

1 **Implementing underdrained permeable pavement for runoff reduction in**
2 **shallow groundwater environments: Is it worthwhile?**

3

4 Kun Zhang^{1,2}, Peng Huang³ and Ting Fong May Chui⁴

5

6 ¹Postdoctoral researcher, Department of Civil, Construction and Environmental Engineering, Marquette University, 1250 W
7 Wisconsin Ave, Milwaukee, WI 53233, USA. ORCID: <https://orcid.org/0000-0002-1062-8323>. Email: kun.zhang@marquette.edu.

8 ²PhD candidate, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong. ORCID:
9 <https://orcid.org/0000-0002-1062-8323>. Email: kzhang16@connect.hku.hk.

10 ³PhD candidate, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong. Email:
11 forest8@connect.hku.hk.

12 ⁴Associate professor, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong (Corresponding
13 author). ORCID: <https://orcid.org/0000-0003-3322-8848>. Email: maychui@hku.hk.

14

15 **Abstract:** Permeable pavement, equipped with an underdrain, is one of the most widely used and efficient
16 types of green infrastructure. It can greatly reduce, delay, and retain surface runoff, given its high surface
17 infiltration rate and storage volume; however, its performance in shallow groundwater environments is
18 poorly understood. Based on the monitoring data of three underdrained permeable pavements in Hong Kong
19 collected from April to November 2017, this study demonstrates and quantifies the impact of shallow
20 groundwater on the hydrologic performance of permeable pavements. All of the permeable pavements
21 achieved 70 % – 100 % and 90 % – 100 % in peak and volume reductions of surface runoff, respectively,
22 for 90 % of the rainfall events, even after one year of service without maintenance. However, 4,000 – 10,000
23 mm of extraneous water – equivalent to three to six times the rainfall depth during the monitoring period –
24 entered the reservoirs of two pavements and was discharged through their underdrains. The drawdown

25 times of these two pavements, both of which were equipped with underdrains, were >24 and >72 hours for
26 35 % and 20 % of the rainfall events, respectively. Underdrains did not reduce drawdown times; instead,
27 they discharged the extraneous water from the subsurface into the sewer system. These findings
28 demonstrate the deficiency of underdrains and the need for careful underdrain design for permeable
29 pavements in shallow groundwater environments. In areas of shallow groundwater, detailed site
30 investigations are recommended. Underdrains, when needed, should be elevated and installed with flow
31 restrictors to restrict their maximum outflow, and to strike a balance between drawdown time and
32 underdrain outflow volume. The technical design of underdrain is demonstrated to be a key factor for green
33 infrastructure in shallow groundwater environments; it should be more highlighted and detailed in the
34 design guidance of green infrastructure.

35 **Author keywords:** green infrastructure; permeable pavement; stormwater management; underdrain;
36 groundwater

37

38 1. Introduction

39 There is an increasing global focus on improved stormwater management to develop a flood-resilient,
40 hydrologically restored, and environmentally healthy urban environment (Barbosa et al., 2012; Walsh et al.,
41 2012). Green infrastructure (GI) can help to realize these objectives by enhancing infiltration and reducing
42 the peak rate and volume of surface runoff, thus mimicking pre-developmental hydrologic conditions (Dietz,
43 2007; Roy et al., 2008; Ahiablame et al., 2012). In addition, GI offers various environmental benefits (e.g.,
44 pollutant removal and mitigation of the urban heat island effect) and promotes public health (Pugh et al.,
45 2012; Shih, 2017; Zhang and Chui, 2018a; Bellezoni et al., 2021). “Green infrastructure” is analogous to
46 other terminologies such as low-impact development, sustainable urban drainage systems, and water-
47 sensitive urban design (Fletcher et al., 2015), which have been proposed in recent years alongside the global

48 development of urban water management strategies (Brown et al., 2009). Common GI practices include
49 permeable pavement (PP), bioretention cells, green roofs, and infiltration trenches (Fletcher et al., 2015).

50 PP has been widely adopted in recent years because of its advantages such as easy installation, high
51 durability, low cost, and provision of parking and transportation (Booth and Leavitt, 1999; Imran et al.,
52 2013). Although PP surfaces clog easily (Sansalone et al., 2012; Nichols et al., 2015), the problem can be
53 remediated through improved selection of surface pavers, appropriate and frequent maintenance and
54 rejuvenation, and other such practices (Chopra et al., 2009; Winston et al., 2016; Hu et al., 2020; Liu et al.,
55 2021). Compared with other types of GI (e.g., bioretention cells and infiltration trenches), PP is often more
56 applicable in stormwater management because it can be implemented by retrofitting impervious pavements
57 (e.g., parking lots, low-traffic roads, sidewalks, and driveways) without requiring additional space (Scholz
58 and Grabowiecki, 2007; Xie et al., 2019). Furthermore, although depending on the designs of practices and
59 site conditions, PPs have been reported to be more efficient in runoff retention and reduction in some areas
60 compared with practices such as green roofs and rain barrels (Ball and Rankin, 2010; Qin et al., 2013).

61 The hydrologic performance of PP, particularly in runoff peak and volume reduction, has been studied
62 extensively (Legret et al., 1996; Horst et al., 2010; Lin et al., 2013; Lewellyn et al., 2015; Martin III and
63 Kaye, 2016; Knappenberger et al., 2017), and the performances of different types of surface pavers (Bean
64 et al., 2007; Collins et al., 2008, 2009) and subsurface materials (Bentarzi et al., 2016) have been compared.
65 The application of PP in different climatic conditions (e.g., cold climates), topographic conditions (e.g.,
66 slopes) and soils (i.e., low-permeability soils) has also been widely evaluated (Fassman and Blackbourn,
67 2010; Drake et al., 2014; Palla et al., 2015; Huang et al., 2016; Winston et al., 2018). Shallow groundwater
68 poses major restrictions, not only on PP but also on other infiltration-based GI practices (USEPA, 2012;
69 Zhang and Chui, 2019). The enhanced infiltration facilitated by PP may become problematic, as it can lead
70 to shallow groundwater contamination (Fischer et al., 2003; Datry et al., 2004). In addition, given the
71 increased water potential beneath PP, surface infiltration and subsurface exfiltration can be inhibited,
72 resulting in less exfiltration and greater surface overflow and underdrain flow (Locatelli et al., 2015; Zhang

73 and Chui, 2017, 2018b; Zhang et al., 2018). However, compared with PPs on low-permeability soils, the
74 hydrologic performance of PPs in shallow groundwater environments has been seldom reported.

75 In areas of low-permeability soil and shallow groundwater, some design guides recommended installing
76 perforated pipes at the base of PPs to drain infiltrated stormwater (Eisenberg et al., 2013). The objectives
77 of installing underdrains are to maintain the storage capacity and shorten the drawdown time of PPs. Studies
78 have demonstrated that underdrained PPs can efficiently restore pre-development hydrologic conditions
79 (Collins et al., 2008), even over relatively impermeable subsoils (Fassman and Blackbourn, 2010). Elevated
80 underdrains can also create an internal water storage zone within PP reservoirs, which can promote
81 anaerobic conditions and improve nitrogen removal efficiency (Braswell et al., 2018). However,
82 underdrains also discharge outflows into drainage systems, which can affect the overall hydrologic benefit
83 of PPs. The advantages and disadvantages of underdrains, especially for PPs in shallow groundwater
84 environments, remains poorly understood.

85 To fill the research gap regarding the efficiency of PP and the necessity of installing underdrains in
86 shallow groundwater environments, we collected seven-month monitoring data from three PPs in Hong
87 Kong, including surface runoff, underdrain flow, and reservoir water depth. Using this dataset, we
88 performed time series analysis to assess the hydrologic performance of underdrained PPs, including runoff
89 reduction rate, water balance, and drawdown time. This study aimed at evaluating the hydrologic
90 performance of permeable pavements in shallow groundwater environments, performing a comprehensive
91 and critical analysis on the effectiveness of underdrain for permeable pavements, and inferring design
92 recommendations for green infrastructure in shallow groundwater environments. This study addressed the
93 following research and engineering questions:

94 I. How does shallow groundwater affect the runoff control, water balance, and drawdown of PP?
95 II. How can underdrains improve or affect the hydrologic performance of PP in shallow groundwater?
96 III. How can underdrains be installed effectively for PP in shallow groundwater?

98 **2. Materials and method**99 **2.1 Permeable pavement descriptions**

100 Three PPs (each 30 m × 3 m) were laid at Shek Wu Hui Sewage Treatment Works (SWHSTW) and
 101 Stonecutter Island Sewage Treatment Works (SCISTW) in Hong Kong for vehicular usage. Two (Panels
 102 #1 and #2) were located at SWHSTW, and the third (Panel #3) was located at SCISTW. The laying of the
 103 PPs took place between July 2016 and January 2017. The location and layout of the PPs at the two sites are
 104 shown in Figure 1.

105 Each PP had two types of surface pavers and subbase designs (i.e., with/without underdrains or
 106 impermeable liners). More specifically, each PP was separated into two sections; for the smaller section (3
 107 m in length), impermeable liners were used at the bottom and sides to minimize exfiltration (hereinafter
 108 referred to as partially exfiltrating PP), and the longer section (27 m in length) was unlined (hereinafter
 109 fully exfiltrating PP). The section that included impermeable liners was only partially exfiltrating because
 110 its base was not fully impermeable, even with the impermeable liners. A perforated underdrain pipe was
 111 installed in each of the partially exfiltrating sections (i.e., those with impermeable liners) to quickly drain
 112 water and empty the PP reservoir within a specific timeframe. The surface pavers used at SWHSTW were
 113 open cell pavers (OCPs; Panel #1) and porous blocks (PBs; Panel #2), and permeable interlocking concrete
 114 pavers (PICPs; Panel #3) were used at SCISTW. The pavers differed in terms of material, block size, and
 115 block shape; the OCPs, PBs, and PICPs were 400 mm × 400 mm × 80 mm, 200 mm × 100 mm × 80 mm,
 116 and 225 mm × 112.5 mm × 80 mm, respectively. The OCPs and PICPs themselves were impervious, but
 117 there were large gaps between the blocks that were filled with fine aggregates. The PBs were pervious, and
 118 openings were filled with coarse sand. Photographs of these three types of porous paver are shown at the
 119 top of Figure 2. The surfaces of the PPs sloped at 1 % toward the trench drain, and they were elevated by ~
 120 20 mm to prevent the influx of additional surface runoff from the surrounding impervious covers.

121 The subbase designs (i.e., depth and composition) of the PPs were the same at both sites. The total
122 depths were 480 mm, comprising an 80 – mm surface paver, a 50 – mm fine aggregate layer (2 – 6 mm in
123 diameter), a 200 – mm hydraulically bound coarse aggregate (HBCA) layer, and a 150 – mm coarse
124 aggregate layer (4 – 20 mm in diameter) at the bottom. The HBCA layer was a mixture of aggregate, cement,
125 water, and chemical admixtures (i.e., retarders and hydration stabilizers), which was designed to provide
126 adequate support for vehicular traffic loading while allowing water percolation. Geotextile was installed
127 between the fine aggregate and HBCA layers, surrounding the underdrain, and at the bottom of the coarse
128 aggregate layer; this aimed to prevent fine aggregate mixing with the HBCA layer and avoid clogging in
129 the perforated underdrains. The detailed designs of the PPs at both sites are shown schematically in Figure
130 2 and illustrated in Table 1.

131 The permeability of the subsoil at SWHSTW was measured before the PPs were laid, whereas that in
132 the surrounding soil at SCISTW was measured after PP laying. Permeability was measured on site using
133 Guelph and single-ring permeameters, and soil sample particle sizes were determined using mechanical
134 sieves and laser particle size analyzer in the laboratory. As shown in Figure 2 and Table 1, the subsoil at
135 SWHSTW was clayey with a smaller grain size (D10 of 0.07 mm; D60 of 2 mm) and lower permeability
136 (0.7 – 9.5 mm/h) than that at SCISTW, which was sandy with a larger grain size (D10 of 0.4 mm; D60 of
137 6 mm) and higher permeability (60.5 – 789.6 mm/h).

138 **2.2 Data collection**

139 All the data involved, including precipitation, runoff, underdrain flow, and PP reservoir water depth,
140 was collected in this study. The PPs received only direct surface rainfall, with no additional surface runoff
141 from the surrounding areas. The surface runoff from the PPs was drained to the nearby equipment bay
142 through a trench drain (red dashed lines in Figure 1). The underdrain flow generated from the partially
143 exfiltrating sections was also collected. The flows were measured using water level dataloggers (model
144 HOBO U20L) inside weir boxes in the equipment bays. More specifically, the water level dataloggers first
145 measured the water depth, then the flow rates were calculated based on rating curves determined in the

146 laboratory. A filter box was installed atop each weir box to remove leaves, debris, and aggregates in the
147 surface runoff, and fine sand and clay in the underdrain flow, to prevent blockages in the weir boxes (Figure
148 2).

149 Several monitoring wells were installed within the PPs, in which the water depths of PP reservoirs were
150 measured using water level dataloggers. In total, four, four, and five sensors were installed in Panels #1–
151 #3, respectively; one was within the partially exfiltrating section and the others were within fully exfiltrating
152 sections. The locations of the observation wells are marked as blue circles in Figure 1. Owing to site-access
153 constraints, the nearby groundwater table was not monitored. However, the underdrain flow and drawdown
154 time of the water storage inside the PPs can be used to infer the existence and potential impact of shallow
155 groundwater. Rainfall was monitored at both sites using tipping bucket rain gauges (locations marked as
156 orange circles in Figure 1). All data had a temporal resolution of 1.5 min from March 30 to October 31,
157 2017, which covers the wet season in Hong Kong.

158 The inter-event time was assumed to be six hours, which is consistent with previous studies (Dunkerley,
159 2010; Joo et al., 2014). This means that two consecutive rainfall events were deemed as separate events
160 when the dry period between them was equal to or greater than six hours. A total of 81 and 95 rainfall
161 events were captured at SWHSTW and SCISTW, respectively, during the observation period. The rainfall
162 characteristics differed slightly between the sites, resulting in different numbers of events being captured
163 at each site. However, as shown in Figure 3, the general rainfall patterns were similar. Data were not
164 captured during some events (i.e., on April 14, June 13, and July 12), owing to equipment failure, which
165 also contributed to the difference in captured events.

166 **2.3 Data analysis**

167 First, the time series characteristics of precipitation, surface runoff, underdrain flow, and reservoir
168 water depth were evaluated. Continuous wavelet transform (CWT) was performed, and the wavelet power
169 in the time–frequency domain was calculated to investigate the time–frequency characteristics of the time

170 series. Compared with Fourier transform, CWT better represents non-stationary time series that experience
171 high oscillation at fine temporal scales; CWT calculates the convolution of the time series using the shifted
172 and scaled mother wavelet Ψ (Eq. 1). This is identical to applying the wavelet to the time series as a
173 bandpass filter. In doing so, CWT converts the data from one-dimensional to multi-dimensional through
174 scaling and shifting. A “Morlet” mother wavelet was selected, given its validity in representing hydrological
175 timeseries (Labat et al., 2000; Zhang and Chui, 2018b).

176
$$W_n^X(s) = \sqrt{\frac{\delta t}{s}} \sum_{n'=1}^N x_{n'} \psi_0 \left[(n' - n) \frac{\delta t}{s} \right] \quad (1)$$

177 where ψ_0 is the complex conjugate of the scaled mother wavelet; s is the wavelet scale at which the
178 transform is performed; x_n is the time series with a length of N and interval of δt .

179 The rainfall events during the seven-month monitoring period were extracted as described above, using
180 a six-hour inter-event dry period. The dry periods between events were deemed part of their preceding
181 rainfall events. As such, the hydrologic performance of the PPs can be more robustly assessed and compared,
182 as the likelihood of including underdrain flow or other variables from the former event in the latter event is
183 reduced.

184 The peak rainfall intensity, total rainfall depth, and 10-day pre-event cumulative rainfall depth (*PRD*)
185 before each rainfall event were calculated. The *PRD* represents the wetness of the surrounding soil and
186 pavement surfaces, and a length of 10 days was considered suitable given the “memory” of soil moisture
187 in urban landscapes (Zhang et al., 2015; Escorihuela and Quintana-Seguí, 2016). In addition, the hydrologic
188 performance indicators (i.e., volume and peak intensity of surface runoff and volume of underdrain flow)
189 for each rainfall event were calculated. Then, the peak reduction (*PR*) and volume reduction (*VR*) of surface
190 runoff were further calculated using Eqs. 2 and 3, respectively. The outflow-to-rainfall volumetric ratio
191 (*RO*), representing the ratio of the total volume of surface runoff and underdrain flow to rainfall volume,
192 was calculated for each rainfall event using Eq. 4. The drawdown times of the PP reservoirs were also
193 calculated, i.e., the times at which the PP reservoir was emptied (reservoir water depth < 5 mm). The

194 drawdown was deemed to have ended if the PP reservoir was not emptied by the end of a rainfall event.

195 Together, these indicators reflect different aspects of the hydrologic performance of PPs.

$$196 \quad PR = \frac{\max_t R_t - \max_t SR_t}{\max_t R_t} \quad (2)$$

$$197 \quad VR = \sum_{t=0}^T \frac{R_t - SR_t}{R_t} \quad (3)$$

$$198 \quad RO = \sum_{t=0}^T \frac{SR_t + UF_t}{R_t} \quad (4)$$

199 where PR and VR are the peak reduction and volume reduction of surface runoff (%), respectively; RO is
200 the outflow-to-rainfall volumetric ratio; T is the duration of the rainfall event (h); and SR_t , UF_t , and R_t
201 represent surface runoff rate (L/h), underdrain flow rate (L/h), and rainfall intensity (L/h), respectively.

202 During this study, the surface runoffs from both fully and partially exfiltrating PPs were drained to the
203 same trench drain and were thus measured altogether. As such, the PR and VR values of fully and partially
204 exfiltrating PPs cannot be distinguished and compared. However, the underdrain flow was only measured
205 for partially exfiltrating PPs, and the reservoir water depths in both types of PP were measured
206 independently, allowing comparison of their RO and drawdown times.

207

208 3. Results

209 3.1 Time series analysis

210 Figure 3 shows the time series data for all three PPs over the study period. Compared with Panels #1
211 and #2, Panel #3 performed better in reducing the peak of surface runoff. For example, for the rainfall
212 events on June 13, July 4, and July 18, the peak intensities of surface runoff were 85, 64, and 38 mm/h in
213 Panel #1 and 41, 47, and 44 mm/h in Panel #2, respectively, but only 22, 4, and 5 mm/h in Panel #3 (Figures
214 3a and 3b).

215 The peak intensity of underdrain flow was somewhat comparable among the three PPs. For the rainfall
216 events on June 13, the peak intensity of underdrain flow was higher in Panel #1 (239 mm/h) and lower in
217 Panels #2 (60 mm/h) and #3 (121 mm/h). In contrast, for the events on July 4 and July 18, the peak
218 intensities were 45 and 53 mm/h in Panel #1, 39 and 73 mm/h in Panel #2, and 21 and 64 mm/h in Panel
219 #3, respectively (Figure 3b). However, the patterns of underdrain flow for Panels #1 and #2 differed
220 markedly from that of Panel #3. For Panel #3, the underdrain flow hydrograph was similar to that for surface
221 runoff, and the underdrain flow decreased quickly after the rainfall peaks. However, the underdrain flow
222 hydrographs for Panels #1 and #2 clearly showed slow recessions at the tails of the hydrographs, indicating
223 that underdrain flow was generated continuously during the dry periods after rainfalls (Figure 3c). Therefore,
224 although the peak intensity of underdrain flow in Panels #1 and #2 was comparable to that of Panel #3, the
225 depth of underdrain flow in these two panels may be greater. Using the event on July 4 as an example,
226 although the peak intensity of underdrain flow was comparable among the three PPs, the underdrain flow
227 depths were 265 and 231 mm in Panels #1 and #2, respectively, but only 10 mm in Panel #3.

228 The hydrographs for reservoir water depth in Panels #1 and #2 also differed from that in Panel #3. The
229 reservoir water depth in Panel #3, especially in the fully exfiltrating section, was low with substantial noisy
230 data due to the relatively large sensor errors when measuring low water pressure. In comparison, the
231 reservoir water depths in Panels #1 and #2 were much higher. In addition, the reservoir water depths in
232 Panels #1 and #2 experienced slower drawdown than that in Panel #3, which is consistent with the
233 hydrographs for underdrain flow. Using the event on July 18 as an example, the peak reservoir water depths
234 for fully exfiltrating PPs in Panels #1 and #2 were 264 and 379 mm, but that for Panel #3 was only 9 mm.
235 Drawdown in Panels #1 and #2 took 82 and 81 hours, respectively, whereas that in Panel #3 took only one
236 hour (Figure 3d).

237 The difference in patterns of underdrain flow and reservoir water depth between Panels #1 and #2 and
238 Panel #3 can be more clearly seen from the June 12 – July 30 time series shown in Figure 4. This period
239 was specifically chosen for analysis because of its more extreme rainfall events and greater responses of

240 runoff and underdrain flow. For example, although only minor rainfall occurred between June 13 and 17
241 and between July 16 and 25, the PP reservoir was never emptied (Figure 4d-1 and 4d-2) and there was
242 consistent underdrain flow, particularly in Panel #1 (Figure 4c-1 and 4c-2). Using June 13 – 17 as an
243 example, with only 37.2 mm of rainfall on Jun 14 and June 15 – 16, the rate of underdrain flow was
244 consistently ~ 5 mm/h after rainfall for ~ 10 days, and its depth was 1234.2 mm over this period. This was
245 markedly different from Panel #3, in which the underdrain flow showed a rapid response to rainfall and
246 decreased quickly, with almost no underdrain flow during the dry periods between events (Figure 4c-1).

247 The hydrographs for reservoir water depths in partially exfiltrating Panels #1 and #2 showed different
248 responses to rainfall, but they recessed to similar levels and fluctuated together after drawdown. As shown
249 in Figure 4d-1 and 4d-2, during the rainfall events on June 13 and July 4, the partial-exfiltrating PPs in
250 Panels #1 and #2 initially increased to different levels. However, after the rainfall, they recessed at different
251 rates and reached similar levels after approximately 1 day and then fluctuated together; this similarity in
252 water depth hydrographs was not observed for Panel #3.

253 **3.2 Wavelet analysis**

254 To further compare the hydrologic performance of different PPs, the wavelet power spectra of the
255 datasets were obtained, as shown in Figure 5. Consistent with the time series shown in Figure 3, surface
256 runoff in Panels #1 and #2 was generated mostly around June – July, as shown by the high and significant
257 wavelet power during that period. Compared with rainfall, the surface runoff in Panels #1 and #2 fluctuated
258 at coarser temporal scales over the same period (Figure 5a-1, 5a-2, 5b-1, and 5b-2). For Panel #3, the
259 spectrum of surface runoff was very similar to that of rainfall; surface runoff was generated relatively
260 uniformly throughout the period (Figure 5a-3 and 5b-3). Overall, the time-averaged wavelet power spectra
261 of rainfall and surface runoff were very similar among the PPs (Figure 5a-4 and 5b-4).

262 In comparison, the differences in wavelet powers of underdrain flow and reservoir water depths among
263 the PP panels were more significant. Compared with Panel #3, the wavelet powers of underdrain flow and

264 reservoir water depths for Panels #1 and #2 were significantly greater (Figure 5c-1 – 5c-3, 5d-1 – 5d-3, and
265 5e-1 – 5e-3). Large regions of high wavelet power of underdrain flow were observed during the wet season
266 (i.e., June – September). Given the very low water depth in Panel #3 (as shown in Figures 3d, 4d-1, and 4d-
267 2), the reservoir water depth in the panel fluctuated at finer temporal scales, and noisy data were common
268 at fine temporal scales due to errors in the water level dataloggers (Figure 5d-3 and 5e-3).

269 The differences among panels can be more clearly seen from the time-averaged wavelet powers shown
270 in Figure 5c-4, 5d-4, and 5e-4. The wavelet powers of underdrain flow and reservoir water depths for Panels
271 #1 and #2 were very similar, and their wavelet powers at temporal scales coarser than 50 hours were
272 significantly greater than that of Panel #3. This is consistent with Figure 4, which shows that the underdrain
273 flows and reservoir water depths of Panels #1 and #2 had longer-term fluctuations than those in Panel #3.

274 **3.3 Hydrologic performance analysis**

275 *3.3.1 Runoff reduction*

276 Figures 6 illustrates the performance of the PPs with respect to runoff control, represented by the runoff
277 peak reduction (*PR*) and runoff volume reduction (*VR*). The *PR* and *VR* of the three PPs were high and
278 comparable ($0.25 < p < 0.60$ for *PR*; $0.35 < p < 0.69$ for *VR*). For $> 90\%$ of the rainfall events, the *PR* was
279 between 70 % and 100 % (Figure 6a and 6b), and the *VR* was between 90 % and 100 % (Figure 6c and 6d).
280 In contrast, the *PR* and *VR* were slightly higher and their ranges of variation smaller in Panel #3 due to its
281 better runoff reduction during extreme rainfall events. As shown in the exceedance probability graphs
282 (Figure 6a and 6c), the *PR* and *VR* in Panel #3 are slightly lower than those of Panels #1 and #2 for
283 exceedance probability ranges of 0 % – 40 % and 0 % – 60 %, respectively, whereas they are greater when
284 the exceedance probability exceeds 40 % and 60 % for *PR* and *VR*, respectively. The smaller range of
285 variation in the *PR* and *VR* in Panel #3 is represented by the thinner boxes shown in Figure 6b and 6d.

286 Figure 7 further illustrates the temporal variation of *PR* and *VR* and their relationship with *RD* and
287 *PRD*. Overall, both *PR* and *VR* were lower during wetter periods, especially between June and August

288 when there were frequent continuous rainfall events. This was reflected in the greater *RD* and *PRD* values
289 during that period (Figure 7a). Compared with *VR*, which was relatively stable, *PR* showed greater
290 variation during the monitoring period, especially for Panels #1 and #2. During October, in which very little
291 rainfall was recorded and pavement surfaces were dry, the *VR* in Panels #1 and #2 was close to 100 %, but
292 the *PR* of corresponding events ranged from 50 % to 100 % (Figure 7b and 7c). The *PR* was lower overall
293 for more extreme rainfall events, forming a negative relationship between *PR* and rainfall depth ($R^2 = 0.42$
294 and 0.27, RMSE = 13.54 and 14.19 for Panels #1 and #2 respectively). The *PR* for Panels #1 and #2 dropped
295 from 90 % – 100 % to 40 % – 50 % when rainfall depth increased from 1 – 10 mm to around 100 – 200
296 mm (Figure 7d). The *VR* was also lower for rainfall events with greater depth, but the correlation was not
297 statistically significant ($R^2 = 0.09$ and 0.03, RMSE = 4.20 and 3.77 for Panels #1 and #2 respectively). The
298 *VR* for Panels #1 and #2 also dropped from 90 % – 100 % to ~ 50 % when rainfall depth increased from 1
299 – 10 mm to 100 – 200 mm (Figure 7e). In contrast, the *PR* and *VR* in Panel #3 were not as sensitive to
300 rainfall depth, which remained at around 70 % – 100 % for almost all the rainfall events (Figure 7d and 7e).

301 3.3.2 Water balance

302 Figure 8 illustrates the outflow-to-rainfall volumetric ratio (*RO*; Figure 8a and 8b) in the three PPs. The
303 result is consistent with the observations made in the time series shown in Figures 3 and 4. For Panel #3,
304 the *RO* remained around or lower than 1 for most of the rainfall events because the underdrain flow
305 responded quickly to rainfall and subsequently decreased (Figure 8a and 8b). In contrast, the *RO* was
306 significantly larger for Panels #1 ($p < 0.01$) and #2 ($p < 0.01$) because of the large amount of underdrain
307 flow during dry periods. The 75th percentiles of *RO* for Panels #1 and #2, represented as the sides of the
308 boxes, were around 7.5 and 2 respectively, and the *RO* reached 35 – 45 and 10 – 25 in Panels #1 and #2,
309 respectively, during some rainfall events (Figure 8b).

310 The total depths of rainfall and outflow during the monitoring period are summarized and illustrated in
311 Figure 8c. Rainfall is shown as positive values, whereas outflow is denoted by negative values. In Panel #3,

312 the outflow depth was lower than that of the rainfall; this difference may be due to factors such as
313 exfiltration and evapotranspiration. However, in Panels #1 and #2, the outflow depths were significantly
314 larger than those of rainfall. The outflow depths during the monitoring period, which consisted of 92 % –
315 94 % underdrain flow and 6 % – 8 % surface runoff, were around six and three times the rainfall depths for
316 those two panels, respectively. For some rainfall events, the outflow depth even measured dozens of times
317 the rainfall depth (Figure 8a and 8b).

318 Figure 9a further illustrates the temporal variation of *RO* during the monitoring period. The *RO* was
319 highest during May–August for all three PPs. The highest *RO* in the three PPs occurred in May, August,
320 and June for Panels #1, #2, and #3 respectively. No significant relationship was observed between total
321 rainfall depth and *RO* ($R^2 = 0.02, 0.004$, and 0.004 , and RMSE = 53.78, 25.50, and 0.29 for Panels #1, #2,
322 and #3 respectively). In Panels #1 and #2, for rainfall events of a few millimeters in depth, the *RO* was 100
323 – 150 and 20 – 30 in Panels #1 and #2, respectively (Figure 9b). However, although not statistically
324 significant ($R^2 = 0.006$ and 0.04 , and RMSE = 54.08 and 25.01 for Panels #1 and #2 respectively), *RO* was
325 greater when the 10-day pre-event cumulative rainfall was greater, especially in Panels #1 and #2 (Figure
326 9c). For rainfall events that had less than a few millimeters cumulative rainfall before the events, the *RO*
327 was mostly around 1 – 2 for Panels #1 and #2 and <1 for Panel #3. During rainfall events that had 10 – 100
328 mm prior cumulative rainfall, the *RO* was in the range of 1 – 100 for Panels #1 and #2 (Figure 9c).

329 3.3.3 Drawdown time

330 The drawdown time of the PP reservoirs is shown in Figure 10. For the fully exfiltrating Panel #3, the
331 drawdown times of 80 % and 97 % of the rainfall events were less than 24 hours and 72 hours (Figure 10a),
332 which are normally the design thresholds for a PP. However, the drawdown times were significantly longer
333 in Panels #1 ($p < 0.01$) and #2 ($p < 0.01$). The drawdown times of around 35 % and 20 % of the rainfall
334 events in Panels #1 and #2 were greater than 24 hours and 72 hours, respectively (Figure 10a and 10b). The
335 drawdown time even reached > 200 hours for some events. The lower permeability of the clay soils beneath
336 Panels #1 and #2 compared with those below Panel #3 (i.e., permeability of 0.7 – 9.5 mm/h versus 60.5 –

337 789.6 mm/h) may be one of the causes of the longer drawdown times. Although underdrains were installed
338 in the partially exfiltrating PPs, their drawdown times were very similar to those of fully exfiltrating PPs
339 without underdrains ($p = 0.69, 0.86$, and 0.54 for Panels #1, #2, and #3 respectively; Figure 10a and 10b).

340 Figure 11 illustrates the temporal variation in drawdown times during the monitoring period. Rainfall
341 events with long drawdown times occurred throughout the period with no significant temporal variation.
342 The drawdown time for all PPs was slightly lower during the wet periods between June and August. This
343 was because the frequency of rainfall events was higher during that period; for most rainfall events during
344 this period, the PP reservoirs were not completely empty by the end of the event (Figure 11a and 11b). The
345 drawdown time of the partially exfiltrating section of Panel #3 correlated with rainfall depth to an extent
346 ($R^2 = 0.26$, $RMSE = 40.54$; Figure 11c), whereas weaker correlation with rainfall depth was observed for
347 Panels #1 and #2 ($R^2 = 0.006$ and 0.008 , and $RMSE = 77.34$ and 76.67 for the partially exfiltrating sections
348 of Panels #1 and #2, respectively; $R^2 = 0.007$ and 0.01 , and $RMSE = 76.97$ and 74.84 for the fully
349 exfiltrating sections of Panels #1 and #2, respectively). No significant relationship was observed between
350 10-day pre-event cumulative rainfall depth and drawdown time in any of the three PPs because their
351 reservoirs were not completely emptied following several events, as mentioned above ($R^2 = 0.03, 0.02$, and
352 0.01 , and $RMSE = 76.52, 76.11$, and 46.53 for partially exfiltrating PPs; $R^2 = 0.02, 0.03$, and <0.01 , and
353 $RMSE = 76.29, 74.22$, and 25.04 for fully exfiltrating PPs; Figure 11e and 11f).

354

355 4. Discussion

356 4.1 Effect of shallow groundwater on the hydrologic performance of permeable pavements

357 All PPs achieved 70 % – 100 % and 90 % – 100 % in peak and volume reductions on surface runoff
358 for 90 % of the rainfall events, even after one year of service without maintenance. Similar runoff reduction
359 performance was reported elsewhere (LeFevre et al., 2010; Liu and Chui, 2017), but the performance was
360 higher than some other underdrained PPs (Drake et al., 2014; Alam et al., 2019). This high runoff reduction

361 rate may be partially attributable to the high permeability of the surface pavers (Li et al., 2013). Despite no
362 maintenance being conducted during the monitoring period, the surface pavers were not significantly
363 clogged and remained functional owing to the relatively low traffic load at these sites. PPs with similar
364 long-term durability and consistency in runoff reduction were reported (Brattebo and Booth, 2003).
365 However, lower permeability and poorer performance is expected after few years of operation without
366 proper maintenance (Bean et al., 2007; Sansalone et al., 2012; Chen et al., 2020). In addition, the runoff
367 reduction rate is also expected to decrease with the increase of rainfall intensity (Qin et al., 2013; Liu and
368 Chui, 2017), increase in surface slope (Palla et al., 2015; Hou et al., 2019), and the increase in spatial scale
369 of concern (Hu et al., 2018; Bell et al., 2020).

370 There are several indications that Panels #1 and #2 were affected by subsurface water environments,
371 such as soil moisture and nearby shallow groundwater. Continuous underdrain flow generated in the days
372 following rainfall events in Panels #1 and #2 resulted in large amounts of underdrain flow (92 % – 94 % in
373 water balance; six and three times the rainfall depths for Panels #1 and #2, respectively), which indicates
374 that external subsurface water flowed into the pavement systems and was discharged through underdrains.
375 The depths of the observed underdrain flows were comparable to the numerical simulation results obtained
376 by Zhang et al. (2018). They considered groundwater conditions in the simulation of GI and quantified the
377 water budget of PPs in respect to different rainfall events, surrounding soils, and groundwater table depths,
378 and found that underdrain flow accounted for 79 % – 93 % of the outflow. Although the specific sources
379 of this extraneous flow cannot be tracked accurately owing to the lack of soil moisture or groundwater level
380 data, this substantial extraneous flow might have been derived from either infiltrated stormwater from
381 pervious covers in proximity to the PPs or from groundwater when there is a positive pressure gradient
382 toward the pavement reservoir (Herrera, 2013; Brown and Borst, 2014; Zhang and Chui, 2019). Some of
383 the extraneous flows could have been derived from a perched groundwater table formed by low-
384 permeability clayey soils in proximity to the PPs (e.g., Panels #1 and #2) (Schleia et al., 2014). However,
385 considering the substantial amount of extraneous water, it more likely came from shallow groundwater.

386 The groundwater table rose in response to low dissipation rates during rainfall events (Locatelli et al., 2015;
387 Jackisch and Weiler, 2017; Zhang and Chui, 2017).

388 Although the slow drawdown for fully exfiltrating PPs may be due to the low-permeability clayey soils
389 near Panels #1 and #2, the slow drawdown for partially exfiltrating PPs with underdrains indicates that
390 there was high soil matric potential near the PPs. Furthermore, the consistent fluctuation of reservoir water
391 depth hydrographs after rainfall events in the partially exfiltrating sections of Panels #1 and #2 demonstrate
392 that the pavements may be hydraulically connected to shallow or perched groundwater formed by low-
393 permeability soils.

394 **4.2 Impact of underdrains on the hydrologic performance of permeable pavements**

395 The high runoff reduction rates of the PPs observed in this study may be partially attributable to the
396 installation of underdrains in partially exfiltrating PPs in addition to the use of high-permeability surface
397 pavers. By discharging the stored water more quickly, underdrains can, to an extent, help maintain the
398 storage capacity of PPs in preparation for consecutive rainfall events (Qin et al., 2013; Zhang and Chui,
399 2020). The effectiveness of underdrains in increasing storage capacity and reducing peak flow has been
400 demonstrated by several studies (Collins et al., 2008; Drake, 2013; Zhang and Chui, 2020). However, the
401 results of the present study demonstrate that the drawdown time was still >24 and >72 hours for 35% and
402 20% of the rainfall events, respectively, in partially exfiltrating PPs with underdrains. In other words,
403 although underdrains reduced the peak reservoir water depth, they did not efficiently empty the PP
404 reservoirs and maintain drawdown times within design standards (Eisenberg, 2013) when the groundwater
405 table was shallow.

406 The underdrains used in this study contributed 92 % – 94 % of the outflow, constituting both stormwater
407 and groundwater, the depth of which was three to six times that of the rainfall during the monitoring period.
408 Although most of the flow was of a low rate, its volume was surprisingly large. In addition, although the
409 flow is drained into sewer systems instead of onto the ground, this takes up a certain amount of the drainage

410 and storage capacity of the sewer systems and increases the risk and frequency of system over-capacity
411 (Zhang et al., 2018; Zhang and Chui, 2019). This problem may not be as severe for separate stormwater
412 systems because most of the underdrain flow occurs during dry periods and act as base flows, as shown in
413 Figures 3 and 4. However, this may be more problematic for combined sewer systems because the water is
414 combined with sewerage and drained together to wastewater treatment plants. It can induce pulses in the
415 volume and nutrient concentration of the inflows, and thus affect their treatment effectiveness (Weiss et al.,
416 2002; Ellis and Bertrand-Krajewski, 2010; Zhang et al., 2017; Razaee and Tabesh, 2022).

417 **4.3 Implications for the design of permeable pavements**

418 As demonstrated in this study, PPs are efficient stormwater management practices, given their high
419 surface permeability and runoff reduction rates. They present a useful GI option, especially for locations
420 that require pavers (e.g., parking lots), have surface runoff with limited pollution and containing few solids,
421 or that are accessible for appropriate maintenance. However, the discharge of infiltrated stormwater and
422 groundwater through underdrains into sewer systems and the deficiency of underdrains in shortening the
423 drawdown times of PPs observed in this study raise questions regarding (1) whether implementing
424 underdrained PPs in shallow groundwater environments is worthwhile, and (2) the appropriate designs for
425 PPs in shallow groundwater environments should they need to be implemented.

426 Although the limitations of underdrained PPs are demonstrated in this study, their effectiveness cannot
427 be ignored. The adoption and design of underdrains in PPs in shallow groundwater environments should
428 consider not only climatic factors (e.g., rainfall characteristics) but also hydrogeologic conditions (e.g., soil
429 types, groundwater table conditions), given the distinct hydrologic performances of the PPs in the two
430 studied locations. The permeability of surrounding soils is normally the main limiting factor in the
431 infiltration process (Warnaars et al., 1999; Zhang and Chui, 2020), and soil type and groundwater table
432 conditions can determine the risk of extraneous flows and the drawdown rate/time of the system (Maimone
433 et al., 2011; Nemirovsky et al., 2015). Detailed investigations (e.g., groundwater table depth measurements,
434 soil taxonomic tests, and permeability tests) are recommended to determine the hydrogeologic conditions

435 of a site, which control the GI performance in a complex and dynamic manner (Jackisch and Weiler, 2015).
436 For areas without shallow groundwater or low-permeability soils, underdrains are not especially necessary
437 if the drawdown time is within an acceptable range, based on estimations from physical and/or numerical
438 experiments. For areas with shallow groundwater, low-permeability soils, or shallow impermeable bedrock
439 layers, an underdrain is normally necessary, but it should be elevated to allow some exfiltration and to
440 reduce the amount of groundwater discharge through the underdrain (Zhang et al., 2018; Zhang and Chui,
441 2020). Elevated underdrains may also create an internal water storage zone, which has proved beneficial
442 for both water quantity (e.g., allowing exfiltration) and quality control (e.g., nitrogen removal) (Collins et
443 al., 2008; Fassman and Blackbourn, 2010; Braswell et al., 2018). The specific elevation of underdrains
444 needs to be determined on a case-by-case basis upon consideration of groundwater table elevation, soil
445 permeability, and rainfall characteristics. Overall, higher underdrains should be installed if the groundwater
446 table is high, the soil is more permeable, and the rainfall is less frequent. Flow restrictors can also be
447 implemented in underdrains to restrict the maximum flow rate in these cases to strike a balance between
448 runoff reduction and underdrain flow control. They have been recommended (GVRD, 2005) and
449 demonstrated as being efficient by Drake et al. (2014) for areas with low-permeability subsoils.

450 In addition to field monitoring, as conducted in this study, computational tools such as numerical
451 models can be useful prior to design and installation to determine the optimal designs for PPs. In addition
452 to facilitating the selection of appropriate surface pavers, media materials, and thickness of the pavement
453 subbase, pre-design computation can help to determine whether to install an underdrain, the elevation at
454 which it should be installed, and whether a flow restrictor is necessary (Li et al., 2017). Real-time control
455 (RTC) systems can also be used with flow restrictors to optimize the PP performance in areas with shallow
456 groundwater environments, on the basis not only of the water level but also of the moisture content of media
457 or surrounding soils (Kertesz et al., 2014; Oberascher et al., 2018; Xu et al., 2021). Studies have found that
458 water level and soil moisture-based controls have an impact on the water quality treatment performance of
459 GI (Persaud et al., 2019; Shen et al., 2020). More specifically, if the groundwater level is lower than the

460 base of the pavement, the underdrain can be opened to allow a pre-event discharge when the reservoir water
461 level and soil moisture both reach certain thresholds. This is because a lower exfiltration rate is expected,
462 and more storage space is needed for the upcoming rainfall events. If the groundwater table reaches the
463 pavement base, RTC algorithms should be able to identify whether the water in the reservoir stems from
464 stormwater runoff, groundwater, or a combination of the two based on the time–frequency characteristics
465 of the reservoir water depth and the moisture condition of the surrounding soils. If the water stems from
466 groundwater, the underdrain can be closed until rainfall runoff inflow is identified to avoid continuous
467 drainage of groundwater into drainage systems during dry periods, as observed in this study.

468 There are some limitations to this study. First, the surface environments near the studied PPs (e.g., the
469 moisture content of surrounding soils and groundwater levels) were not monitored. Such monitoring may
470 allow better determination of the potential infiltration of soil water and groundwater, and better estimation
471 of the water balance of the PP systems. Second, the surface runoff of both fully and partially exfiltrating
472 PPs was monitored together; therefore, their individual surface runoff controls cannot be distinguished and
473 compared.

474

475 **5. Conclusion**

476 The hydrologic performances of three permeable pavements (PPs) at two sites in Hong Kong were
477 monitored for seven months during the wet season in 2017. The characteristics of the time series were
478 evaluated, and the hydrologic performance of the PPs – represented by the peak reduction in surface runoff,
479 volume reduction of surface runoff, outflow-to-rainfall volumetric ratio, and drawdown time of the PP
480 reservoir – were assessed for different rainfall events. The primary contributions of this study included
481 demonstrating the impact of shallow groundwater on the runoff control performance of underdrained PPs
482 and exploring the appropriate designs of underdrains in PPs in shallow groundwater environments. Our
483 results demonstrate several key points:

484 First, all three PPs achieved 70 % – 100 % and 90 % – 100 % in peak and volume reductions on surface
485 runoff for 90 % of the rainfall events, even after one year of service without maintenance, given their high-
486 permeability surface pavers and underdrains, which reduced the peak reservoir water depth and avoided
487 frequent generation of surface runoff.

488 Second, despite the comparable runoff reduction performance among the PPs, each showed distinct
489 performance in water balance and drawdown owing to different subsurface hydrogeologic conditions (soil
490 type and groundwater table conditions). Owing to shallow groundwater tables nearby and extraneous flows
491 into the pavement systems, Panels #1 and #2 generated continuous and large volumes of underdrain flow
492 during dry days after rainfall events (92 % – 94 % water balance; six and three times the rainfall depths for
493 Panels #1 and #2 respectively) and showed unexpectedly long drawdown times not only during wet seasons,
494 but also in relatively dry periods (> 72 hours for 20 % of the rainfall events).

495 Underdrains were found to be ineffective in shallow groundwater areas, as they did not reduce
496 drawdown time and discharge groundwater into sewer systems. Thus, the adoption and design of
497 underdrains in PPs should be more carefully considered; in shallow groundwater environments, climatic
498 factors (e.g., rainfall characteristics) should be considered alongside hydrogeologic conditions (e.g., soil
499 type and groundwater table conditions). Detailed site investigations (e.g., groundwater table depth
500 measurements, soil taxonomic tests, and permeability tests) are recommended to better understand the
501 hydrogeologic conditions. For areas without shallow groundwater or low-permeability soils, underdrains
502 are not necessary if the drawdown time is within an acceptable range, based on estimations from physical
503 and/or numerical experiments. For areas with shallow groundwater, low-permeability soils, or shallow
504 impermeable bedrock layers, an underdrain is normally necessary, but should be elevated to allow some
505 exfiltration and reduce the amount of groundwater discharged through the underdrain. Flow restrictors can
506 be implemented in these underdrains to restrict the maximum flow rate to strike a balance between runoff
507 reduction and the control of underdrain flow. Flow restrictors can be used alongside real-time control

508 systems to reduce the discharge of groundwater through underdrains and better utilize the storage capacity
509 of PPs.

510

511 **Data Availability Statement**

512 All data generated or used during the study are proprietary or confidential in nature and may not be provided.
513 All codes generated or used during the study are available from the corresponding author upon reasonable
514 request. (Codes used to identify rainfall events and calculate hydrologic indicators.)

515

516 **Acknowledgements**

517 This study was funded by the Porous Pavement Hydrological Monitoring and Experiments (Contract No.
518 SPW 01/2016) of Drainage Services Department, the Government of the Hong Kong Special
519 Administrative Region of the People's Republic of China. Viewpoints expressed in this paper are those of
520 the writers and do not reflect policy or otherwise of the funding agency. Special thanks are extended to
521 Kevin Ka Yang Cheng and Man Nin Chris Lau from AECOM, Lau Wing Wah, Konica Cheung, Ruby Hu
522 and Michael Leung from Drainage Services Department, Ziwen An, Ken Lee and Chak Hong Tong from
523 The University of Hong Kong who contributed substantially during the field monitoring.

524

525 **References**

526 Ahiablame, L.M., Engel, B.A., and Chaubey, I. 2012. Effectiveness of low impact development practices: literature
527 review and suggestions for future research. *Water, Air, & Soil Pollut.* 223(7), 4253-4273.
528 <https://doi.org/10.1007/s11270-012-1189-2>.

529 Alam, T., Mahmoud, A., Jones, K.D., Bezares-Cruz, J.C. and Guerrero, J., 2019. A comparison of three types of
530 permeable pavements for urban runoff mitigation in the semi-arid South Texas, USA. *Water* 11(10), 1992.
531 <https://doi.org/10.3390/w11101992>

532 Ball, J.E., and Rankin, K., 2010. The hydrological performance of a permeable pavement. *Urban Water J.* 7(2), 79-
533 90. <https://doi.org/10.1080/15730620902969773>.

534 Barbosa, A.E., Fernandes, J.N., and David, L.M., 2012. Key issues for sustainable urban stormwater management.
535 *Water Res.* 46(20), 6787-6798. <https://doi.org/10.1016/j.watres.2012.05.029>.

536 Bean, E.Z., Hunt, W.F., and Bidelsbach, D.A., 2007. Field survey of permeable pavement surface infiltration rates. *J.*
537 *Irrig. Drain. Eng.* 133(3), 249-255. [https://doi.org/10.1061/\(ASCE\)0733-9437\(2007\)133:3\(249\)](https://doi.org/10.1061/(ASCE)0733-9437(2007)133:3(249)).

538 Bell, C.D., Wolfand, J.M., Panos, C.L., Bhaskar, A.S., Gilliom, R.L., Hogue, T.S., Hopkins, K.G. and Jefferson, A.J.,
539 2020. Stormwater control impacts on runoff volume and peak flow: A meta-analysis of watershed modelling
540 studies. *Hydrol. Process.* 34(14), 3134-3152. <https://doi.org/10.1002/hyp.13784>

541 Bellezoni, R.A., Meng, F., He, P., and Seto, K.C., 2021. Understanding and conceptualizing how urban green and
542 blue infrastructure affects the food, water, and energy nexus: A synthesis of the literature. *Journal of Cleaner
543 Production*, 125825 (this issue). <https://doi.org/10.1016/j.jclepro.2021.125825>.

544 Bentarzi, Y., Ghenaim, A., Terfous, A., Wanko, A., Feugeas, F., Poulet, J.B., and Mosé, R., 2016. Hydrodynamic
545 behaviour of a new permeable pavement material under high rainfall conditions. *Urban Water J.* 13(7), 687-696.
546 <https://doi.org/10.1080/1573062X.2015.1024688>.

547 Booth, D.B. and Leavitt, J., 1999. Field evaluation of permeable pavement systems for improved stormwater
548 management. *J. Am. Plan. Assoc.* 65(3), 314-325. <https://doi.org/10.1080/01944369908976060>.

549 Braswell, A.S., Winston, R.J., and Hunt, W.F., 2018. Hydrologic and water quality performance of permeable
550 pavement with internal water storage over a clay soil in Durham, North Carolina. *J. Environ. Manage.* 224, 277-
551 287. <https://doi.org/10.1016/j.jenvman.2018.07.040>.

552 Brattebo, B.O. and Booth, D.B., 2003. Long-term stormwater quantity and quality performance of permeable
553 pavement systems. *Water Res.* 37(18), 4369-4376. [https://doi.org/10.1016/S0043-1354\(03\)00410-X](https://doi.org/10.1016/S0043-1354(03)00410-X)

554 Brown, R.A., Borst, M., 2014. Evaluation of surface and subsurface processes in permeable pavement infiltration
555 trenches. *J. Hydrol. Eng.* 20 (2), 04014041. [https://doi.org/10.1061/\(ASCE\)HE.1943-5584.0001016](https://doi.org/10.1061/(ASCE)HE.1943-5584.0001016)

556 Brown, R.R., Keath, N., and Wong, T.H.F., 2009. Urban water management in cities: historical, current and future
557 regimes. *Water Sci. Technol.* 59(5), 847-855. <https://doi.org/10.2166/wst.2009.029>.

558 Chen, L.M., Chen, J.W., Lecher, T., Chen, T.H. and Davidson, P., 2020. Assessment of clogging of permeable
559 pavements by measuring change in permeability. *Sci. Total Environ.* 749, 141352.
560 <https://doi.org/10.1016/j.scitotenv.2020.141352>

561 Chopra, M., Kakuturu, S., Ballock, C., Spence, J., and Wanielista, M., 2009. Effect of rejuvenation methods on the
562 infiltration rates of pervious concrete pavements. *J. Hydrol. Eng.* 15(6), 426-433.
563 [https://doi.org/10.1061/\(ASCE\)HE.1943-5584.0000117](https://doi.org/10.1061/(ASCE)HE.1943-5584.0000117).

564 Collins, K.A., Hunt, W.F., and Hathaway, J.M., 2008. Hydrologic comparison of four types of permeable pavement
565 and standard asphalt in eastern North Carolina. *J. Hydrol. Eng.* 13(12), 1146-1157.
566 [https://doi.org/10.1061/\(ASCE\)1084-0699\(2008\)13:12\(1146\)](https://doi.org/10.1061/(ASCE)1084-0699(2008)13:12(1146)).

567 Collins, K.A., Hunt, W.F., and Hathaway, J.M., 2009. Side-by-side comparison of nitrogen species removal for four
568 types of permeable pavement and standard asphalt in eastern North Carolina. *J. Hydrol. Eng.* 15(6), 512-521.
569 [https://doi.org/10.1061/\(ASCE\)HE.1943-5584.0000139](https://doi.org/10.1061/(ASCE)HE.1943-5584.0000139).

570 Datry, T., Malard, F., and Gibert, J., 2004. Dynamics of solutes and dissolved oxygen in shallow urban groundwater
571 below a stormwater infiltration basin. *Sci. Total Environ.* 329(1-3), 215-229.
572 <https://doi.org/10.1016/j.scitotenv.2004.02.022>

573 Dietz, M.E., 2007. Low impact development practices: A review of current research and recommendations for future
574 directions. *Water, Air, & Soil Pollut.* 186(1-4), 351-363. <https://doi.org/10.1007/s11270-007-9484-z>.

575 Drake, J., 2013. Performance and operation of partial infiltration permeable pavement systems in the Ontario climate.
576 Thesis (PhD), University of Guelph.

577 Drake, J., Bradford, A., and Van Seters, T., 2014. Hydrologic performance of three partial-infiltration permeable
578 pavements in a cold climate over low permeability soil. *J. Hydrol. Eng.* 19(9), 04014016.
579 [https://doi.org/10.1061/\(ASCE\)HE.1943-5584.0000943](https://doi.org/10.1061/(ASCE)HE.1943-5584.0000943).

580 Dunkerley, D.L., 2010. How do the rain rates of sub-event intervals such as the maximum 5-and 15-min rates (I5 or
581 I30) relate to the properties of the enclosing rainfall event? *Hydrol. Process.* 24(17), 2425-2439.
582 <https://doi.org/10.1002/hyp.7650>.

583 Eisenberg, B., Lindow, K.C., and Smith, D.R., 2013. *Permeable Pavements: Recommended Design Guidelines*.
584 American Society of Civil Engineers (ASCE). <https://ascelibrary.org/doi/book/10.1061/9780784413784>.

585 Ellis, B. and Bertrand-Krajewski, J.L., 2010. *Assessing infiltration and exfiltration on the performance of urban sewer*
586 *systems*. IWA Publishing. <https://doi.org/10.2166/9781780401652>.

587 Escorihuela, M.J. and Quintana-Seguí, P., 2016. Comparison of remote sensing and simulated soil moisture datasets
588 in Mediterranean landscapes. *Remote Sens. Environ.* 180, 99-114. <https://doi.org/10.1016/j.rse.2016.02.046>

589 Fassman, E.A. and Blackbourn, S., 2010. Urban runoff mitigation by a permeable pavement system over impermeable
590 soils. *J. Hydrol. Eng.* 15(6), 475-485. [https://doi.org/10.1061/\(ASCE\)HE.1943-5584.0000238](https://doi.org/10.1061/(ASCE)HE.1943-5584.0000238).

591 Fischer, D., Charles, E.G., and Baehr, A.L., 2003. Effects of stormwater infiltration on quality of groundwater beneath
592 retention and detention basins. *J. Environ. Eng.* 129(5), 464-471. [https://doi.org/10.1061/\(ASCE\)0733-9372\(2003\)129:5\(464\)](https://doi.org/10.1061/(ASCE)0733-9372(2003)129:5(464)).

594 Fletcher, T.D., Shuster, W., Hunt, W.F., Ashley, R., Butler, D., Arthur, S., Trowsdale, S., Barraud, S., Semadeni-
595 Davies, A., Bertrand-Krajewski, J.L., and Mikkelsen, P.S., 2015. SUDS, LID, BMPs, WSUD and more—The
596 evolution and application of terminology surrounding urban drainage. *Urban Water J.* 12(7), 525-542.
597 <https://doi.org/10.1080/1573062X.2014.916314>.

598 Greater Vancouver Regional District (GVRD), 2005. *Stormwater Source Control Design Guidelines 2005*. Prepared
599 by Lanarc Consultants Limited, Kerr Wood Leidal Associates Limited and Goya Ngan.
600 <https://www.waterbucket.ca/rm/sites/wbcrm/documents/media/65.pdf>.

601 Herrera, Central Kitsap community campus low impact development flow monitoring project, Final project report.
602 Prepared for Kitsap County Public Works (Surface and Stormwater management program), Port Orchard,
603 Washington, by Herrera Environmental Consultants, Inc., Seattle, Washington. Feb 4, 2013.

604 Horst, M., Welker, A.L., and Traver, R.G., 2010. Multiyear performance of a pervious concrete infiltration basin BMP.
605 *J. Irrig. Drain. Eng.* 137(6), 352-358. [https://doi.org/10.1061/\(ASCE\)IR.1943-4774.0000302](https://doi.org/10.1061/(ASCE)IR.1943-4774.0000302).

606 Hou, J., Zhang, Y., Tong, Y., Guo, K., Qi, W. and Hinkelmann, R., 2019. Experimental study for effects of terrain
607 features and rainfall intensity on infiltration rate of modelled permeable pavement. *J. Environ. Manage.* 243, 177-
608 186. <https://doi.org/10.1016/j.jenvman.2019.04.096>

609 Hu, M., Zhang, X., Siu, Y.L., Li, Y., Tanaka, K., Yang, H. and Xu, Y., 2018. Flood mitigation by permeable pavements
610 in Chinese sponge city construction. *Water* 10(2), 172. <https://doi.org/10.3390/w10020172>

611 Hu, N., Zhang, J., Xia, S., Han, R., Dai, Z., She, R., Cui, X., and Meng, B., 2020. A field performance evaluation of
612 the periodic maintenance for pervious concrete pavement. *J. Clean. Prod.*, 263, 121463.
613 <https://doi.org/10.1016/j.jclepro.2020.121463>.

614 Huang, J., Valeo, C., He, J., and Chu, A., 2016. Three types of permeable pavements in cold climates: hydraulic and
615 environmental performance. *J. Environ. Eng.* 142(6), 04016025. [https://doi.org/10.1061/\(ASCE\)EE.1943-7870.0001085](https://doi.org/10.1061/(ASCE)EE.1943-7870.0001085).

617 Imran, H.M., Akib, S., and Karim, M.R., 2013. Permeable pavement and stormwater management systems: a review.
618 *Environ. Technol.* 34(18), 2649-2656. <https://doi.org/10.1080/09593330.2013.782573>.

619 Jackisch, N. and Weiler, M., 2017. The hydrologic outcome of a Low Impact Development (LID) site including
620 superposition with streamflow peaks. *Urban Water J.* 14(2), 143-159.
621 <https://doi.org/10.1080/1573062X.2015.1080735>

622 Joo, J., Lee, J., Kim, J., Jun, H., and Jo, D., 2014. Inter-event time definition setting procedure for urban drainage
623 systems. *Water* 6(1), 45-58. <https://doi.org/10.3390/w6010045>.

624 Kertesz, R., Burkhardt, J. and Panguluri, S., 2014. Real-time analysis of moisture and flow data to describe wet
625 weather response in a permeable pavement parking lot. In World Environmental and Water Resources Congress
626 2014 (pp. 985-1000). <https://doi.org/10.1061/9780784413548.099>

627 Knappenberger, T., Jayakaran, A.D., Stark, J.D., and Hinman, C.H., 2017. Monitoring Porous Asphalt Stormwater
628 Infiltration and Outflow. *J. Irrig. Drain. Eng.* 143(8), 04017027. [https://doi.org/10.1061/\(ASCE\)IR.1943-4774.0001197](https://doi.org/10.1061/(ASCE)IR.1943-4774.0001197).

630 Labat, D., Ababou, R., and Mangin, A., 2000. Rainfall–runoff relations for karstic springs. Part II: continuous wavelet
631 and discrete orthogonal multiresolution analyses. *J. Hydrol.* 238(3-4), 149-178. [https://doi.org/10.1016/S0022-1694\(00\)00322-X](https://doi.org/10.1016/S0022-1694(00)00322-X).

633 LeFevre, N.J.B., Watkins Jr, D.W., Gierke, J.S. and Brophy-Price, J., 2010. Hydrologic performance monitoring of
634 an underdrained low-impact development storm-water management system. *J. Irrig. Drain. Eng.* 136(5), 333-
635 339. [https://doi.org/10.1061/\(ASCE\)IR.1943-4774.0000177](https://doi.org/10.1061/(ASCE)IR.1943-4774.0000177)

636 Legret, M., Colandini, V., and Le Marc, C., 1996. Effects of a permeable pavement with reservoir structure on the
637 quality of runoff water and soil. *Sci. Total Environ.* 189, 335-340. [https://doi.org/10.1016/0048-9697\(96\)05228-X](https://doi.org/10.1016/0048-9697(96)05228-X).

639 Lewellyn, C., Lyons, C.E., Traver, R.G., and Wadzuk, B.M. 2015. Evaluation of seasonal and large storm runoff
640 volume capture of an infiltration green infrastructure system. *J. Hydrol. Eng.* 21(1), 04015047.
641 [https://doi.org/10.1061/\(ASCE\)HE.1943-5584.0001257](https://doi.org/10.1061/(ASCE)HE.1943-5584.0001257).

642 Li, H., Kayhanian, M. and Harvey, J.T., 2013. Comparative field permeability measurement of permeable pavements
643 using ASTM C1701 and NCAT permeameter methods. *J. Environ. Manage.* 118, 144-152.
644 <https://doi.org/10.1016/j.jenvman.2013.01.016>

645 Li, J., Deng, C., Li, Y., Li, Y. and Song, J., 2017. Comprehensive benefit evaluation system for low-impact
646 development of urban stormwater management measures. *Water Resour. Manage.* 31(15), 4745-4758.
647 <https://doi.org/10.1007/s11269-017-1776-5>

648 Lin, W., Kim, I.T., Kim, H., and Cho, Y.H., 2013. Water Runoff Characteristics in Porous Block Pavements Using an
649 Accelerated Pavement Tester. *J. Hydrol. Eng.* 19(9), 04014012. [https://doi.org/10.1061/\(ASCE\)HE.1943-5584.0000949](https://doi.org/10.1061/(ASCE)HE.1943-5584.0000949).

650

651 Liu, C.Y. and Chui, T.F.M., 2017. Factors influencing stormwater mitigation in permeable pavement. *Water*, 9(12),
652 988. <https://doi.org/10.3390/w9120988>.

653 Liu, Q., Liu, S., Hu, G., Yang, T., Du, C., and Oeser, M., 2021. Infiltration Capacity and Structural Analysis of
654 Permeable Pavements for Sustainable Urban: A Full-scale Case Study. *J. Clean. Prod.*, 288, 125111.
655 <https://doi.org/10.1016/j.jclepro.2020.125111>.

656 Locatelli, L., Mark, O., Mikkelsen, P.S., Arnbjerg-Nielsen, K., Wong, T., and Binning, P.J. 2015. Determining the
657 extent of groundwater interference on the performance of infiltration trenches. *J. Hydrol.* 529, 1360-1372.
658 <https://doi.org/10.1016/j.jhydrol.2015.08.047>.

659 Maimone, M., O'Rourke, D.E., Knighton, J.O. and Thomas, C.P., 2011. Potential impacts of extensive stormwater
660 infiltration in Philadelphia. *Environ. Eng. Appl. Res. Pract.* 14, 1-12.

661 Martin III, W.D. and Kaye, N.B., 2016. Hydrologic characterization of an underdrained permeable pavement. *J.*
662 *Hydrol. Eng.* 21(2), 04015066. [https://doi.org/10.1061/\(ASCE\)HE.1943-5584.0000873](https://doi.org/10.1061/(ASCE)HE.1943-5584.0000873).

663 Nemirovsky, E.M., Lee, R.S. and Welker, A.L., 2015. Vertical and lateral extent of the influence of a rain garden on
664 the water table. *J. Irrig. Drain. Eng.* 141(3), 04014053. [https://doi.org/10.1061/\(ASCE\)IR.1943-4774.0000799](https://doi.org/10.1061/(ASCE)IR.1943-4774.0000799)

665 Nichols, P.W., White, R., and Lucke, T., 2015. Do sediment type and test durations affect results of laboratory-based,
666 accelerated testing studies of permeable pavement clogging? *Sci. Total Environ.* 511, 786-791.
667 <https://doi.org/10.1016/j.scitotenv.2014.12.040>.

668 Oberascher, M., Zischg, J., Palermo, S.A., Kinzel, C., Rauch, W. and Sitzenfrei, R., 2018, September. Smart rain
669 barrels: Advanced LID management through measurement and control. In International Conference on Urban
670 Drainage Modelling (pp. 777-782). Springer, Cham.

671 Palla, A., Gnecco, I., Carbone, M., Garofalo, G., Lanza, L.G., and Piro, P., 2015. Influence of stratigraphy and slope
672 on the drainage capacity of permeable pavements: Laboratory results. *Urban Water J.* 12(5), 394-403.
673 <https://doi.org/10.1080/1573062X.2014.900091>.

674 Persaud, P.P., Akin, A.A., Kerkez, B., McCarthy, D.T. and Hathaway, J.M., 2019. Real time control schemes for
675 improving water quality from bioretention cells. *Blue-Green Systems*, 1(1), 55-71.
676 <https://doi.org/10.2166/bgs.2019.924>.

677 Pugh, T.A., MacKenzie, A.R., Whyatt, J.D., and Hewitt, C.N., 2012. Effectiveness of green infrastructure for
678 improvement of air quality in urban street canyons. *Environ. Sci. & Technol.* 46(14), 7692-7699.
679 <https://doi.org/10.1021/es300826w>.

680 Qin, H.P., Li, Z.X., and Fu, G., 2013. The effects of low impact development on urban flooding under different rainfall
681 characteristics. *J. Environ. Manage.* 129, 577-585. <https://doi.org/10.1016/j.jenvman.2013.08.026>.

682 Rezaee, M. and Tabesh, M., 2022. Effects of inflow, infiltration, and exfiltration on water footprint increase of a sewer
683 system: A case study of Tehran. *Sustain. Cities Society*, 103707. <https://doi.org/10.1016/j.scs.2022.103707>

684 Roy, A.H., Wenger, S.J., Fletcher, T.F., Walsh, C.J., Ladson, A.R., Shuster, W.D., Thurston, H.W., and Brown, R.R.,
685 2008. Impediments and solutions to sustainable, watershed-scale urban stormwater management: lessons from
686 Australia and the United States. *Environ. Manage.* 42(2), 344-359. <https://doi.org/10.1007/s00267-008-9119-1>.

687 Sansalone, J., Kuang, X., Ying, G., and Ranieri, V., 2012. Filtration and clogging of permeable pavement loaded by
688 urban drainage. *Water Res.* 46(20), 6763-6774. <https://doi.org/10.1016/j.watres.2011.10.018>.

689 Schlea, D., Martin, J.F., Ward, A.D., Brown, L.C. and Suter, S.A., 2014. Performance and water table responses of
690 retrofit rain gardens. *J. Hydrol. Eng.* 19(8), 05014002. [https://doi.org/10.1061/\(ASCE\)HE.1943-5584.0000797](https://doi.org/10.1061/(ASCE)HE.1943-5584.0000797)

691 Scholz, M. and Grabowiecki, P., 2007. Review of permeable pavement systems. *Build. Environ.* 42(11), 3830-3836.
692 <https://doi.org/10.1016/j.buildenv.2006.11.016>.

693 Shen, P., Deletic, A., Bratieres, K. and McCarthy, D.T., 2020. Real time control of biofilters delivers stormwater
694 suitable for harvesting and reuse. *Water research*, 169, 115257. <https://doi.org/10.1016/j.watres.2019.115257>.

695 Shih, W.Y., 2017. The cooling effect of green infrastructure on surrounding built environments in a sub-tropical
696 climate: a case study in Taipei metropolis. *Landscape Research*, 42(5), 558-573.
697 <https://doi.org/10.1080/01426397.2016.1235684>.

698 USEPA, 2012. *Green infrastructure opportunities and barriers in the Great Los Angeles region: an evaluation of*
699 *state and regional regulatory drivers that influence the costs and benefits of green infrastructure*. Los Angeles,
700 CA. EPA 833-R-13-001.

701 Walsh, C.J., Fletcher, T.D., and Burns, M.J., 2012. Urban stormwater runoff: a new class of environmental flow
702 problem. *PLoS One* 7(9), e45814. <https://doi.org/10.1371/journal.pone.0045814>.

703 Warnaars, E., Larsen, A.V., Jacobsen, P. and Mikkelsen, P.S., 1999. Hydrologic behaviour of stormwater infiltration
704 trenches in a central urban area during 2^{3/4} years of operation. *Water Sci. Technol.* 39(2), 217-224.
705 [https://doi.org/10.1016/S0273-1223\(99\)00026-8](https://doi.org/10.1016/S0273-1223(99)00026-8)

706 Weiss, G., Brombach, H. and Haller, B., 2002. Infiltration and inflow in combined sewer systems: long-term analysis.
707 *Water Sci. Technol.* 45(7), 11-19. <https://doi.org/10.2166/wst.2002.0112>

708 Winston, R.J., Al-Rubaei, A.M., Blecken, G.T., Viklander, M., and Hunt, W.F., 2016. Maintenance measures for
709 preservation and recovery of permeable pavement surface infiltration rate—The effects of street sweeping, vacuum
710 cleaning, high pressure washing, and milling. *J. Environ. Manage.* 169: 132-144.
711 <https://doi.org/10.1016/j.jenvman.2015.12.026>.

712 Winston, R.J., Dorsey, J.D., Smolek, A.P., and Hunt, W.F., 2018. Hydrologic Performance of Four Permeable
713 Pavement Systems Constructed over Low-Permeability Soils in Northeast Ohio. *J. Hydrol. Eng.* 23(4), 04018007.
714 [https://doi.org/10.1061/\(ASCE\)HE.1943-5584.0001627](https://doi.org/10.1061/(ASCE)HE.1943-5584.0001627).

715 Xie, N., Akin, M., and Shi, X. 2019. Permeable concrete pavements: A review of environmental benefits and durability.
716 *J. Clean. Prod.*, 210, 1605-1621. <https://doi.org/10.1016/j.jclepro.2018.11.134>.

717 Xu, W.D., Burns, M.J., Cherqui, F. and Fletcher, T.D., 2021. Enhancing stormwater control measures using real-time
718 control technology: A review. *Urban Water J.* 18(2), 101-114. <https://doi.org/10.1080/1573062X.2020.1857797>

719 Zhang, J., Liu, Z. and Chen, L., 2015. Reduced soil moisture contributes to more intense and more frequent heat waves
720 in northern China. *Adv. Atmos. Sci.* 32(9), 1197-1207. <https://doi.org/10.1007/s00376-014-4175-3>

721 Zhang, K., and Chui, T.F.M., 2017. Evaluating hydrologic performance of bioretention cells in shallow groundwater.
722 *Hydrol. Process.* 31(23), 4122-4135. <https://doi.org/10.1002/hyp.11308>.

723 Zhang, K., and Chui, T.F.M., 2018a. Linking hydrological and bioecological benefits of green infrastructures across
724 spatial scales – A literature review. *Sci. Total Environ.* 646, 1219-1231.
725 <https://doi.org/10.1016/j.scitotenv.2018.07.355>.

726 Zhang, K., and Chui, T.F.M., 2018b. Interactions between shallow groundwater and low-impact development
727 underdrain flow at different temporal scales. *Hydrol. Process.* 32(23), 3495-3512.
728 <https://doi.org/10.1002/hyp.13272>.

729 Zhang, K., and Chui, T.F.M. 2019. A review on implementing infiltration-based green infrastructure in shallow
730 groundwater environments: Challenges, approaches, and progress. *J. Hydrol.* 579, 124089.
731 <https://doi.org/10.1016/j.jhydrol.2019.124089>.

732 Zhang, K., Chui, T.F.M. 2020. Design measures to mitigate the impact of shallow groundwater on hydrologic
733 performance of permeable pavements. *Hydrol. Process.* 34(25), 5146– 5166. <https://doi.org/10.1002/hyp.13935>.

734 Zhang, K., Chui, T.F.M., and Yang, Y., 2018. Simulating the hydrological performance of low impact development
735 in shallow groundwater via a modified SWMM. *J. Hydrol.* 566, 313-331.
736 <https://doi.org/10.1016/j.jhydrol.2018.09.006>

737 Zhang, M., Jing, H., Liu, Y. and Shi, H., 2017. Estimation and optimization operation in dealing with inflow and
738 infiltration of a hybrid sewerage system in limited infrastructure facility data. *Front. Environ. Sci. & Eng.* 11(2),
739 1-11. <https://doi.org/10.1007/s11783-017-0912-z>