of EPINN is illustrated in detail with a comparison to existing
154 PINN models. Figure 2 shows the schematic plot of EPINN. As shown in Figure 2, EPINN formulates
155 neural networks in each direction (x, y, z) to exactly replicate the shape function of linear or quadratic truss
156 element (Sect. 2.1) and use tensor decomposition (TD) to construct the 2D or 3D displacement field. For
157 the forward problem, all trainable parameters in the EPINN framework are nodal displacements in this
158 spatial discretization layer (denoted in blue color in Figure 2). TD can build the solution field without the
159 need of generating mesh conforming to the complicated structure (Sect. 2.2). The exact displacement
160 boundary condition was implemented (Sect. 2.4) based on ADF (approximate distance function). The
161 meshless finite difference (MFD) was adopted to calculate the gradient of the displacement field with
162 respect to coordinates (i.e. updating strain field) efficiently (Sect. 2.5). For the linear elastic problem or
163 hyperelastic problem, the stress field can be obtained from strain field directly. For nonlinear problems,
164 pretrained deep learning constitutive models can be adopted to achieve stress updating, including but not

165 limited to Temporal Convolutional Network (TCN) [32], Long-Short Term Memory (LSTM), Gated
 166 Recurrent Unit (GRU) and Sequence to Sequence models (Seq2Seq) [33]. MFD was used to formulate the
 167 strain solution layer and calculate the total strain energy of the system. By minimizing the total energy of
 168 the system, the solution can be achieved. All the PINN models reported and compared in this study are
 169 implemented using the Nvidia Modulus platform (version 22.07) [25] using Intel Xeon Platinum 8368 CPU
 170 with Nvidia A100 40GB SXM GPU accelerators provided by Osaka University SQUID (Supercomputer
 171 for Quest to Unsolved Interdisciplinary DataScience). The Nvidia Modulus platform is an open-source
 172 platform developed based on PyTorch and Sympy and can be used for Nvidia GPU accelerators. Single
 173 precision was used for the training process of all PINN models in this study.



174
 175 Figure 2. Flowchart of EPINN framework for solving static solid mechanics problems based on the
 176 principle of least work (Note: TD denotes tensor decomposition, ADF denotes approximate distance
 177 function, MFD denotes meshless finite difference)

178 **2.1 Reformulating shape function of 1D truss element with neural networks**

179 For the 1D problem of solid mechanics, the shape function of truss element (linear or quadratic) can
 180 be exactly reformulated by a few layers of neural networks, where the weights and biases can be calculated
 181 based on node coordinates of 1D truss elements as proved by Zhang et al. [30]. EPINN framework adopted

182 this method for constructing the shape function in the 1D case with convolutional architecture (which is
 183 slightly different from the original architecture proposed by Zhang et al. [30]), while tensor decomposition
 184 can be used to construct the solution field of displacement in 2D and 3D solid mechanics problems. Figure
 185 3 shows the schematic plot of the shape function of the truss element reformulated by neural networks. As
 186 shown in Figure 3(a), the shape function of linear 1D truss element is formulated as follows:

$$N_I(x) = \begin{cases} \frac{x - x_{I-1}}{x_I - x_{I-1}}, & x_{I-1} \leq x \leq x_I \\ \frac{x_{I+1} - x}{x_{I+1} - x_I}, & x_I \leq x \leq x_{I+1} \\ 0, & \text{elsewhere} \end{cases} \quad (1)$$

$$\begin{aligned} \mathcal{N}_I(x; x_{I-1}, x_I, x_{I+1}) \\ = \text{Relu}\left(\frac{-1}{x_I - x_{I-1}} \text{Relu}(-x + x_I) + 1\right) + \text{Relu}\left(\frac{-1}{x_{I+1} - x_I} \text{Relu}(x - x_I) + 1\right) - 1, \end{aligned} \quad (2)$$

$$\begin{aligned} u_I(x) = \mathcal{N}_I(x; x_{I-1}, x_I, x_{I+1}) u_I \\ = \left(\text{Relu}\left(\frac{-1}{x_I - x_{I-1}} \text{Relu}(-x + x_I) + 1\right) - 0.5 \right) u_I + \left(\text{Relu}\left(\frac{-1}{x_{I+1} - x_I} \text{Relu}(x - x_I) + 1\right) - 0.5 \right) u_I \end{aligned} \quad (3)$$

187 where u_I denotes the nodal solution at node number I , $N_I(x)$ denotes the shape function at node number I ,
 188 and x_{I-1} , x_I , and x_{I+1} are node coordinates. Relu denotes Rectified Linear Unit (ReLU) activation function.
 189 When the node coordinates are fixed, the only trainable weights are the nodal displacement u_I .

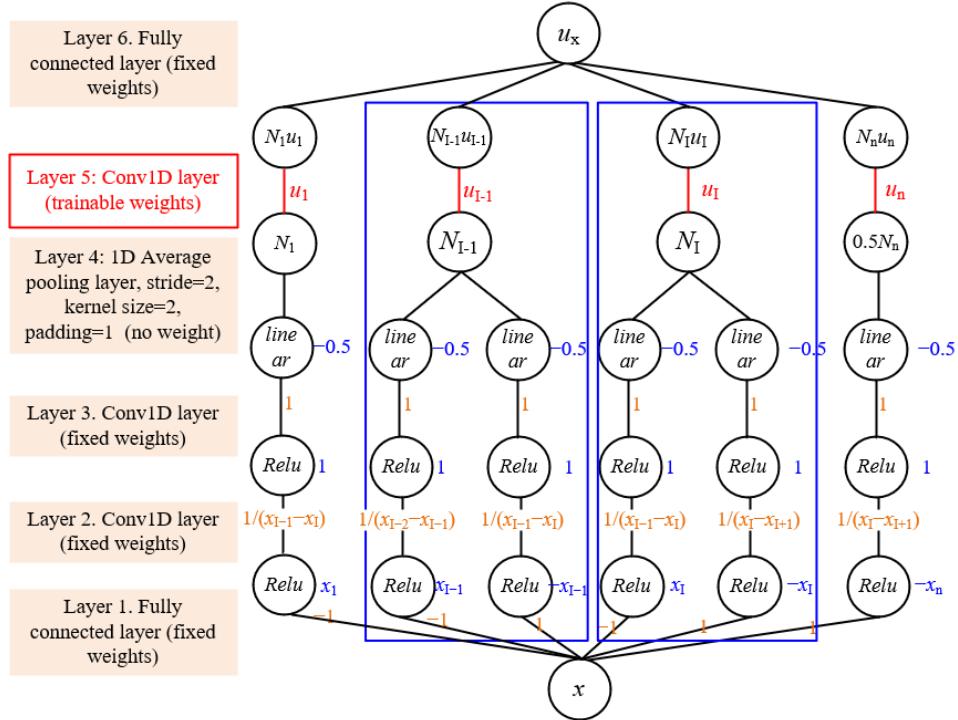
190 Figure 3 shows the assembly of the shape function in the 1D truss element. Zhang et al. [30] adopted
 191 MLP (multi-layer perception) in the HiDeNN model. In this study, it is found that the shape function of the
 192 1D truss element can be reformulated by convolutional neural networks (CNNs). Figure 3(a) shows the
 193 neural network architecture to exactly reformulate the shape function of linear truss elements adopting
 194 convolutional architecture. As shown in Figure 3(a), the input layer is the x coordinate at an arbitrary point
 195 in the solution domain and it is fed into a fully connected layer and two subsequent Conv1D (1D
 196 convolutional) layers. Subsequently, Layer No. 4 is a 1D average pooling layer with a stride of 2, kernel
 197 size of 2, and padding of 1, which will obtain shape function at various nodes based on Eq. (2). After that,
 198 a Conv1D layer is used to obtain the displacement field inside each element as per Eq. (3). Finally, the

199 element displacements are assembled to obtain the total displacement field of the truss structure. In this
 200 architecture, the only trainable parameter is the solution of displacement fields at nodes in Layer No. 5 in
 201 Figure 3(a), while all other layers have fixed weights and biases when the coordinates of mesh nodes are
 202 fixed. Therefore, the number of trainable parameters in EPINN can be notably reduced to the mesh number
 203 in the 1D case compared to conventional PINN models [17-24]. Figure 3(b) shows the neural network
 204 architecture to exactly reformulate the shape function of the quadratic truss element. Compared to the linear
 205 truss element, the quadratic truss element has an additional shape function at the internal node $N_{I+1/2}^2(x)$,
 206 which can be obtained by multiplication of the linear truss element shape function as follows:

$$N_{I+1/2}^2(x) = \begin{cases} \frac{(x-x_I)(x-x_{I+1})}{(x_{I+1/2}-x_I)(x_{I+1/2}-x_I)} & x_I \leq x \leq x_{I+1} \\ 0 & \text{elsewhere} \end{cases} \quad (4)$$

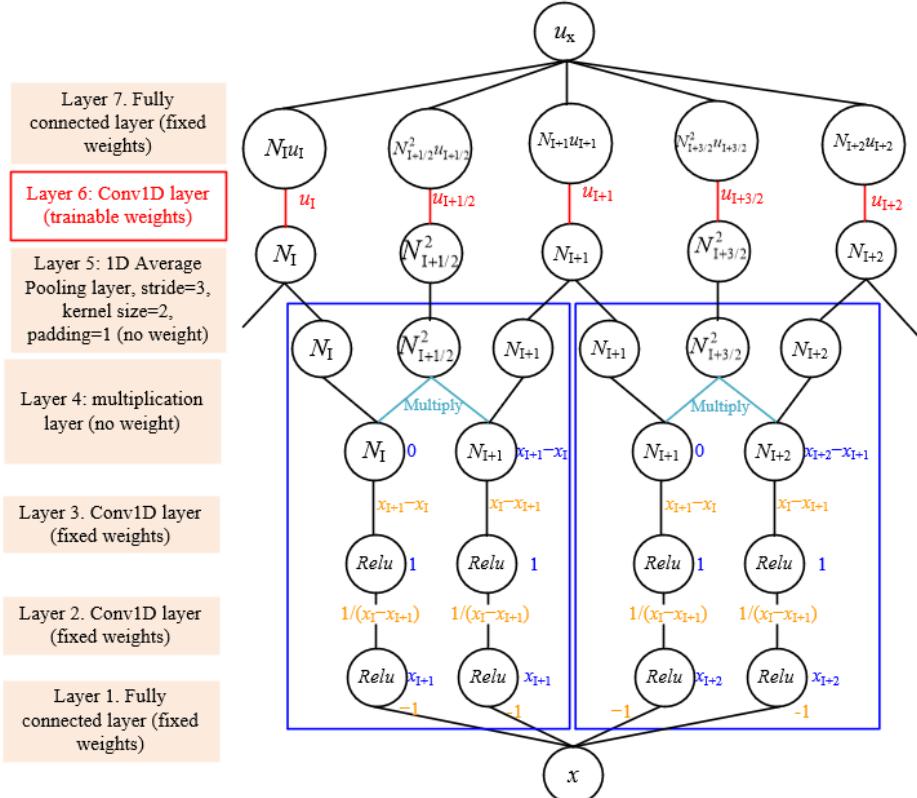
$$= N_I(x) \cdot N_{I+1}(x) \cdot \frac{(x_{I+1}-x_I)^2}{(x_{I+1/2}-x_I)(x_{I+1/2}-x_I)}$$

207 As shown in Figure 3(b), the input layer is the x coordinate of the node and it is fed into a fully
 208 connected layer and two subsequent Conv1D layers. Subsequently, Layer No. 4 is a multiplication layer,
 209 where the linear shape function N_I and N_{I+1} are multiplied to obtain the quadratic shape function at the
 210 interior point $N_{I+1/2}^2$ as shown in Eq. (4). Layer No. 5 is a 1D average pooling layer with a stride of 3,
 211 kernel size of 2, and padding of 1, which will obtain shape function at various nodes. After that, a Conv1D
 212 layer (Layer No. 6) is used to obtain the displacement field inside each element. All trainable weights are
 213 in Layer No. 6, which are equivalent to the nodal displacements in FE methods. Finally, the element
 214 displacements are assembled to the total displacement field of the truss structure. As shown in Figure 3(b),
 215 the shape function of the quadratic truss element can be obtained by multiplication of the linear shape
 216 function of the truss element, which can be achieved by the PyTorch and Nvidia Modulus platform [25] by
 217 multiplication of tensors to obtain the quadratic shape function of truss elements. Similarly, the shape
 218 function of higher-order truss elements (with an order higher than 2) can be formulated in terms of neural
 219 networks by multiplication of linear truss elements.



220

221 (a) Neural networks that exactly reformulate the shape function of linear truss elements



222

223 (b) Neural networks that exactly reformulate the shape function of the quadratic truss element

224 Figure 3. Shape function of truss element reformulated by neural networks

225 (Note: orange font denotes fixed weights, blue font denotes fixed bias, red font denotes trainable weights,
226 Relu denotes Rectified Linear Unit, blue box denotes neural networks to reformulate shape function inside
227 the single element, linear denotes no activation function is used in this layer, Conv1D denotes one-
228 dimensional convolutional layer)

229 **2.2 Tensor decomposition for 2D and 3D problems**

230 For 2D and 3D static solid mechanics problems, Zhang et al. [31] proposed to use the tensor
231 decomposition (TD) method in the PINN framework to further reduce the dimension of unknowns. Figure
232 4 shows the schematic plot of TD represented in terms of neural networks. TD was also known as canonical
233 tensor decomposition [34], which decomposes a tensor as a summation of rank-one tensors. For the 3D
234 case, the governing equations of TD are formulated as the following equations:

$$u_{\text{TD}}(\mathbf{x}) = u_{\text{TD}}(x, y, z) = \sum_{q=1}^Q X^{(q)}(x)Y^{(q)}(y)Z^{(q)}(z) \quad (5)$$

$$X^{(q)}(x) = \sum_{I=1}^{n_1} N_I(x) \beta_I^{(q)} \quad (6)$$

$$Y^{(q)}(y) = \sum_{J=1}^{n_2} N_J(y) \gamma_J^{(q)} \quad (7)$$

$$Z^{(q)}(z) = \sum_{K=1}^{n_3} N_K(z) \theta_K^{(q)} \quad (8)$$

235 where Q denotes the total number of modes (typically ranging from 10 to 100 in numerical study); n_1, n_2 ,
236 and n_3 denote the number of nodes in the x, y , and z directions, respectively. $\beta_I^{(q)}$, $\gamma_J^{(q)}$ and $\theta_K^{(q)}$ denote
237 the nodal displacement weights in the x, y , and z directions in mode number q .

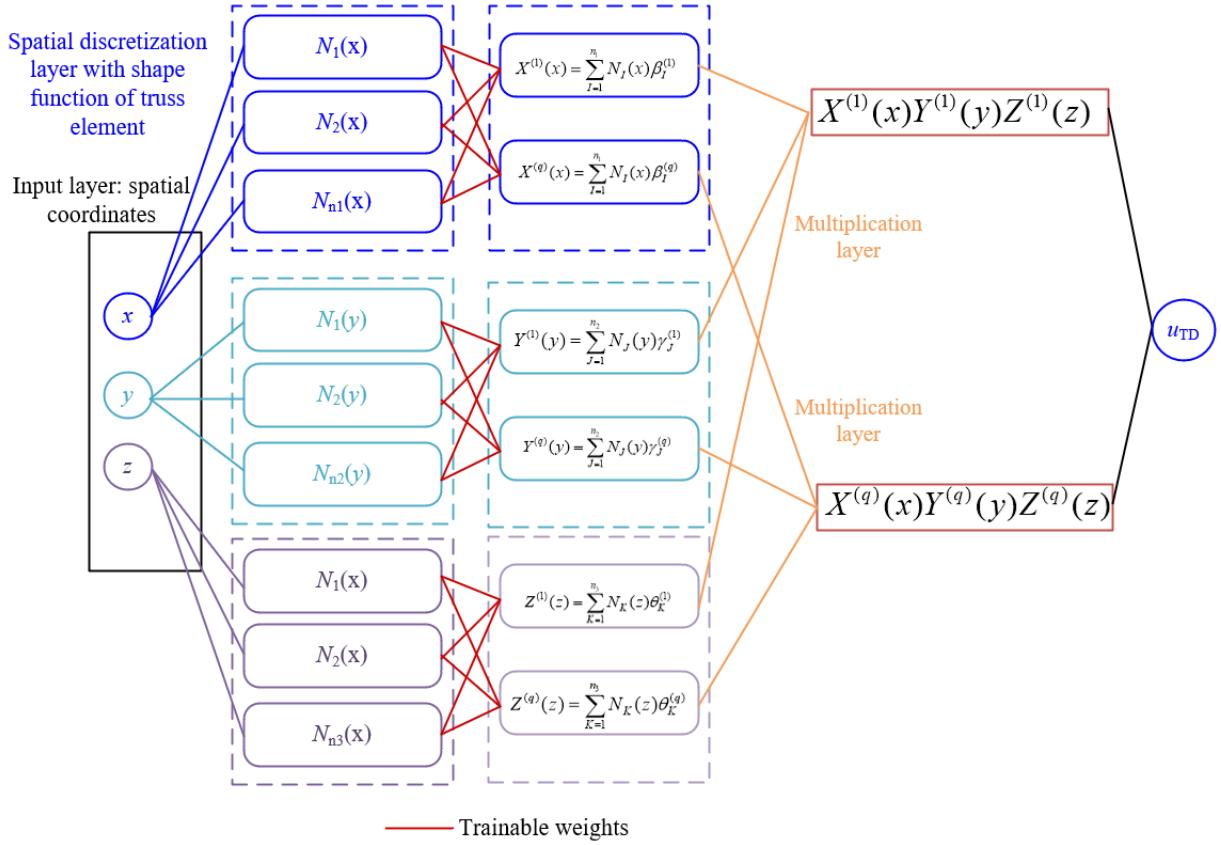


Figure 4. Schematic plot of tensor decomposition formulated by neural networks

There are two motivations for adopting TD in the EPINN framework. First, the number of trainable parameters for 3D solid mechanics problems can be reduced to $Q \times (n_1 + n_2 + n_3)$, which may be notably lower than the number of DOFs in FE methods (i.e., $n_1 \times n_2 \times n_3$). Second, TD is efficient for the simulation of complicated shapes in solid mechanics, where the mesh conforming to the shape of the complicated solid body is not needed. TD can be used to generate the solution field of the box containing the simulation region, which notably reduces the difficulty in model generation.

2.3 Principle of least work for the loss function

Consider the solid mechanics problems where the labeled data of the solution field are unavailable (i.e. forward problem), the basic objective in the conventional PINN approach was to minimize the total loss as a sum of boundary loss and the PDE loss as follows (2D plane stress case was illustrated here for simplicity) as shown below. For conventional PINNs, the loss function based on weighted residuals is given as follows:

$$\begin{aligned}
\mathcal{L} = & \lambda_1 \int_{\partial\Omega_D} \left(|u_x - u_x^*|_{\Gamma_D} + |u_y - u_y^*|_{\Gamma_D} \right) d\partial\Omega_D \\
& + \lambda_2 \int_{\partial\Omega_N} \left| \sigma_{xx} \cos^2 \theta + \sigma_{yy} \sin^2 \theta + 2\tau_{xy} \sin \theta \cos \theta - \sigma^* \right| d\partial\Omega_N \\
& + \lambda_2 \int_{\partial\Omega_N} \left| (\sigma_{yy} - \sigma_{xx}) \sin \theta \cos \theta + \tau_{xy} (\cos^2 \theta - \sin^2 \theta) - \tau^* \right| d\partial\Omega_N \\
& + \lambda_3 \iint_{\Omega} \left(|\sigma_{xx,x} + \sigma_{xy,y} + f_x^*| + |\sigma_{xy,x} + \sigma_{yy,y} + f_y^*| \right) d\Omega \\
& + \iint_{\Omega} \left(|(\lambda + 2\mu)\varepsilon_{xx} + \lambda\varepsilon_{yy} - \sigma_{xx}| + |(\lambda + 2\mu)\varepsilon_{yy} + \lambda\varepsilon_{xx} - \sigma_{yy}| + |\mu\gamma_{xy} - \tau_{xy}| \right) d\Omega
\end{aligned} \tag{9}$$

251 where $\partial\Omega_D$ is the Dirichlet boundary condition (i.e. displacement boundary) of domain Ω , $\partial\Omega_N$ is the
 252 Neumann boundary (i.e. force boundary) of domain Ω , u_x^* and u_y^* are the displacement components in
 253 x and y direction at displacement boundary condition, σ^* and τ_{xy}^* are the normal stress and shear stress
 254 at the force boundary, λ and μ are Lame first and Lame second parameters of elastic material, and λ_1 , λ_2 , and
 255 λ_3 are three coefficients (similar to the Lagrange multiplier in FE methods) to balance the loss term with
 256 different units.

257 The major issues of conventional PINN loss function in Eq. (9) are as follows. First, the loss function
 258 consists of a constitutive equation, compatibility equation, and boundary loss, which have different units
 259 and needs to be scaled by coefficients λ_1 , λ_2 , and λ_3 to formulate a reasonable loss function. Although the
 260 coefficients λ_1 , λ_2 , and λ_3 can be updated based on loss balancing approaches such as SoftAdapt [26],
 261 ReLoBRaLo [27], and GradNorm [28], there is a lack of physical meaning for the coefficients λ_1 , λ_2 and λ_3
 262 in conventional loss balancing approaches [26-28], and the training process involving loss balancing
 263 approaches may slow down the convergence of the PINN. Second, because the PDE of static solid
 264 mechanics problems are elliptical PDE, the error of boundary condition will propagate to the whole solution
 265 field at infinite speed. Therefore, the existence of a boundary condition error may notably hinder the
 266 convergence of PINN in solving static solid mechanics problems. Although some approaches were
 267 proposed to generate a solution field to meet the Dirichlet boundary condition and Neumann boundary
 268 condition simultaneously [15], it requires the PINN to predict the displacement field and stress field

269 simultaneously, which may increase the number of trainable parameters and may be difficult to extend to
 270 nonlinear constitutive models [32, 33].

271 In this study, the principle of least work is selected as the loss function for static solid mechanics
 272 problems, and the loss function is formulated as follows:

$$\mathcal{L}(\mathbf{u}; \mathbf{f}, \bar{\mathbf{t}}) = \frac{1}{2} \int_{\Omega} \boldsymbol{\sigma}(\mathbf{u}) : \boldsymbol{\varepsilon}(\mathbf{u}) d\Omega - \left(\int_{\Omega} \mathbf{u} \cdot \mathbf{f} d\Omega + \int_{\partial\Omega_N} \mathbf{u} \cdot \bar{\mathbf{t}} d\partial\Omega_N \right) \quad (10)$$

$$\mathbf{u} = \mathbf{u}_{\partial\Omega_D}^* + \mathbf{u}_{TD} \cdot ADF^p \quad (11)$$

$$\mathbf{u}_{solution} = \operatorname{argmin} \mathcal{L}(\mathbf{u}; \mathbf{f}, \bar{\mathbf{t}}) \quad \text{for } \mathbf{u}(x, y, z) = \mathbf{u}_{\partial\Omega_D}^* \quad \forall (x, y, z) \in \partial\Omega_D \quad (12)$$

273 where \mathbf{u} is the displacement field, $\boldsymbol{\sigma}$ and $\boldsymbol{\varepsilon}$ are the stress and strain tensors, respectively, \mathbf{f} is the body
 274 force and $\bar{\mathbf{t}}$ is the external traction applied to the force boundary. ADF denotes the Approximate Distance
 275 Function from any point to the Dirichlet boundary of the simulation region [16], p is a positive real number
 276 and is fixed as 1.0 in this study. \mathbf{u}_{TD} is the trial displacement field constructed following Eq. (5) in Sect.
 277 2.2, and $\mathbf{u}_{\partial\Omega_D}^*$ denotes the displacement field at the Dirichlet boundary condition.

278 EPINN adopts the loss function as the total energy of the system. Based on the principle of least work,
 279 EPINN can efficiently solve solid mechanics problems by minimizing the total work of the system. The
 280 exact displacement boundary condition was required by the principle of least work. The Dirichlet boundary
 281 condition is satisfied throughout the training process by introducing Eq. (11), and the Neumann boundary
 282 condition and force equilibrium equations can be satisfied after the training process converges. Compared
 283 to the Deep Ritz method [13], HiDeNN [29, 30], and HiDeNN-TD [31], the exact Dirichlet boundary
 284 condition is enforced in the EPINN framework, which conforms to the requirement of the principle of least
 285 work. In addition, when calculating the numerical integration, the number and coordinates of integration
 286 points may differ from the mesh size. It is recommended that the number of integration points should exceed
 287 the number of mesh size in the EPINN framework to evaluate the integration result efficiently.

288 2.4 Exact Dirichlet boundary condition

289 The exact Dirichlet boundary condition is achieved by implementing the following ADF, which was

290 proposed [16] as an alternative to the signed distance function (SDF). ADF is 0 on the Dirichlet boundaries
 291 and the first-order derivative along the normal direction of the boundary equals 1. For complicated
 292 boundary shapes consisting of various surfaces, it may be too hard to compute the derivative of SDF with
 293 respect to coordinates and the derivative may be stiff, which may hinder the convergence of PINN. In
 294 comparison, ADF is a second-order smooth function with respect to the coordinate, which is favorable for
 295 the stochastic gradient descent method to minimize the loss function in Eq. (10). When there are multiple
 296 Dirichlet boundaries, the following equation is used to obtain the ADF of the whole system to achieve an
 297 exact Dirichlet boundary condition. This approach ensures the displacement field is exactly met on the
 298 Dirichlet boundary.

$$ADF = \phi(\phi_1, \dots, \phi_n) := \frac{1}{\sqrt[m]{\frac{1}{(\phi_1)^m} + \frac{1}{(\phi_2)^m} + \dots + \frac{1}{(\phi_n)^m}}} \quad (13)$$

299 where ϕ_i denotes the approximate distance from the point (x,y,z) to boundary number i. On the displacement
 300 boundary, $\phi=0$. m is a positive number and is selected as 2.0 in this study.

301 **2.5 Meshless finite difference for efficient gradient information**

302 Conventional PINN architecture mostly adopts automated differentiation to obtain the gradient of
 303 displacement with respect to coordinates to formulate the strain field. However, the strain localization in
 304 some solid mechanics problems may induce notably high gradient information and may hinder the
 305 convergence of conventional PINN models. Recently, meshless finite differentiation (MFD) was developed
 306 in the Nvidia Modulus platform (v22.07) [25] and numerical examples show that MFD can achieve a
 307 speedup of more than 50% based on conventional PINN architecture [25] on typical mechanics problems.
 308 EPINN implemented MFD in the framework as an alternative to automated differentiation. The motivations
 309 are summarized below. First, in solid mechanics problems, the stress localization effect may occur, while
 310 automated differentiation might induce notably high derivatives in the PINN framework, while MFD may
 311 mitigate the influence of stress localization by pre-definition of increments in each direction. Second,
 312 because the shape function of the 1D truss element requires the mesh size to be input as a parameter, EPINN

313 has the concept of mesh size in each direction, which is notably different from conventional PINN models
314 without an explicit definition of the mesh size. Therefore, when MFD is adopted, the spatial increment of
315 MFD is selected to be equal to the smallest mesh size in three directions in this study.

316 **2.6 Comparison between EPINN with existing PINN architecture**

317 The advantages of the EPINN model compared to the recurrent networks may be summarized as:

318 **(1) Improved training speed due to reduced number of trainable weights:** In conventional PINN
319 architecture, the number of trainable weights required to converge may be very high (exceeding 1 million
320 trainable weights for many problems), which may notably hinder the solution of solid mechanics problems.
321 In EPINN, based on tensor decomposition and shape function of the truss element, the number of trainable
322 weights can be notably reduced and training speeds are notably reduced accordingly.

323 **(2) Extension to nonlinear problems:** The EPINN model resembles the FE approach because only
324 the displacement field is obtained from neural networks, while the strain fields are obtained from MFD of
325 the displacement field, and the stress field is the output of the strain field. Because deep-learning-based
326 constitutive models [32] are rapidly developing, the pre-trained deep-learning-based constitutive models
327 [32] can be infused into EPINN architecture to achieve nonlinear simulation of solid mechanics problems.

328 **3. Performance of EPINN Framework for Solid Mechanics**

329 In this section, three typical cases are illustrated for solving a 1D truss problem, a 2D plane stress
330 problem, and a 3D solid mechanics problem for the application of EPINN without the need for labeled data
331 (which is the case for the forward problem). This study successfully implemented EPINN with Nvidia
332 Modulus [25] deep-learning platform, which is open-source deep-learning software installed on the Osaka
333 University supercomputer SQUID. All models are trained using Intel Xeon Platinum 8368 CPU with a
334 single Nvidia A100 40GB SXM GPU accelerator at Osaka University SQUID (Supercomputer for Quest
335 to Unsolved Interdisciplinary Datascience). The reference PINN architecture adopted a fully-connected
336 neural network with 6 layers and a hidden layer size of 512 is used without skip connections. For PINN in

337 the reference group, the loss function adopts the conventional PINN approach. The initial learning rate is
 338 0.01 and the training precision was completed on TF32 precision [17] for both EPINN and PINN
 339 approaches. The reference FE simulation results in Sect. 3.2 and Sect. 3.3 was obtained using a single Intel
 340 i7-10870H CPU using the double precision FE solver without GPU acceleration.

341 **3.1 One-dimensional truss under complicated body force**

342 Consider a 1D elastic truss problem reported by Zhang et al. [30] with an elastic modulus of 175, area
 343 of 1, and length of 10 under complicated body force $b(x)$ and fixed at both ends as shown in Figure 5(a):

$$b(x) = -\frac{4\pi^2(x-2.5)^2 - 2\pi}{e^{\pi(x-2.5)^2}} - \frac{8\pi^2(x-7.5)^2 - 4\pi}{e^{\pi(x-7.5)^2}} \quad (14)$$

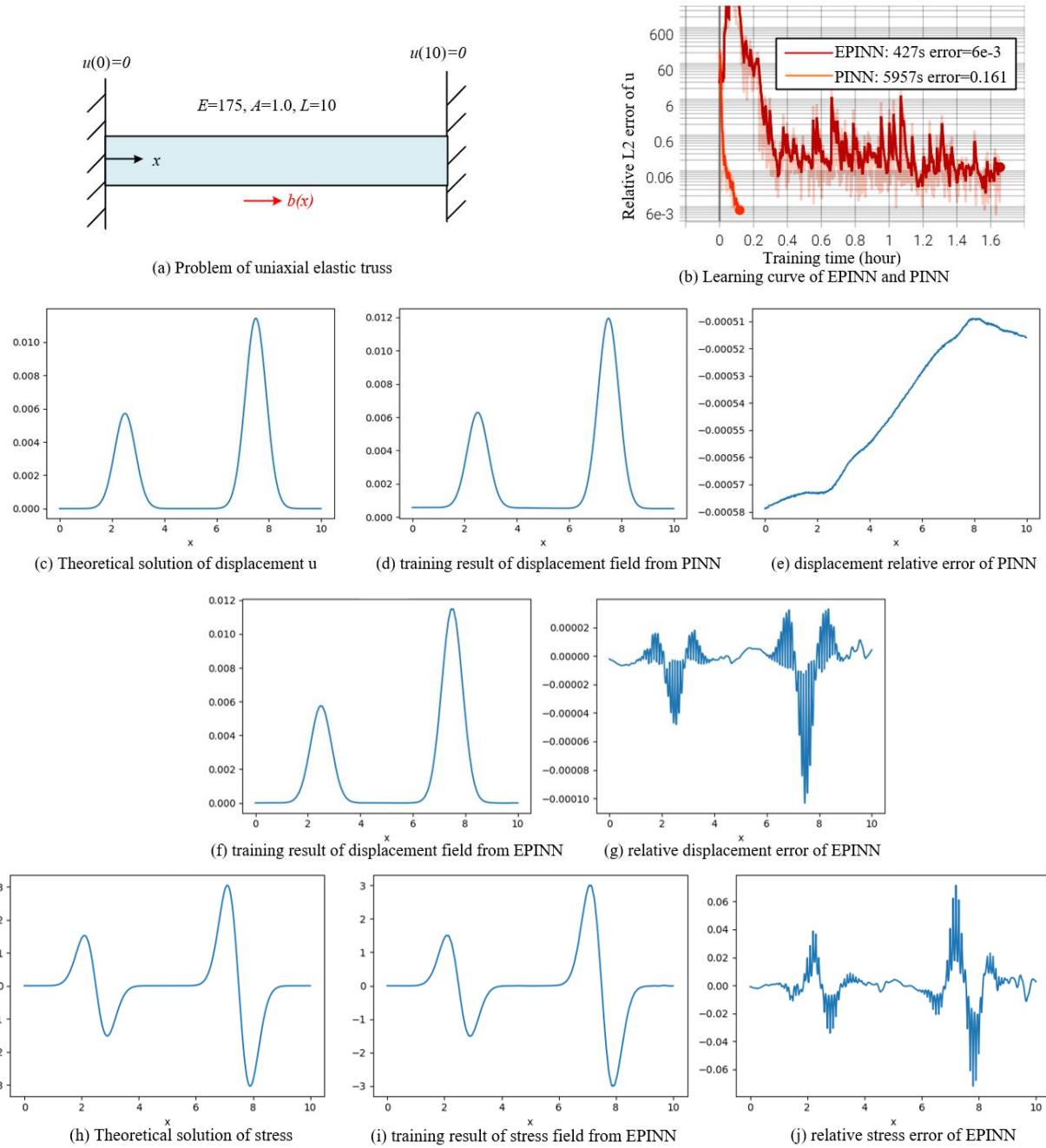
344 The theoretical solution to this 1D problem is derived by Zhang et al. [30] as follows:

$$u(x) = \frac{1}{AE} \left(e^{-\pi(x-2.5)^2} - e^{-6.25\pi} \right) + \frac{2}{AE} \left(e^{-\pi(x-7.5)^2} - e^{-56.25\pi} \right) - \frac{e^{-6.25\pi} - e^{-56.25\pi}}{10AE} x \quad (15)$$

$$\sigma_{xx} = E \frac{du}{dx} = \frac{2}{A} \left(-\pi e^{-\pi(x-2.5)^2} (x-2.5) \right) + \frac{4}{A} \left(-\pi e^{-\pi(x-7.5)^2} (x-7.5) \right) - \frac{e^{-6.25\pi} - e^{-56.25\pi}}{10A} \quad (16)$$

345 For PINN architecture, maximum training steps are selected as 2,000,000 steps, and the learning rate
 346 decays at a decay rate of 0.95 for every 1,500 steps. For EPINN architecture, the maximum number of
 347 training steps is selected as 50,000 steps, and the learning rate decays at a decay rate of 0.95 for every 500
 348 steps. The mesh size was selected as 0.1 and the total number of mesh is 100 for EPINN. The shape function
 349 of the quadratic truss element was adopted in EPINN. The comparison of the learning curve (i.e., relative
 350 L2 error between theoretical solution and PINN solution) is shown in Figure 5(b). Based on training results,
 351 the EPINN achieved convergence after 427 seconds of training with a displacement relative L2 error of 6e-
 352 3, while conventional PINN with fully-connected architecture requires a significant training time of 5957
 353 seconds to reach a displacement relative L2 error of 0.161. Therefore, EPINN achieved a speedup of more
 354 than 13 times compared to conventional PINN for this truss problem. Figure 5(c-g) further compares the
 355 simulation results of the axial displacement field obtained from PINN and EPINN. Conventional PINN
 356 may observe a boundary condition error with non-zero displacement at both ends, while the EPINN result
 357 did not show this issue due to the exact Dirichlet boundary condition in the EPINN framework. Figure 5(h-

358 j) compares the stress field predicted by EPINN, which also converged with a slightly larger relative error
 359 compared to the displacement field. Based on the comparison in Figure 5, EPINN achieved an efficient
 360 solution of a 1D truss under complicated body force.



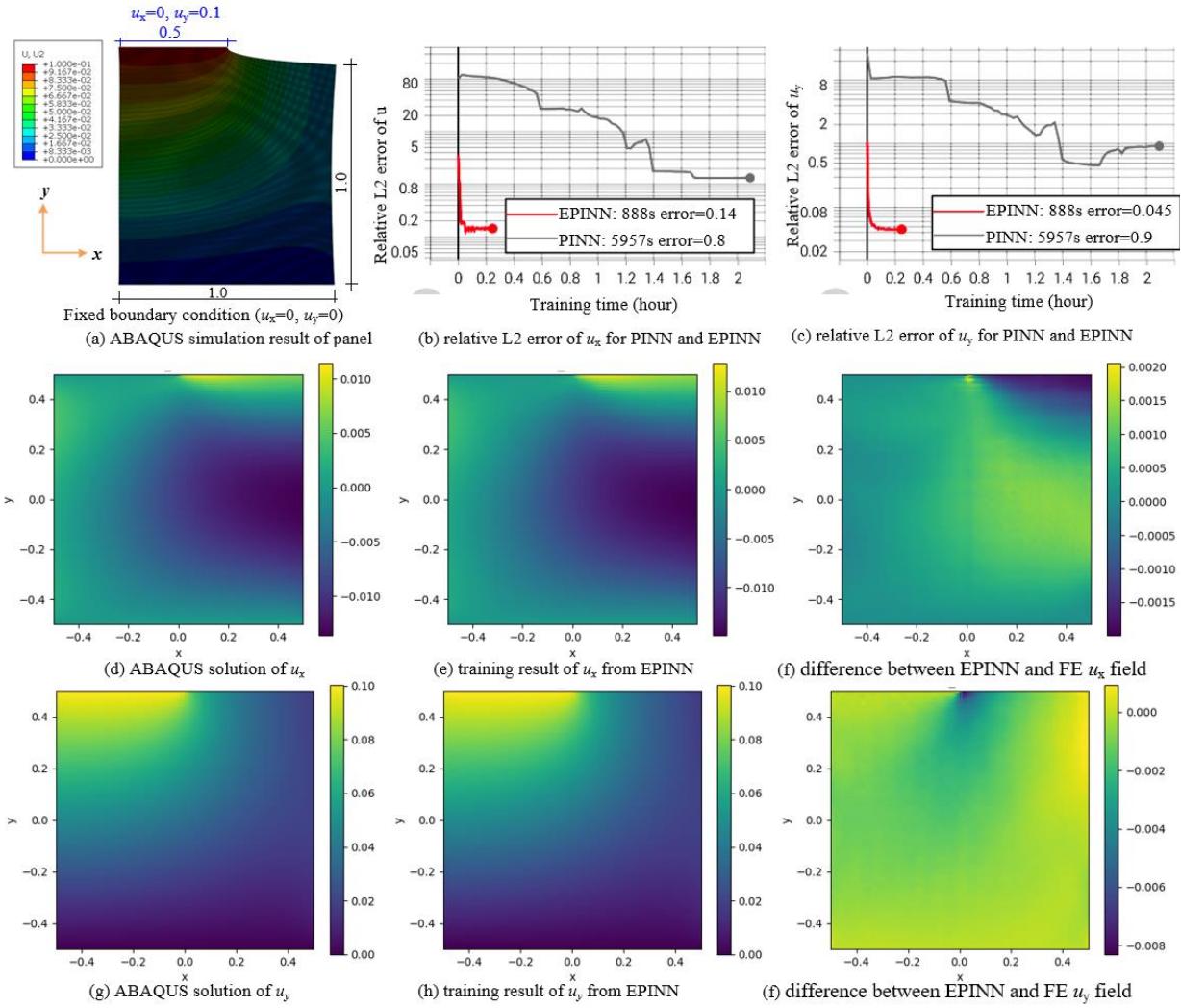
361

362
363

Figure 5. Comparison of EPINN and PINN for simulating 1D truss problem

364 3.2 Plane stress panel under eccentric tension

365 Rao et al. [15] reported a benchmark FE model and PINN architecture for the plane-stress panel. Figure
366 6(a) shows the FE simulation results using ABAQUS software as well as the boundary conditions. The
367 panel is elastic material with an elastic modulus of 10 and a Poisson ratio of 0.2. The panel length and
368 height are both 1.0 and the bottom line was fixed. The left half of the top surface was subject to vertical
369 tension displacement u_y of 0.1 while the horizontal displacement u_x is 0. All other lines are stress-free.
370 ABAQUS implicit solver was used to obtain the solution at 160,000 reduced-integration plane stress
371 elements at a mesh size of 1/400 and the large displacement option was turned on. For conventional PINN
372 with a fully connected network, maximum training steps are selected as 20,000 steps and the learning rate
373 is decreasing by a decay rate of 0.95 for every 2,000 steps. For EPINN architecture, the maximum training
374 steps are selected as 30,000 steps and the learning rate is decreasing by a decay rate of 0.95 for every 500
375 steps. EPINN in this section adopts a mesh size of 1/50, mode number Q of 10 for tensor decomposition,
376 and first-order shape function of the truss element. Figure 6(b) shows the time history L2 relative error of
377 displacement u_x field from PINN and EPINN models compared to ABAQUS output. The ABAQUS solver
378 converged after 265 seconds of simulation time (using a single Intel i7-10870H CPU). In comparison, the
379 EPINN solution also converged to ABAQUS simulation results after a training time of 253s (using a single
380 Nvidia A100 GPU accelerator), which is even faster than the ABAQUS model. In comparison, conventional
381 PINN architecture did not converge after 5957s of training. Figure 6(c-e) shows the comparison between
382 EPINN training results and FE simulation outcome of the displacement u_x field. Figure 6(f-h) shows the
383 comparison between EPINN training results and FE simulation outcome of the displacement u_y field. Based
384 on the comparison, the EPINN model with the mesh size of 1/50 well captures the displacement field of FE
385 simulation, which was obtained at a finer mesh size of 1/400. Therefore, the applicability and accuracy of
386 EPINN for 2D plane stress cases are examined based on this case study.



387

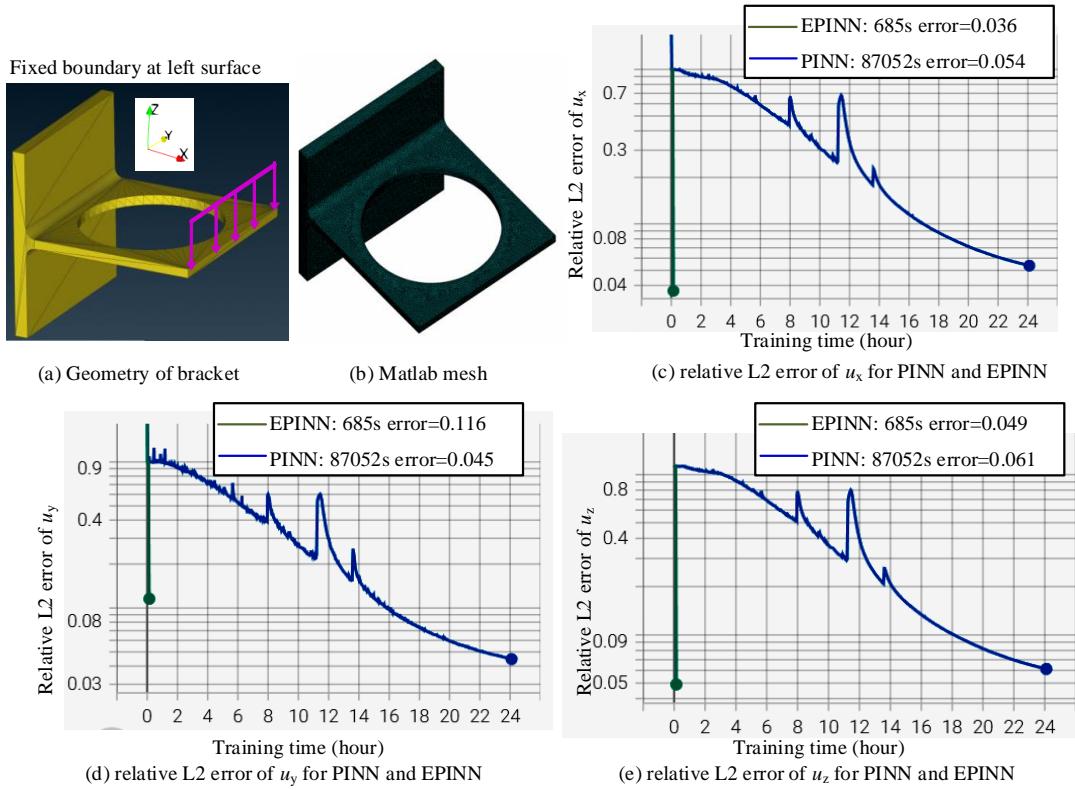
388

Figure 6. Comparison of EPINN and PINN for simulating plane stress panel

389 **3.3 Three-dimensional bracket**

390 In this section, a three-dimensional problem is illustrated to show the performance of EPINN in solid
 391 mechanics. Figure 7(a) shows the schematic plot of the bracket. The bracket has the back face fixed and the
 392 shear stress is applied to the front surface in the negative z direction. The traction force induces shear stress
 393 of 0.4 MPa and the rest of the bracket was stress-free boundaries. The height, weight, and length of the
 394 bracket are equal to 1.0 m. The elastic modulus is 100GPa and the Poisson ratio is 0.3. Figure 7(b) shows
 395 the finite element mesh in MATLAB using quadratic tetrahedral elements with a mesh size of 0.003. A

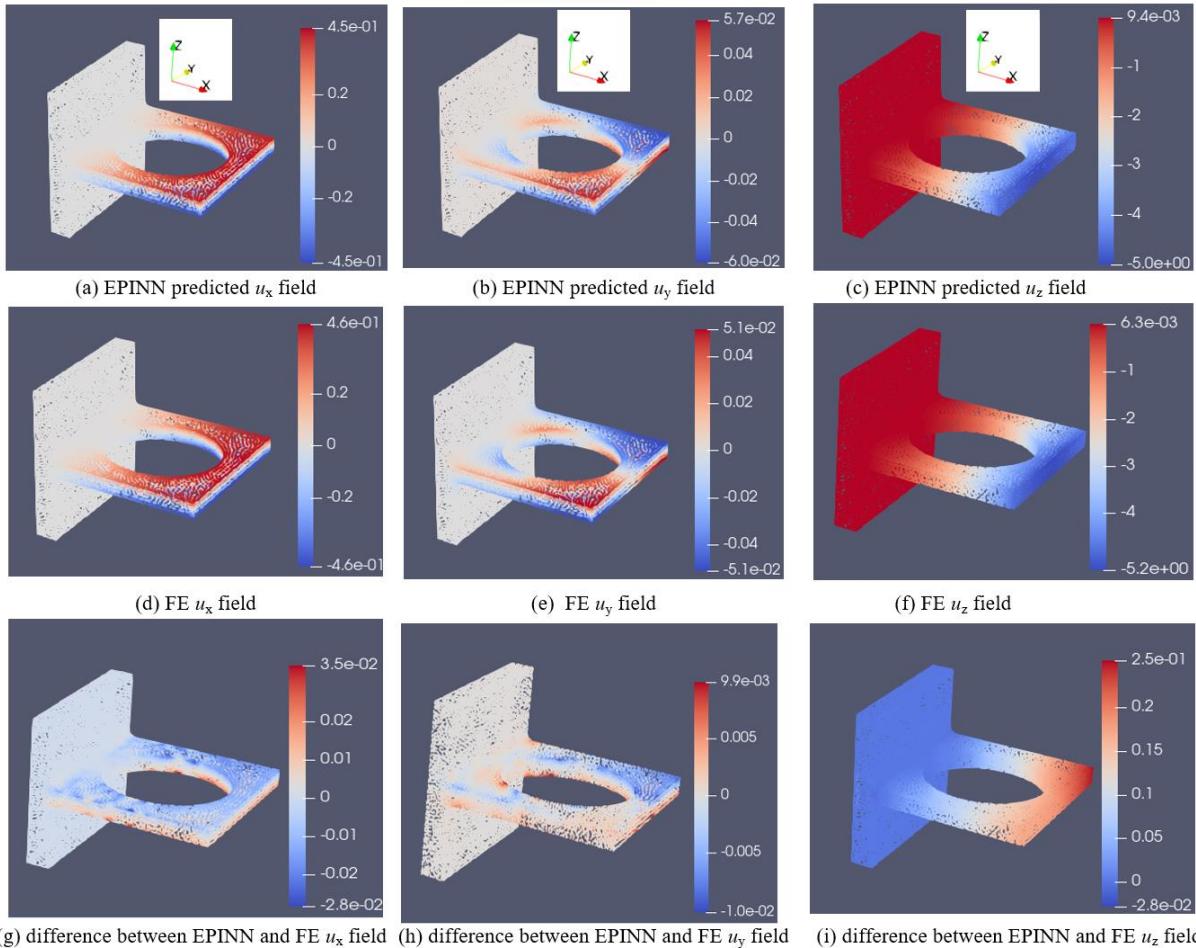
396 total of 1,157,983 nodes are generated in the MATLAB FE model, and the linear solution of this reference
 397 FE model costs a total of 1140s on CPU. For conventional PINN with a fully connected network (6 layers,
 398 512 neurons each layer, no skip connection), maximum training steps are selected as 2,000,000 steps and
 399 the learning rate is reduced by a decay rate of 0.95 every 15,000 steps. For EPINN architecture, the
 400 maximum training steps are selected as 10,000 steps and the initial learning rate is set as 0.001. A total of
 401 25 meshes are used for each direction (i.e. mesh size of 0.04) and the number of modes is set to 20 for
 402 EPINN. The shape function of the linear truss element was used for EPINN. Figure 7(c-e) shows the relative
 403 L2 error of displacement components of PINN and EPINN compared to MATLAB FE results. As shown
 404 in Figure 7(c-e), EPINN rapidly converges to the MATLAB FE model within 685s. In comparison,
 405 conventional PINN with fully-connected architecture converged to a similar level of accuracy after 87052s
 406 of training. Therefore, EPINN achieved a speedup of 127 times compared to conventional PINN in this 3D
 407 solid example.



408

409 Figure 7. Comparison of EPINN and PINN for simulating 3D bracket under uniform force boundary

410 Figure 8 shows the comparison of displacement simulation outcomes on the 3D point cloud. Figure
 411 8(a-c) shows the EPINN simulation results of the displacement field in the x, y, and z directions. Figure
 412 8(d-e) shows the FE analysis results. Figure 8(f-h) shows the relative error defined as EPINN simulation
 413 results minus the FE analysis results. As shown in Figure 8, EPINN well captured the simulation results of
 414 FE results even with the mesh size of 0.04. In this study, EPINN trained on Nvidia A100 GPU achieved
 415 faster convergence compared to FE analysis and achieved more than 100 times speedup compared to the
 416 conventional PINN method. In general, EPINN rapidly converges to the solution field of FE simulation
 417 results with similar computational time for the forward problem. Compared to FE analysis, the gradient of
 418 the solution field with respect to input parameters can be obtained in real-time, which is favorable for
 419 inverse problems and design problems.



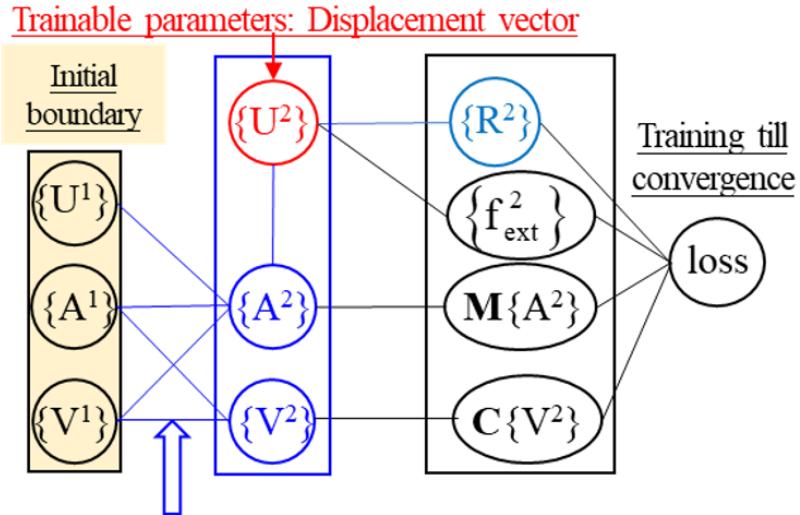
420
 421 Figure 8. Comparison of EPINN and PINN for simulating 3D bracket under uniform force boundary (in

422 units of mm)

423 **4. DISCUSSION AND EXTENSIONS**

424 **4.1 Extension to nonlinear mechanical systems**

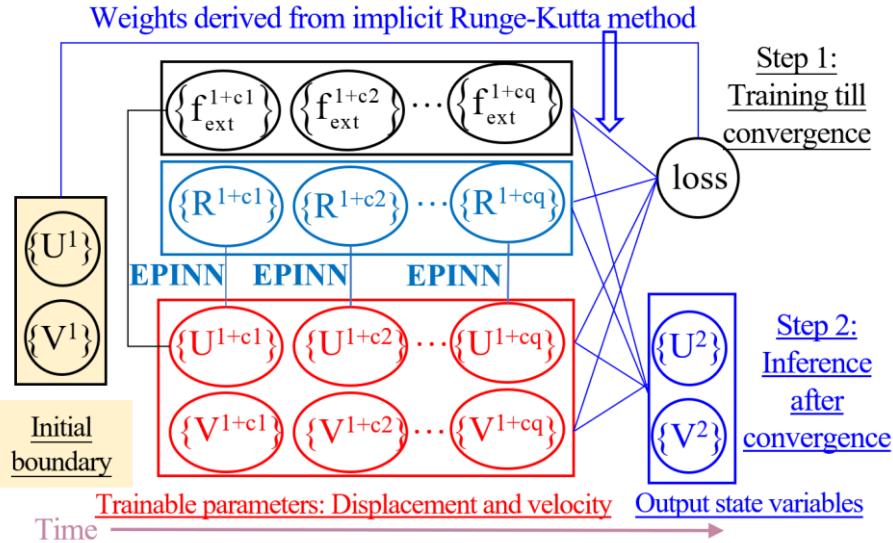
425 The principle of least work is adopted in EPINN for solving static solid mechanics problems. For
426 dynamic problems, EPINN can also be further extended to solve the nonlinear static analysis and nonlinear
427 dynamic analysis problems with efficient access to gradient information. In dynamic analysis, FE software
428 based on implicit solvers generally adopts the implicit Newmark- β method with second-order accuracy,
429 while high-order (typically fourth-order) implicit Runge-Kutta methods are also adopted in some FE
430 software. Figure 9(a) shows the proposed EPINN to reformulate the implicit Newmark- β method with
431 second-order accuracy. The input layer contains the initial boundary condition, and the trainable parameters
432 are displacement vectors $\{U^2\}$ to be solved in Step 2. The input layer and $\{U^2\}$ will be fed to neural networks
433 to obtain the acceleration $\{A^2\}$ and velocity $\{V^2\}$. The weights of the neural network will be derived from
434 the Newmark- β method. Subsequently, the internal force $\{R^2\}$ will be updated based on $\{U^2\}$ based on the
435 EPINN framework. Because this step is a static problem, it can be solved by training EPINN. The loss
436 function is formulated as the total error of the force equilibrium equation, which will be minimized to solve
437 displacement $\{U^2\}$. Figure 9(b) shows the proposed EPINN architecture to reformulate the alternative high-
438 order implicit Runge-Kutta method with arbitrary q stages [9], which can increase stable time increments
439 and exploit the parallel computing capability of GPUs by parallel internal force updating at q stages. The
440 trainable parameters are displacement and velocity at q stages. The internal force vectors at q stages will be
441 updated based on displacement vectors in parallel using GPUs. The loss function will be formulated
442 following the implicit Runge-Kutta method [35] and the optimization function can be used to solve the
443 displacement and velocity at q stages. Finally, the implicit Runge-Kutta method will infer the displacement
444 $\{U^2\}$ and velocity $\{V^2\}$ at the end of the multi-stage step. For both methods, the gradient of output fields
445 with respect to major input parameters (such as dimensions of components or external loads) can be
446 obtained using the automated backpropagation of the neural network efficiently.



Weights derived from implicit Newmark- β method

447 Time →

448 (a) EPINN to reformulate implicit Newmark- β method



449 Trainable parameters: Displacement and velocity Time →

450 (b) EPINN to reformulate implicit Runge-Kutta method with q stages

451 Figure 9. Proposed EPINN architecture to reformulate implicit time integration methods for dynamic
452 analysis

453 In addition, causal training [37] has also been proposed in the PINN research field. Causal training is
454 another method to ensure the continuous-time PINN models obey causality. This method discretized the
455 time domain and defined the temporal residual loss. The temporal residual loss ensures the training process
456 will first train the PINN for initial short time period, and the training of future time will only start upon
457 convergence of previous time steps. Therefore, the future development includes extending EPINN to

458 include the causal training technique to extend to nonlinear problems.

459 **4.2 Extension to Super-resolution EPINN (SPINN)**

460 In the computational mechanics research field, the super-resolution networks [8, 36] were also rapidly
461 adopted in turbulence super-resolution. In addition, the Fourier Neural Operator (FNO) also achieves zero-
462 shot super-resolution performance [11]. This study proposes to infuse EPINN with a super-resolution
463 network to achieve high-fidelity PINN with an acceptable computational cost. The motivation is that
464 EPINN has a mesh size of x , y , and z direction. The mesh size needs to be fixed before training. After
465 training is complete, when finer results of the solution field are needed, a super-resolution network can be
466 adopted based on the following steps:

467 (1) Develop solid mechanics datasets including FE analysis data, test data, and EPINN simulation data.
468 (2) Pre-train super-resolution networks [8, 36] based on solid mechanics dataset.
469 (3) For specific solid mechanics problems, use EPINN to solve solid mechanics problems with low-
470 resolution grid size.
471 (4) Based on the solution of EPINN at a low-resolution grid, use a pre-trained super-resolution network to
472 infer a high-resolution solution field.

473 **5. CONCLUSIONS**

474 To achieve efficient simulation of solid mechanics problems with reduced computational cost, the
475 EPINN framework is proposed in this study, which adopts the exact Dirichlet boundary condition and
476 principle of least work for the simulation of solid mechanics problems. There is no requirement for
477 additional labeled data of the solution field and notably reduces the training cost compared to recurrent
478 networks. Even when no labeled data of the solution field are input, the EPINN architecture can directly
479 solve the solid mechanics problems by minimizing the PDE loss. The future extensions of the EPINN model
480 into nonlinear dynamic simulation and super-resolution networks are also discussed. (5) Because EPINN
481 is a special version of PINN, it can be extended to parametric simulation, structural health monitoring

482 problems, and design optimization problems with higher flexibility compared to conventional finite element
483 methods. The major conclusions are summarized as follows:

484 (1) The EPINN framework adopts the principle of least work and exactly meets the Dirichlet boundary
485 condition throughout the training process, while the Neumann boundary condition and governing equations
486 (PDEs) are met when the training converges. Based on the shape function of the 1D truss element and tensor
487 decomposition theory, the number of trainable weights can be reduced notably compared to conventional
488 PINN architecture. The number of trainable weights can be even smaller than the DOFs in the FE method
489 at the same spatial resolution.

490 (2) For the 1D truss problem, EPINN achieved a speedup of 13 times compared to conventional PINN
491 architecture adopting a fully connected neural network in the case study with notably reduced error.

492 (3) For the 2D plane stress problem, EPINN rapidly converged to ABAQUS FE simulation results with
493 a similar solution time compared to ABAQUS implicit solver while conventional PINN did not converge
494 for the same problem.

495 (4) For the 3D plane stress problem, EPINN efficiently converged to FE simulation results with lower
496 training time than the FE solver. EPINN achieved a speedup of 127 times compared to the conventional
497 PINN model with a reasonable level of accuracy.

498 **CONFLICT OF INTEREST**

499 The authors declare no conflict of interest.

500 **ACKNOWLEDGEMENTS**

501 The authors gratefully acknowledge the financial support provided by the JSPS (Japan Society for the
502 Promotion of Science) postdoctoral fellowship and Grant-in-Aid for JSPS Fellows. The authors gratefully
503 acknowledge the support provided by Osaka University Supercomputer SQUID (Supercomputer for Quest
504 to Unsolved Interdisciplinary Datascience).

505 **DATA AVAILABILITY STATEMENT**

506 All data, models, or codes that support the findings of this study are available from the corresponding
507 author upon reasonable request, including the datasets, codes for implemented models, and pre-trained
508 models developed in this research.

509 **REFERENCES**

510 [1] G.E. Karniadakis, I.G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Physics-informed machine learning,
511 *Nature Reviews Physics*, 3 (2021) 422-434.

512 [2] J.-J. Wang, C. Liu, X. Nie, J.-S. Fan, Y.-J. Zhu, Nonlinear model updating algorithm for biaxial reinforced concrete
513 constitutive models of shear walls, *Journal of Building Engineering*, (2021) 103215.

514 [3] J.-J. Wang, Y.-F. Liu, X. Nie, Y.L. Mo, Deep convolutional neural networks for semantic segmentation of cracks,
515 *Struct. Control. Health Monit.*, (2021) 1-18.

516 [4] A. Yazdani, L. Lu, M. Raissi, G.E. Karniadakis, Systems biology informed deep learning for inferring parameters
517 and hidden dynamics, *PLoS Comput Biol*, 16 (2020) e1007575.

518 [5] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, B. Ommer, High-resolution Image Synthesis with Latent
519 Diffusion Models, in: *CVPR 2022*, 2022.

520 [6] K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-scale Image Recognition, in: *Proc.*
521 *International Conference on Learning Representations (ICLR 2015)*, San Diego, CA, 2015.

522 [7] S. Bai, J.Z. Kolter, V. Koltun, An empirical evaluation of generic convolutional and recurrent networks for
523 sequence modeling, in, 2018.

524 [8] N.S. Ashish Vaswani, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, Illia
525 Polosukhin, Attention is all you need, in: *Proc. Advances in Neural Information Processing Systems 30 (NIPS 2017)*,
526 Long Beach, CA, 2017.

527 [9] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A deep learning framework for
528 solving forward and inverse problems involving nonlinear partial differential equations, *Journal of Computational
529 Physics*, 378 (2019) 686-707.

530 [10] N. Long, R. Maziar, P. Seshaiyer, Efficient Physics Informed Neural Networks Coupled with Domain
531 Decomposition Methods for Solving Coupled Multi-physics Problems, *Advances in Computational Modeling and
532 Simulation*, (2022) 41-53.

533 [11] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar, Fourier Neural
534 Operator for Parametric Partial Differential Equations, in: *International Conference on Learning Representations
535 (ICLR)*, 2021.

536 [12] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, *Neural
537 Networks*, 2 (1989) 359-366.

538 [13] W. E, B. Yu, The Deep Ritz Method: A Deep learning-based numerical algorithm for solving variational problems,
539 *Communications in Mathematics and Statistics*, 6 (2018) 1-12.

540 [14] E. Haghhighat, M. Raissi, A. Moure, H. Gomez, R. Juanes, A physics-informed deep learning framework for
541 inversion and surrogate modeling in solid mechanics, *Computer Methods in Applied Mechanics and Engineering*, 379
542 (2021).

543 [15] C. Rao, H. Sun, Y. Liu, Physics informed deep learning for computational elastodynamics without labeled data,
544 *Journal of Engineering Mechanics*, 147 (2021).

545 [16] N. Sukumar, A. Srivastava, Exact imposition of boundary conditions with distance functions in physics-informed
546 deep neural networks, *Computer Methods in Applied Mechanics and Engineering*, 389 (2022).

547 [17] S.N. Oliver Hennigh, Mohammad Amin Nabian, Akshay Subramaniam, Kaustubh Tangsali, Zhiwei Fang, Max
548 Rietmann, Wonmin Byeon, Sanjay Choudhry NVIDIA SimNetTM: An AI-Accelerated Multi-Physics Simulation
549 Framework, in: *Proc. International Conference on Computational Science*, 2021, 447-461.

550 [18] N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F.A. Hamprecht, Y. Bengio, A. Courville, On the spectral
551 bias of neural networks, in: *36th International Conference on Machine Learning*, California, 2019.

552 [19] S. Wang, Y. Teng, P. Perdikaris, Understanding and mitigating gradient flow pathologies in physics-informed
553 neural networks, *SIAM Journal on Scientific Computing*, 43 (2021) 3055-3081.

554 [20] R.K. Srivastava, K. Greff, J. Schmidhuber, Training very deep networks, in: *Advances in neural information
555 processing systems* 2015.

556 [21] S. Wang, H. Wang, P. Perdikaris, On the eigenvector bias of fourier feature networks: From regression to solving
 557 multi-scale pdes with physics-informed neural networks., Computer Methods in Applied Mechanics and Engineering,
 558 384 (2021).

559 [22] V. Sitzmann, J.N.P. Martel, A.W. Bergman, D.B. Lindell, G. Wetzstein, Implicit neural representations with
 560 periodic activation functions, in: Proc. 34th Conference on Neural Information Processing Systems (NeurIPS 2020,
 561 Vancouver, Canada, 2020.

562 [23] J. Sirignanoa, K. Spiliopoulosb, DGM: A deep learning algorithm for solving partial differential equations,
 563 Journal of Computational Physics, 375 (2018) 1339-1364.

564 [24] R. Fathony, A.K. Sahu, D. Willmott, J.Z. Kolter, Multiplicative filter networks, in: International Conference on
 565 Learning Representations (ICLR) Vienna, Austria, 2021.

566 [25] Nvidia, <https://docs.nvidia.com/deeplearning/modulus/index.html>, in, 2022.

567 [26] A.A. Heydari, C.A. Thompson, A. Mehmood, SoftAdapt: Techniques for Adaptive Loss Weighting of Neural
 568 Networks with Multi-Part Loss Functions, Preprint, (2019).

569 [27] R. Bischof, M. Kraus, Multi-Objective Loss Balancing for Physics-Informed Deep Learning, Preprint, (2021).

570 [28] Z. Chen, V. Badrinarayanan, C.-Y. Lee, A. Rabinovich, GradNorm: Gradient Normalization for Adaptive Loss
 571 Balancing in Deep Multitask Networks, in: Proc. 35 th International Conference on Machine Learning, Stockholm,
 572 Sweden, 2018.

573 [29] S. Saha, Z.T. Gan, L. Cheng, J.Y. Gao, O.L. Kafka, X.Y. Xie, H.Y. Li, M. Tajdari, H.A. Kim, W.K. Liu,
 574 Hierarchical Deep Learning Neural Network (HiDeNN): An artificial intelligence (AI) framework for computational
 575 science and engineering, Computer Methods in Applied Mechanics and Engineering, 373 (2021) 28.

576 [30] L. Zhang, L. Cheng, H.Y. Li, J.Y. Gao, C. Yu, R. Domel, Y. Yang, S.Q. Tang, W.K. Liu, Hierarchical deep-
 577 learning neural networks: finite elements and beyond, Computational Mechanics, 67 (2021) 207-230.

578 [31] L. Zhang, Y. Lu, S. Tang, W.K. Liu, HiDeNN-TD: Reduced-order hierarchical deep learning neural networks,
 579 Computer Methods in Applied Mechanics and Engineering, 389 (2022).

580 [32] J.-J. Wang, C. Wang, J.-S. Fan, Y.L. Mo, A deep learning framework for constitutive modeling based on
 581 Temporal Convolutional Network, Journal of Computational Physics, 449 (2022).

582 [33] C. Wang, L.-y. Xu, J.-s. Fan, A general deep learning framework for history-dependent response prediction based
 583 on UA-Seq2Seq model, Computer Methods in Applied Mechanics and Engineering, 372 (2020) 113357.

584 [34] T.G. Kolda, B.W. Bader, Tensor decompositions and applications, SIAM Review, 51 (2009) 455-500.

585 [35] J.C. Butcher, Numerical Methods for Ordinary Differential Equations Third Edition, Wiley, 2016.

586 [36] S. Anwar, S. Khan, N. Barnes, A deep journey into super-resolution: A survey, ACM Computing Surveys, 53
 587 (2021) 1-34.

588 [37] Wang, Sifan, Sankaran, Shyam, and Perdikaris, Paris. Respecting causality is all you need for training physics-
 589 informed neural networks. arXiv preprint arXiv:2203.07404, 2022.

590